
.

Aegis
A Project Change Supervisor

Reference Manual

Peter Miller
pmiller@opensource.org.au

.

This document describes Aegis version 4.25
and was prepared 7 January 2024.

This document describing the Aegis program, and the Aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If

Read Me(Aegis) Read Me(Aegis)

not, see <http://www.gnu.org/licenses/>.

NAME
aegis − project change supervisor
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

Aegis is distributed under the terms of the GNU General Public License. See the LICENSE section, below,
for more details.

aegis (ee.j.iz) n., a protection, a defense.

DESCRIPTION
Aegis is a CASE tool with a difference. In the spirit of the UNIX Operating System, Aegis is a small com-
ponent designed to work with other programs.

Many CASE systems attempt to provide everything, from bubble charts to source control to compilers.
Users are trapped with the components supplied by the CASE system, and if you don’t like one of the com-
ponents (it may be too limited, for instance), then that is just tough.

In contrast, UNIX provides many components of a CASE system − compilers, editors, dependency mainte-
nance tools (such as make), source control tools (such as RCS). You may substitute the tool of your choice
if you don’t like the ones supplied with the system − gcc, jove, cake, to name just a few. Aegis adds to this
list with software configuration management, and true to UNIX philosophy, Aegis does not dictate the
choice of any of the other tools (although it may stretch them to their limits).

Enough hype, what is it that Aegis does? Just what is software configuration management? This question
is sufficiently broad as to require a book in answer. In essence, Aegis is a project change supervisor. It
provides a framework within which a team of developers may work on many changes to a program inde-
pendently, and Aegis coordinates integrating these changes back into the master source of the program,
with as little disruption as possible. Resolution of contention for source files, a major headache for any
project with more than one developer, is one of Aegis’ major functions.

It should be noted that Aegis is a developer’s tool, in the same sense as make or RCS are developer’s tools.
It is not a manager’s tool − it does not provide progress tracking or manage work allocation.

BENEFITS
So why should you use Aegis?

Aegis uses a particular model of the development of software projects. This model has a master source (or
baseline) of a project, and a team of developers creating changes to be made to this baseline. When a
change is complete, it is integrated with the baseline, to become the new baseline. Each change must be
atomic and self-contained, no change is allowed to cause the baseline to cease to work. "Working" is de-
fined as passing it’s own tests. The tests are considered part of the baseline. Aegis provides support for the
developer so that an entire copy of the baseline need not be taken to change a few files, only those files
which are to be changed need to be copied.

In order to ensure that changes are unable to cause the baseline to cease to work, Aegis mandates that
changes be accompanied by at least one test, and that all such tests be known to complete successfully.
These steadily accumulated tests form an ever increasing regression test suite for all later changes. There is
also a mandatory review stage for each change to the baseline. While these requirements may be relaxed
per-change or even per-project, doing so potentially compromises the "working" definition of the baseline.

The win in using Aegis is that there are O(n) interactions between developers and the baseline. Contrast
this with a master source which is being edited directly by the developers − there are O(n!) interactions be-
tween developers − this makes adding "just one more" developer a potential disaster.

Another win is that the project baseline always works. Always having a working baseline means that a ver-
sion is always available for demonstrations, or those "pre-release snapshots" we are always forced to pro-
vide.

The above advantages are all very well − for management types. Why should Joe Average Programmer use
Aegis? Recall that RCS provides file locking, but only for one file at a time. Aegis provides the file

Reference Manual Aegis 0

Read Me(Aegis) Read Me(Aegis)

locking, atomically, for the set of files in the change. Recall also that RCS locks the file the instant you
start editing it. This makes popular files a project bottleneck. Aegis allows concurrent editing, and a reso-
lution mechanism just before the change must be integrated, meaning fewer delays for J.A.Programmer.

Aegis also has strong support for geographically distributed development. It supports both push and pull
models, and many distribution topologies. Aegis’ normal development process is used to validate received
change sets before committing them.

ARCHIVE SITE
The latest version of Aegis is available by HTTP from:

URL: http://miller.emu.id.au/pmiller/
File: aegis.html # the Aegis page
File: aegis.4.25.README # Description, from tar file
File: aegis.4.25.lsm # Description, in LSM format
File: aegis.4.25.ae # the complete source, aedist format
File: aegis.4.25.spec # RedHat package specification
File: aegis.4.25.tar.gz # the complete source

This directory also contains a few other pieces of software written by me. Some are referred to in the Aegis

documentation. Please have a look if you are interested.

Mirrors
See http://miller.emu.id.au/pmiller/ for a list of mirror sites.

Aegis is also carried by metalab.unc.edu in its Linux archives. You will be able to find Aegis on any
of its mirrors.

URL: ftp://metalab.unc.edu/pub/Linux/devel/vc/
File: aegis.4.25.README # Description, from tar file
File: aegis.4.25.lsm # Description, in LSM format
File: aegis.4.25.spec # RedHat package specification
File: aegis.4.25.ae # the complete source, aedist format
File: aegis.4.25.tar.gz # the complete source

This site is extensively mirrored around the world, so look for a copy near you (you will get much better re-
sponse).

MAILING LIST
A mailing list has been created so that users of Aegis may exchange ideas about how to use Aegis. Discus-
sion may include, but is not limited to: bugs, enhancements, and applications. The list is not moderated.

The address of the mailing list is
aegis-users@auug.org.au

Please do not attempt to subscribe by sending email to this address. It is for content only.

How To Subscribe
To subscribe to this mailing list, visit the Aegis-users mailing list page (http://www.auug.org.au/-
mailman/listinfo/aegis-users) and go through the subscribe dialogue.

Archive
The mailing list is archived at eGroups. The URL is
http://www.egroups.com/list/aegis−users/info.html

No Files By EMail
The software which handles this mailing list cannot send you a copy of Aegis. Please use FTP or ftp-by-
email, instead.

BUILDING
Instructions on how to build and test Aegis are to be found in the BUILDING file included in this distribu-
tion.

Reference Manual Aegis 1

Read Me(Aegis) Read Me(Aegis)

SOME HISTORY
The idea for Aegis did not come full-blown into my head in the shower, as some of my programs do, but
rather from working in a software shop which used a simplistic form of something similar. That system
was held together by chewing-gum and string, it was written in a disgusting variant of Basic, and by golly
the damn thing worked (mostly). Aegis is nothing like it, owes none of its code to that system, and is far
more versatile. It turns out that the system used is nothing new, and is described in many SCM textbooks; it
is the result of systematically resolving development issues for large-ish teams.

Since that company decided to close down our section (the company was under attack by a hostile takeover
bid) we all moved on simultaneously (all 60 of us), sometimes working together, and sometimes not, but al-
ways keeping in touch. With suggestions and conversations with some of them early in 1990, the manual
entries for Aegis took shape, and formed most of the design document for Aegis.

Since getting the first glimmerings of a functional Aegis late in 1990 it is increasingly obvious that I never
want to be without it ever again. All of my sources that I modify are instantly placed under Aegis, as is
anything I distribute. All code I write for myself, and all new code I write for my employer, goes under
Aegis. Why? Because it has fewer bugs!

Example: one of the sources I carry with me from job to job is "cook", my dependency maintenance tool.
Cook had existed for 3 years before Aegis appeared on the scene, and I used it daily. When I placed cook
under Aegis, I found 6 bugs! Since then I have found a few more. Not only are there now fewer bugs, but
they nev er come back, because the regression test suite always grows.

Branching
In 1997 the full branching support was released (it took nearly 18 months to retro-fit. The underlying data
structures for projects and change sets need to be merged. While I noticed back in 1990 that they were very
similar, it wasn’t until branch support design was well underways that they should have been the same data
structure from the beginning.

Geographically Distributed Development
In 1999 a conversation on the aegis-users mailing list resulted in the creation of aedist, a program
which packages and unpackages Aegis changes so they can be sent by e-mail, or WWW or whatever. With
20:20 hindsight, this could have been done way back in 1991, because the basic idea builds on Aegis
change process model.

Windows NT
Aegis depends on the underlying security provided by the operating system (rather than re-invent yet an-
other security mechanism). However, in order to do this, Aegis uses the POSIX seteuid system call, which
has no direct equivalent on Windows NT. This makes porting difficult. Single-user ports are possible (e.g.

using Cygwin), but are not usually what folks want.

Compounding this is the fact that many sites want to develop their software for both Unix and Windows NT
simultaneously. This means that the security of the repository needs to be guaranteed to be handled in the
same way by both operating systems, otherwise one can act as a “back door” into the repository. Many
sites do not have the same users and permissions (sourced from the same network register of users) on both
Unix and Windows NT, making the mapping almost impossible even if the security models did actually
correspond.

Most sites using Aegis and Windows NT together do so by running Aegis on the Unix systems, but building
and testing on the NT systems. The work areas and repository are accessed via Samba or NFS.

LICENSE
Aegis is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 3 of the License, or (at your option)
any later version. In addition, as a special exception, the copyright holders give permission to link the code
of this program with the OpenSSL library, and distribute linked combinations including the two.

Aegis is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Reference Manual Aegis 2

Read Me(Aegis) Read Me(Aegis)

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the LICENSE file included in this distribution. The full test of the OpenSSL exception
should be in the LICENSE.openssl file included in this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 3

Read Me(Aegis) Read Me(Aegis)

RELEASE NOTES
For excruciating detail, and also acknowledgments of those who generously sent me feedback, please see
the etc/CHANGES.* files included in this distribution.

Upgrading
In general, all the machines on your network need to be running the same release of Aegis. While the data-
base format is backwards compatible, it is rarely forwards compatible in the face of new capabilities.

Version 4.26 (N-MMM-NNNN)
• Added OpenSSL license exception (LICENSE.openssl).

Version 4.25 (8-Mar-2008)
Version 4.24 (09-Mar-2008)

• Numerous portability improvements.

• Numerous improvements to the history reconstruction code.

• Numerous improvements and bug fixes to the distributed development code. See aedist(1), aeget(1), ae-

tar(1) and aepatch(1) for more information.

• The site specific architecture information has been split into a separate file, maked with an entire-source-
hide attribute, so that new Aegis-under-Aegis projects don’t hav e such bad architecture problems.

• The license has been changed to GPLv3.

• A bug has been fixed the the change::pconf_get method which sometimes caused segfaults.

• A bug has been fixed in aeclone which caused aecp -delta to segfault when: a change set whith a removed
file was cloned, and the clone change set subsequently integrated.

• The aediff command is now smarter about files which may have moved.

• A bug has been fixed in the aeannotate command, it no longer segfaults for some file histories.

• A Vietnamese error mesage translation has been added.

• There is a new Portugese (Brazillian) message catalogue translation.

• It is now possible to develop begin undo and new change undo in a single command.

• The ael(1) command now understands are much wider range of ways to specify changes.

• A segfault has been fixed in the use of --delta and --delta-data options.

• This change set fix a problem in the aesvt(1) checkout command that can fail to extract from a gzip com-
pressed archive.

• A bug has been fixed in the aechown(1) command, to stop a segfault when printing some error messages.

• There is a new aebisect(1) command which helps to find project regressions not handled by the test suite.

• Many commands now cope with renames in more situations.

• A bug has been fixed in aeclone(1) which caused aecp −delta to segfault when a change set whith a re-
moved file was cloned, and the clone change set subsequently integrated.

• The aede-policy(1) manual page has been updated to document the aede-policy-line-length file attribute.

• A vietnamese translation has been added.

• The aereport(1) command now understands more ways to specify changes.

• There is a new ${path_reduce} substitution which may be used to remove redundant elements from path
lists, such as used by the $PATH environment variable.

• When the development directory style required actions to be perfomed on the development directory, the
obsolete "creating symbolic links to baseline" message was produced. This was confusing. A more generic
message is now used, which is intended to be less confusing.

• The aecp(1) -delta command now follows the whiteout preference when copying a "removed" file. • The
test suite now runs much faster.

Reference Manual Aegis 4

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in the aedbu(1) command. It no longer complains about permissions when the de-
velop_begin_undo_command has been set.

• A bug has been fixed in the aeimport(1) command. It no longer uses the Attic portion of filenames when
populating the history directory tree.

• The change details listing now prints comments in a wide column when the comments are lengthy.

• There is a new $Active_Directory substitution, used to obtain the development directory, or the integration
directory, depending on the change state. This is rather like the default behaviour of the aecd(1) command.

• There is a new ${project version} substitution.

• The commands run by aeipass are now accompanied by more file name information, so that you can know
which source file corresponds to which UUID history file, if there is a failure in the history commands.

• The aeca(1) command now checks for and discards duplicate architecture names. This fixes a bug with
unsatifiable architecture dependencies.

• The aeb(1) command has been improved, it no longer keeps running the project_file_comand over and
over again.

• A bug has been fixed in the aenf(1) command; it now preserves existing file contents if new files already
exist in the development directory.

• A bug has been fixed in the "aet -regression" command, it no longer reports free()ing a non-existent string.

• A bug has been fixed in the aed(1) command, it no longer reports a bug when a cross branch merege is at-
tempted for a file independently created in both branches.

Version 4.23
Version 4.22.2 (18-Oct-2007)

This is an update for the 4.22 stable release, it is meant to help Aegis users while the next release cycle
ends.

• [1684820] Fixed a bug in aeclone that caused aecp −delta segfaults.

• The symlink farm now handle derived files registered within Aegis more like normal derived files.

• [1697199] The change_pconf_get function no longer looks for historical versions of files, if it can help
it. This makes many things go faster and solved the problem of configuration fields redefinition. While
this change does not make Aegis more time safe, it cures one of the symptoms.

• Fixed test 222 to work with recent releases of subversion.

• The aepconf(5) man page has been improved.

• [Debian 435422] The reference manual was wrongly referring to −Page-Headings instead of −Page-
Header. The documentation has been updated to match the source code.

• [1704108] The aecp(1) −delta command now follows the whiteout preference when copying a "re-
moved"file.

• [1704100] A bug has been fixed that caused aecp(1) −delta X to copy in a change also a file with the old
name of a file aemv(1)ed before delta X.

• The generated Makefile now installs aelock(1) with the correct permissions.

• [1701701] A bug has been fixed in the aetar(1) command, it no longer creates tarballs that cause BSD
and other tar to complain like this: tar: End of archive volume 1 reached tar: Unexpected EOF on archive
file

• The configure script now handle correctly the datadir substitution.

Version 4.22.1 (14-Apr-2007)
• Test t0247a-walt.sh has been fixed, it was not exporting AEGIS_TEST_DIR. This make aeintegratq(1)
leaving stuff in the home directory of the user.

• Some minor fix that prevented Aegis to build on RPM based distributions has been fixed.

Reference Manual Aegis 5

Read Me(Aegis) Read Me(Aegis)

• The t0011a.sh test script failed when lex(1) was missing, since it is not required to build Aegis the test
script has been modified to pass even when lex(1) is missing.

• aedist(1) now handle certain renamed files correctly when receiving branches or entire-source.

• The t0011a.sh test script failed when lex(1) was missing, since it is not required to build Aegis the test
script has been modified to pass even when lex(1) is missing.

• aedist(1) now handle certain renamed files correctly when receiving branches or entire-source.

• [1691122] Newer versions of the autoconf tools introduced a new @datarootdir@, and complained
loudly if it wasn’t used. Aegis configure does not trigger anymore those warnings.

• The test suite does not use anymore diff(1) −u because not all systems have gnu diff, so the use of gnu
diff’s −u option is nor portable, and will give false negatives on some systems.

• The test suite does not use anymore diff(1) −u because not all systems have gnu diff, so the use of gnu
diff’s −u option is nor portable, and will give false negatives on some systems.

• aedist(1) −rec now sav e the UUID as the user defined original-UUID if the UUID is already present in the
repository. This is especially useful when receiving changes in the same repository.

• aeclone(1) now preserve the the UUID of the original change as the original-UUID user defined attribute
of the new change. It also copy any other used-defined attribute.

• Test 89 has been disable on HP-UX-10 because that system has a "vendor specific" (i.e. broken) cpio(1)
archive format.

• Test 95 has been improved to be less sensitive to libmagic(3) differences.

• Test 207 has been changed to be less sensitive to sort(1) differences.

• The project_specific setenv:* variables are now exported only once.

• [1674882] The following bug as been fixed: if a file is created and renamed within a single branch, and
that branch is integrated, then the file is not included in the output of ’aedist −send −es’ from subsequent
branches.

• A bug has been fixed in the aedbu(1) command. It no longer complains about permissions when the de-

velop_begin_undo_command has been set.

• The aedist(1) −rec command now better handles file renamed (not aemved) to match the local repository
state.

• A bug has been fixed that caused the change_pconf_get function terminate aegis(1) with a fatal error if ap-
plied to a branch without a config file (e.g. if the trunk does not contain any closed branch).

• The aenpr(1) −keep command now set the administrator recursively.

• A bug has been fixed in the ${project-specific} substitution, it now works correctly with the aesub(1) −bl
command.

• aedist(1) −received has been modified to set the user defined attribute foreign-copyright to true when re-
ceiving a remote change set. This in order to avoid aede-policy(1) complain about incorrect copyright no-
tice at aede(1) time.0

• A bug has been fixed that caused an aemv(1) followed by an aenf(1) to generate two different files with
the same UUID.

• Avoid the "multiple permission set" error on quit.

• A bug has been fixed in the UUID generating code; it was running out of file descriptors.

• A bug has been fixed in the aet(1) −regression command, it no longer reports free()ing a non-existent
string.

• A bug has been fixed in the aed(1) command, it no longer reports a bug when a cross branch merge is at-
tempted for a file independently created in both branches.

Reference Manual Aegis 6

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed which caused aeipass(1) to assign UUID to files at branch integration pass time.
This can happen if the files was created and integrated with an old Aegis release, lacking support for file’s
UUID. This bug make it possible to have the history for a file split into two part, one accessible via the
file_name, the other accessible using the UUID.

• A segfault in aeannotate(1) has been fixed.

• A bug has been fixed related to the use of the unchanged_file_integrate_pass_policy=remove policy de-
scribed in aepconf(5). In this case aeipass failed to reset the locked_by field from the project fstate file, this
prevented subsequent changes to modify the removed file.

• A bug has been fixed in the handling of the symlink farm, for development directory styles which use
them for derived files. Derived files in the baseline directory which were formerly source files, but then
aerm-ed, are now included in the development directory when copy/link styles are used.

• A bug has been fixed in the aenf(1) command; it now preserves existing file contents if new files already
exist in the file development directory.

• The ./configure script has been improved to stop with a fatal error if the bzip2 library is not available.

Version 4.22 (29-Mar-2006)
• A bug has been fixed in the aeclean(1) command, it now correctly resets the change build and test times.

• A bug has been fixed in writing of tar and cpio data, in cases where there was one byte too much padding.

• A bug has been fixed in the aeintegratq(1) command, it no longer ignores change number zero.

• A bug has been fixed in the aepromptcmd(1) comand, it now understands that when the build command is
"exit 0" then no build is required.

• The aede(1) comand now runs the re view_pass_notify_command (instead of the develop_end_notify_-

command) for projects configured to skip the being reviewed state.

• A bug has been fixed in the aeannotate(1) command, it no longer uses the wrong timestamp when creat-
ing histories for completed branches.

• A bug in the aed(1) command has been fixed, it no longer reports a bug when trying to merge a file that
has been renamed.

• A bug has been fixed in the aet(1) command, it now correctly handles multiple architectures being re-
ported for batch test results.

• A bug has been fixed in the aet −regression command, the batch_test_command now correctly handles
multiple architectures in the results.

• The notification scripts distributed with Aegis have been fixed, they now correctly substitute recipients’
email addresses.

• A bug has been fixed in the aediff(1) command, the −change option is now ablew to cope with degenerate
forms of the delta name in cases like aediff −change D001 and similar.

• A bug has been fixed in the aenc(1) command, it now takes more notice of project testing default settings.

• A bug has been fixed in the aeget(1) interface, the adjective for the alternate listing link at the bottom of
the Integration Histogram pages has been inverted.

• A bug has been fixed in the aeget(1) command, is is now always possible to see the error produced by a
script when the noerror modifier is specified.

• A bug has been fixed in the aeget(1) web interface, it now provides the correct links to the more and less
detailed file history pages.

• The aeget(1) web interface no longer emits broken links to removed source files.

• A bug has been fixed in the aenbr(1) command, the protect_database project attribute is now correctly in-
herited from the parent branch.

• A bug has been fixed the the RSS feed, where HTML special characters were not rendered correctly.

Reference Manual Aegis 7

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in the aeipass(1) command, it no longer fails if the history_create_command was
not set, it uses the history_put_command instead, as it is supposed to.

• A bug has been fixed in the aedist −send command, it no longer attempts to include the source of re-
moved files.

• A bug has been fixed in the aedist(1) command, it no longer segfaults when compiled with DEBUG de-
fined.

• A bug has been fixed in the aedist −replay command, it no longer downloads change sets more than once.

• A bug has been fixed in the aedist −send command, it no longer obtains the wrong version of the project
files when building patches for files which have been renamed.

• A bug has been fixed in the aedist(1) command, no longer attempts to include the source of removed files.

• A bug has been fixed in the aedist −pending command, it now resolves project aliases.

• A bug has been fixed in the aedist(1) command, it no longer segfaults on IRIX.

• A bug was fixed which caused the development_directory of a branch to be recorded as an absolute path
in the Aegis meta-data, rather than relative to the home of the project. This problem make it difficult to
move a project to a different location in the filesystem.

• There is a new open source project example on the web site, which allows tarballs to be unpacked and
turned into an Aegis project in less than 30 minutes.

• There is a new aefinish(1) command which may be used to read the state of a change set and then run all
of the Aegis commands necessary to to end development. See aefinish(1) for more information.

• The aexml(1) command now understands ".bz" output file suffix, in addition to the ".gz" suffix it already
understood. The man page has been updated to cover the −output opion.

• The aerevml −send command is now able to produce bzip2 compressed output.

• The restrictions on project alias names have been eased. It is now possible to have any alias name you
like, so long as it doesn’t contain any shell special characters.

• It is now possible to set change attributes from the command line, without going via an editor. See
aeca(1) for more information.

• The aetar −send command is now able to produce bzip2 compressed output.

• There is an new aetar −exclude command line option, allowing you to exclude files from the tarball being
unpacked and used to for the change set. This is typically necessary when a tarball includes derived files
(e.g. the ./configure script in most open source projects).

• There is a new aetar −exclude-auto-tools option, which can be used to exclude derived files commonly
found in open source projects using the GNU Autoconf and GNU Automake tools.

• There is a new aede-policy(1) command which may be invoked by develop_end_policy_command to en-
force additional local policies. See aede-policy(1) for more information.

• When symlinking files (source or derived) into the development directory, the last-modified time of the
link is set to the last-modified time of the file being linked to, when the underlying filesystem supports it.

• The aefa(1) command now accepts name=value attribute assignments on the command line.

• The aet(1) command now understands name=value pairs on the command line, and passes them un-
changed to the test command. The −force option implies a force=1 variable setting.

• The aepatch −send command is now able to produce bzip2 compressed output.

• The aesvt(1) command now uses the bzip2(1) algorithm by default. There is a aesvt −compression-algo-

rithm=gzip option for forwards compatibility.

• There is a new ae-repo-ci(1) command which may be used in an integrate_pass_notify_command to do a
parallel check-in of a change set into a second parallel repository. It understands CVS and SVN at the mo-
ment; it is easy to extend to understand more repository types. The old ae-cvs-ci(1) script now inv okes the

Reference Manual Aegis 8

Read Me(Aegis) Read Me(Aegis)

ae-repo-ci(1) command.

• The build step of the development process can now be made optional. Configuring a build_command of
"exit 0" will tell Aegis your project does not need to be built.

• The aedist −replay command now adds a compatibility modifier to all of the downloads URLs, so that the
change set received will be compatible with the version of aedist at the receiving end.

• The aedist −send command now accepts a −no-mime-header option, to make it easier to validate the
aedist(1) output against the real cpio(1) command.

• The aedist −send command is now able to produce bzip2 compressed output.

• There is a new entire-source-hide file attribute which may be used to omit site-specific files from aedist

−send change sets.

• The aetar −remove-path-prefix option now also accepts a numeric argument.

• The aeannotate(1) command now understands the −change and −delta options.

• The aedb(1) command has been enhanced to check that directory permissions above the development di-
rectory will be traversable by the integrator and the reviewers.

• The aecpu(1) comand now understands the −read-only option to mean uncopy all of the insulation files.

• There is a new aelock(1) command, which may be used to take read-only locks. This can be useful for
backups, and other activities outside Aegis’ scope which require a constant project state to operate cor-
rectly.

• The aedist command can now perform file merges with better results.

• The aedist −receive command now looks to see if the executing user has project admin priviledges, and if
so does not cancel testing exemptions.

• The aedist −receive command now applies patches using the patch(1) command, rather than doing it less
well itself.

• The aedist −replay command now attempts to use the same change number as on the remote system. A
bug has been fixed in the way it looked for change numbers.

• There is a new unchanged_file_integrate_pass_policy field in the project configuration file, which con-
trols what to do when a change set contains an unchanged file at integrate pass time.

• It is now possible for developers to edit a change description when a change is in the awaiting develop-
ment state, if the project has developers_may_create_changes enabled.

• The aed(1) command is now optional. Configuring a diff_command of "exit 0" will tell Aegis your
project does not need to be differenced.

• The aeget(1) interface now places HTML anchors in description text where it recognizes them.

• There is a new aeget:inventory:hide change attribute, which may be used to prevent strictly local change
sets from being advertised in the aeget(1) change set inventory.

• The aeget(1) web interface file listings pages now link the edit numbers to file versions. When history is
available there are also links to the previous verion, and the arrow is linked to a diff page.

• The aeget(1) presentation of file history has been improved to highlight renaming of files.

• The aeget(1) web interface now has a recursive option on its project integration history pages.

• The aebuffy(1) command is now able to run the tkaer(1) command from more states, and it now accepts
’q’ to quit. The display of changes with double quotes (") in their brief description has been improved.

• A build problem with libcurl not being present has been fixed.

• A bug has been fixed which caused errors when Aegis was compiled with g++ 4.1

• A build problem has been fixed on Solaris.

• A build problem related to bison(1) using libintl(3) has been fixed.

Reference Manual Aegis 9

Read Me(Aegis) Read Me(Aegis)

• The ./configure script has been improved to correctly detect installation of the OSSP UUID library.

• A build problem on HP/UX has been fixed.

• A build problem on MacOS X has been fixed.

• A build problem has been fixed where libraries required by the ./configure script are located under
/usr/local/lib or some other non-standard place.

Version 4.21 (10-Nov-2005)
You must have the Gnome libxml2 library (http://xmlsoft.org/) installed in order to build Aegis.
Please install the xml2 library version 1.8.17 or later. You do not have to install the rest of Gnome, the li-
brary can be used on its own. If you are using a package based install, you will need the libxml2-devel or
libxml2-dev package in addition to the libxml2 package.

Ideally, you would also install the libmagic package, used to determine file types, just as file(1) does. (This
is not to be confused with the libmagic6 image manipluation library. If you are using a package based
install, you will need the libmagic-devel or libmagic-dev package in addition to the libmagic package.

• A bug has been fixed in the aecp −independent −output option, which resulted in an error when Aegis
tried to chmod nothing.

• The auto file promote feature previously available in aed(1) has been added to the aeb(1), aecp(1),
aerm(1) and aenf(1) commands.

• The aedist −pending and aedist −missing commands now print the number of changes in the remote in-
ventory.

• A bug was fixed in the aecp command which caused a segfault sometimes when the user tries to copy a
removed file.

• The aedist −replay command now accepts a −maximum option, which includes change sets not yet com-
pleted in the local change set inventory when considering what to download.

• There is a new develop_end_policy_command field in the project configuration file. It can be used to add
addition constrains to change sets before they can complete aede(1) successfully.

• The aedist −receive command now annotates remote change sets (typically, change sets downloaded via
the aedist −replay command) with their origin URL.

• A bug has been fixed in the aebuffy command where it would display incorrectly when the brief_descrip-
tion of a change contained double quotes.

• It is now possible to attach a comment to all commands which involve a change state transition, e.g. aenc,
aede, etc. This is done using the −reason command line option, just as you are able to do for review fail,
etc.

• A bug has been fixed in aenc, where it did not correctly copy user defined attributes.

• There is a new aelcf(1) command to efficiently generate lists of change source files for use by your build
tool.

• There is a new aelpf(1) command to efficiently generate lists of project source files for use by your build
tool.

• There is a new cache of state information attached to each delta, the project file state at the time of the
delta. This has the potential to accelerate aecp −delta, and all other project_file_roll_forward-based opera-
tions. Large projects may want to turn this off, because each delta will produce another large project file
state cache.

• There is support for generating RSS feeds from Aegis. See the Aegis project pages on the Aegis web in-
terface for an example. See aepconf(5) and aeget(1) for more information.

• The ${change delta_uuid} substitution now allows access to the delta_uuid in the being integrated state.

• The "wrong file" error message from aedist has been improved, to say what was expected.

• There is a new optional $filename substitution for the history_put_command, so that you can attach the

Reference Manual Aegis 10

Read Me(Aegis) Read Me(Aegis)

current name of the check-in to the history file meta-data. There is a new optional $uuid substitution for
history_put_command, so you can attach that as mete-data, too.

• There is a new history tool bundled with Aegis. See aesvt(1) for more information.

• There is a new default_regression_test_exempt project attribute.

• The aedist −receive delta selection mechanism has been improved: previously the edit-origin-UUID at-
tribute was considered in favour of the original-UUID attribute, with this change it is used the change set,
bounded to the edit-origin-UUID or to original-UUID, more recently integrated. This should reduce the
frequency of logical conflicts.

• There is a new aerevml(1) command, which can be used to send change sets in the RevML format. See
aerevml(1) for more information. The aeget(1) web interface is also able to serve change sets in this for-
mat.

• A problem has been fixed which caused Aegis to fail on the hppa port of Debian.

• The aetar −receive program now uses the archive name as the brief description.

• A bug was fixed in aedist −send which caused segfaults when processing some files.

• A bug was fixed which caused aedist −send to produce an archive that can not be aedist −receive because
of an operation impossible to replicate in a change set.

• There is an implementation of Robert Collins’ subunit testing framework available. See aesubunit(1) for
more information.

• A bug was fixed in aedist that caused an error when receiving a branch’s archive generated with the aedist

−send −entire-source option.

• A bug has been fixed in aedist −receive that caused a segfault in the rename handling code.

• The aedist −missing listing (and the aedist −replay behaviour) now check for branch UUIDs as well, just
in case someone fetched a branch as a change set and applied it. However, aeget does not report these
UUIDs, because that would be too confusing.

• It is now possible to specify any sufficiently unique leading prefix of a UUID rather than the full 36 char-
acters.

• There is a new ${History_Path} substitution available. It gives you the path name of the history file corre-
sponding to the given filenames.

• A bug in aedist −receive which caused incorrect delta selection has been fixed.

• There is a new aedist −pending option which can print the list of local change sets missing from a remote
repository.

• The aedist −receive command is now able to use the edit-origin-UUID attribute to copy modified files
from the right origin.

• A bug has been fixed in aedist −send where some types of incomplete changes would fail an assert.

• There is a new aexver(1) command which can be used to view historical versions of files in an Aegis
repository. See aexver(1) for more information.

• A bug as been fixed which caused aemv(1) to incorrectly rename a file to an existing directory

• It is now possible to specify user-defined user attributes in the ˜/.aegisrc file.

• The aenf(1) command now giv es a warning if you specify the "config" file without the "−config" option.
This is the old name for the project configuration file, the new name is "aegis.conf".

• The aefind(1) command now understands {+} to mean the resolved file name, and {−} as the unresolved
file name.

• There was a bug where Aegis would exit with a fatal error if one of the directories on the AEGIS_PATH
was read-only. Such directories are now ignored.

Reference Manual Aegis 11

Read Me(Aegis) Read Me(Aegis)

• The aetar(1) command has been improved to process modified and created files in a batched way; this im-
proves the speed.

• Additional explanatory text has been added to the message printed when error message translation files
can’t be found.

• The aenf(1) command now understands the −keep and −no-keep options, to explicitly control the creation
of new files in the development directory.

• A bug has been fixed in aemv(1) which failed to check the new name against the filename charset, etc.

Version 4.20 (28-Jan-2005)
Please Note: Users are advised to check the history command settings in their project configuration files.
With the advent of file UUIDs, the history mechanism now decouples source file names from history file
names. In particular, the assumption that the history file basename is the same as the source file basename
is no longer true. Correct settings may be found in the lib/config.example/ directory of the source distribu-
tion.

• The defaulting rules for the change number (if none was specified on the command line) have been al-
tered. the current directory now takes precedence over the "only one" rule. This seems to meet user expec-
tations better.

• A bug has been fixed in the aecvsserver(1) command which caused to to fail when accessed by some
clients.

• A bug has been fixed which caused many of the programs to leave temporary files behind.

• A bug has been fixed in the aedist −send −entire-source command where it would hang for some cases.
(Actually, it would dump core after using up all available swap space on an infinite recursion).

• A bug has been fixed in the aedist command (and other places) where the open of the project configura-
tion file could fail, due to not properly reconstructing in historical circumstances.

• A bug has been fixed in the integration build which was removing files it should not, for dur-

ing_build_only = true work area styles.

• The aeb command now complains much less about "directory not empty" when using the link farm.

• A bug has been fixed in the aetar −send −entire-source command where some files were missing when
asking for a complete set of historical sources.

• A bug has been fixed in the aedist −send −entire-source where some files were zero length when asking
for a complete set of historical sources.

• A bug in aedist(1) has been fixed, it was forcing regression test on the receiving side even if the change
set does not require it and default_test_exemption was set to true. It was annoying especially if the test
suite take a long time to run completely.

• Some bugs have been fixed in aediff(1) which caused it to mis-parse the command line in some cases, and
it was also barfing on the expected exit status 1 when an actual difference was found.

• A bug has been fixed in the aecpu(1), aemtu(1), aemvu(1), aenfu(1), aentu(1) and aermu(1) commands.
They were not repairing the symlinks (etc) required by the development_directory_style settings.

• A bug has been fixed in the Change_Files listing; it was not showing the locked-by information.

• A bug has been fixed in the code which updates the development directory symlinks. It was failing to
make all the directories required.

• A bug has been fixed in the aedist −send −entrie-source command, where it would segfault in some
cases.

• A bug has been fixed in reading plain diff(1) format patches. This was particularly obvious because aean-

notate(1) uses this form of diff by default.

• A bug has been fixed in aeget(1) where it was showing removed source files as available for download.

• A bug has been fixed in aeget(1) where it produced invalid output if the SCRIPT_NAME environment

Reference Manual Aegis 12

Read Me(Aegis) Read Me(Aegis)

was not set.

• A bug has been fixed in aeget(1) where it would sometimes ignore modifiers. This was particularly noti-
cable in the download pages.

• A bug has been fixed in the aeimport(1) command. It was using the old work area style configuration file
parameters, instead of the new development_directory_style settings.

• A memory leak has been fixed in the symbol table code.

• A bug has been fixed in the project_file_find_by_uuid function. In some cases it would SEGFAULT , par-
ticularly once the memory leak in the symbol table code was fixed.

• Sev eral build problems have been fixed.

• The aeintegratq(1) command has a new −loop options, which causes it to keep processing changes that

become available while it is running.

• The aet(1) command has a new −sugest-limit option which runs as many regression tests as possible
(from most relevant to least relevant) but stops after the given number of minutes. This is a way for running
the most relevant tests in a limited time. For example, this option could be used if a project has so many in-
tegrations in a day that it can only afford 20 minutes of integration testing for each one.

• The aed(1) man page has been updated to better describe the behaviour around the merge command.

• The aetar −send command now accepts an −include-build option that also add build files, registered with
aegis −new-file −build, to the ouput archive. A −not-include-build option is also accepted.

• The aetar −receive command now avoids copying build files from the baseline because this operation is
forbidden and the error stops the processing.

• There is a new ${Change_Attribute} substitution, which is replaced by the values of the change attributes
named.

• The history recapitulation code (project_file_roll_forward) now indexes by UUID rather than by file name
(with backwards compatibility for UUID-less repositories). The user visable result is that file history re-
ports and listings now accurately track renames.

• The aet −nopersevere option now also stops for no result as well as fail.

• The aedist −receive command now understands file UUIDs. This means that it will operate on the correct
file even when one or the other repository has renamed the file.

• The aedist −receive command has been enhanced to perform file merges if necessary.

• There is a new aedist −replay option. When used in with an aeget(1) server, it can be used to synchronize
two repositories. The aedist −missing option may be used to show what would be downloaded.

• The aefa(1) command, with the −edit option, now shows you the content type, rather than adding it
silently.

• There is a new aediff −command option, allowing you to specify the command you want to use to display
the difference. For example, you could use tkdiff(1) or mgdiff(1) to display the change graphically.

• The aediff(1) command now adds labels when it is producing a context or unified diff output.

• There is a new optional re view_policy_command field in the project confioguration file. This allows for
customised review policies for each project, including multiple reviewers and specific reviewers for por-
tions of the sources.

• There is a new ${Change_Reviewer_List} substitution, which is replaced by a space separated list of re-
viewers of the current change, since the last develop end. This is of particular use to the re view_policy_-

command field of the project configuartion file.

• There is a new ${Change_Developer_List} substitution, which is replaced by a space separated list of all
the developers of the current change.

• There is a new ${quoted_email_address} substitution, which replaces it arguments with the email

Reference Manual Aegis 13

Read Me(Aegis) Read Me(Aegis)

addresses of the names users. See aesub(5) for more information.

• The notification scripts have been updated to use the new ${quoted-email-address} substitution.

• The remaining aegis.cgi(1) functions have been reproduced in aeget(1). The aegis.cgi(1) script is now
deprecated.

• When the UUID of a change is cleared it (because some operation on the change set invalidates it) is
saved in a change attribute named original-UUID.

• The aedist −receive command is now able to use the original-UUID attribute of the incoming change set
to select the delta to merge with.

• The "path unrelated" error message has been updated to make it more informative.

• All attribute names (project, change and file) are now case-insensitive.

• The aedist −receive command has been enhanced to allow you to select the branch of the delta to merge
with.

• Sev eral classes within the source have been refactored.

Version 4.19 (30-Sep-2004)
Please Note: Users are advised to check the history command settings in their project configuration files.
With the advent of file UUIDs, the history mechanism now decouples source file names from history file
names. In particular, the assumption that the history file basename is the same as the source file basename
is no longer true. Correct settings may be found in the lib/config.example/ directory of the source distribu-
tion.

• There is a new development_directory_style field of the project configuration file. This allows CVS-style
and Arch-style work areas, in addition to the BCS-style and viewpath work areas already supported. These
new work area styles permit many existing projects to use Aegis with no change to their build systems. The
libsndfile and OpenLDAP projects, for example, have been imported and built without modification.
See aepconf(5) and the Dependency Maintenance Tool chapter of the User Guide for more information.

• There is a new aediff(1) command, which may be used to obtain a diff(1) listing of a file for different
deltas.

• There is a new aepromptcmd(1) command, used with bash’s PROMPT_COMMAND environment vari-
able. It can be used to obtain a colored prompt, simulating the process described in Kent Beck’s book Test

Driven Development.

• There is a new signed_off_by field of the project configuration file. Set it to true if you want "Signed-
off-by" lines appended to change set descriptions as the changes pass through the Aegis process. The
aede(1) and aerpass(1) commands now understand two new −signed-off-by and −no-signed-off-by op-
tions, to override the project setting. The aedist −send and aepatch −send commands also understand the
new −signed-off-by option, to add the "Signed-off-by" line to the outgoing change set description.
Conforming to: http://www.ussg.iu.edu/hypermail/linux/kernel/0405.2/1301.html and http://www.osdl.org/-
newsroom/press_releases/2004/2004_05_24_dco.html

• The aet(1) command has been enhanced to allow integrators to run specific tests.

• The aesub(1) command can now read the text to be substituted from a file or standard input.

• It is now possible to use the project-specific attributes to specify environment variables to be set for com-
mands executed by Aegis. This can be used to set a predictable PATH, for example.

• It is now possible to customize the aeget(1) web interface using project specific attributes.

• The ael(1) command and the aeget(1) web interface now hav e file inventory pages, for the project file in-
ventory and the change file inventory.

• There is a new "change set inventory" listing available via the ael(1) command and the aeget(1) web inter-
face, which lists changes and their corresponding UUIDs, and links to an aedist download for each change.
The idea is that the aeget(1) pages may be used to automate downloading change set your repository does
not yet have.

Reference Manual Aegis 14

Read Me(Aegis) Read Me(Aegis)

• There are two new history commands in the project configuration file, the history_transaction_begin and
history_transaction_end fields. It is not an error if these fields are absent. If you need a transaction key,
use the $version substitution.

• The aedist(1) command now runs all tests required for the change set, and honors test exemptions.

• The aedist(1) command now sleeps for a second to ensure that the last-time-modified of derived files will
be strictly later than source files, and that the aeb(1) timestamp will also be strictly later then the last-time-
modified for the source files.

• The tkdiff(1) man page has been updated to say how to use mgdiff(1) instead of tkdiff(1).

• All commands which accept the −change option may now be giv en a change set UUID. You can discover
a change’s UUID using the ael cd (list change details) or ael inventory listings.

• The aed(1) command now restores source file from backups (,B) when a merge fails. Previously this was
not the case and subsquent aed invocations failed because the source file was missing.

• The aetar −send command now has an −add-path-prefix option, so that you can add a path prefix to all
of the files in a tarball. The aeget(1) CGI interface now adds a path prefix to generated tarballs by default.

• Whenever you edit file attributes, there is a Content-Type attribute added automagically if none was
there already. The idea is that this could be used by scripts to differentiate file types.

• The aepatch(1) command now uses diff −u by default.

• A number of build problems on different systems have been fixed.

• A number of minor problems with tests on different systems have been fixed.

• A bug has been fixed in the aepatch command; it was not parsing simple diff patches correctly.

• The example history commands have been updated to work better with the new UUID code.

• A bug has been fixed in aecp −delta, where it would fetch the wrong version of a file in some cases.

• A bug has been fixed in the handling of the executable bit.

• A bug has been fixed in aede(1), where is did not permit branches to end when they had a removed file
(without a UUID) which has been subsequently recreated (with a UUID).

• A bug has been fixed in the aeget(1) command for file contents. It was giving a "multiple permissions set
(bug)" error message.

• A bug in the aedist −receive command, where it was not accurately manipulating the incoming change set
UUID.

• A bug has been fixed in aed(1) which caused it to SEGFAULT .

• A bug has been fixed in the aede(1) command, where it failed to copy the UUID when it promoted a file
from "create" to "modify" automatically.

• A bug has been fixed in the $date substitution, it was not advancing properly when used in progress
messages.

• A bug has been fixed in the command line processing of the aefa(1) command.

• A bug has been fixed in the aegis −review-begin command; it was not operating correctly when the
change was in awaiting_review but the project was in goto_being_reviewed.

• A bug has been fixed in the $basename substitution; it now functions exactly like basename(1) com-
mand.

• A bug has been fixed in the aet −bl command; it erroneously stated that the $Search_Path_Exe-
cutable substitution was mandatory, when it actually optional.

Version 4.18 (10-Jun-2004)

Reference Manual Aegis 15

Read Me(Aegis) Read Me(Aegis)

• A number of build problems have been fixed, particularly concerning GCC 3.3 and later.

• The aemv(1) command has been enhanced to accept more than two file names. You are now able to move
serveral files in the one command.

• The aedist −receive command has been enhanced to process move operations in a batched way. This im-
proved performance when receiving a change that renames many files.

• The ./configure script has been changed to take note of the −−sysconfdir option, used to specify
the location of the /etc directory.

• A bug has been fixed in the aepatch(1) command. It would SEGFAULT when a non-source file was
patched.

• A bug has been fixed in the aemeasure(1) command. It would SEGFAULT when no files were named on
the command line.

• The Russian error message catalogue has been updated.

• A subtle bug in the change file out-of-date tests have been fixed. It did not adequately address the transi-
tion case for projects containing files with and without UUIDs.

• The ./configure −−sysconfdir option is now honored. It is very important to set it to /etc when
you configure Aegis.

Version 4.17 (3-Jun-2004)
• Each new change set is now assigned a Universally Unique Identifier (UUID) to allow it to be tracked
across geographically distributed development. The aedist(1) and aepatch(1) commands now send the
change set UUIDs, and preserve them on receipt.

• Each file now has a Universally Unique Identifier (UUID) which allows tracking files across renames,
ev en on geographically separate sites. (The aedist(1) and aepatch(1) commands send the file UUIDs, the
next release will take advantage of them on receipt.)

• The history filename used to remember file history is now based in the file UUID, if the file has a UUID.
This simplifies continuity of history across renames (this fucntion always been present in Aegis, but harder
to access).

• As a consequence of the UUID being used to generate history file names, there is no longer the restriction
that new files may not be named after the directory portion of a deleted file (or vice versa).

• There is a new aecvsserver(1) command, which presents Aegis projects and change sets as CVS modules.
All of the core CVS functions are supported. This code needs to be exersized and tested by users.

• It is now possible to specify arbitrary attribute names and value for each source file. The aefa(1) com-
mand may be used to edit file attributes. The aedist(1) and aepatch(1) send these attributes; a future release
will take advantage of the information on receipt.

• It is now possible to attach arbitrary attribute names and values to change sets. For example, you can use
this to remember the bugzilla tracking number for a change.

• The aepatch(1) command now includes change set meta-data as a compressed BASE64 encoded block at
the top of the patch, after the human-readable text but before the files. This means that aepatch(1) can be
as effective as aedist(1) is transmitting chaneg sets. Patches without meta-data still work as before.

• There is a new report script which writes change logs in Debian format.

• The aeget(1) web interface has been improved. The aepatch(1) download now accepts compat=N modi-
fier, and there is a new Project Staff page.

• There is a new ae-cvs-ci(1) support script which may be used as an integrate_pass_notify_command to
commit change sets to CVS in parallel.

• There is more documentation in the User Guide about using GNU Diff, particularly using diff −U to pro-
vide whole-file listings with "change bars" on the left hand side.

• The files view of the aeget(1) web interface now accepts options to control the page contents. The

Reference Manual Aegis 16

Read Me(Aegis) Read Me(Aegis)

simplest view allows recursive fetch of project sources using wget or similar, with no extraneous links to
confuse the results. Previous behavior is preserved by the aeget-generated links.

• You now receive a warning when you are seeing the short version of the error messages. These are terse
and often quite cryptic. the long form of the error messages is to be preferred.

• The behaviour of the aedeu(1) command has changed slightly. When changes are in the being reviewed

state, and Aegis has been configured to use the awaiting review state, the aedeu(1) command will now re-
port an error. This is so that reviewers don’t waste their time reviewing changes which have already been
returned to the being developed state. Think of the change as "belonging" to the reviewer while in the be-

ing reviewed state.

• The aedist −send command has a new −compatibility option, use to indicate the version of the receiving
aedist program. This, in turn, selects the features which may be added to or omitted form the generated
.ae file.

• There is a new config file usage, and a corresponding aenf −configure command line option. It is now
possible to move project configuration files. It is now possible to remove project configuration files, pro-
vided there is at least one left. The aeimport(1) command now avoids files which have the same name as
the default project configuration file ("aegis.conf" or "config") and will use something else.

• The aeipass(1) command now adds a symlink from the delta directory to the baseline once it has been in-
tegrated. This helps lots of (idiotic) compilers which insist on burying absolute paths into executables.

• It is now possible to assign to some project configuration file array fields more than once. This can be
useful where the configuration file is split into several pieces on several branches.

• The source language has been changed from C to C++. Future releases will take advantage of this.

• Sev eral bugs have been fixed in the aeget(1) web interface where it would display "−42" instead of "0" for
changes and branches numbered zero.

• A bug has been fixed in the aed(1) command when merging files which have been renamed. It now
recognises they need merging.

• A bug has been fixed in the aenf(1) command. It now correctly ignores difference files when given a di-
rectory name.

• A bug has been fixed in aedist(1) where one of the aegis −new-file commands was missing a −no-tem-

plate argument. Under some circumstances, this resulted in change sets which could not be aedist −re-

ceived.

• A bug has been fixed in the way invalid sequences of multi-byte characters are handled by the internation-
alization code. This potentially affected all reports, listings and error messages. The symptom was that
aeannotate listings could sometimes have a blank source code column.

• A bug has been fixed in the aepatch(1) command. It was creating empty patches for some changes in
completed project branches. This also affected aedist −send and aecp −delta and aecp −rescind in some
cases. It was caused by a subtle flaw in the non-detailed case for the project_file_roll_forward function.

• A bug has been fixed in the handling of the MANPATH enviromnet variable by the profile and cshrc

scripts.

• A bug has been fixed in the aedist −receive and aepatch −receive commands has been fixed. There were
cases where these commands could access off the end of an array and SEGFAULT .

• A bug has been fixed in the aede(1) command when it received pre-config-usage change sets. It used to
try to remove the last project configuration file, which is a fatal error, and made it impossible to receive the
change set.

• A bug has been fixed which caused the aetar(1) command to hang (actually, any thing which consulted
LDAP or NIS) because the reserved symbol "send" was being overloaded. The reserved symbol "clone"
was also being overloaded. Both have been fixed.

• A bug has been fixed which caused the aedist(1) command to reprt the wrong error when the input file did

Reference Manual Aegis 17

Read Me(Aegis) Read Me(Aegis)

not exist.

• A bug has been fixed in the aenbru(1) command which made project aliases disappear.

• A bug has been fixed in the aede command. It would fail with new build files already in the baseline.

Version 4.16 (14-Jan-2004)
• There is a new aecp −keep option, causing aecp(1) not to overwrite file contents in the development di-
rectory.

• The aedist −receive option now understands changing the type of a file.

• It is now possible to specify a URL to the −file option on the command line of aedist(1), aepatch(1) and
aetar(1). The data will be downloaded and applied.

• More work has been done towards making the code compilable by a C++ compiler.

• The project list (see ael(1), aeget(1), etc) is now sorted in a slightly more natural way, as are the version
statistics at the end of an aeannotate(1) listing.

• A bug has been fixed in aede(1) for branches, where Aegis would complain about build source files (cre-
ated by the aenf −build command) being out-of-date. This, of course, was difficult or impossible to fix, and
unnecessary because the next build would fix them.

• A bug has been fixed in the aecp −independent command, where it did not preserve the execute bit, nor
honour the user’s umask.

• The missing aemt and aemtu alias ve been added to the profile.

• More detail has been added to aepconf(5) detailing how to create the project configuration file for the first
time.

• A bug has been fixed in aedist(1) and aepatch(1) which would cause an assertion failure (or segfault)
when you tried to aedist −send −delta −es files which did not exist at that delta.

• A bug has been fixed in aedist(1) and aepatch(1) which caused an assert failure (or segfault) when you
tried to send a file which had been created and removed in a branch, and after the branch was integrated
only a remove record exists in the parent branch.

• The problem with test 134 failing has been fixed.

• A bug has been fixed in aeipass(1) which prevented changing a file’s usage from being as straight-forward
as it should have been.

• The source RPM (and the spec file) now has Build Prequisites specified.

• The −Change option now accepts more than just a change number. It now accepts many forms similar to
those used by the ${version} substitution, allowing its output to be used directly as command line input;
forms such as −c 1.2.C34 and −c=5.6.D78 are now understood to imply a −branch option as well as
either −change or −change-from-delta, respectively. In addition, you may prepend a project name, to im-
ply the −project option as well; form such as −c aegis.4.15.C28 are understood.

• The aemeasure(1) program now also generates Halstead metrics.

• A bug has been fixed in the symbolic link handling code. In some cases it would report "multiple user
permissions (bug)" and not complete correctly.

• A bug has been fixed in the test of aedist(1) for moved files. There was nothing wrong with aedist(1), the
test itself was broken.

Version 4.15 (17-Nov-2003)

Reference Manual Aegis 18

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in “ael cf”. It used to fail an assertion when there were no files in the change.

• A bug has been fixed which caused aeipass to segfault when adjusting file modification time stamps in
some circumstances.

• A bug has been fixed in the cross branch merging code. It would sometime erroneously complain about
files no longer being in the baseline.

• A bug has been fixed which caused aedist(1) and aeannotate(1) to segfault. It was caused by the roll for-
ward history mechanism ignoring some branches in some cases.

• A bugs has been fixed in the aenrv −Descend_Project_Tree option, which was free()ing a project twice,
sometimes causing segfaults.

• The aeget CGI interface is now able to retrieve historical versions of files.

• The aeget CGI interface now has support for file metrics.

• The aeget CGI interface has been enhanced to provide more information about project files and change
files: activity, conflicts, history.

• The aeipass(1) command now sets the AEGIS_INTEGRATION_DIRECTORY environment variable be-
fore running the integrate_pass_notify_command, so that you can add a symlink for compilers which insist
on placing absolute paths into debugging information in object files.

• The aeget CGI interface has been enhanced to provide more information about project files and change
files − activity, conflicts, history.

• The aeget CGI interface now reports more project information.

• The aeget CGI interface now has download links in many of its menus, allowing more and better down-
loads than the old aegis.cgi(1) script.

• The way aenf(1) and aent(1) work have been made more generous. It is now possible to aerm(1) a file
and then aenf(1) or aent(1) the same file in the same change. This is useful for changing the type of a file.
Previously this has to be done as two consecutive changes.

• The aecp −independent command has been enhanced to allow you to extract versions of built files (cre-
ated with aenf −build and maintained at aeipass(1) time).

• Documentation has been added to aer(5) for the try/catch mechanism.

• There was a disagreement between the aereport(1), aeannotate(1), aedist(1), aefind(1), aeimport(1),
aels(1), aepatch(1), aerect(1), aetar(1) and aexml(1) man pages and the commands themselves about the
existence of the −version option. The commands now behave as documented.

• There is a new Project_Branch_Dates report, which may be used to see when branches of a project were
begun and completed.

Version 4.12 (29-Sep-2003)

Reference Manual Aegis 19

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in aedist(1) where it handled moved files incorrectly.

• There is a new experimental aeget(1) program. It is a potentially faster, potentially more capable replace-
ment for the aegis.cgi(1) script. At the moment it isn’t, it’s experimental.

• A bug has been fixed in aedist(1) where it would sometimes segfault when sending transparent files.

• Command completion now works for the aemt(1) and aemtu(1) commands.

• A bug has been fixed where the symbolic link farm could point to the wrong place when change files are
transparent.

• Change file notification commands have been added for the aemt(1) and aemtu(1) commands. See aep-

conf(5) for more information.

• A bug has been fixed in aefind(1) command where it could report files which had been removed.

• A bug has been fixed in the aecp(1) command where it would scramble the aet −reg exemption.

• A bug has been fixed in the aede(1) command. The problem manifested as an aet −reg command which
terminated early.

• There is a new aexml(1) command. You can now obtain various pieces of the Aegis database as XML.
See aexml(1) for more information.

• The the new_file_command, copy_file_command and remove_file_command fields of the project config

file are now defaulted correctly.

• Theer is a new $change_files substitution. See aesub(5) for more information.

• The project config file has a new architecture_discriminator_command field. Now you can use an arbi-
trary command (rather than uname(2) information) to determine the architecture. See aepconf(5) for more
information.

• The Russian message translation has been updated.

• The German message translation has been updated.

• The ael(1) command now has a new incomplete listing. It lists changes between awaiting review and be-

ing integrated. inclusive.

• The ael(1) command now accepts arguments for the listings. The default-change, default-project, out-

standing-changes and user-changes lists now accept a user name argument.

• The aemt(1) command now understand the −UNCHanged option, so that files which are in the branch,
but unchanged from the deeper branch, may be made transparent.

• A bug has been fixed in the wecp(1) command where the −OverWrite option did not honor the pres-
ence/absence of the −ReadOnly flag.

• There is a new aeedit script. See aeedit(1) for more information.

• A bug has been fixed in the file history mechanism (as used by the −delta options, aeannotate(1),
aedist(1), aepatch(1), etc) which did not correctly understand transparent files.

• The aeclean(1) command now touches all of the source sfiles. It also accepts a −NoTouch option.

• There is a new $change_files substitution. See aesub(5) for more information.

• The aeclean command now touches the source files as well. Use the now −no-touch option if you don’t
want this.

• There have been several improvements to the output of the aegis.cgi script and the web site.

• For Aegis developers: all of the K&R insulation has been removed; you now need an ANSI C compiler to
build Aegis. Some preparation has also been done to get the source ready for a C++ compiler.

Version 4.11 (29-Jan-2003)

Reference Manual Aegis 20

Read Me(Aegis) Read Me(Aegis)

• For Aegis developers: the developer build now uses sudo(8) to simplify and automate the tricky bit. The
regular distribution build is unchanged.

• A bug has been fixed where the ’aet −reg’ command could not find any tests to run, cause by inconsisten-
cies in the view path handling for project file searches.

• A partial Romainian translation has been added.

• A Spanish localization has been added. It needs work by a human.

• The French localization has been improved.

• The aedist(1) command now preserves the executable bit on files.

• There is a new −descend-project-tree option for the aena(1), aera(1), aend(1), aerd(1), aeni(1), aeri(1),
aenrv(1), aerrv(1) and aepa(1) commands, to apply the action to all descendant branches of the project.

• A bug has been fixed in tkaer(1) which stopped it working on some systems.

• The aeintegratq(1) command now copes better with changes leaving the awaiting integration state.

• A bug has been fixed in the aeimport(1) command which misunderstood RCS branches.

• A bug has been fixed where there aenf(1) command would use the new config file about to be created,
which was almost always wrong.

• There is a new ${substr} substitution. See aesub(5) for more information.

• The aeclone(1) command now understands transparent files.

• The aecpu(1) command now restores test exemptions in some cases.

• There is a new aemeasure(1) command, which procudes simple file metrics for use with Aegis.

• There is a new project ancestors report.

• Trunk version number no longer have a leading dot.

• Command line completion now works for zsh(1).

• The aetar(1) command now preserves the executable bit on files.

• A bug has been fixed which caused aetar(1) to hang.

• The aereport(1) and aesub(1) commands now gav e the same email address for users.

• The aeannotate(1) command now olny prints caption columns if their value changes. This highlights the
differences, and is less distracting.

Version 4.10 (24-Dec-2002)

Reference Manual Aegis 21

Read Me(Aegis) Read Me(Aegis)

• There is a new aemt(1) command, used to make branch files "transparent". This is like an aecpu(1) com-
mand for branches, but done through the agency of a change set.

Note: The behaviour of the view path in the presence of transparent files is complete, however full support
for aecp −delta and reports is not. Support will be present in the next release. File transparency informa-
tion stored by this release will be able to be used by aecp −delta and reports in the next release.

• There is a new aemtu(1) command, to undo the effects of the aemt(1) command.

• It is now possible to use the aeclone(1) command on changes in the awaiting development state.

• The problematics directory permissions check has been removed from the aeintegratq(1) command.

• A bug has been fixed in aecp(1) when retrieving deltas before files were removed.

• There are new ${split} and ${unsplit} substitutions for manipulating search paths (etc). See aesub(5) for
more information.

• A bug has been fixed where test time stamps were not updated for batch tests which covered multiple ar-
chitectures.

• The aedist(1) program now includes a change number, which will be used on receipt if possible. Note
that this produces .ae files which are not backwards compatible; the −nopatch option will suppress inclu-
sion of the change number in the archive.

• A German translation of Recursive Make Considered Harmful has been added, courtesy of CM Magazin.

• A bug with aeimport(1) and removed files has been fixed.

• A problem has been fixed with the transition case when a project changed from develop_end_ac-
tion = goto_being_reviewed to goto_awaiting_review while having changes in the being

re viewed state.

• A problem with long command lines has been fixed in the aedist −receive, aepatch −receive and aetar

−receive commands.

• A problem with aeimport(1) and binary files has been fixed.

Version 4.9 (23-Oct-2002)
• The aepatch(1) and aetar(1) commands now accept −add-path-prefix and −remove-path-prefix options,
for manipulating the filenames when unpacking an creating a change set. The aepatch(1) documentation
has been significantly improved.

• There is a new aecp −rescind option, which may be used to rescind (roll back) a completed change. See
aecp(1) for more information.

• The Debian /etc/mailname file is now understood by the ${user email} substitution.

• There is a new project_gantt report, which produces comma-separated-value (CSV) output, for extracting
data to import into Ms. Project. Unfortunately, Mr. Project does not yet know how to import CSV files.

• It is now possible to provide a comment to the aerpass(1) command, just as you always could to the aer-

fail(1) command.

• The aet(1) program now has a −progress option, to tell you where it is up to. See aet(1) for more infor-
mation.

• The Russian error messages have been updated.

• The aeimport(1) program now understands the CVS Attic directory.

• There are new perl, PLural_Forms, capitalize, downcase and upcase substitutions. See aer(5) for more
information.

• A work-around for the aeimport/delta bug has been added, for projects which were imported with the
buggy aeimport.

• Aegis developers will need to upgrade to GNU Autoconf 2.53 or later, as the GNU Autoconf files have
been updated to work with that version. This does not affect normal users.

Reference Manual Aegis 22

Read Me(Aegis) Read Me(Aegis)

• Many typos have been fixed in the documentation, and some improvements have been made.

• Some build problems have been fixed.

• Numerous improvements have been made to the web interface.

Version 4.8 (19-Aug-2002)
• A bugs has been fixed in the aetar −receive command, where it incorrectly complained about shorty input
files.

• Numerous changes have been made to the web interface. They now use cascading style sheets, have more
navigation links, and inclde tarball downloads.

• Sev eral build issues have been resolved.

• A bug has been fixed in the aeimport(1) command. The symptom was that the aecp −delta command
misbehaved. The probelm was that the first delta needed a timestamp prior to the first change set taken
from the import sets.

• A bug has been fixed in the aepatch −send command, where it would add Index lines for files with no
differences.

• A bug has been fixed in the protect_development_directory = true; handling, where it
would cause a "multiple user permissions setting" error message.

Version 4.7 (6-Aug-2002)
• The aefind(1) command now has −resolve as the default. To get the previous behaviour, use the −NoRe-
solve option.

• In the aeca −e and aepa −e commands, it is now possible to quote strings with at-signs (@) instead of
double quotes. This type of string allows newlines within the string. See aegis(5) for more information.

• For the benefit of Aegis developers, there is now HTML documentation genaretd by Doxygen (if you have
Doxygen installed). When developing an Aegis change, in your development directory, point your browser
at doxygen-html/index.html. The common/str.h file is an example of the style desired, should
you wish to contribute to the effort to get all of the header files suitably annotated. Also, the removal of the
K&R C support has started, see the files in common/*.[ch] for examples. Also <varargs.h> is not
longer used anywhere.

• The aedist(1) command has two new options, −patch and −nopatch, which may be used to control how
and when aedist uses patches. See aepatch(1) for more information.

• A bug has been fixed inthe strncasecmp function. This only affected you if your system did not have a
native version of this function.

• The aeca(1) command now accepts a −fix-architecture option. This option may be used to correct the ar-
chitecture list of a change automatically.

• The aedist −receive command now runs the aeca −fixarch command when a change set arrives which
modified the project config file. This should fix many of the "architecture not in project configuration file"
problems when seeding new projects.

• Some deficiencies on the “How to Become a Developer ” instructions have been addressed. The native
Aegis build (but not the Makefile.in) now builds the "tags" and "TAGS" files so that it easier to navigate the
sources.

• There is a new aetar(1) command. It may be used to send and receive tarballs as Aegis change sets. See
aetar(1) for more information.

• Missing documentation on the aepconf(5) man page about the fine grained file change notification com-
mands has been added.

• Some changes have been made to the Aegis web interface, with more back links. Also uses html2diff(1) if
available.

• It is now possible for reviewers to use the aet(1) command to run tests against the changes they are

Reference Manual Aegis 23

Read Me(Aegis) Read Me(Aegis)

reviewing.

• The command completion for the aet(1) command now works better; it now completes project test names
as well as change test names.

• The aepatch(1) and aedist(1) commands now cope with a wider range of input vagueries, including some
weird things done by MTAs and more content transfer encoding synonyms.

Version 4.6 (11-Jul-2002)
/* vim: set ts=8 sw=4 et : */

• The aeipass(1) command now sleeps, rather than issue the rather alarming “warning: file modification
times extend into the future” message. There is a new project config file field, build_time_adjust, which
controls this behaviour, but it is strongly recommended that you leave it on the default setting.

• There is a new ${base_relative} substitiontion, almost the inverse of ${source}. See aesub(5) for more in-
formation.

• A bug has been fixed with the aeca and aepa −edit option. It was caused by the change in the previous
release which added editor user preferences.

• A few build problems have been fixed.

• A bugs has been fixed in the tkaepa script. It would sometimes fail the "OK" button.

• A bug has been fixed in the "user changes" list. It was not explicitly passing the project name when it ac-
cessed the list of user owned changes.

Version 4.5 (26-Jun-2002)
• It is now possible to set pager and editor preferences in your .aegisrc file. See aeuconf(5) for more infor-
mation.

• A bug in aepatch −receive has been fixed, where it would sometimes misapply a patch. The search used
to determine the patch position (when it needs to be offset) has been improved.

• The aedist(1) and aepatch(1) commands now accept −delta and −delta-date options.

• The integrate_q.sh shell script has been replaced by the aeintegratq(1) Perl script. It can now lots more
useful things. See aeintegratq(1) for more information.

• A bug has been fixed in the date parsing code (used by the −delta-date option). There was the potential to
mis-calculate dates after February 2000.

• A bug has been fixed in aepatch −receive, where it sometimes complain of "no uudecode data in file", for
files which did not require uudecoding.

• There are more change-specific substitutions available. See ${change ...} within aesub(5) for more infor-
mation.

• The aepatch(1) command now understands ordinary diff listings, in addition to the context and unified
differences it already understood.

• There is a new aeannotate(1) command, used to produce annotated source file listings. See aeannotate(1)
for more information.

Version 4.4 (12-May-2002)

Reference Manual Aegis 24

Read Me(Aegis) Read Me(Aegis)

• It is now possible to specify system wide user preferences. See aeuconf(5) for more information.

• The aepatch(1) command now understands the quoted-printable content transfer encoding.

• The aepatch(1) is more robust when receiving patches that want to use a change number that has already
been used.

• The Dutch error message translations have been updated.

• There was a problem with the way the install directory for aegis.cgi was being determined. The aegis.cgi

script is now installed into $bindir by default. There is a aegis.cgi.i helper script to find your web
server’s cgi-bin directory and copy aegis.cgi there, but this is not done automatically. See aegis.cgi(1) for
more information.

• Another change has been made to cope with still more Bison changes.

• A French error message translation has been contributed.

• A problem with aedist −receive has been fixed, where the new configuration_directory could interact with
the order of file creation.

• A big has been fixed in the uuencode output, which could occasionally miss the "begin" line.

• A bug has been fiexed in the context diff parsing, where it would get the last hunk wrong if it was a hunk
which deleted lines, due to incorrect end-of-file handling. This affected both aepatch −receive and aedist

−receive, because aedist(1) now includes patches for better merge behaviour.

• Numerous issues concenting the new GNU Gettext versions have been addressed.

• A number of Solaris build problems have been fixed, and one genuine bug buried in the warning messages
(change completion time was wrong for changes not yet completed).

• More information about the "mod times extend into the future" warning issued by aeipass(1) has been
added to the man page.

• Some improvements have been made to the web pages.

Version 4.3 (16-Apr-2002)
• The notification shell scripts all now use sendmail consistently. Autoconf support for locating sendmail is
not yet present.

• A problem which caused a core dump on Cygwin has been fixed.

• The aede(1) command now giv es a more informative error message when files in a branch require merg-
ing.

• There is now an interconnection between the aeib(1) and the aeb(1) command. When you specify a mini-
mum integrate begin, you also get a minimum integrate build.

• A bug has been fixed which caused aenf(1) to dump core if you used the file name accept pattern.

• The executability or otherwise of each source file is now remembered. If any of the execute bits are set at
aede(1) time, the file is remembed as executable. When an executable file is copied into an integration di-
rectory or development directory, all of the execute bits (minus the project umask) are set.

• A bug has been fixed in the “aecp −ind” command, where it would give a “there is no development direc-
tory” error when you tried to extract a file version from history of a completed branch.

• Many of the web pages have been updated to provide a more consistent and intuitive interface. It is also
possible to get patches, via the aepatch command.

• Interrupts are now ignored during database writes. This should alleviate some of the problems induced by
Ctrl-C. (It would be nice to find the actual cause.)

• The aedist(1) command has been enhanved to include a patch fragment for modified files, as well as the
whole source files. On receipt, if the patch applies cleanly the whole source is ignored. If the file does not
exist at the receiving end, or the patch does not apply cleanly, the whole source file is included. The incri-
mental cost is very low, because all of the patch pieces appear in the source file, and thus compress

Reference Manual Aegis 25

Read Me(Aegis) Read Me(Aegis)

exceptionally well. The net result is to greatly reduce merge costs on recipt of .ae files. However, this
change to aedist(1) is only backwards compatiple. Previous versions of aedist(1) will give a fatal error if
they see a .ae file generated by this version of aedist(1).

• File name resolution is now more robust in the face of permission problems.

• Some error message translations have been improved.

• A small bug has been fixed in the history labeling.

• You can now use shell (#) and C++ (//) comments in your project config file, if you prefer them to C com-
ments.

• A bug has been fixed in the maintenance of the symlink farm. It would often fail to make all of the neces-
sary symlinks.

• There is a new project attribute, protect_development_directory, which when true causes the development
directory to be read-only in states between awaiting_review and being_integrated.

• A problem has been fixed where some reports would fail is users had made their .aegisrc files unreadable.

• A number of small build problems have been fixed.

• Command completion has been added for the aeb(1), ae_c(1), aeca(1), aecd(1), aechown(1), aeclean(1),
aecp(1), aecpu(1), aedb(1), aedbu(1), aede(1), aedeu(1), aedn(1), aeib(1), aeibu(1), aeipass(1), aeifail(1),
aena(1), aencu(1), aend(1), aenf(1), aenfu(1), aeni(1), aenrv(1), aentu(1), ae_p(1), aepa(1), aera(1),
aerb(1), aerbu(1), aerd(1), aerfail(1), aeri(1), aerm(1), aermu(1), aerpass(1), aerpu(1), aerrv(1) and aet(1)
commands. More will be added in the future.

• It is now possible to specify a directory to contain project config file fragments. These fragments are then
read in as if catenated as a single project config file. See aepfonf(5) for more information.

Version 4.2 (26-Feb-2002)
// vim: set ts=8 sw=4 et :

• There is a new “−No-Page-Headers” option which may be used to suppress page and column headers in
listings and reports.

• There is a new “aecp −delta-from-change” option, allowing the specification of a delta number by specify-
ing the number of a completed change.

• The “aecp −ind −delta” command now omits files which did not exist at the given delta.

• There is a new history_label_command which may be used to label your history files at each integration.
See aepconf(5) for more information.

• The code which guesses which change you are working on, based on your current directory, has been en-
hanced to cover far more cases. It can recognize the integration directory, too.

• There is a new Change_Log report, which generates reports in the style of common Internet change logs.

• The web interface is now able to show you file differences between deltas.

• A bug has been fixed in the “aecp −delta” command (for all delta variants). The problem occurred when
you wanted to copy a version of the file before the file has been modified by the branch (but it wasonly a
problem for files modified later in the branch, files never modified by the branch were OK). As a side-ef-
fect of the bug fix, “aecp −delta” now goes significantly faster (N times faster, where N is the number of
files you are copying).

• Build problems caused by new Bison releases have been fixed.

• A number of oversights in handling the new awaiting review state have been corrected.

• The ${expr} substitution has been enhanced to include modulo, logical not and the six relative operators.
All using the usual C syntax and precedences. See aesub(5) for more information.

• There is a new ${switch} substitution, see aesub(5) for more information.

• A Russian localization of the error messages has been contributed.

Reference Manual Aegis 26

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in the “aecp −output” code, which sometimes incorrectly created directories.

• A bug has been fixed in the symbolic link maintenance code. It now repairs links which point to a file
which is too deep in the ancestor tree, and has been subsequently replaced. It now uses a single pass, rather
than two passes.

• The change_file_command field of the project config file is now available at a finer granularity. There are
8 new commands (the copy_file_command, copy_file_undo_command, new_file_command, new_file_-

undo_command, new_test_command, new_test_undo_command, remove_file_command and remove_file_-

undo_command fields) which may be individually configured. They default to the previous behaviour, for
backwards compatibility. See aepconf(5) for more information.

• A bug has been fixed in the aepatch(1) command, which prevented it form constructing patches for
changes on completed branches.

• The aeipass(1) command now issues an error message if the build changes a source file. (Previously it er-
roneously reported that the history tool had done the damage.)

• A bug has been fixed in “aecpu −unchanged” in the case where the change had no files. (It tried to un-
copy a file called the empty thring.)

• The missing aemvu(1) man page has been added.

Version 4.1 (6-Dec-2001)
Note: You will need to upgrade all of your Aegis machines simultaneously for this release. It introduces
database changes which older Aegis release will not be able to cope with.

• A bug has been fixed in aed(1), which tried to access a nonexistent files under some circumstances.

• A bug has been fixed in aede. When two changes created the same file, the second change received a mis-
leading message from aede.

• There is a new German message translation.

• There is a new tkaepa(1) command, giving GUI access to the aepa(1) command.

• The aeclone(1) command now runs the change_file_command and project_file_command from the project
config file. This is in order to be more consistent withthe aecp(1) command.

• The "time safe" property described by Damon Poole mostly applies to Aegis’ operation. One last area re-
lated to future times and the −delta options. There is now a warning in the instance where non-time-safe
behavior may occur.

• The history_put_command and history_create_command field of the project config file are strongly rec-
ommended to be identical. It is now possible to only specify the first one, and the second will default to it.

• A bug has been fixed in the aeib(1) command, when the link_integration_directory field in the project
config file is false.

• There is a new awaiting review state, and new aerb(1) and aerbu(1) commands to go with it. It is now
possible to configure your project to have changes enter the awaiting review state after aede(1), rather than
the being reviewed state. It is also possible to skip the review states altogether and immediatelt enter the
awaiting integration state.

• There is a new modeP field for the specification of architectures in the project config file. The means that

you can designate some architectures as mandatory and some as optional. See aepconf(5) for more infor-

mation.

• The aenbr(1) command now populates the new branch’s baseline with symlinks if the project config file is
set so that they would remain after an integration build. This is more consistent with the aedb(1) behaviour
in the same situation.

• There have been a number of changes to the web pages, accompanying the move to SourceForge, along
with some corrections.

• There is a new aels(1) command, which may be used to list directories, annotated with Aegis’ file

Reference Manual Aegis 27

Read Me(Aegis) Read Me(Aegis)

attribute information.

• The aeclean(1) command now accepts the −Keep option, so that it reports what it would do, rather than
actually do anything.

• A problem with the CGI interface, which reported a bug to the user, has been fixed.

Version 3.29 (31-Oct-2001)
• The aeimport(1) command can now import CVS repositories which contain binary files.

• There is a new ${Read_File_Simple} substritution. It is like ${Read_File}, but is does not substitute into
the file contents.

• The aecp −independent command now accepts a −output option.

• There is a new ${environment} substitution, allowing you to access environment variables within substitu-
tions. See aesub(5) for more information.

• There is a new ${project-specific} substitution, allowing you to define project specific value to be inserted
into various commands. See aesub(5) and aepconf(5) for more information.

• The aefind(1) command now works with completed change. It searches the baseline.

• A problem with using the ${source} substitution within the integrate_pass_notify_command has been
fixed. It was getting the path wrong.

• The batch test command is only ever inv oked of there are tests to run. (This fixes a problem where it
would simethimes run with no arguments.)

• The web reports now bahave themselves when the names of non-longer-here user appear.

• A number of errors and typos have been fixed in the documentation.

Version 3.28 (21-Aug-2001)
• There is a new aepatch(1) program, which may be used to send an receive changes using the classic open
source patch format. See aepatch(1) for more information.

• The general output mechanism (for listings and reports) has been rewritten to be significantly faster.

• Numerous small things have been improved in and around the ./configure script and the Makefile.

• The web interface has been improved. It should result in better save file locations being suggested for
.ae files. cgi vs downloads

• Aegis now takes a baseline read lock during tests, so that the baseline doesn’t move out from under your
tests, causing mysterious failures.

• A bug has been fixed in the subst function of the report generator. It was free()in a string twice.

• There is a new ${developer email} substitution, for inserting users’ preferred email addresses into com-
mands. Useful for the state transition notification commands.

• There is now more text in the aepconf(5) man page, explaining how each of the pattern fields are applied
to file names. It is now explicit when patterns applied to whole file names, and when they only applied to
path name elements.

• A segfault has been fixed in the removed file whiteout code.

• The aesub $source substitution now works in combination with the −BaseLine option.

• The aegis.spec file now mentions the executables again.

Version 3.27 (26-Jun-2001)

Reference Manual Aegis 28

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in the aesub(1) $delta substitution. It now works correctly for completed
changes.

• A bug has been fixed in aermu(1), when used in combination with the symlink farm. It no longer com-
plains about "multiple user permissions set".

• A serious bug has been fixed in the locking code. The bug meant that only one build per project could
happen at a time. (There was never any risk of repository or Aegis database damage.)

• A bug has been fixed in the aedist(1) command. It failed to correctly recognise files produced using the
aedist −send −no-ascii-armour option.

• The aecpu −unch command now deals more gracefully with files which have been removed from the
project in the mean time.

• There is a new change file history listing, similar to the file history report. It is much faster, much more
informatuve, and less selective.

Version 3.26 (21-Jun-2001)
• Some optimizations have been done to the input parsing. Depending on your architecture, this will or
won’t be noticable.

• The locking has been changed so that aeipass(1) takes precedence over new dev elopment builds, so that
there is a guarantee that aeipass(1) will succeed in finite time. Current development builds will run to com-
pletion, but new dev elopment builds will block until the aeipass(1) gets the basline lock and subsequently
completes.

• The "file format error" bug in aedist(1) has been fixed.

• There is a new project activity report, which is useful to project leaders to see what has been happing in
the project, sorted by time and then by user name.

• Aegis can now transparently cope with binary files, even if the history tool cannot. It does this by using a
MIME encoding for binary files. (This can be configured away, if your history tool correctly handles bi-
nary files.) See aepconf(5) and the User Guide for more information.

• There is a fix for the "file unrelated" error commonly seen on Solaris and BSD when combined with an
automounter, in come cases. It relies on the bash(1) behaviour which sets the $PWD environment variable.
(GNU libc does this internally to the getcwd(3) function, not all libcs do.)

• The aer(1) report generator now has access to the project config file fields, through a new config field
in the report generator’s concept of the project state.

• There is a new aer(1) $comdir substitution, which gives access to the shared state directory, configured
at build time.

• The aebuffy(1) now accepts a project name on the command line.

• There is a new build_covers_all_architectures field in the project config file, so that you can tell Aegis
that the build tool builds all architectures wimultaneouasly. See aepconf(5) for more information.

• The tkaer(1) command now has a comment editor, so that you can edit your review fail comments from
within the GUI.

• A bug has been fixed which was caused aenbru(1) to delete one directory level too deep when the branch
was removed.

• There is a new getuid() function in the report generator.

• This change fixed a bug in aede(1) where it would not allow a branch, created with aeimport(1), with new
files which had subsequently been modified to end development, when those files had never existed in the
baseline.

• It is now possible for project administrators to nominate the developer in the tkaenc(1) dialog. You are
presented with a pick list.

• There is a new aesub(1) $history_directory substitution. This may be used in scripts which

Reference Manual Aegis 29

Read Me(Aegis) Read Me(Aegis)

access the history tool’s files directly.

• There is a new change_file_undo_command field of the project config file. It is similar to the change_-

file_command field (it defaults to it if unset), but is executed by all of the “undo” file commands.

• The aede(1) command no longer cancels your build and test time stamps. This means that you don’t need
to re-build if you don’t change anything, after aedeu(1) or aerfail(1).

Version 3.25 (3-Apr-2001)
• It is now possible to remove users who’s accounts have been removed (the affects the aera(1), aerd(1),
aeri(1) and aerrv(1) commands).

• There is a new −description-only option to the aeca(1) command. This is useful for editing only the de-
scrioption, and also for use within scripts.

• The −file option has now been generalized to accept “−” to mean the standard input. This is useful in
scripts.

• There is a new aebuffy(1) command, which may be used to see what changes a user has outstanding. It
needs X11 (Tk/Tcl) to work. Named after the xbuffy(1) command.

• The tkaer(1) command now presents you with a “detail” button, so that you may see the change details
when pwerforming a review.

• The restriction that placed the function name at the start of the command line (e.g. the “−cp” of aecp) has
been relaxed. This may now appear anywhere on the command line.

• The Bourne / BASH shell aliases have been improved, so that they now preserve quoting of special char-
acters and white space. This dates from the earliest days of Aegis. It’s wonderful to have it fixed at last.

• There is a new aemvu(1) command, which may be used to undo the effects of an aemv(1) command. This
should prove less confusing than the previous method.

• A big has been fixed in the aemv(1) command. It failed to accept the −base-relative option, even though it
was documented to do so.

• A bug has been fixed in the quote_tcl() report function. Is fixes the problem with getting the dollars sign
into descriptions when using the tkaenc(1) command.

• The SCCS section of the User Guide and example configurations have been updated and confirmed to
work correctly, howev er I’v e only tested this with GNU CSSC.

• A bug in the file name handling has been fixed. This was most obvious around the aecpu(1) command
when you had create_symlinks_before_build turned on and you were using an automounter, but it occured
at other times as well.

• The aeimport(1) command now understands the SCCS format. If the comments in GNU CSSC are accu-
rate, this also means you can import BitKeeper repositories, however I am unable to confirm this.

Version 3.24 (10-Mar-2001)

Reference Manual Aegis 30

Read Me(Aegis) Read Me(Aegis)

• There is a new aeimport(1) command, which may be used to import CVS archives into Aegis.

• The cross branch merge has been improved so that it uses an earlier version number than it was using, re-
sulting in a more sensable merge.

• A bug has been fixed in the ${quote} substitution which incorrectly quoted the exclamation mark (!). Un-
fortunately, quoting isn’t at all simple, because you can’t exclusively use single quotes or double quotes or

backslash.

• There is now a ${change description} substitution, allowing you access to the brief description of a
change in a substitution. (The suggested RCS history command have been changed to use it.)

• A Dutch localization of the error messages has been contributed.

• Project administrators can also use the aeibu(1) command. Handy for abandoned integrations which in-
convenience everyone else.

• There is a new project config file field, called build_covers_all_architectures, which allows
you to tell Aegis that your build process can cover all architectures simultaneously.

• The ${quote} substitution has been fixed to correctly quote more characters. It now prefers the single
quote (but is is npt possible to use this exclusively).

• The web site now uses PDF files for documentation, rather than gzipped PostScript. This was for lots of
reasons, including the fact theat many folks couldn’t work out how to print them, and also IE decompressed
them “for free” but left the .gz suffix.

• The report generator, aereport(1), can now access fields of the .aegisrc file. This is important for access-
ing the preferred email address in various reports. • The “aecp −delta” command now adds removed files
to the change as removed files instead of adding them as copied-but-empty files. This should make repro-
ducing projects more accurate, but you need to use aermu(1) to get rid of them ,rather than aecpu(1).

• The aedist program now adds a “Content-Disposition” header to the files it generates. This means MIME
programs will unpack it into a correctly named file more often.

Numerous build problems have been fixed, both for Unix and for Cygwin (Windows). There have benn
some test script improvements, too.

Contributions have started to roll in using the “aedist” format. This is very encouraging. The instructions
for how to do this are contained in the “Howto”, in the Developer section.

Version 3.23 (29-Oct-2000)
• A bug has been fixed which caused the report generator change_number function to give garbage answers
for change number zero (fortunalely, not very common).

• There is a new mtime function in the report generator.

• There is a new aecomp utility, which may be used to compare two active changes, using tkdiff.

• A bug in “aesub ${dd}” which reported the wrong directory when applied to branches, has been fixed.

• The project config file now contains two new fields, create_symlinks_before_integration_build and
remove_symlinks_after_integration_build, which may be used to better control the behavior of the symlink
farm at integration time. (Default behavior is backwards compatible.)

• A new utility called tkaer has been contributed. It is for reviewing, and shows you lists of files. When
you click on one, it launches tkdiff(1) to examine it. You’re going to like this one, folks!

• The aedist −receive command now preserves the testing exemptions, if possible.

• A problem with very very large test runs and the −no-persevere option has been fixed.

• The aenf(1) and aent(1) commands now accept −template and −no-template options, to control the use
of new file templates.

• A nasty Catch-22 in the aedist(1) command has been fixed, involving the (unnecessary) use of new file
templates, when the actual template files don’t yet exist in the −receive dev elopment directory.

Reference Manual Aegis 31

Read Me(Aegis) Read Me(Aegis)

Version 3.22 (13-May-2000)
• Please Note: Some code has been added to Aegis to assist in diagnosing problems when restoring projects
from backups. If you see a message “aegis: project-path: has been tampered with (fatal)” this means there
are problems with the project file ownerships. The project owner needs to be >= AEGIS_UID (defaults to
100), and the project group needs to be >= AEGIS_GID (defaults to 10). Use chown −R and/or chgrp −R
to fix these problems.

• The aesub(1) command now accepts the ${arch} substitution in combination with the −baseline option.

• A bugs has been fixed in the aedist −receive command, when one of the files was also locked for review.

• A bug in aeclone(1) has been fixed, where it dropped file move information.

• The aeib(1) command now correctly validates that youare actually allowed to do this integration. This
may win the prize for the oldest Aegis bug.

• There is a new ${search_path_executable} substitution. See aesub(5) and aet(1) for more information.

• Line wrapping in reports works properly again for lines with no white space. The previous release broke
it when the wide output generalization was added.

• The aet −nopersever option works again. The previous release broke it when the batch test support has
implemented.

• A problem with the aeb(1) command which made it difficult to use with th symbolic link farm (in some
cases) has been fixed.

• A new report is available from the web interface, showing a change-of-state histogram over time for all
state transitions (not just the integrate pass transitions).

• A problem with the aenf(1) command which made it difficult to use with th symbolic link farm (in some
cases) has been fixed.

• The aeipass(1) command now preserve file mod times across history updates, if the history tool gratu-
itously changes them.

• The Solaris and IRIX build problems (wputc, et al) has been fixed.

• Numerous documentation patches were received and have been applied.

Version 3.21 (12-Mar-2000)
• A couple of minor bugs have been fixed in aedist, especially the problem with sending an baseline image
while a change is being reviewed.

• A couple of bugs have been fixed in the tkae* commands, in partucular they no longer leave temporary
files lying around.

• Lots of stuff has been added to the HOWTO: a cheat sheet, how to change a project’s owner, how to use
distributed development, how to become a developer.

• The problem which caused ‘aesub ${copyright_years}’ to contain duplicates has been fixed.

• There have been Y2K fixes: the date parsing for the −delta-date option has been fixed, and the web page
data has also been fixed.

• The aet(1) command can now run more than one test at once, if configured appropriately. This is of most
use on systems with more than one CPU.

• The −UNFormatted option no longer truncates column values.

• The aesub(1) command now accepts the −baseline option, so that you can get project-specific substitution
in shell scripts.

• A bug has been fixed in tkaenc(1) which gav e incorrect testing ssttings. It now also tracks the project test-
ing exemptions.

• A bug in aenf(1) has been fixed which allowed multiple instances of the same file to be created.

• A bug has been fixed which caused ‘aesub ${search_path}’ to fail in some cases.

Reference Manual Aegis 32

Read Me(Aegis) Read Me(Aegis)

• A bug has been fixed in aenf(1) which allowed you to create the same file multiple times, corrupting
Aegis’ database and causing aede(1) to report mysterious errors. Use aenfu(1) multiple times to untangle
things.

• Information has been added to the section 5 manual pages, detailing how to access state information from
within the report generator. This should make writing report scripts a little easier.

• A bug has been fixed which caused Aegis to misbehave when launched by some versions of cron(8) or
at(1).

Version 3.20 (19-Oct-1999)
• The aeib command is now more robust about “foreign” files in the baseline (e.g. root-owned core files).

• A bug has been fixed in the ${administrator_list} substitution.

• A bug has been fixed in the aedist −delta option, which caused it to dump core.

• There is now a section in the History Tool chapter of the User Guide describing how to add checksums to
your history files, in order to detect file corruptions. It is a general technique which applies to most history
tools (including RCS).

• A bug has been fixed which caused aeclone to misbehave badly when dealing with removed files.

• There is now an embryonic “How To” document for Aegis. Please feel free to contribute subjects.

• You can now say “−BRanch −” as a synonym for the “−TRunk option, for those commands which accept
it.

• The report generator now copes with more types of empty lists.

• A bug has been fixed which caused a core dump instead of a useful error message if you tried to create an
alias with an illegal name.

• A bug has been removed which left undeletable branch aliases if a branch was removed.

• A bug has been fixed in aenbru which failed to remove the branch development directory .

• The aenf(1) command now behaves better when you do horrible things like turn the files you created into
directories without telling Aegis first.

• A couple of small bugs have been fixed in the aenpa(1) command, both in error situations.

• A bug with the −interactive option has been fixed. It will actually ask you, now.

Version 3.19 (4-Aug-1999)
• You can now run a command to generate new file templates if you want, rather than using a simple string
substitution. See aenf(1), aent(1) and aepconf(5) for more information. The existing functionality is still
there.

• There is a new ${SUBSTitute} substitution, which provides regular expression substitutions. This is use-
ful in new file templates.

• A bug has been fixed which allowed aede of a branch when there were some kinds of outstanding
changes.

• The automatic change number guessing has been improved slightly, and will cope with some more varia-
tion in the development_directory_template field.

• There are two new commands, aenpa(1) and aerpa(1) for creating and removing project aliases. This
means that you can give project branches more meaningful names.

• There is a new aesub(1) command. It substitutes its arguments and prints them, rather like the echo(1)
command. This is useful when you need access to the Aegis substitutions in a script.

• The command line option “−−” is now understood. It means “the rest of the arguments on the command
line are filenames or strings”. Because this makes the options on the command line more "order sensitive"
than usual, use with care.

• There is a new tkaenc(1) command, allowing you to create new change via a Tcl/Tk GUI. (And a

Reference Manual Aegis 33

Read Me(Aegis) Read Me(Aegis)

problem with TCL special characters in description text has been fixed.)

• The aenf(1) command now does the right thing with directories named on the command line. In particu-
lar, you can now use “aenf .” to import whole directory trees.

• There is a new State-File-Name list type, useful when writing cookbooks or makefiles to keep a web page
in sync with a change.

• There is a new ${capitalize} substitution, useful for putting in new file templates.

• A bug has been fixed which caused aeclean to delete the development directory of changes with no files.

Version 3.18 (8-Jul-1999)
• A bug has been fixed which caused aecp −delta to dump core in some cases.

• A bug has been fixed which caused the create-symlinks-before-build functionality to create symlinks to
deleted files.

• Still more typos and minor errors have been corrected in the documentation.

• The aerp(1) man page has been moved to aerpass(1). Similarly for aerfail(1), aeipass(1) and aeifail(1).
This should make things easier for users to find the man pages.

Version 3.17 (22-Jun-1999)
• Another aedist bug has been fixed − unfortunately it was introduced while trying to fix the last one.

• A Cygwin 20.1 portability bug has been fixed.

• There is a new ${dirname_relative} substitution. This is useful in new file templates, and also some con-
figured commands.

Version 3.16 (15-Jun-1999)
• There is a new tkaeca command. It is a GUI interface to the aeca(1) command, using Tcl/Tk.

• There are two new reports available: the Project-Branches and Project-Active-Branches reports may be
used to query about branches within a project.

• A bug has been fixed in the aedist −receive duplicate suppression code. It was complaining about user
permissions.

• A bug has been fixed in aeb(1), which did strange things if you tried to build an unbuildable change.

• There is a new −No-WhiteOut option for the aerm(1) and aemv(1) commands, letting you suppress the
“whiteout” files, along with some explanation in the man page about why they are there. See aerm(1) for
more information.

• The default value of the “maximum_filename_length” field of the project config file has been raised from
14 to 255. If your project depends on the old default value, you will need to set it explicitly.

• The aedist −receive command now accepts a −directory option, so you can specifiy the location of the de-
velopment directory.

Version 3.15 (2-May-1999)

Reference Manual Aegis 34

Read Me(Aegis) Read Me(Aegis)

• The “aedist −receive” command now accepts a −delta option, allowing a received change set to be ap-
plied to an historical version.

• There is now some information about managing super-projects and sub-projects in the Branching chapter
of the User Guide.

• The aenpr(1) command now accepts a −keep option, so that you can re-attach projects moved after using
the aermpr −keep command. See aenpr(1) for more information.

• The aenpr(1) command now accepts −edit and −file options, allowing you to specify project attributes
when creating the project. See aenpr(1) for more information.

• If the project developers_may_create_changes attribute is true, the aencu(1) command now allows devel-
opers to destroy changes they created.

• There is a new add_path_suffix substitution, for manipulating search paths. See aesub(5) for more infor-
mation.

• There are 3 new substitutions: ${bindir}, ${datadir} and ${libdir}. These are replaced by the ./configure

options of the same name (or the values calculated, if none were given to ./configure). The old ${lib} sub-
stitution is deprecated in favour of the new ${datadir} substitution. See aesub(5) for more information.

• Some changes have been made which increases portability, particularly the Linux libc5 vs libc6 differ-
ences.

• Some changes have been made which increases portability, particularly for Windows NT. This isn’t to say
Aegis works under Windows NT yet, but it helps the porting efforts. Don’t forget to run the mkpasswd and
mkgroup utilities included in the Cygwin system.

Version 3.12 (26-Mar-1999)
• The way the Apache configuration files are scanned for and read has been changed, to adapt to recent
Apache changes. The ./configure script will now find it more often.

• The “aedist −receive” command has been enhanced to be more robust about change sets without headers
(some browsers generously strip them all off.

• A bug has been fixed in the “aedist −receive” command which sometimes caused decompression failures.
An unfortunate interaction with the Windows NT support caused CRLF sequences in the compressed data
to be mangled in some cases.

• The wrong include file was being used for zlib. This has been fixed, so it should build more easily now.

• The way MANPATH is handled on Linux has been improved in the chsrc and profile commands. It will
not over-ride /etc/man.config now.

• The aegis.cgi script has been made more robust in coping with aedist errors.

• The symlink_exception field of the project config file now accepts filename patterns, not simply literal
filenames.

• There was a problem compiling with gcc 2.8, involving the <stdarg.h> header. This has been fixed.

Version 3.11 (17-Mar-1999)

Reference Manual Aegis 35

Read Me(Aegis) Read Me(Aegis)

• The aet(1) command now accepts a −force option, forcing tests to be run, even if Aegis doesn’t think
they need to.

• The Aegis CGI interface has been enhanced so that you can download changes from the generated web
pages listing the changes, using the aedist command.

• The aedist −send command now accepts a −no-ascii-armor option, which leaves off the MIME base
64 encoding. Useful for binary distributions and web servers.

• There is a new trojan_horse_suspect field in the project config file. This is used by aedist −receive to
check for files which could be abused to carry Trojan horse attacks.

• The aedist −receive command now accepts a −trojan option which treats the incoming change set as
suspect, and a −no-trojan option which treats the incoming change set as benign.

• The aedist −receive command now quotes filenames (if necessary) when executing commands, thus de-
fending against filenames which contain semicolons.

• The aenbru(1) command has been implemented at last. At last! You no longer need to use the aedbu

work-around.

• The aedbu(1) command now giv es an error if you attempt to apply it to a branch.

• The aermpr(1) command may now be applied to a project with active branches, and will remove the
branches as well (provided there are no active changes on any of the branches).

• The dos_filename_required and windows_filename_required fields of the project config

file have been enhanced to reject the brain-dead Windows special filenames such as “aux” et al.

• The ${user} and ${project} substitutions have been enhanced to provide additional information
when given an additional argument. Useful for file templates. See aesub(5) for more information.

• Sev eral portability enhacements, notably the Windows filename incompatibility has been fixed, and also
the Linux stdlib.h problem.

Version 3.10 (6-Mar-1999)
• As of this release you must have zlib installed before you can build Aegis.

• There is a new reuse_change_numbers project attribute, letting you control whether aenc fills in holes in
the change number sequence. Defaults to true if not set. See aepattr(5) for more information.

• There is a new integrate_begin_exceptions field in the project config file. This permits the user to specify
file to be omitted when the integration directory copy/link is performed.

• The aet(1) command has been changed so that it does not exit with an error if you have a test exemption
but no tests. This is no longer an error.

• There is a new aedist(1) command, which may be used to send and receive Aegis change sets via e-mail
and the web.

• The aeclone(1), aenbr(1), aenc(1) commands now accept a −output option, a file to contain the auto-
matically generated change number. This greatly assists in writing scripts. See the man pages for more in-
formation.

• The aent(1) command now accepts a −output option, a file to contain the automatically generated file
name. See the man pages for more information.

• There is a new compres_database field in the project attributes, allowing the Aegis database to be stored
in a compressed form (using the GNU Zip algorthm). Unless you have an exceptionally large project, cou-
pled with fast CPUs and high network latency, there is probably very little benefit in using this feature.
(The database is usually less than 5% of the size of the repository.) On slow networks, however, this can
sometimes improve the preformance of file-related commands.

Version 3.9 (7-Feb-1999)

Reference Manual Aegis 36

Read Me(Aegis) Read Me(Aegis)

• A bug in the merge command has been fixed. It no longer deletes all of your change source files if one of
the merge commands fails.

• There is a new tkaegis command, using Tk/Tcl to give Aegis a GUI. Contributed by Graham Wheeler
<gram@cdsec.com>. Please report tkaegis bugs and suggestions to Graham.

• The integrate pass command has been enhanced to cope with RCS and SCCS expanding keywords in
source files (modifying the repository) on check-in. This can be ignored, or a warning can be issued, or it
can be a fatal error (this is the default). See aeipass(1) for more information.

• The worked example in the User Guide has (finally!) been updated to use the new branch numbering.
Numerous spelling errors have been corrected.

• The developer section of the worked example chapter now also includes discussion of some common
questions raised by folks evaluating Aegis. It covers insulating development directories from the baseline,
partial check-in and collaboration.

• The aesub(5) man page now brings attention to the fact that the ${Copyright_Years} substitution contains
spaces. You often need to quote it.

• The man pages which mention filename limitations, now also note that where underlying file-system has
stricter filename length limitations than the filename_maximum_length field in the project config file, the
file-system wins. Mention of this is now also present in aedb(1), etc; Linux UMSDOS is highlighted as
problematic.

• Aegis can now collect code metrics. See aeb(1) and aeipass(1) for more information.

• There are three new report functions available: quote_url, quote_html and unquote_url. These are all for
use when creating Aegis reports for the CGI interface. See aer(5) for more information.

• There are several new substitutions available. These include subst, trim_extension, trim_di-
rectory, and trim_filename. See aesub(5) for more information.

• The integrate_q.sh script now works correctly for branches.

• Numerous configure, make and install problems have been fixed for a variety of portability targets.

• The RPM spec file has been corrected to use appropriate file attributes.

Version 3.8 (1-Oct-1998)
• Some users were unable to build the previous release, due to inconsistent wide character support by the
various UNIX vendors. This has now been fixed.

• There are two new substitutions, trim_directory and trim_extension, which are useful for constructing file
templates. These can be very useful in constructing skeletons of C++ classes.

• Some changes have been made to pathname handling to better cope with automounters. See aegis(1) for
more information (see discussion of the AEGIS_AUTOMOUNT_POINTS environment variable). This as-
sumes that paths below the automounter’s mount directory are echoes of paths without it (e.g. /home is the
trigger, and /tmp_mnt/home is where the NFS mount is performed, with /home appearing to be a sym-
link).

Version 3.7 (22-Sep-1998)

Reference Manual Aegis 37

Read Me(Aegis) Read Me(Aegis)

• The aeifail(1) and aerfail(1) commands now hav e a new −reason option, to specify the failure reason on
the command line, rather than in a file.

• Some file operations are now faster. Mostly, this applies to operations which mention many files, and to
projects with large numbers of files. Smaller projects may not notice any improvement.

• There is a new −delta-date option to the aecp(1) command, allowing deltas to be extracted by date. This
change also had the side-effect of making extraction by delta number more accurate on branches.

• There is a new −base-relative option to most of the file manipulation commands, aecp(1), aenf(1), etc.
This option may be used to specify that relative filenames are relative to the base of the source tree, rather
than the current directory. There is also a related user preference, see aeuconf(5) for more information.

• There is a new “aeclean” command. It can be used to clean your development directories of non-source
files. See aeclean(1) for more information.

• The aeb(1) command now passes through arguments of the form name=value, on the assumption that
these are variable assignments for th ebuild tool. Previously, they were “resolved” as if they were file
names.

• A serious bug in the error and interrupt handling has been fixed. This bug would sometimes case Aegis to
hang, and eventually run out of stack, when the user attempted to interrupt Aegis using ˆC.

Version 3.6 (5-Jul-1998)
• The diff3_command field of the project config file has been replaced by a merge_command field. It works
exactly the same way, but Aegis moves the files around first, so that the output replaces the change source
file. This results in fewer “lost” merges. Those of you who have been hacking the diff3_command to move
the files around will need to take the moves out when you rename the diff3_command field to be the new
merge_command field.

• The columnizing functions used by the report generator and the listings has been enhanced to understand
international character sets. This allows native character sets to be used in comments and descriptions,
without getting gibberish (C escapes) in the output.

• There is a new shell_safe_filenames field in the project config file. This field controls whether filenames
are required to be free of shell special characters. This field defaults to true if not set, so if you are using
any “interesting” filenames, you may need to explicitly set this field to false. (You still can’t use spaces or
international characters in filenames.)

• There is a new ${quote} substitution for insulating shell special characters in filenames in the commands
in the project config file.

• A number of bugs relating to environment variables have been corrected; this will make the aereport and
aefind commands behave more consistently, with respect to the aegis command.

• A bug has been fixed which caused the final newline of new test files to be omitted.

• A bug which prevented the “aeb −minimum” option from working in any non-trivial case has been fixed.

Version 3.5 (28-May-1998)

Reference Manual Aegis 38

Read Me(Aegis) Read Me(Aegis)

• A bug was fixed in the lock waiting code. Aegis will now correctly wait for locks when there are several
users blocking on the same lock.

Version 3.4 (22-May-1998)
• There is a new “aegis −clone” command, used to replicate changes across branches. See aeclone(1) for
more information.

• There is a new “−No-Wait” command line option, which asks for a fatal error if a lock cannot be obtained
immediately; this applies to all commands which takes locks. See aeuconf(5) for more information.

Version 3.3 (4-Apr-1998)
This release is a bug fix release, and mostly install and portability bug, at that.

• The problem with errno defines messing up glue.c has been fixed.

• Numerous fixes to the wide character support, to cope with the vagueries of wide character support on
many platforms.

• The problem with the LINES and COLS environment variables messing up testing have been fixed. Some
tests gav e false negatives because of this.

• There is a new aeb −minimum option, for use with symbolic links, only, which has a minimal set of
source file links, rather than everything in the baseline.

Version 3.2 (22-Mar-1998)
• There are some additional reports available via the web interface. They are mainly to extract error causes
and trends from the project history statistics.

• There have been a number of minor bug fixes concerning the handling of old 2.3 projects. This should
ease transition for users with existing 2.3 projects.

• A bug in aecp −delta has been fixed, where Aegis was trying to find change state files one branch level too
high.

• There is now a re-try performed when a stale NFS file handle error is detected. This should make it easier
for some sites which are heavily networked.

• There have been some improvements to the way Control-C is handled. It should be more responsive
when waiting for locks.

• Project administrators may now end development of a branch. Since branches can endure for months or
years, the orginal branch creator may have moved on. This copes with this situation.

Version 3.1 (15-Jan-1998)
Version 3.0 was not used by many sites. It was available as beta software for about a year, in numerous in-
carnations. Version 3.1 is the first completely stable version since adding full branching support.

Reference Manual Aegis 39

Read Me(Aegis) Read Me(Aegis)

Version 3.0
Version 3.0 is fully backwards compatible with earlier versions, however once a project has been used un-
der 3.0, it will not be possible to revert, e.g. to version 2.3, without restoring the project’s “info” directory
from backup. While this was generally true of previous releases, any additional state information was usu-
ally undo-able with vi(1). This time the process is much more involved because the project state files and
the change state files have been combined as a necessary step in implementing branches.

Version 3.0 Major New Features
• Aegis now has a feature known in the literature as long transactions, also known as branches. This allows
appropriately created changes to be treated as if they were projects, and thus to have changes made to them.
This allows a hierachy of changes within changes, to any desired depth. See the Branching chapter of the
Aegis User Guide for more information.

• The project state files have been merged with the change state files. This is part of the implementation of
branching. If you have written your own reports, you may need to alter them slightly. For example, in ver-
sion 2.3 and earlier, reports accessed the project state file using

auto p, ps;
p = project[project_name()];
ps = p.state;

Because the project state has been moved into a change state, the state field above now points at a change
state description, and most of the old project information is contained in the branch field within it. Reports
access this information as

auto p, ps;
p = project[project_name()];
ps = p.state.branch;

Except for files, which were already present in the cstate, so access to the project file list need not change.
See the new aecstate(5) for more information.

• The new project command now creates branches to match the version number specified. See aenpr(1) for
more information.

• The error messages of Aegis have been internationalized. This affects how you build Aegis, and the envi-
ronment Aegis runs in. See the BUILDING file for more information. The cshrc and profile shipped with
this release set the LANG environment variable to “en” (for English) if you have not set it; otherwise ther
error messages would be terse and uninformative.

• The aet (1) command can now suggest tests to be run. This is done by correlating the source files and test
files from each change. See aet(1) for more information.

• There is now an aereport(1) command. The separates out the report functionality from the main body of
the Aegis code, allowing the report generator to be used in places where more trust is required.

• There is an intranet Web interface, which is installed automaticly when the install script discovers a web
server. This interface allows browsing of much of the Aegis meta-data, of all publicly accessible projects.

• There is now an aefind(1) command. This is very similar to the UNIX find(1) command, except that it
finds in the unified directory stack of a change and its project. The introduction of full branch support can
sometimes mean that finding a file may require looking in more than two directories; the aefind(1) com-
mand makes this simple again.

Version 3.0 Minor New Features
• There is now a −No_Pager option, to prevent listings and help from being redirected to a pager. There is
also a user preference to more thoroughly disable paging, and a −PAGer option to override it. See aegis(1)
and aeuconf (5) for more information.

• There is now a −No_PErsevere option to aet(1), allowing you to request that aet(1) stop after the first test
failure. There is also a user preference to set this permanently if desired, and a −PErsever option to over-
ride it. See aet(1) and aeuconf (5) for more information.

• The copyright years attribute has been moved from being a project attribute to a change attribute. This is
consistent with a number of other fields which have transparently moved from the project state files into the

Reference Manual Aegis 40

Read Me(Aegis) Read Me(Aegis)

change state files, as a result of branching support. See aeca(1) and aecattr(5) for more information.

• There is a new Search_Path substitution, to support builds on branches. See aesub(5) for more informa-
tion. As a side effect, you can also use it in the test_command field of the project config file, and thus have
a search path to look down for data files for your tests.

• Test times are now remembered, so that tests are only run if they need to be. This allows you to keep
working on a test, and Aegis only runs those that have not yet passed.

• Aegis now uses “fingerprints” to tell if files have changed, rather than simply relying on file modification
time stamps. While this makes Aegis more robust, there is one caveat: it is recommended that 3.0 be in-
stalled when there are no changes in the ’being reviewed’ or ’awaiting integration’ states, in any project.

• There is now a log file prefernces control, allowing users to set their preferred logging behaviour. See
aeuconf (5) for more information.

• It is now possible to specify the filename for new tests on the command line. See aent(1) for more infor-
mation.

• It is not possible to specify a pattern for test filesnames. See aepconf (5) for more information.

• There is now a −MAXimum option to the aeib command, allowing you to keep obsolete derived files at
integrate begin. This can avoid long integration build times for large projects.

Version 3.0 Bug Fixes
• Architecture names are now checked a ‘develop end’ time, to ensure there are no unknown variants. This
fixes the mysterious “you must build again” problem.

• The aecp(1) and aed(1) commands now take a baseline read lock, to be more symetric with the aeb(1)
command which has always done so. The aeipass(1) command takes the complementary baseline write
lock, ensuring the the baseline remains constant for the duration of builds, file copies, differences and
merges. The manual entries for these commands have all been improved to document this behaviour. See
aeb(1), aecp(1), aed(1) and aeipass(1) for more information.

• There are now some reminder scripts in the library, which can be run from crontab(1). These are installed
into the /remind directory. These scripts can be used to remind users of changes in various states, such as
those being developed or being reviewed.

• All of the commands which accept the −Edit option now also accept a −Edit_BackGround option, allow-
ing edit commands to be piped in from the standard input.

• The aecp(1) command now accepts a −INDependent option, allowing files to be copied independent of
any change (similar to the −INDependent option of the command.) See aecp(1) for more information.

• The aecp(1) command now accepts a −Read_Only option, allowing files to be copied into a change
specifically to insulate it from baseline changes. Such files must be uncopied before development may end.
See aecp(1) for more information.

• The aenrls(1) command is now used only to convert pre-3.0 projects into post-3.0 projects. This is be-
cause the full branching support in 3.0 makes it more useful to create a new release of a project by ending
development on the branch of the previous release and starting development of a new branch numbered for
the new release. See the Branching chapter of the User Guide for more information.

Reference Manual Aegis 41

Read Me(Aegis) Read Me(Aegis)

Version 2.3
• The merging behaviour of the aed(1) command has changed. If any files require merging, it only merges.
In this way, merged files are not lost in the rest of the output. Also, there are now command line options
and user preferences so that you can select to only merge or only difference. See aed(1) and aeuconf (5)
for more nformation.

• It is now possible to assign symbolic names to project deltas. This means that you may now recreate ear-
lier project baselines by name.

• All commands which accept a −Edit option now check for most errors before commencing the edit. This
avoids wasted edits in many error cases.

• Fuzzy file name matches are now used to improve the error messages from aecp, aerm, etc.

• Version number separators in project names are preserved across new releases. Particularly, you can use a
minus (’−’) between the name and the major version number.

• A new “copyright_years” project attribute has been added. This is a list of years maintained at integrate
begin time, to automate the insertion of list of copyright years into copyright messages and documentation.
There is a new ${Copyright_Years} substitution and the copyright years are also listed in the “aegis −list
version” listing. See aesub(5) and ael(1) for more information.

• It is now possible to specify patterns for acceptable and unacceptable filenames in the project configura-
tion file. See aepconf (5) for more information.

• Four more functions have been added to the report language: length, split, substr and wrap. See aer(5)
for more information.

• The tests distributed with are now more stable on very fast hosts. See the environment variables section
of aeb(1) for more information.

• The lib/config.example directory of the distribution now contains files with example portions of the
project config file. May thanks to David R Shue <shue@ll.mit.edu> for this suggestion.

Changes made in the previous release included:

Version 2.2
This release of Aegis provides 3 of the most commonly requested features: support for heterogeneous de-
velopment, support for a greater range of DMTs, support for user-defined reports.

• Aegis now supports heterogeneous development. Now you can be sure that your project not only always
builds and tests sucessfully, but that it does so across a configurable set of system or hardware architectures.
See the Heterogeneous Development secion of the Tips and Traps chapter of the User Guide for more infor-
mation.

• Aegis can now cope with a wider range of Dependency Maintenance Tools (DMTs). It now has the abil-
ity to fill development directories with symbolic links to all files in the baseline which are not present in the
development directory. This allows DMTs to assume all files are present below the current directory, al-
lowing DMTs such as cake and GNU Make to be used. See the Dependency Maintenance Tool section of
the User Guide and aeb(1) for more information.

• Aegis now has a report generator, so you can create your own reports. Many "canned" reports are in-
cluded in this distribution; of particular interest to many will be the File_Activity report, which details cur-
rently active files. See aer(1) for more information.

• Aegis is now configured using a shell script called configure, distributed with the package. This shell
script is generated using GNU Autoconf. See the BUILDING file for more information.

• The AEGIS environment variable has been renamed AEGIS_PATH , to bring it in line with the
AEGIS_PROJECT and AEGIS_CHANGE environment variable names. The old name will keep working
for some time, but aegis will warn you.

• Filename lengths are now configurable. The 14 character portability limit is still the default, but a higher
limit is configurable for each project, up to the filesystem filename limit. See aepconf (5) for more infor-
mation.

Reference Manual Aegis 42

Read Me(Aegis) Read Me(Aegis)

• It is now possible to specify that filenames must be within the minimum character set mandated by
POSIX. The default is as before, to allow any printing character. See aepconf (5) for more information.

• Limits on the length of project names have been relaxed. Project names are now only limited by the
filesystem filename limit.

• It is now possible to specify the command to run tests, allowing a project to use a specialized test facility,
rather than be forced to use shell scripts. See aet(1) and for more information.

• The commands which accept the −Edit now preserve the edited text in the event of a failure.

• The commands which delete files now accept a −Interactive option, which causes them to prompt the user
for confirmation of file deletion. This can be made the default by an appropriate setting of the aliases or in-
dividual users preferences files. See aenfu(1), aentu(1), aecpu(1), and aeuconf (5) for more information.

• The aecp(1) command now accepts directory names, allowing whole directory trees to be copied into a
change. The aecpu(1) command now has a −UNChanged option which allows the unchanged files to be
uncopied.

• The aeb command now accepts file names, allowing partial builds to be performed. See aeb(1) for more
information.

• There is a new aechown(1) command to facilitate reassigning the developer of a change which is in the
being developed state.

• It is now possible for project administrators to assign changes to specific developers. See aedb(1) for
more information.

Version 2.1
• Can now ask for history to maintained for file generated by the build. This is useful for generating patch
files.

Version 2.0
• A new command has been added to facilitate changing the name of a file as part of a change. See
aemv(1) for more information.

• It is now possible to list the locks currently held. See ael(1) for more information.

• If no other defaulting mechanism is specified, aegis will now attempt to guess the project name and
change number from the pathname of the current directory. This only works from within development di-
rectories.

• The aenc, aeca, aerfail, aeifail and aepa commands now accept a −Edit command line argument. See
the relevant manual pages for more information.

• The aenpr command now understands the −MAJor and −MINOr options, allowing the initial version of
a project to be something other than 1.0.

• The aed command now understands the −ANticipate option. See aed(1) for more information.

• It is now possible to list all the outstanding changes of a project, or of all projects. See ael(1) for more in-
formation.

Reference Manual Aegis 43

Read Me(Aegis) Read Me(Aegis)

Version 1.4
• Support has been added for systems without the seteuid system call, or those with crippled implementa-
tions.

• Most of the unimplemented command variants have been finished. These include New Change Undo,
Develop Begin Undo and ReMove PRoject. Most notable of the exceptions is -ANticipate option for the
-CoPy_file and -DIFFerence command.

• The User Guide has been added to, making it a little more complete. It still needs more work, sigh.

• The code to handle automounters has been made more robust.

• The command substitutions have been vastly improved, and are now documented.

Reference Manual Aegis 44

Build(Aegis) Build(Aegis)

NAME
aegis − project change supervisor
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program is distributed under the terms of the GNU General Public License. See the LICENSE
section, below, for more details.

aegis (ee.j.iz) n., a protection, a defense.

SPACE REQUIREMENTS
You will need up to 250MB to unpack and build the aegis package. (This is the worst case seen so far,
most systems have binaries smaller than this, 200MB is more typical.) Your mileage may vary.

SITE CONFIGURATION
The aegis package is configured using the configure shell script included in this distribution.

The configure shell script attempts to guess correct values for various system-dependent variables used dur-
ing compilation, and creates the Makefile and common/config.h files. It also creates a shell script con-

fig.status that you can run in the future to recreate the current configuration.

Upgrading
The ./configure script will look for an existing install of Aegis and use the existing configuration set-
tings. This works best if the version you are upgrading is 4.11 or later.

To disable looking for an existing installation (maybe because you want to change the prefix), use the
./configure −−with-no-aegis-configured option.

To change the AEGIS_UID and AEGIS_GID values (these control the ownership of Aegis’ system files)
you need to set environment variables of these names before running the ./configure script. You almost
never need to do this, so if you have no idea what this is about, don’t try to change them.

Before You Start
Before you start configuring, it is worth reading the OTHER USEFUL SOFTWARE section, below.

The configure script checks for the internationalization library and functions. If your system does not have
them, it is worth fetching and installing GNU Gettext before you run the configure script. Make sure that
the msgfmt command from GNU Gettext appears earlier in your command search PATH than the existing
system ones, if any (this is very important for SunOS and Solaris). You must do the GNU gettext install be-

fore running the configure script, or the error messages, even for English speakers, will be terse and unin-
formative. Remember to use the GNU gettext configure −−with-gnu-gettext option if your system has na-
tive gettext tools.

The configure script checks for compression libraries and functions. If your system does not have them,
you must download and install the GNU zlib compression library (see
http://www.gzip.org/zlib/ for download) and the bzip2 compression library (see
http://www.bzip.org/ for download) before you run the configure script. These libraries are essen-
tial, Aegis will not build without them. (Note: zlib is not the same thing as zlibc which does some-
thing completely different.)

The configure script checks for the regular expression library and functions. If your system does not have
them, it is worth fetching and installing GNU rx compression library before you run the configure script.
(Note: test 81 will fail if the POSIX regular expression functions are not available.)

The GNOME libxml2 library (http://xmlsoft.org/) is used to parse XML, you will need version
1.8.17 or later. You do not have to install the rest of GNOME as this library is able to be used by itself.
This package is not optional, you need it to successfully build Aegis.

The libcurl library (http://curl.haxx.se/) is used to fetch remote files. This library is optional, but
some functionality, particularly aedist −replay, will not work without it. If you are using a package based

install, you will need the libcurl-dev or libcurl-devel package as well.

Reference Manual Aegis 45

Build(Aegis) Build(Aegis)

Running Configure
Normally, you just cd to the directory containing aegis’ source code and type

% ./configure −−sysconfdir=/etc
...lots of output...

%
If you’re using csh on an old version of System V, you might need to type

% sh configure −−sysconfdir=/etc
...lots of output...

%
instead to prevent csh from trying to execute configure itself.

Running configure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, run configure with its standard output redirected to /dev/null;
for example,

% ./configure −−sysconfdir=/etc −−quiet
%

There is a known problem with GCC 2.8.3 and HP/UX. You will need to set CFLAGS = −O in the gener-
ated Makefile. (The configure script sets it to CFLAGS = −O2.) This is because the code optimization
breaks the fingerprints. If test 32 fails (see below) this is probably the reason.

There is a known problem with IRIX builds. You need to use the following configuration
systune ncargs 0x8000

to increase the length of command lines.

For mips IRIX and IRIX64 using the MipsPro compiler up to at least version 7.3 you must specify the flag
to allow −I for loop initializations. You may give either of:

CXXFLAGS=’LANG:ansi-for-init-scope=ON’
CXXFLAGS=’LANG:std’

Also required is −lCio but configure will test for that. Even using that library there remains a link failure
due to:

Unresolved text symbol
"std::_List_base<undo_item*,std::allocator<undo_item*> >::clear(void)"

on several of the binaries. A work around for this problem is not known at this time.

By default, configure will arrange for the make install command to install the aegis package’s files in
/usr/local/bin, /usr/local/com/aegis, /usr/local/lib/aegis, /usr/local/man and /usr/local/share/aegis. There
are a number of options which allow you to control the placement of these files.

−−prefix=PA TH

This specifies the path prefix to be used in the installation. Defaults to /usr/local unless otherwise
specified. The rest of these building instructions assume you are using the default /usr/local as
the install prefix.

−−exec−prefix=PA TH

You can specify separate installation prefixes for architecture-specific files and architecture-inde-
pendent files. Defaults to ${prefix} unless otherwise specified.

−−bindir=PA TH

This directory contains executable programs. On a network, this directory may be shared be-
tween machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to ${exec_prefix}/bin unless otherwise specified.

−−datadir=PA TH

This directory contains installed data, such as the documentation, reports and shell scripts distrib-
uted with Aegis. On a network, this directory may be shared between all machines; it may be
mounted read-only. Defaults to ${prefix}/share/aegis unless otherwise specified. An “aegis” di-
rectory will be appended if there is none in the specified path.

Reference Manual Aegis 46

Build(Aegis) Build(Aegis)

−−libdir=PA TH

This directory contains installed data, such as the error message catalogues. On a network, this
directory may be shared between machines with identical hardware and operating systems; it may
be mounted read-only. Defaults to ${exec_prefix}/lib/aegis unless otherwise specified. An
“aegis” directory will be appended if there is none in the specified path.

−−mandir=PA TH

This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to ${prefix}/man unless otherwise
specified.

−−sharedstatedir=PA TH

This directory contains share state information, such as the Aegis lock file, and information on
the location of the various Aegis projects. On a network, this directory may be shared between
all machines; it must be mounted read-write. Defaults to ${prefix}/com/aegis unless otherwise
specified. An “aegis” directory will be appended if there is none in the specified path.

−−sysconfdir=PA TH

Location of system configuration files. You should almost always use the /etc directory.

configure ignores any other arguments that you give it.

On systems that require unusual options for compilation or linking that the aegis package’s configure script
does not know about, you can give configure initial values for variables by setting them in the environment.
In Bourne-compatible shells, you can do that on the command line like this:

$ CC=’gcc −traditional’ LIBS=−lposix \
./configure −−sysconfdir=/etc

...lots of output...

$
Here are the make variables that you might want to override with environment variables when running con-

figure.

Variable: CC
C compiler program. The default is cc.

Variable: INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form −lfoo −lbar. The configure script will append to this, rather
than replace it.

If you need to do unusual things to compile the package, the author encourages you to figure out how con-

figure could check whether to do them, and mail diffs or instructions to the author so that they can be in-
cluded in the next release.

Common Problem
It is very common that other packages, such as gettext, rx and zlib are installed using /usr/local as the pre-
fix. However, the configure script can’t work this out, even when it, too, is using /usr/local as the prefix.

To cope with this, you need to say
$ CPPFLAGS=−I/usr/local/include LDFLAGS=−L/usr/local/lib \
./configure −−sysconfdir=/etc

...lots of output...

$
when running configure. Substitute the appropriate prefix if you are using something other than the default
/usr/local prefix. Watch the output... it should now find your installed packages correctly.

GCC Version 3.*
On some operating systems, notabley MacOsX Jaguar and Panther, g++ versions 3.* will produce link-time
errors complaining of missing typeinfo symbols. The only known fix for this problem is to use GCC ver-
sion 2.95, 2.96 or 4.*. This means MacOsX Tiger does not have the problem.

Reference Manual Aegis 47

Build(Aegis) Build(Aegis)

AIX Command Line Lengths
For some reason, AIX has a very short command line length limit by default. You can extend this by using
the command

$ systune ncargs 0x8000
$

You will need to do this to build Aegis. It has some very long link lines.

PRIVILEGES
There are a number of items in the generated Makefile and common/config.h file which affect the way aegis

works. If they are altered too far, aegis will not be able to function correctly.

AEGIS_MIN_UID
This specifies the minimum unprivileged uid on your system. UIDs less than this may not own
projects, or play any other role in an aegis project. The default value is 100.

AEGIS_MIN_GID
This specifies the minimum unprivileged GID on your system. GIDs less than this may not own
projects, or play any other role in an aegis project. The default value is 10.

AEGIS_USER_UID
This is the owner of files used by aegis to record pointers to your projects. It is not used to own
projects (i.e. it must be less than AEGIS_MIN_UID). If possible, the configure script tries to
work out what value was used previously, but you must specify the −−prefix option correctly for
this to work. Because of operating system inconsistencies, this is specified numerically so that
aegis will work across NFS. The default value is 3.

AEGIS_USER_GID
This is the group of files used by aegis to record pointers to your projects. It is not used as the
group for projects (i.e. it must be less than AEGIS_MIN_GID). If possible, the configure script
tries to work out what value was used previously, but you must specify the −−prefix option cor-
rectly for this to work. Because of operating system inconsistencies, this is specified numerically
so that aegis will work across NFS. The default value is 3.

DEFAULT_UMASK
When aegis runs commands for you, or creates files or directories for you, it will use the defined
project umask. This is a project attribute, and may be altered using the aepa(1) command. The
DEFAULT_UMASK is the umask initially given to all new projects created by the aenpr(1) com-
mand. The default value of DEFAULT_UMASK is 026. See the comments in the common/con-

fig.h file for an explanation of the alternatives.

It is required that aegis run set-uid-root for all of its functionality to be available. It is not possible to create
an "aegis" account and make aegis run set-uid-aegis. This is because aegis does things as various different
user IDs, sometimes as many as 3 in the one command. This allows aegis to use UNIX security rather than
inventing its own, and also allows aegis to work across NFS. To be able to do these things, aegis must be
set-uid-root. Appendix D of the Aegis User Guide explains why aegis must run set-uid-root; please read it
if you have concerns.

Remember Your Settings
It is important to remember your configuration settings. This way, it will be a simple matter when it comes
time to upgrade Aegis.

BUILDING AEGIS
All you should need to do is use the

% make
...lots of output...

%
command and wait. When this finishes you should see a directory called bin containing several files: aegis,
aereport, aefind , aefp, and fmtgen.

Reference Manual Aegis 48

Build(Aegis) Build(Aegis)

aegis The aegis program is a project change supervisor.

aefp The aefp program may be used to “fingerprint” files. It is used to test Aegis (see the testing sec-
tion, below) but it isn’t installed.

aereport The aereport program is used to query Aegis’ database.

aefind The aefind program is used to find files.

fmtgen The fmtgen program is a utility used to build the aegis package; it is not intended for general use
and should not be installed.

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...

%
command. To remove all of the above files, and also remove the Makefile and common/config.h and con-

fig.status files, use the
% make distclean
...lots of output...

%
command.

The file aux/configure.in is used to create configure by a GNU program called autoconf . You only need to
know this if you want to regenerate configure using a newer version of autoconf .

Upgrading
When upgrading from one release to a newer one, it is important that all of the machines on your network
are running the same release of Aegis. This minimizes the possibility of database incompatibilities. In
general, Aegis is backwards compatible with earlier releases, but not forwards compatible in the face of
new capabilities.

OTHER USEFUL SOFTWARE
Before describing how to test aegis, you may need to grab some other free software, because the tests re-
quire it in some cases, and because it is generally useful in others.

GNOME libxml2
The GNOME libxml2 library (http://xmlsoft.org/) is used to parse XML. Version
1.8.17 or later. You do not have to install the rest of GNOME as this library is able to be used by
itself. This package is not optional, you need it to successfully build Aegis.

cook This is a dependency maintenance tool (DMT). An example of a well-known DMT is make(1),
however this old faithful is mostly not sufficiently capable to meet the demands placed on it by
the aegis program, but cook certainly is. The cook package is written by the same author as
aegis. The cook package is necessary if test 11 is to be meaningful. It is also used in the docu-
mentation. The cook program may be found at the same archive site as the aegis program. The
cook program is available under the terms of the GNU General Public License.

GNU diff
If the diff (1) utility supplied by your flavor of Unix does not have the −c option, you will need
GNU diff for aepatch(1) to work (and the aepatch(1) tests to pass). Context differences are also
helpful for reviewing changes. GNU diff is essential for Solaris, because the Solaris diff has bugs
that Aegis’ tests uncover.

GNU patch
For best results with the aepatch(1) and aedist(1) when receiving change sets, you need the GNU

patch utility.

iso-codes
This package provides the ISO 639 and ISO 639-3 language code lists, the ISO 3166 territory
code list, list as XML files.
Homepage: http://pkg-isocodes.alioth.debian.org/

Reference Manual Aegis 49

Build(Aegis) Build(Aegis)

RCS This is a source control package, and is available from any of the GNU archives. (It is best to
compile and install RCS after GNU diff. This is because the RCS configuration hard-codes the
pathnames of the GNU diff utilities it needs into the RCS executables.) This package isn’t essen-
tial as Aegis comes with its own aesvt(1) history tool − although you are free to use any history
tool you like.

GNU Gettext
Many systems do not yet supply the gettext(3) function. Aegis uses this function to international-
ize its error messages. If your system does not have this function, you should fetch and install
GNU Gettext before running the configure script. If you do not, Aegis will still work, but the er-
ror messages will be rather terse, even for English speakers. (You will be able to tell if your sys-
tem has the internationalization library and functions, because the configure script will report
finding −lintl and (CWlibintl.h and msgfmt in its running commentary.) Please note that the
GNU Gettext implementation is likely to be superior to the one supplied with your system, if any.
Remember to use the GNU gettext configure −−with-gnu-gettext option if your system has native
gettext tools.

Please note: if you install GNU gettext package into /usr/local (for example) you must ensure that
the Aegis ./configure script is told to also look in /usr/local/include for include files (CFLAGS),
and /usr/local/lib for library files (LDFLAGS). Otherwise the ./configure script will incorrectly
conclude that GNU Gettext has not been installed.

GNU Gettext version 0.11.1 or later is recommended.

GNU Groff
This GNU software replaces the documentation tools which (sometimes) come with UNIX. They
produce superior error messages, and support a wider range of functionality and fonts. The Aegis

User Guide was prepared with GNU Groff. You need GNU Groff 1.14 or later.

bison This GNU software is a replacement for yacc(1). Some systems have very sick yaccs, and bison

may be necessary if your system include files disagree strongly with your system’s yacc. The
generated Makefile will use bison if you have it.

fhist This software, available under the terms of the GNU General Public License, is a set of file his-
tory and comparison utilities. It was originally written by David I. Bell, and is based on the mini-
mal difference algorithm by Eugene W. Myers. This copy is enhanced and maintained by the
same author as Aegis, and may be found at the same archive site, in the same directory.

rx This library provides POSIX regular expressions, for systems which don’t hav e them. (Note: test
81 will fail if the POSIX regular expression functions are not available.)

zlib This library provides access to the GNU Zip (de)compression algorithm(s). It is essential to have
this installed before you build Aegis. The home page may be found at
http://www.gzip.org/zlib/ if you need to download it. Note: this is not the same as
zlibc which is Linux specific.

tkdiff This program shows the difference between two text files, nicely highlighted in color. This is
used by the tkaer and aecomp scripts (and probably others as they are contributed). By John M.
Klassa, http://www.ede.com/free/tkdiff

libmagic If libmagic(3) is present, the aeget(1) CGI handler will use it to determine the MIME type of
files. This is installed by file version 4.0 and later (ftp://ftp.astron.com/pub/file/),
and uses the same database as the file(1) command. If this library is not present when Aegis is
built, a much less accurate method will be used.

The tests also depend on the presence of a number of common UNIX programs, including but not limited
to: cc, cmp, diff, ed, find, make, etc. Depending on your version of UNIX, some or all of these programs
may be in optional packages. (This is especially true of Linux.) You need to ensure that these programs
are correctly installed before you run the tests.

Reference Manual Aegis 50

Build(Aegis) Build(Aegis)

TESTING AEGIS
The Aegis program comes with a test suite. To run this test suite, use the command

% make sure
...lots of output...

Passed All Tests
%

The tests take a minute or two each, with a few very fast, and a couple very slow, but it varies greatly de-
pending on your CPU.

Known Problems
In order to get the long form of the error messages on Solaris, it is necessary to install GNU Gettext before
running ./configure, and once ./configure has been run you need to edit the Makefile to statically link the
executables.

The test/00/t0011a.sh file assumes the cook(1) command by the author is somewhere in the command
search path. This test reproduces the example used in Chapter 3 of the User Guide. If the cook(1) com-
mand is not available, this test gives a pass result without testing anything.

If you are using HPUX and GCC, test 32 fails if you use −O2. You need to edit the Makefile to only opti-
mize at −O, delete the objects and rebuild.

If you are using Solaris’ diff, test 133 will report “no result”. You need to install GNU diff, because the So-
laris diff has bugs.

If you are using Sun’s tmpfs file system as your /tmp directory, the tests will fail. This is because the tmpfs

file system does not support file locking. Set the AEGIS_TMP environment variable to somewhere else be-
fore running the tests. Something like

% setenv AEGIS_TMP /usr/tmp
%

is usually sufficient if you are using C shell, or
$ AEGIS_TMP=/usr/tmp
$ export AEGIS_TMP
$

if you are using Bourne shell. Remember, this must be done before running the tests.

If the tests fail due to errors complaining of "user too privileged" you will need to adjust the
AEGIS_MIN_UID defined in the common/config.h file. Similarly for "group too privileged", although this
is rarer. This error message will also occur if you run the tests as root: the tests must be run as a mortal
each time.

If the POSIX regular expression functions are not available, test 81 will fail. The GNU rx library provides
these. Installing it and re-configuring and re-building Aegis will solve the problem.

TESTING SET-UID-ROOT
If the Aegis program is not set-uid-root then it runs in "test" mode which gives you some confidence that
Aegis is working before being tested again when it is set-uid-root. Tw o pass testing like this means that
you need not trust your system to a set-uid-root program which is not known to work.

You will need to do a little of the install, to create the directory which will contain Aegis’ lock file. (Note
that these building instructions assume you are using the default /usr/local as the install prefix. You will
need to substitute as appropriate if you are using some other prefix.)

make install−libdir
mkdir /usr/local/lib/aegis
chown 3 /usr/local/lib/aegis
chgrp 3 /usr/local/lib/aegis
chmod 0755 /usr/local/lib/aegis
mkdir /usr/local/com/aegis
chown 3 /usr/local/com/aegis
chgrp 3 /usr/local/com/aegis

Reference Manual Aegis 51

Build(Aegis) Build(Aegis)

chmod 0755 /usr/local/com/aegis
chown root bin/aegis
chmod 4755 bin/aegis
#

As you can see, the previous command also changed Aegis to be set-uid-root. Once this has been done,
Aegis should be tested again, in the same manner as before.

% make sure
...lots of output...

Passed All Tests
%

You should test Aegis as a mortal in both passes, rather than as root, to be sure the set-uid-root functionality
is working correctly.

It is required that Aegis run set-uid-root for all of its functionality to be available. It is not possible to cre-
ate an "aegis" account and make Aegis run set-uid-aegis. This is because Aegis does things as various dif-
ferent user IDs, sometimes as many as 3 in the one command. This allows Aegis to use UNIX security
rather than inventing its own, and also allows Aegis to work across NFS. To be able to do these things,
Aegis must be set-uid-root. Appendix D of the Aegis User Guide explains why Aegis must run set-uid-
root; please read it if you have concerns.

INSTALLING AEGIS
As explained in the SITE CONFIGURATION section, above, the Aegis package is installed under the
/usr/local tree by default. Use the −−prefix=PA TH option to configure if you want some other path.

All that is required to install the Aegis package is to use the
% make install
...lots of output...

%
command. Control of the directories used may be found in the first few lines of the Makefile file if you
want to bypass the configure script.

The above procedure assumes that the soelim(1) command is somewhere in the command search PA TH .
The soelim(1) command is available as part of the GNU Groff package, mentioned below in the PRINTED

MANUALS section. If you don’t hav e it, but you do have the cook package, then a link from roffpp to soe-

lim will also work.

The above procedure also assumes that the $(prefix)/man/man1 and $(prefix)/man/man5 directories already
exist. If they do not, you will need to mkdir them manually.

USER CONFIGURATION
The Aegis command is assumed to be in a generally accessible place, otherwise users will need to add the
relevant directory to their PATH. Users should add

source /usr/local/lib/aegis/cshrc
to the end of their .cshrc file for the recommended aliases. (Note that these building instructions assume
you are using the default /usr/local as the install prefix. You will need to substitute as appropriate if you
are using some other prefix.)

There is also a profile for users of the Bourne shell (it assumes you have a version of the Bourne shell
which has functions). Users should add

. /usr/local/share/aegis/profile
to the end of their .profile file for the recommended aliases. (This profile assumes that users are using a
Bourne shell which understands functions.)

The /usr/local/com/aegis/state file contains pointers to "system" projects. Users may add their own project
pointers (to their own projects) by putting a search path into the AEGIS_PATH environment variable. The
system part is always automatically appended by Aegis. The default, already set by the /usr/local/lib/-

aegis/cshrc file, is $HOME/lib/aegis. Do not create this directory, Aegis is finicky and wants to do this it-
self.

Reference Manual Aegis 52

Build(Aegis) Build(Aegis)

Where projects reside is completely flexible, be they system projects or user projects. They are not kept
under the /usr/local/com/aegis directory, this directory only contains pointers. (Note that these building in-
structions assume you are using the default /usr/local as the install prefix. You will need to substitute as ap-
propriate if you are using some other prefix.)

Web Interface
If you have a Web server, you may like to install the Aegis web interface. You do this by copying the aeget

script from /usr/local/bin/aeget into your web server’s cgi-bin directory. There is a aeget.instal helper
script, if you don’t know where your web server’s cgi-bin directory is.

You may prefer to use a symbolic link, as this will be more stable across Aegis upgrades. However, this re-
quires a corresponding follow-symlinks setting in your web server’s configuration file. (Use the aeget.instal

−s option.)

You may need to wrap aeget with a script which sets the AEGIS_PATH environment variable, if you want it
to be able to see more projects than just the global projects. You may also need to set the PA TH environ-
ment variable, if you don’t hav e the Aegis install path in the default path.

(Note that these building instructions assume you are using the default /usr/local as the install prefix. You
will need to substitute as appropriate if you are using some other prefix.)

PRINTED MANUALS
This distribution contains the sources to all of the documentation for Aegis, howev er the simplest way to
get the documentation is by anonymous FTP; PostScript files of the User Guide and Reference Manual are
available from the FTP sites listed in the README file.

The Reference Manual contains the README and BUILDING files, as well as all of the section 1 and sec-
tion 5 manual pages. The Reference Manual is about 200 pages long.

The User Guide contains information about how to use Aegis, including a fully worked example. The User
Guide is about 100 pages long.

TIME SYNCHRONIZATION
The Aegis program uses time stamps to remember whether various events have happened and when. If you
are using Aegis in a networked environment, typically a server and data-less workstations, you need to
make absolutely sure that all of the machines agree about the time.

If possible, use the time daemon. Otherwise, use rdate(8) via cron(8) every hour or less.

GETTING HELP
If you need assistance with Aegis, please do not hesitate to contact the author at

Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
% aegis −version
aegis version 4.25.D510

...

%
command. Please run this command to get the exact number, do not send the text of this example.

Runtime Checking
In the common/main.h file, there is a define of DEBUG in comments. If the comments are removed, exten-
sive debugging is turned on. This causes some performance loss, but performs much run-time checking and
adds the −TRAce command line option.

When the −TRAce command line option is followed by one or more file names, it turns on execution traces
in those source files. It is usually best to place this on the end of the command line so that names of the
files to be traced are not confused with other file names or strings on the command line.

Problem Reports
If you send email to the author, please include the following information:

Reference Manual Aegis 53

Build(Aegis) Build(Aegis)

1. The type of UNIX
The author will need to know the brand and version of UNIX you are using, or if it is not UNIX
but something else. The output of "uname −sr" is usually sufficient (but not all systems have it).

2. The Version Number
In any information you send, please include the version number reported in the common/patch-

level.h file, or ‘aegis −vers‘ if you can get it to compile.

3. The Archive Site
When and where you obtained this version of Aegis. If you tell me nothing else, tell me this (and,
hopefully, why you did nothing else).

4. Unpacking
Did you have problems unpacking Aegis? This probably isn’t a problem with the .tar.Z distribu-
tion, but you could have obtained a shar format copy.

5. Building
Did you have problems building Aegis? This could have been the instructions included, it could
have been the configure script, it could have been the Makefile, or anything else.

6. Testing, Non-Set-Uid
Did you have problems with the tests? You could have had problems running them, or some of
them could have failed. If some tests fail but not others, please let me know which ones failed, and
include the fact that Aegis was not set-uid-root at the time. The −k option to make can be useful if
some tests fail but not others.

7. Testing, Set-Uid-Root
Did you have problems with the tests when Aegis was set-uid-root? You could have had problems
running them, or some of them could have failed. If some tests fail but not others, please let me
know which ones failed, and include the fact that Aegis was set-uid-root at the time.

8. Installation
Did you have problems installing Aegis? This could have been the instructions, or anything else.

At this point it would probably be a very good idea to print out the manual entries and read them carefully.
You will also want to print a copy of the User Guide; if you don’t hav e groff, there should be a PostScript
copy at the archive site. It is a known flaw that the User Guide is incomplete, contributions are most wel-
come.

9. The Example Project
After reading the User Guide, it is often useful to manually run through the example in chapter 3.
You will need to do more than one change, hopefully several; the first change is not representative
of the system. Did you manually do the example? Did you find flaws in the User Guide or man-
ual entries?

10. Using Aegis
Did you have problems using Aegis? This is a whole can of worms. If possible, include a shell
script similar to the tests which accompany Aegis, which reproduces the bug. Exit code 1 on fail-
ure (bug), exit code 0 on success (for when bug is fixed).

11. The Source Code
Did you read the code? Did you write some code? If you read the code and found problems, fixed
them, or extended Aegis, these contributions are most welcome. I reserve the right to modify or
reject such contributions.

The above list is inclusive, not exclusive. Any and all feedback is greatly appreciated, as is the effort and
interest required to produce it.

Reference Manual Aegis 54

Build(Aegis) Build(Aegis)

LICENSE
The Aegis program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

The Aegis program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

It should be in the LICENSE file included in this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 55

Build(Aegis) Build(Aegis)

WINDOWS-NT
It is possible to build Aegis for Windows-NT. I have only done this using the Cygnus freeware CygWin32
system, though it may be possible with other Unix porting layers also.

Caveat
This document only describes a single user port of Aegis to Windows NT.

Aegis depends on the underlying security provided by the operating system (rather than re-invent yet an-
other security mechanism). However, in order to do this, Aegis uses the POSIX seteuid(2) system call,
which has no direct equivalent on Windows NT. This makes porting difficult. Single user ports are possi-
ble (e.g. using Cygwin (http://www.cygwin.com/), but are not usually what folks want.

Compounding this is the fact that many sites want to develop their software for both Unix and Windows NT
simultaneously. This means that the security of the repository needs to be guaranteed to be handled in the
same way by both operating systems, otherwise one can act as a “back door” into the repository. Many
sites do not have the same users and permissions (sourced from the same network register of users) on both
Unix and Windows NT, making the mapping almost impossible even if the security models did actually
correspond.

Most sites using Aegis and Windows NT together do so by running Aegis on the Unix systems, but building
and testing on the NT systems. The work areas and repository are accessed via Samba or NFS.

The Source
You need to FTP the Cygwin system from RedHat. It can be found at

http://www.cygwin.com/
and then follow the links. The original version used was B20.1, but more recently 1.1.7 has been used.

It is absolutely essential to run the mkpasswd and mkgroup commands, otherwise Aegis will give fatal er-
rors about unknown users and groups. See the Cygwin README for instructions.

Mounting Things
You need to mount a directory onto /tmp, or lots of things, and especially bash(1), don’t work. If you are
in a heavily networked environment, like me, you need to know that using a networked drive for /tmp just
doesn’t work. I have no idea why. Use

mount C:/temp /tmp
instead. (Or some other local drive.)

Just a tip for all of you who, like me, know Unix much better than you know Windows-NT: the left-hand
mount argument needs to be specified with a drive letter (e.g. C:) rather than with a double slash (e.g. not

//C) unless its Windows-NT name starts with \\.

You need to follow the install instructions about /bin/sh, otherwise shell scripts that start with #!/bin/sh
don’t work, among other things. This includes the ./configure script, and the scripts it writes (e.g.

config.status).

You will want to mount your various network drives onto the same places they appear on your Unix hosts.
This way you don’t need to learn two names for all your files.

Mounts persist across Cygwin sessions. They are stored in a registry file somewhere. You will not need to
do all this every time!

Too Much Administrator
If you have administrator privilege on your Windows NT box, you need to get rid of it. (Have a second ad-
min account instead.) This is because Windows NT will make the files belong to the wrong user for files
on some partitions, like /tmp. (This took me days to work out!) This confuses both Aegis and RCS.

If you get weird “Permission denied” errors from amazingly unlikely causes, this is probably why.

Before You Start
There are several pieces of software you need before you can build Aegis on Cygwin.

Reference Manual Aegis 56

Build(Aegis) Build(Aegis)

I’m going to keep mentioning “your local GNU mirror”. You can find
GNU at http://www.gnu.org, howev er you are better off using a local mirror, and these are
scattered around the globe. Follow the “mirrors” link on their front page to find your closest mir-
ror. Also, it’s often a good idea to configure these packages with the “−with-gnu-gettext” option
to their ./configure commands.

Do not use WinZip to unpack the tarball. It has a nasty habit of
turning all of the newlines into CRLFs. This will confuse lots of utilities, especially GNU Groff.
Use the “tar xzf aegis-4.25.tar.gz” command from within Cygwin.

Make sure the Cygwin you are using has GNU Groff 1.15 or later
(use a “groff −v” command). Grab and install the latest from your local GNU mirror, if it isn’t.

util-linux
You need to get GNU rx, but to make it work you have to find a tsort command, so that GNU rx’s
./configure script works. Try the latest copy of system/misc/util-linux-?.?.tar.gz
from the metalab.unc.edu Linux archive (or a mirror). Simply build and install misc-

utils/tsort.c by hand.

GNU rx Once you have tsort installed, you will be able to get GNU rx configured. Get a copy from your
local GNU mirror.

zlib You need to grab a copy of zlib; the same source as works for Unix will work for Cygwin. It will
install as a static library.

GNU diffutils
You need GNU diffults, because when you come to configure GNU RCS (next) it would other-
wise complain about a stupid diff and a missing diff3 command. The install-sh script is broken,
so you’ll need to do the final step in the install by hand.

GNU RCS
All of Aegis’ tests assume RCS is present. Also, you are going to need something for a history
tool. The install-sh script is broken, so you’ll need to do the final step in the install by hand.

Configure
The configure and build step should be the same as for Unix, as described above. All the problems I en-
countered were to do with getting the mounts just right. (But expect it to be dog slow compared to Linux or
FreeBSD on the same box.)

Sharutils
You need the uudecode command for several of the tests, and this may be found in the GNU
Sharutils package. You can get a copy from your local GNU mirror.

The configure step is almost the same as for Unix. I know you are itching to get typing, but read through to
the install section before you configure anything.

bash$./configure
...lots of output...

bash$

Build
The build step is exactly the same as for Unix, and you shouldn’t notice any difference...

bash$ make
bash$

Test
The tests are run in the same way as the Unix tests, but you don’t need to run the set-uid-root variants, be-
cause no such thing exists under Windows NT.

bash$ make sure
...lots of output...

Passed All Tests
bash$

Reference Manual Aegis 57

Build(Aegis) Build(Aegis)

Unfortunately, it isn’t that simple. There are a number of things you will see go wrong...

• Several tests fail because ed isn’t there.

• Several tests fail because ci (RCS 5.7) dumps core much too often for my liking.

• A couple of tests fail because they don’t expect the “.exe” extension on executable files.

• A couple of tests (notably, the aedist tests) fail because of the CRLF vs NL dichotomy. This means that
the expected results don’t match, not that it isn’t working.

Despite all the bad news, the vast majority of tests pass, and the others have good excuses.

Install
Installing the software works as usual, though you need to make some choices right at the start (I told you
to read this all the way through first). If you want to use the “/usr/local” prefix (or any other install prefix)
you mount it right at the start. For anything other than the “/usr/local” default prefix, you also needed to
give a “−prefix=blahblah” argument to the configure script, right at the start.

bash$ make install

...lots of output...

bash$

// vim: set ts=8 sw=4 et :

Reference Manual Aegis 58

aegis(1) General Commands Manual aegis(1)

NAME
aegis − project change supervisor

SYNOPSIS
aegis function [option...]
aegis −Help

DESCRIPTION
The aegis program is a transaction base software configuration management system. It is used to supervise
the development and integration of changes into projects.

FUNCTIONS
The following functions are available:

−Build
The aegis −Build command is used to build a project. See aeb(1) for more information.

−Change_Attributes
The aegis −Change_Attributes command is used to modify the attributes of a change. See
aeca(1) for more information.

−Change_Directory
The aegis −Change_Directory command is used to change directory. See aecd(1) for more in-
formation.

−Change_Owner
The aegis −Change_Owner command is used to facilitate reassignment of the developer of a
change in the being developed state. See aechown(1) for more information.

−CLone
The aegis −CLone command is used to exactly replicate a change, usually on another branch.
See aeclone(1) for more information.

−CoPy_file
The aegis −CoPy_file command is used to copy a file into a change. See aecp(1) for more infor-
mation.

−CoPy_file_Undo
The aegis −Copy_File_Undo command is used to remove a copy of a file from a change. See
aecpu(1) for more information.

−DELta_NAme
The aegis −DELta_NAme command is used to add a symbolic name to a project delta. See
aedn(1) for more information.

−Develop_Begin
The aegis −Develop_Begin command is used to begin development of a change. See aedb(1) for
more information.

−Develop_Begin_Undo
The aegis −Develop_Begin_Undo command is used to cease development of a change. See
aedbu(1) for more information.

−Develop_End
The aegis −Develop_End command is used to complete development of a change. See aede(1)
for more information.

−Develop_End_Undo
The aegis −Develop_End_Undo command is used to recall a change for further development.
See aedeu(1) for more information.

−DIFFerence
The aegis −DIFFerence command is used to find differences between development directory and
baseline. See aed(1) for more information.

Reference Manual Aegis 59

aegis(1) General Commands Manual aegis(1)

-Help
This option may be used to obtain more information about how to use the aegis program.

−Integrate_Begin
The aegis −Integrate_Begin command is used to begin integrating a change. See aeib(1) for
more information.

−Integrate_Begin_Undo
The aegis −Integrate_Begin_Undo command is used to cease integrating a change. See aeibu(1)
for more information.

−Integrate_Fail
The aegis −Integrate_Fail command is used to fail a change integration. See aeifail(1) for more
information.

−Integrate_Pass
The aegis −Integrate_PASS command is used to pass a change integration. See aeipass(1) for
more information.

−List
The aegis −List command is used to list interesting things. See ael(1) for more information.

−MoVe_file
The aegis −MoVe_file command is used to change the name of a file as part of a change. See
aemv(1) for more information.

−MoVe_file_Undo
The aegis −MoVe_file_Undo command is used to undo a change to the name of a file as part of a
change. See aemvu(1) for more information.

−New_Administrator
The aegis −New_Administrator command is used to add new administrators to a project. See
aena(1) for more information.

−New_BRanch
The aegis −New_BRanch command is used to add a new branch to a project. See aenbr(1) for
more information.

−New_BRanch_Undo
The aegis −New_BRanch_Undo command is used to remove a new branch from a project. See
aenbru(1) for more information.

−New_Change
The aegis −New_Change command is used to add a new change to a project. See aenc(1) for
more information.

−New_Change_Undo
The aegis −New_Change_Undo command is used to remove a new change from a project. See
aencu(1) for more information.

−New_Developer
The aegis −New_Developer command is used to add new dev elopers to a project. See aend(1)
for more information.

−New_File
The aegis −New_File command is used to add new files to a change. See aenf (1) for more infor-
mation.

−New_File_Undo
The aegis −New_File_Undo command is used to remove new files from a change. See aenfu(1)
for more information.

Reference Manual Aegis 60

aegis(1) General Commands Manual aegis(1)

−New_Integrator
The aegis −New_Integrator command is used to add new integrators to a project. See aeni(1) for
more information.

−New_Project
The aegis −New_Project command is used to create a new project to be watched over by aegis.
See aenpr(1) for more information.

−New_Project_Alias
The aegis −New_Project_Alias command is used to create a new project alias. See aenpa(1) for
more information.

−New_ReLeaSe
The aegis −New_ReLeaSe command is used to create a new project from an existing project. See
aenrls(1) for more information.

−New_ReViewer
The aegis −New_ReViewer command is used to add new reviewers to a project. See aenrv(1) for
more information.

−New_Test
The aegis −New_Test command is used to add a new test to a change. See aent(1) for more in-
formation.

−New_Test_Undo
The aegis −New_Test_Undo command is used to remove new tests from a change. See aentu(1)
for more information.

−Project_Attributes
The aegis −Project_Attributes command is used to modify the attributes of a project. See
aepa(1) for more information.

−Remove_Administrator
The aegis −Remove_Administrator command is used to remove administrators from a project.
See aera(1) for more information.

−Remove_Developer
The aegis −Remove_Developer command is used to remove dev elopers from a project. See
aerd(1) for more information.

−ReMove_file
The aegis −ReMove_file command is used to add files to be deleted to a change. See aerm(1) for
more information.

−ReMove_file_Undo
The aegis −Remove_File_Undo command is used to remove files to be deleted from a change.
See aermu(1) for more information.

−Remove_Integrator
The aegis −Remove_Integrator command is used to remove integrators from a project. See
aeri(1) for more information.

−ReMove_PRoject
The aegis −ReMove_PRoject command is used to remove a project. See aermpr(1) for more in-
formation.

−Remove_Project_Alias
The aegis −Remove_Project_Alias command is used to remove a project alias. See aerpa(1) for
more information.

−Remove_ReViewer
The aegis −Remove_ReViewer command is used to remove reviewers from a project. See
aerrv(1) for more information.

Reference Manual Aegis 61

aegis(1) General Commands Manual aegis(1)

−RePorT
The aegis −RePorT command is used to generate reports from aegis’ database. These reports
may be written by users, or be distributed with aegis.

−Review_Fail
The aegis −Review_Fail command is used to fail a change review. See aerfail(1) for more infor-
mation.

−Review_Begin
The aegis −Review_Begin command is used to begin to review a change. See aerb(1) for more
information.

−Review_Begin_Undo
The aegis −Review_Begin_Undo command is used to stop reviewing a change. See aerbu(1) for
more information.

−Review_Pass
The aegis −Review_PASS command is used to pass a change review. See aerpass(1) for more in-
formation.

−Review_Pass_Undo
The aegis −Review_Pass_Undo command is used to rescind a change review pass. See aerpu(1)
for more information.

−Test
The aegis −Test command is used to run tests. See aet(1) for more information.

−VERSion
The aegis −VERSion command is used to get copyright and version details. See aev(1) for more
information.

All function selectors are case insensitive. Function selectors may be abbreviated; the abbreviation is the
upper case letters. Function selectors must appear as the first command line argument.

Notification
Many aegis commands are capable of notification that they hav e been run. The individual commands docu-
ment those specific to them. For documentation on the various configurable notifications, see aepconf(5)
and aepattr(5) for more information.

OPTIONS
The following options are available to all functions. These options may appear anywhere on the command
line following the function selectors.

−LIBrary abspath

This option may be used to specify a directory to be searched for global state files and user state
files. (See aegstate(5) and aeustate(5) for more information.) Several library options may be
present on the command line, and are search in the order given. Appended to this explicit search
path are the directories specified by the AEGIS_PATH environment variable (colon separated),
and finally, /usr/local/lib/aegis is always searched. All paths specified, either on the command
line or in the AEGIS_PATH environment variable, must be absolute.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

The following options are available to most functions. These options may appear anywhere on the com-
mand line following the function selectors.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more

Reference Manual Aegis 62

aegis(1) General Commands Manual aegis(1)

information). If that does not exist, when the user is only working on changes within a single
project, the project name defaults to that project. Otherwise, it is an error.

−Change number

This option may be used to specify a particular change within a project. When no −Change op-
tion is specified, the AEGIS_CHANGE environment variable is consulted. If that does not exist,
the user’s $HOME/.aegisrc file is examined for a default change field (see aeuconf (5) for more
information). If that does not exist, when the user is only working on one change within a
project, that is the default change number. Otherwise, it is an error.

−Change project.Cnumber

As a shortcut, it is possible to combine the −Project and −Change options into a single option.

−Change branch.Cnumber

Several functions accept a −BRanch option; it is possible to combine the −BRanch and
−Change options in a single option. (This intentinally has the same form as the ${version} sub-
stitution output for incomplete changes.)

−Change branch.Dnumber

Several functions accept both the −BRanch and −Delta options (or −BRanch and −Change-
From-Delta options); it is possible to combine them in a single option. (This intentinally has the
same form as the ${version} substitution output for completed changes.)

−Change project.Dnumber

It is possible to combine the −Project and −Change-From-Delta options as a single option.

−Change UUID

Each completed change is assigned a globallay unique identifier (UUID). You can specify a
change by its 36-character UUID, or any unambiguous leading predix of the UUID (it must be at
least 4 characters, and not look like a number).

Listings
The following options are available to all listings. These options may appear anywhere on the command
line following the function selectors.

−PAGer The output of listings and help is piped through the pager command given in the PAGER environ-
ment variable (or more if not set). This is the default if the command is in the foreground, and the
output is a TTY. This option may be used to override any preference specified in the aeuconf (5)
file.

−No_PAGer
This option may be used to ensure that the output of listings and help is not piped through a pager
command. This is the default if the command is in the background, or if the output is not a TTY.
This option may be used to override any preference specified in the aeuconf (5) file.

−Page_Length number

This option may be used to set the page length of listings. The default, in order of preference, is
obtained from the system, from the LINES environment variable, or set to 24 lines.

−Page_Width number

This option may be used to set the page width of listings and error messages. The default, in or-
der of preference, is obtained from the system, from the COLS environment variable, or set to 79
characters.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-UNFormatted
This option may be used with most listings to specify that the column formatting is not to be per-
formed. This is useful for shell scripts.

Reference Manual Aegis 63

aegis(1) General Commands Manual aegis(1)

-Page-Header
This option requests that page headings be present in listings and reports. This is the default.

-No-Page-Header
This option requests that page headings be omitted from listings and reports.

Abbreviations
All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
The aegis command understands the following environment variables:

AEGIS_PATH
A colon-separated list of library directories. See the −LIBrary option for a description how this
environment variable is used.

AEGIS_PROJECT
Names a default project. See the −Project option for a description how this environment variable
is used.

AEGIS_CHANGE
Specifies a default change. See the −Change option for a description how this environment vari-
able is used.

AEGIS_FLAGS
This environment variable is used to hold aeuconf (5) information, and over-rides the settings in
the users .aegisrc file. This is intended to be used within the tests distributed with aegis, but can
also be of use within some shell scripts.

AEGIS_THROTTLE
Specifies the number of seconds to delay execution within commands which set time stamps.
This is intended to be used within the tests distributed with aegis, but can also be of use within
some shell scripts.

AEGIS_AUTOMOUNT_POINTS
A colon-separated list of directories which the automounter may use to mount file systems. Use
with extreme care, as this distorts Aegis’ idea of the shape of the filesystem.

This feature assumes that paths below the automounter’s mount directory are echoes of paths
without it. E.g. When /home is the trigger, and /tmp_mnt/home is where the on-demand
NFS mount is performed, with /home appearing to processes to be a symlink.

This is the behavior of the Sun automounter. The AMD automounter is capable of being config-
ured in this way, though it is not typical of the examples in the manual. Nor is it typical of the
out-of-the-box Linux AMD configuration in many distributions.

Reference Manual Aegis 64

aegis(1) General Commands Manual aegis(1)

COLS Specifies the page width for errors and listings. See the −Page_Width option for a description
how this environment variable is used.

EDITOR
Specifies the program use to edit files when the −Edit or −Edit_BackGround options are used.
(See also the VISUAL environment variable.) Defaults to vi if not set. See the editor_command

fields in aeuconf(1) for how to override this specifically for Aegis.

LINES Specifies the page length for listings. See the −Page_Length option for a description how this
environment variable is used.

PA GER Specifies the program to use to view listings and help. Not used if output is to a file or a pipe.
Defaults to more if not set.

VISUAL
Specifies the program use to edit files when the −Edit option is used. (See also the EDITOR en-
vironment variable.) Defaults to vi if not set. See the visual_command fields in aeuconf(1) for
how to override this specifically for Aegis.

AEGIS_DAT ADIR
Overrides the datadir as specified at configure invocation. Useful mainly for testing.

When commands are executed by Aegis, it ensures that the AEGIS_PROJECT, AEGIS_CHANGE,
AEGIS_ARCH, LINES and COLS environment variables are set appropriately. The project configuration
file’s project_specific field is also consulted, looking for value’s whose name starts with "setenv:" and sets
the corresponding environment variable. All of the substitutions described by aesub(5) are available. For
example: specifying a PATH and a SEARCH_PATH to be used for all commands may be set as follows:

project_specific =
[
{
name = "setenv:PATH";
value = "/usr/bin:/bin";

},
{
name = "setenv:SEARCH_PATH";
value = "${search_path}";

},
];

As many environment variables as desired may be specified in this way.

SEE ALSO
aegis(5) aegis file format syntax

aecattr(5)
change attributes file format

aecstate(5)
change state file format

aedir(5) directory structures

aegstate(5)
aegis state file format

aepattr(5)
project attributes file format

aepconf (5)
project configuration file format

aepstate(5)
project state file format

Reference Manual Aegis 65

aegis(1) General Commands Manual aegis(1)

aer(5) report script language definition

aesub(5)
available command substitutions

aeuconf (5)
user configuration file format

aeustate(5)
user state file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 66

ae-cvs-ci(1) ae-cvs-ci(1)

NAME
ae-cvs-ci − checkin a change set to CVS

SYNOPSIS
ae-cvs-ci project-name change-number

DESCRIPTION
The ae-cvs-ci command is used to check an Aegis change set into CVS.

This script is a short wrapper around the ae-repo-ci(1) command.

This is usually used in the integrate pass notify command project attribute, as in
integrate_pass_notify_command =

"$bin/ae-cvs-ci $project $change";

EXIT STATUS
The ae-cvs-ci command will exit with a status of 1 on any error. The ae-cvs-ci command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
ae-cvs-ci version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The ae-cvs-ci program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-cvs-ci −VER-

Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’ae-cvs-ci −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 67

ae-repo-ci(1) ae-repo-ci(1)

NAME
ae-repo-ci − redundant repository checkin

SYNOPSIS
ae-repo-ci −Project name −Change number −REPOsitory type [option...]
ae-repo-ci −Help
ae-repo-ci −VERSion

DESCRIPTION
The ae-repo-ci command is used to redundantly commit an Aegis change set into a parallel repository.

Integrate Pass Notify Command
The intended use for the ae-repo-ci command is as an integrate_pass_notify_command (see aepa(1) for
more information) to do a redundant checkin of a change set into a second parallel repository.

For example, if you were using CVS, the project attribute would look something like this:
integrate_pass_notify_command =

"$bin/ae−repo−ci −repo cvs "
" −p $project −c $change";

You may also need to specify the module, if the module name is not the same as the project name.

Commit Messages
You are able to control the commit message, by using the ae-repo-ci:commit-message attribute in
the project_specific field of the project configuration file.

The default is as if the following entry were present:
project_specific = [

{
name = "ae-repo-ci:commit-message";
value = "$version − ${change brief_description}";

}];
All of the aesub(5) substitutions are available.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

-Help
This option may be used to obtain more information about how to use the ae-repo-ci program.

−List This option may be used to obtain a list of supported repository types.

−MODule name

This option may be used to specify which module is to be checked out. If not set, it defaults to
the trunk project name (i.e. the project name without any branch or version numbers).

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

Reference Manual Aegis 68

ae-repo-ci(1) ae-repo-ci(1)

−REPOsitory type

This option is used to specify the repository type for the checkin. Known repository types are:

cvs Concurrent version System. You will need to set the CVSROOT environment variable
appropriately, and the −module option will be relative to it.

svn
Subversion. You must specify the complete URL with the −module option.

The following field in the project_specific field of the project configuration file
(see aepconf(5) for more information) are relevant:

svn:username
If present, the −username command line option will be added to svn(1)
command lines, with this value.

svn:password 8n
If present, the −username command line option will be added to svn(1)
command lines, with this value.

These options can help when you can’t convince Subversion to use the correct autho-
rization any other way.

This option must be specified, there is no default. The −list option may be used to obtain an up-
to-date list of supported repository types.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for ae-repo-ci are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The ae-repo-ci command will exit with a status of 1 on any error. The ae-repo-ci command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeca(1) how to change project attributes

Reference Manual Aegis 69

ae-repo-ci(1) ae-repo-ci(1)

COPYRIGHT
ae-repo-ci version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The ae-repo-ci program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-repo-ci

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’ae-repo-ci −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 70

ae-sccs-put(1) ae-sccs-put(1)

NAME
ae-sccs-put − put sccs version

SYNOPSIS
ae-sccs-put −ycomment −Ginput-file history-file

DESCRIPTION
The ae-sccs-put command is used to commit changes to an SCCS file. It insulates against a number of
SCCS’s quirks, and maps to Aegis’ expectations better than using the SCCS commands directory in the his-
tory commands in the project aegis.conf configuration file.

The file comments must be specified on the command line.

The source file must be specified on the command line.

It is expected that there is not lock current in the history file. This is consistent with Aegis’ use of its his-
tory tool.

The history file need to exist yet. It will be created (with the sccs admin command) if it does not.

OPTIONS
The following options are understood:

−Gsource-file

This option must be used to specify the source file to be checked into the history.

−ycomment

This option must be used to specify the comment to be attached to the file history. You probably
need to use quotes to insulate the white space in the comment.

EXIT STATUS
The ae-sccs-put command will exit with a status of 1 on any error. The ae-sccs-put command will only
exit with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
ae-sccs-put version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The ae-sccs-put program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-sccs-put

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’ae-sccs-put −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 71

ae_c(1) ae_c(1)

NAME
ae_c − set change number

SYNOPSIS
ae_c change-number

DESCRIPTION
The ae_c command is an alias used to set the AEGIS_CHANGE environment variable. No checking of the
argument is performed.

This can make changing the change you are working on quick and simple.

SEE ALSO
aegis(1) For information on environment variables.

ae_p(1) Set project name.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 72

ae_diff2htm(1) ae_diff2htm(1)

NAME
ae_diff2htm − wraps the diff2html command

SYNOPSIS
ae_diff2htm

DESCRIPTION
DESCRIPTION

The ae_diff2htm script wraps the diff2html command if available or otherwise falls back to a simple con-
text diff.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 73

ae_p(1) ae_p(1)

NAME
ae_p − set project name

SYNOPSIS
ae_p project-name

DESCRIPTION
The ae_p command is an alias used to set the AEGIS_PROJECT environment variable. No checking of the
argument is performed.

This can make changing projects quick and simple.

SEE ALSO
aegis(1) For information on environment variables.

ae_c(1) Set change number.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 74

aeannotate(1) aeannotate(1)

NAME
aeannotate − annotated source file listing

SYNOPSIS
aeannotate [option...] filename

aeannotate −Help
aeannotate −List
aeannotate −VERSion

DESCRIPTION
The aeannotate command is used to produce an annotated listing of the named source file.

The columns specified by the user (see the −column option, below) are used of the left hand side of the
output. Two additional columns are always added: the line number and the source code.

If no columns are specified, the default columns are
−column ’${change date %Y−%m}’ Date 7
−column ’$version’ Version 9
−column ’${change developer}’ Who 8

The $version string always contains enough information to reproduce the entire project baseline at the time
of the delta. The first portion is the project branch, and the second portion (following the ‘D’) is the delta
number; use these to form the −branch and −delta options for an aecp(1) command.

At the end of the listing, accumulated statistics are presented, correlated to the unique columns values see
in the listing.

OPTIONS
The following options are understood:

−COLumn formula [heading][width]
This option may be used to specify columns you wish to see in the output. The formula is in the
for of an aesub(5) string. The heading is a string to be used as the column heading; defaults to
the formula if not specified. The width is the width of the columns; defaults to 7 if not specified.

−File_Statistics
This option causes file statistics to be appended. This lists the number of lines in the file were
changed at the same time as another file. For example, this allows you to see tests associated
with source files, and vice versa.

-Help
This option may be used to obtain more information about how to use the aeannotate program.

−Diff_Option string

This option may be used to pass addition arguments to the diff commands that is run between
each delta of the file. Use with caution: poor choice of options can render aeannotate inoperable,
or yield meaningless results. Probably the best use of this option is to pass the −b option, to ig-
nore white space changes, because this ignores the vast majority of cosmetic formatting changes,
showing you the content changes instead. The −i option, to ignore case, can also be useful for
case-insensitive languages.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case

Reference Manual Aegis 75

aeannotate(1) aeannotate(1)

letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aeannotate are long, this means
ignoring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aeannotate command will exit with a status of 1 on any error. The aeannotate command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

EXAMPLES
If you wanted to list only the year against the lines of the file, use this column specification:

−column ’${change date %Y}’ Year 4

If you wanted to list the developer and the reviewer against the lines of the file (commonly called a “blame”
listing) use this column specification:

−column ’${change developer}’ Develop. 8
−column ’${change reviewer}’ Reviewer 8

If you wanted to see the change cause of each line, use this column specification:
−column ’$version’ Version 9
−column ’${change cause}’ Cause 20

All of the aesub(5) substitutions are available, however only the ${change ...} variants are particularly use-
ful.

To see only content changes, and ignore changes in indentation (assuming you are using GNU diff), use this
command:

aeannotate −diff-opt −b filename

COPYRIGHT
aeannotate version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aeannotate program comes with ABSOLUTELY NO WARRANTY; for details use the ’aeannotate

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aeannotate −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 76

aegis −Build(1) General Commands Manual aegis −Build(1)

NAME
aegis build − build a change

SYNOPSIS
aegis −Build [option...][filename...]
aegis −Build −List [option...]
aegis −Build −Help

DESCRIPTION
The aegis −Build command is used to build a project. The project configuration file is consulted for the
appropriate build command, and that command is executed (see the build_ command and integration_-

build_command fields in aepconf (5) for more information.) Output of the command is automatically
logged to the aegis.log file at the root of the development directory tree. The build command will be exe-
cuted with its current directory being the root of the development directory, irrespective of there the aegis

−Build command was executed.

If the change is in the being integrated state, references to the development directory, above, should be read
as the integration directory. Integration build commands are executed with the user and group set to the
project’s owning user and group. That is, it is not necessary for an integrator to log in as someone else, the
project account for instance, in order to do an integration.

No Build Required
It is possible to configure your project so that no build is required. To do this, set the following

build_command = "exit 0";
in the project configuration file.

Process Side Effects
This command will cancel any test registrations, because building the project logically invalidates them. If
the project configuration file was deleted, any diff registration will also be canceled.

Notification
The actions of the command are controlled by the build_ command and integration_build_command fields
of the project config file. See aepconf(5) for more information.

File Action Adjustment
When this command runs, it first checks the change files against the projects files. If there are inconsisten-
cies, the file actions will be adjusted as follows:

create If a file is being created, but another change set is integrated which also creates the file, the file
action in the change set still being developed will be adjusted to "modify".

modify If a file is being modified, but another change set is integrated which removes the file, the file ac-
tion in the change set still being developed will be adjusted to "create".

remove If a file is being removed, but another change set is integrated which removes the file, the file will
be dropped from the change set still being developed.

PARTIAL BUILD
If files are named on the command line, these files are appended to the build command. This is known as a
partial build. Partial builds are not legal in the being integrated state, but can often be useful in the being

developed state. Partial builds are not recorded in the change status, because builds are decoupled from
aegis it is not possible for aegis to know if any set of partial builds is equivalent to a full build.

Warning: no change state lock is taken for a partial build, only a baseline read lock.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one

Reference Manual Aegis 77

aegis −Build(1) General Commands Manual aegis −Build(1)

of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

SYMBOLIC LINKS
Many dependency maintenance tools, and indeed some compilers, have little or no support for include file
search paths, and thus for the concept of the two-level directory hierarchy employed by Aegis. (It becomes
multi-level when Aegis’ branching functionality is used.) To allow these tools to be used, Aegis provides
the ability to maintain a set of symbolic links between the development directory of a change and the base-
line of a project, so it appears to these tools that all of the project’s files are present in the development di-
rectory.

Project Configuration
The development_directory_style field of the project configuration file controls the appearance of the devel-
opment directory. See aepconf(5) for more information.

By using a setting such as
development_directory_style =
{

source_file_symlink = true;
during_build_only = true;

};
the user never sees the symbolic links, because they are added purely for the benefit of the dependency
maintenance tool during the execution of the aeb(1) command.

By using a setting such as
development_directory_style =
{

source_file_symlink = true;
};

(the other will default to false) the symbolic links will be created at develop begin time (see aedb(1) for
more information) and also maintained by each aeb(1) invocation. Note that the symbolic links are only
maintained at these times, so project integrations during the course of editing change sourec files may leave
the symbolic links in an inconsistent state until the next build.

When files are copied from the baseline into a change, using the aecp(1) command, the symbolic link
pointing into the baseline, if any, will be removed before the file is copied.

Note: Using this functionality in either form has implications for how the rules file of the dependency
maintenance tool is written. Rules must remove their targets before creating them (usually with an rm −f

command) if you use any of the link sub-fields (both hard links and symbolic links). This is to avoid at-
tempting to write the result on the symbolic link, which will point at a read-only file in the project baseline.
This is similar to the same requirement for using the link_integration_directory field of the project configu-
ration file.

User Configuration
There is a symbolic_link_preference field in the user configuration file (see aeuconf(5) for more informa-
tion). This controls whether aeb(1) will verify the symbolic links before the build (default) or whether it
will assume they are up-to-date. (This field is only relevant if development_directory__style.source_file_-

symlink is true.)

For medium-to-large projects, verifying the symbolic links can take as long as the build itself. Assuming
the symbolic links are up-to-date can be a large time-saving for these projects. It may be advisable to re-
view your choice of DMT in such a situation.

The aedb(1) command does not consult this preference. Thus, in most situations, the symbolic links will

Reference Manual Aegis 78

aegis −Build(1) General Commands Manual aegis −Build(1)

be up-to-date when the build is performed. The only Aegis function which may result in the symbolic links
becoming out-of-date is the integration of another change, as this may alter the presence or absence of files
in the baseline. In this situation, the default aeb(1) action is to ignore the user preference and the verify
symbolic links.

There are two command line options which modify aeb(1) behavior further: the −Verify-Symbolic-Links
option says to verify the symbolic links; and the −Assume-Symbolic-Links option says to assume the sym-
bolic links are up-to-date. In each case the option over-rides the default and the user preference.

It is possible to obtain behaviour similar to Tom Lord’a Arch by using a setting such as:
development_directory_style =
{

source_file_link = true;
source_file_symlink = true;

};

It is possible to obtain behaviour similar to CVS by using a setting such as:
development_directory_style =
{

source_file_copy = true;
};

There are many more possible configurations of the development_directory_style, usually with helpful build
side-effects. See aepconf(1) and the Depenedency Maintenance Tool chapter of the User Guide for more
information.

The symbolic link command line options and preferences apply equally to hard links and file copies (the
names have historical origins).

THE BASELINE LOCK
The baseline lock is used to ensure that the baseline remains in a consistent state for the duration of com-
mands which need to read the contents of files in the baseline.

The commands which require the baseline to be consistent (these include the aeb(1), aecp(1) and aed(1)
commands) take a baseline read lock. This is a non-exclusive lock, so the concurrent development of
changes is not hindered.

The command which modifies the baseline, aeipass(1), takes a baseline write lock. This is an exclusive
lock, forcing aeipass(1) to block until there are no active baseline read locks.

It is possible that one of the above dev elopment commands will block until an in-progress aegis −Inte-

grate_PASS completes. This is usually of short duration while the project history is updated. The delay is
essential so that these commands receive a consistent view of the baseline. No other integration command
will cause the above dev elopment commands to block.

When aegis’ branch functionality is in use, a read (non-exclusive) lock is taken on the branch baseline and
also each of the "parent" baselines. However, a baseline write (exclusive) lock is only taken on the branch
baseline; the "parent" baselines are only read (non-exclusive) locked.

METRICS
Aegis is capable of recording metrics as part of the file attributes of a change. This allows various proper-
ties of files to be recorded for later trend analysis, or other uses.

The specific metrics are not dictated by Aegis. It is expected that the integration build will create a metrics
file for each of the source files the change. These metrics files must be in the format specified by aemet-

rics(5).

The name of the metrics file defaults to “filename,S”, however it may be varied, by setting the metrics_-

filename_pattern field of the project config file. See aepconf(5) for more information.

If such a metrics file exists, for each source file in a change, it will be read and remembered at integrate
pass time. If it does not exist, Aegis assumes there are no relevant metrics for that file, and proceeds
silently; it is not an error.

Reference Manual Aegis 79

aegis −Build(1) General Commands Manual aegis −Build(1)

OPTIONS
The following options are understood:

name=value

Command line arguments of this form are assumed to be variable assignments for the build tool.
They are passed through unchanged. They imply a partial build.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−MINImum
This option may be used to request a source-only development_directory_style. This is useful if
you want to simulate something like aeib −minimum in the development directory. This option is
only meaningful if development_directory_style is being used. If the change is in the being inte-

grated state, and the developer specified −MINImum when issuing the aegis −Integrate_Begin

command, then this option is set by default.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

Reference Manual Aegis 80

aegis −Build(1) General Commands Manual aegis −Build(1)

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeb ’aegis −b \!* −v’
sh$ aeb(){aegis −b "$@" −v}

ERRORS
It is an error if the change is not assigned to the current user.
It is an error if the change is not in one of the being developed or being integrated states.
It is an error if a partial build is requested and the change is in the being integrated state.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aedb(1) begin development of a change

aecp(1) file copy also takes a baseline read lock (non-exclusive)

aeib(1) begin integration of a change

aeipass(1)
integrate pass takes a baseline write lock (exclusive)

aet(1) run tests

aemetrics(5)
metrics values file format

Reference Manual Aegis 81

aegis −Build(1) General Commands Manual aegis −Build(1)

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 82

aebisect(1) General Commands Manual aebisect(1)

NAME
aebisect − search for a delta which changed project behaviour

SYNOPSIS

aebisect [option...] [−Branch branch1] −DELta delta1 [−Branch branch2] −DELta delta2 −− command

[command_args]

DESCRIPTION
The aebisect command is used to determine when in a project history some property or behavior changed.
It does this by means of a bisection search through the inventory of deltas. The user must specify starting
and ending deltas, which may be in historical branches of the project.

For each delta tested in the search, aebisect sets up a development directory, builds the project, and then
runs the specified command in the development directory. By iteration, aebisect finds two consecutive
deltas where the return code of command changed.

Note: aebisect can take considerable CPU effort, since it (normally) does a full build from scratch for each
delta tested.

OPTIONS
The following options are understood:

−Help
Show usage information.

−Project project−name

specify the project (otherwise done via the AEGIS_PROJECT environment variable)

−Change change−number

specify the change to use for the processing (otherwise done via the AEGIS_CHANGE environment
variable). The change must be in the awaiting_development state; this ensures a correct environment for
building and testing.

−Branch branch−extension

specify the branch for one of the deltas. Defaults to the baseline branch of the project. Use −b − (single
dash) to specify the trunk. Branch specifiers must precede the corresponding delta specifiers.

−Logfile logfile

specify where normal output goes; defaults to $HOME/aebisect.log.

−Verbose
produce more diagnostic information (both logfile and standard output).

−Keep
do not delete working files, which are in a temporary directory. Warning: these may be voluminous!

−DIRectory path

specify a development directory to use for building and testing.

−Minimum
use the −minimum option for the builds.

−Nobuild
skip the build steps. This option is useful if the test command only involves source files. (Consider us-
ing aeannotate(1) instead.)

−Zero_only
treat all test result codes other than 0 as equivalent.

DIAGNOSTICS
Normally, exit status is 0 if consecutive deltas are found to bracket a change in the test command result.
Exit status is 1 if errors are detected in arguments. Exit status is 2 if a subordinate command fails (possibly
leaving the development directory in an uncertain state) or if the test behavior is found to be inconsistent

Reference Manual Aegis 83

aebisect(1) General Commands Manual aebisect(1)

with bisection search.

SIGNALS
aebisect will stop on INT, QUIT, and TERM signals, probably leaving the development directory in an un-
certain state.

EXAMPLE
Suppose a bug was introduced by development on project foo−4.5, sometime between version 1.2.D003
and 4.5.D006, and you have written an Aegis test script for the bug (see aent(1)), called
/wrk/test/00/t0007a.sh, taking an argument for system architecture. Then the following should isolate the
change which introduced the bug:

% aenc −p foo−4.5 −c 20 −file caf
% aebisect −p foo−4.5 −c 20 −b 1.2 −del 3 −b 4.5 −del 6 \

−− sh /wrk/test/00/t0007a.sh linux−i486

Note that the full path for the test script is specified, since the command is executed in a development direc-
tory.

BUGS
aebisect depends on aecp −delta for historical reconstructions. This can be problematic.

It is possible for a build to fail: derived files from the baseline may poison the build, or there may have been
changes in the system infrastructure since the old deltas were integrated. In such cases, aebisect exits. The
user may then snoop around the development directory, fix something, rebuild, perform the test, and use the
logfile to see how to proceed. Remember to aedbu when done.

In some situations the problem may be cured by an additional step between aedb and aeb. A command to
be interposed may be defined via the environment variable AEBISECT_DB_HOOK; this command is ex-
ecuted after aecp, so it may be used to patch source files — see the script source for details.

COPYRIGHT
Copyright © 2007 Ralph Smith

Partially derived from aeintegratq, Copyright © 1998−2005 Endocardial Solutions, Inc.

This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Reference Manual Aegis 84

aebuffy(1) aebuffy(1)

NAME
aebuffy − watch for changes

SYNOPSIS
aebuffy [project-name]

DESCRIPTION
The aebuffy command is used to watch for changes which the current user may be able to act upon. These
include changes being developed by the user, and changes which could be reviewed or integrated by the
user.

If you don’t use the project-name command line option, you need to set the AEGIS_PROJECT environ-
ment variable, or the default_project field of the .aegisrc file before you invoke this command. This is es-
pecially important if you launch it from your X11 session start-up file.

Double clicking on a change will invoke the tkaer(1) command for that change. This does not work for
changes in the awaiting development and completed states, but works for all other states.

Use the “q” key to quit.

At the moment it can only watch one project. If you are good at Tcl/Tk, improvements are most welcome.

COPYRIGHT
aebuffy version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aebuffy program comes with ABSOLUTELY NO WARRANTY; for details use the ’aebuffy −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aebuffy −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 85

aegis −Change_Attributes(1) General Commands Manual aegis −Change_Attributes(1)

NAME
aegis change attributes − modify the attributes of a change

SYNOPSIS
aegis −Change_Attributes −File attr-file [option...]
aegis −Change_Attributes −Edit [option...]
aegis −Change_Attributes −Fix_ARchitecture
aegis −Change_Attributes name=value

aegis −Change_Attributes −List [option...]
aegis −Change_Attributes −Help
aegis −Change_Attributes −UUID string [option...]

DESCRIPTION
The aegis −Change_Attributes command is used to set, edit or list the attributes of a change.

The output of the −List variant is suitable for use as input at a later time.

See aecattr(5) for a description of the file format.

The name=value form of the command may be used when you wish to add or modify change set attributes.
If an attribute is already present, it will be modified; if there is more than one attribute with the same name,
only the first will be modified. The name+=value form will always append the pair.

Example
When you edit the file, you will see something like this:

brief_description = "login(1) is too fussy";
description = "When users type their password "

"incorrectly, after three times the login(1) "
"program should assume they have forgotten "
"their password and automatically reset it "
"for them.";

cause = external_enhancement;
attribute =
[

{
name = "bugzilla";
value = "666";

},
{

name = "customer-priority";
value = "high";

},
{

name = "marketing-priority";
value = "urgent-panic-headless-chicken";

},
{

name = "engineering-priority";
value = "after-heat-death-of-universe";

}
];

Note the semicolons, you need to get them right. Edit the fields you want to change. When you quit the
editor, they will be updated.

Known Attribute Names
While many of the anticipated used of change attributes are to allow projects to attach their own specialized
data to change sets, Aegis also uses some attributes for its own purposes (and arguably, should always have
done so to maximize forwards compatibility across Aegis upgrades).

Reference Manual Aegis 86

aegis −Change_Attributes(1) General Commands Manual aegis −Change_Attributes(1)

aeget:inventory:hide
boolean. If true, this change set does not appear in aeget(1)’s change set inventory pages, used by
aedist −replay to decide what to download and apply. Think of it as a "local only" flag.

aeget-inventory-hide
Do not show this change set in the file inventory. See aeget(1) for more information.

aegis:history_get_command
Used when reconstructing file history, and the history tool has been changed at some point in the
past.

aemakegen:debian:accepted
Set to true when a debian package upload has succeeded, and the BTS tells you the bug fixes
have been accepted.

foreign-copyright
boolean. If true, none of the files in this change set will not be checked by the aede-policy(1)
copyright validation.

integrate-begin-hint
Suggest options when integrating. See aeib(1) for more information.

original-uuid
This is set by aedist −receive when an incoming change set is changed before it can end develop-
ment. There may be more than one. The aeget(1) inventory "all" page will show these additional
UUIDs, used by the aedist −pending command..

aegis:history_get_command
This is set by aeipass when integrating a change. See the CHANGING HISTORY TOOL section
of aepconf(5) for more information.

Universal Unique Identifier
Each change set is assigned a unique universal identifier (UUID) at integrate pass time. This serves to
identify the change across all sites when a geographically distributed development model is being used.
This may be exploited to rapidly determine which change sets need to be downloaded.

The −Universal_Unique_IDentifier option is used by the aedist(1) and aepatch(1) commands to set the
UUID of a change set. It should not be used by developers.

Using Change Attributes in Scripts
There are several ways you can use the attributes of an Aegis change in a shell script:

aereport(1)
The report generator is able to access change attributes. You can then have the report generator
print the necessary data.

aesub(1) Many change attributes can be accessed via the aesub(5) command substitutions, and printed us-
ing the aesub(1) command.

aeca −l The list option of the aeca(1) command may be used to print the values of all editable change at-
tributes. It can be groped using grep(1) or awk(1), or similar.

aexml(1)
It is possible to get a great deal of information in XML format, including change attributes. This
format can be parsed by a variety of packages.

Use the method best suited to your particular needs.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

Reference Manual Aegis 87

aegis −Change_Attributes(1) General Commands Manual aegis −Change_Attributes(1)

−Description_Only
This option may be used to specify that only the change description is the subject of this com-
mand. It will be presented as plain text, without any of the quotes or escapes present when this
command is not used.

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

−Fix_ARchitecture
This option may be used to replace change change’s architecture list with all of the mandatory ar-
chitectures from the project configuration file, plus any of the optional architectures that match
the current machine. May not be used with −file or −edit options.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Universal_Unique_IDentifier string

This option may be used to set the UUID of change change.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

Reference Manual Aegis 88

aegis −Change_Attributes(1) General Commands Manual aegis −Change_Attributes(1)

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeca ’aegis −ca \!* −v’
sh$ aeca(){aegis −ca "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the specified project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
tkaeca(1)

GUI interface to the aeca(1) command.

aecattr(5)
change attributes file format

aecstate(5)
change state file format

aepa(5) modify the attributes of a project

aesub(5)
available command substitutions

aeuconf (5)
user configuration file format

Reference Manual Aegis 89

aegis −Change_Attributes(1) General Commands Manual aegis −Change_Attributes(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 90

aegis −Change_Directory(1) General Commands Manual aegis −Change_Directory(1)

NAME
aegis change directory − change directory

SYNOPSIS
aegis −Change_Directory [option...][relative-path]
aegis −Change_Directory −List [option...]
aegis −Change_Directory −Help

DESCRIPTION
The aegis −Change_Directory command is used to obtain a path to change directory to. If the relative-

path is supplied, this will be added to the output.

This command is usually used to calculate an argument for cd(1), however it can also be used to obtain an
absolute path for change and project files.

OPTIONS
The following options are understood:

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

−BRanch number

This option may be used to specify a different branch for the origin file, rather than the baseline.
(See also −TRunk option. Please Note: the −BRanch option does not take a project name, just
the branch number suffix.

−GrandParent
This option may be used to specify the grandparent branch (one up from the current branch) for
the origin file, rather than the baseline. (The −grandparent option is the same as the “−branch ..”
option.)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Development_Directory
This option is used to specify that the development directory is the subject of the command. This
is only useful for a change which is in the being integrated state, when the default is the integra-
tion directory.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also −BRanch option, the −trunk option is the same as the “−branch −” option.)

Reference Manual Aegis 91

aegis −Change_Directory(1) General Commands Manual aegis −Change_Directory(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aecd ’cd ‘aegis −cd \!* −v‘’
sh$ aecd(){cd ‘aegis −cd "$@" −v‘}

ERRORS
It is an error if the specified change is not in a state where it has a directory to change to.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aedb(1) begin development of a change

aeib(1) begin integration of a change

aerpass(1)
pass review of a change

aerfail(1)
fail review of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

Reference Manual Aegis 92

aegis −Change_Directory(1) General Commands Manual aegis −Change_Directory(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 93

aegis −Change_Owner(1) General Commands Manual aegis −Change_Owner(1)

NAME
aegis change owner − set change owner

SYNOPSIS
aegis −Change_Owner change-number user-name [option...]
aegis −Change_Owner −Help
aegis −Change_Owner −VERSion

DESCRIPTION
The aegis −Change_Owner command is used to reassign a change from one developer to another.

A new dev elopment directory is created for the change in the new dev elopers default area (see aedb(1) for
more information) and the change files are copied across. Derived files are ignored, so a new build will be
required. The old development directory will be deleted.

This command must be performed by a project administrator, and the new assignee must be a developer.

Warning: capricious use of this command will alienate developers very rapidly.

Notification
This command mimics many of the actions of the aebdu(1) and aedb(1) command. In particular, it inv okes
the develop_begin_undo_command and develop_begin_command of the project config file. See aepconf(5)
for more information.

Development Directory Location
Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more

Reference Manual Aegis 94

aegis −Change_Owner(1) General Commands Manual aegis −Change_Owner(1)

information.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−User name

This option is used to specify the user who is to develop the change.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 95

aegis −Change_Owner(1) General Commands Manual aegis −Change_Owner(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aechown ’aegis −chown \!* −v’
sh$ aechown(){aegis −chown "$@" −v}

ERRORS
It is an error if the user issuing the command is not a project administrator.
It is an error if the change is not in the being developed state.
It is an error if the user given is not a developer.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 96

aegis −CLEan(1) aegis −CLEan(1)

NAME
aegis clEan − clean files from development directory

SYNOPSIS
aegis −CLEan [option...]
aegis −CLEan −Help
aegis −VERSion

DESCRIPTION
The aegis −CLEan command is used to remove all files which are not change source files from a develop-
ment directory. This can be used to obtain a “clean” development directory before a final build, to ensure
that a change is ready to end development. A new build will be required.

This command is only allowed in the “being developed” state, and only the change’s dev eloper may issue it.
It may not be applied to branches.

All symbolic links will be removed from the development directory, even if remove_symlinks_after_build =

false in the project config file. The symbolic links will be re-installed, if create_symlinks_before_build =

true. This is to ensure that the symlinks are accurate, and that unnecessary ones are removed.

All special device files, pipes and sockets will be removed. These files cannot be source files, and it is ex-
pected that the following build will restore them.

All derived files created by previous builds of the change will be removed. It is expected that the following
build will recreate them. Any temporary files you may have created in the development directory will also
be removed.

The develop_begin_command in the project configuration file (see aepconf (5) for more information) will
be run, if there is one. The change_file_command will be run, if there is one. The project_file_command

will be run, if there is one.

You will be warned if any of the files are out-of-date and need to be merged. You will be warned if any
files need to be differenced.

SYMBOLIC LINKS
Many dependency maintenance tools, and indeed some compilers, have little or no support for include file
search paths, and thus for the concept of the two-level directory hierarchy employed by Aegis. (It becomes
multi-level when Aegis’ branching functionality is used.) To allow these tools to be used, Aegis provides
the ability to maintain a set of symbolic links between the development directory of a change and the base-
line of a project, so it appears to these tools that all of the project’s files are present in the development di-
rectory.

Project Configuration
The development_directory_style field of the project configuration file controls the appearance of the devel-
opment directory. See aepconf(5) for more information.

By using a setting such as
development_directory_style =
{

source_file_symlink = true;
during_build_only = true;

};
the user never sees the symbolic links, because they are added purely for the benefit of the dependency
maintenance tool during the execution of the aeb(1) command.

By using a setting such as
development_directory_style =
{

source_file_symlink = true;
};

(the other will default to false) the symbolic links will be created at develop begin time (see aedb(1) for
more information) and also maintained by each aeb(1) invocation. Note that the symbolic links are only

Reference Manual Aegis 97

aegis −CLEan(1) aegis −CLEan(1)

maintained at these times, so project integrations during the course of editing change sourec files may leave
the symbolic links in an inconsistent state until the next build.

When files are copied from the baseline into a change, using the aecp(1) command, the symbolic link
pointing into the baseline, if any, will be removed before the file is copied.

Note: Using this functionality in either form has implications for how the rules file of the dependency
maintenance tool is written. Rules must remove their targets before creating them (usually with an rm −f

command) if you use any of the link sub-fields (both hard links and symbolic links). This is to avoid at-
tempting to write the result on the symbolic link, which will point at a read-only file in the project baseline.
This is similar to the same requirement for using the link_integration_directory field of the project configu-
ration file.

User Configuration
There is a symbolic_link_preference field in the user configuration file (see aeuconf(5) for more informa-
tion). This controls whether aeb(1) will verify the symbolic links before the build (default) or whether it
will assume they are up-to-date. (This field is only relevant if development_directory__style.source_file_-

symlink is true.)

For medium-to-large projects, verifying the symbolic links can take as long as the build itself. Assuming
the symbolic links are up-to-date can be a large time-saving for these projects. It may be advisable to re-
view your choice of DMT in such a situation.

The aedb(1) command does not consult this preference. Thus, in most situations, the symbolic links will
be up-to-date when the build is performed. The only Aegis function which may result in the symbolic links
becoming out-of-date is the integration of another change, as this may alter the presence or absence of files
in the baseline. In this situation, the default aeb(1) action is to ignore the user preference and the verify
symbolic links.

There are two command line options which modify aeb(1) behavior further: the −Verify-Symbolic-Links
option says to verify the symbolic links; and the −Assume-Symbolic-Links option says to assume the sym-
bolic links are up-to-date. In each case the option over-rides the default and the user preference.

It is possible to obtain behaviour similar to Tom Lord’a Arch by using a setting such as:
development_directory_style =
{

source_file_link = true;
source_file_symlink = true;

};

It is possible to obtain behaviour similar to CVS by using a setting such as:
development_directory_style =
{

source_file_copy = true;
};

There are many more possible configurations of the development_directory_style, usually with helpful build
side-effects. See aepconf(1) and the Depenedency Maintenance Tool chapter of the User Guide for more
information.

The symbolic link command line options and preferences apply equally to hard links and file copies (the
names have historical origins).

Notification
The notification commands that would be run by the aecp(1), aedb(1), aenf(1), aent(1) and aerm(1) com-
mands are run, as appropriate. The project_file_command is also run, if set. See aepconf(5) for more infor-
mation.

OPTIONS
The following options are understood:

Reference Manual Aegis 98

aegis −CLEan(1) aegis −CLEan(1)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−TOuch
This option may be used to request that each change source file have its last-modified time-stamp
be updated to the current time. This is the default. Derived files and other non-source file are left
alone.

−No_TOuch
This option may be used to request that the last-modified time-stamp of each source file be left
unmodified.

−MINIMum
This option may be used to request a minimum set of symbolic links, when the create_sym-

links_to_baseline functions are being used. This is useful if you want to simulate something like
aeib −minimum in the development directory. This option is not meaningful if symbolic links are
not being used.

This option also says not to remove normal files which occlude project source files. This is a
common technique used to temporarily over-ride project source files. The “aecp −read-only”

command would have been more appropriate.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Reference Manual Aegis 99

aegis −CLEan(1) aegis −CLEan(1)

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 100

aegis −clone(1) aegis −clone(1)

NAME
aegis clone − make an exact copy of a change

SYNOPSIS
aegis −CLone [option...] change-number [change-number]
aegis −CLone −Help
aegis −CLone −VERSion

DESCRIPTION
The aegis −CLone command is used to create exact replicas of changes. This is of most use when a change
need to be applied to several parallel branches.

One change number must be supplied. This is the change to be replicated. If any branch options are given
(see below) the mandatory change number applies to the branch specified. If no branch is specified, the
change applies to the project (implicit or explicit).

If the optional second change number is supplied, this is the change number to be created to hold the
replica; if it is not supplied, the next available change number will be used.

If the change to be replicated has been completed, the appropriate file revisions will be extracted from his-
tory; otherwise the files will be copied from the development directory of the change to be copied. Be
warned: if a file in the change which was cloned subsequently changes, those changes will not automagi-
cally be tracked. It is best if changes are cloned at a stable time, such as one of the states after develop end,
or even after integrate pass.

Development Directory Location
Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

WHITEOUT
Aegis provides you with what is often called a “view path” which indicates to development tools (compil-
ers, build systems, etc) look first in the development directory, then in the branch baseline, and so on up to
the trunk baseline.

The problem with view paths is that in order to remove files, you need some kind of "whiteout" to say “stop
looking, it’s been removed.”

When you user the aerm(1) or aemv(1) commands, this means "add information to this change which will
remove the file from the baseline when this change is integrated". I.e. while the change is in the being de-

veloped state, the file is only "removed" in the development directory − it’s still present in the baseline, and
will be until the change is successfully integrated.

When you use the aerm(1) or aemv(1) commands, Aegis will create a 1K file to act as the whiteout. It’s
contents are rather ugly so that if you compile or include the "removed" file accidentally, you get a fatal er-
ror. This will remind you to remove obsolete references.

When the change in integrated, the removed file is not copied/linked from the baseline to the integration di-
rectory, and is not copied from the development directory. At this time it is physically gone (no whiteout).
It is assumed that because of the error inducing whiteout all old references were found and fixed while the
change was in the being developed state.

Reference Manual Aegis 101

aegis −clone(1) aegis −clone(1)

File Manifests
When generating list of files to be compiled or linked, it is important that the file manifest be generated
from information known by Aegis, rather than from the file system. This is for several reasons:

(a) Aegis knows exactly what (source) files are where, whereas everything else is inferring Aegis’
knowledge; and

(b) looking in the file system is hard when the view path is longer that 2 directories (and Aegis’
branching method can make it arbitrarily long); and

(c) The whiteout files, and anything else left “lying around”, will confuse any method which interro-
gates the file system.

The easiest way to use Aegis’ file knowledge is with something like an awk(1) script processing the Aegis
file lists. For example, you can do this with make(1) as follows:

generate the file manifest
manifest.make.inc: manifest.make.awk

(aegis −l cf −ter ; aegis −l pf −ter) | \
awk −f manifest.make.awk > manifest.make.inc

now include the file manifest
include manifest.make.inc

Note: this would be inefficient of you did it once per directory, but there is nothing stopping you writing nu-
merous assignments into the manifest.make.inc file, all in one pass.

It is possible to do the same thing with Aegis’ report generator (see aer(1) for more information), but this is
more involved than the awk(1) script. However, with the information "straight from the horse’s mouth" as
it were, it can also be much smarter.

This file manifest would become out-of-date without an interlock to Aegis’ file operations commands. By
using the project-file_command and change_file_command fields of the project config file (see aepconf(5)
for more information), you can delete this file at strategic times.

/* run when the change file manifest is altered */
change_file_command = "rm −f manifest.make.inc";
/* run when the project file manifest is altered */
project_file_command = "rm −f manifest.make.inc";

The new file manifest will thus be re-built during the next aeb(1) command.

Options and Preferences
There is a −No-WhiteOut option, which may be used to suppress whiteout files when you use the aerm(1)
and aemv(1) commands. There is a corresponding −WhiteOut option, which is usually the default.

There is a whiteout_preference field in the user preferences file (see aeuconf(5) for more information) if
you want to set this option more permanently.

Whiteout File Templates
The whiteout_template field of the project config file may be used to produce language-specific error files.
If no whiteout template entry matches, a very ugly 1KB file will be produced − it should induce compiler
errors for just about any language.

If you want a more human-readable error message, entries such as
whiteout_template =
[

{
pattern = ["*.[ch]"];
body = "#error This file has been removed.";

}
];

can be very effective (this example assumes gcc(1) is being used).

If it is essential that no whiteout file be produced, say for C source files, you could use a whiteout template
such as

Reference Manual Aegis 102

aegis −clone(1) aegis −clone(1)

whiteout_template =
[

{ pattern = ["*.c"]; }
];

because an absent body sub-field means generate no whiteout file at all.

You may have more than one whiteout template entry, but note that the order of the entries is important.
The first entry which matches will be used.

Notification
The notification commands that would be run by the aecp(1), aedb(1), aenf(1), aent(1) and aerm(1) com-
mands are run, as appropriate. The project_file_command is also run, if set. See aepconf(5) for more infor-
mation.

Cloning and Merging
When you use aeclone(1) to clone a change set, and then integrate one of the two change sets, you will ob-
serve that Aegis says that the files of the un-integrated change are now out-of-date.

If you run aem(1) to bring the out-of-date files back up-to-date, fmerge(1) and some (but not) all other
merging tools, it signals just about everything as a conflict, even though both alternatives are identical.

The problem is that two changes making identical edits to the same place in the same file are a logical con-
flict, even if not an actual conflict, and it takes a human to figure out the difference. Think of a shopping
list: the ensuite needs more soap, and so does the main bathroom. The second "soap" on the merge of the
two shopping lists isn’t a duplicate, you really do need two boxes of soap. Sometimes edits of source files
are the same: sometimes the logical conflict is resolved by applying both identical edits, not just one.

This is just the fmerge(1) command being more conservative than RCS’s merge(1) command.

The easiest way to deal with this common situation it to run an
aecpu −unchanged

command before you run the aem(1) merge command, and you will have less grief. It’s also worth remem-
bering that Aegis stashes the original file with a ,B suffix (B for backup) so you can simply

mv fubar,B fubar

if you know that all of the conflicts are logical conflicts.

OPTIONS
The following options are understood:

−BRanch number

This option may be used to specify a different branch for the origin file, rather than the baseline.
(See also −TRunk option. Please Note: the −BRanch option does not take a project name, just
the branch number suffix.

−GrandParent
This option may be used to specify the grandparent branch (one up from the current branch) for
the origin file, rather than the baseline. (The −grandparent option is the same as the “−branch ..”
option.)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

Reference Manual Aegis 103

aegis −clone(1) aegis −clone(1)

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−WhiteOut
This option may be used to request that deleted files be replaced by a “whiteout” file in the devel-
opment directory. The idea is that compiling such a file will result in a fatal error, in order that all
references may be found. This is usually the default.

−No_WhiteOut
This option may be used to request that no “whiteout” file be placed in the development directory.

−Output filename

This option may be used to specify a filename which is to be written with the automatically deter-
mined change number. Useful for writing scripts.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also −BRanch option, the −trunk option is the same as the “−branch −” option.)

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

ERRORS
It is an error if the current user is not an administrator of the project. (In some cases it is possible for devel-
opers of a project to create changes, see aepattr(5) for more information.)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

Reference Manual Aegis 104

aegis −clone(1) aegis −clone(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenc(1) Create a new change.

aeca(1) modify the attributes of a change

aena(1) add a new administrator to a project

aepa(1) modify the attributes of a project

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 105

aecomp(1) aecomp(1)

NAME
aecomp − compare two changes

SYNOPSIS
aecomp number [number]

DESCRIPTION
The aecomp script is used to compare two changes, using tkdiff(1) to display the changes. If you give one
change on the command line, the other change is determined in the usual way. If you give two changes,
those are the two compared. Both changes must be in the being developed state (it’s only a script, after all).

Basically, aecomp allows you to specify two project/change pairs (ie the compared changes don’t hav e to be
in the same branch or project). aecomp attempts to use defaults (for project and change number) where
possible. As a minimum, it needs a single change number as an option. A list of files which are common
between the two changes is constructed and presented. Double clicking on any of the file names will tkdiff

the two versions (ie the files in each change).

It is useful after you have used aeclone(1), then modified a change and subsequently are wondering what
on earth you did. Files are considered to be "common" if they hav e the same name. In the case of a file
which has been moved, it’s original filename is used (the diff of course takes place against the new file
name).

AUTHOR
Scott Finneran <scottf@lucent.com>

Reference Manual Aegis 106

aecomplete(1) aecomplete(1)

NAME
aecomplete − command completion

SYNOPSIS
aecomplete cmd-name incomplete-word pre vious-word

DESCRIPTION
The aecomplete command is used to perform command completion for shells.

See bash(1) for more information about Bash command completion, and how this command is expected to
be executed.

At present, this is the only shell supported. The code has been written to be extensible, should other shells
have programmable completion by external programs.

EXIT STATUS
The aecomplete command will exit with a status of 1 on any error. The aecomplete command will only
exit with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aecomplete version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aecomplete program comes with ABSOLUTELY NO WARRANTY; for details use the ’aecomplete

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aecomplete −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 107

aegis −CoPy_file(1) General Commands Manual aegis −CoPy_file(1)

NAME
aegis copy file − copy a file into a change

SYNOPSIS
aegis −CoPy_file [option...] filename...
aegis −CoPy_file −INDependent [option...] filename...
aegis −CoPy_file −List [option...]
aegis −CoPy_file −Help

DESCRIPTION
The aegis −CoPy_file command is used to copy a file into a change. The named files will be copied from
the baseline into the development directory, and added to the list of files in the change. The version of files
copied from the baseline is remembered.

This command may be used to copy tests into a change, not just source files. Tests are treated just like any
other source file, and are subject to the same process.

Warning: If there are files in the development directory of the same name they will be overwritten by this
command.

You may also name directories. All of the source files in the directories named, and all directories below
them, will be copied from the baseline into the development directory, and added to the list of files in the
change.

When copying files explicitly, it is an error if the file is already part of the change. When you name a direc-
tory, all of the source files in the project below that directory are copied, except any which are already in
the change. It is an error if none of the files implicitly named by the directory can be used.

If you want to change a copied source file to be executable (shell scripts, for example) then you simply use
the normal chmod(1) command; the reverse to make it not executable. If any of the file’s executable bits
are set at aede(1) time the file is remembered as executable and all execute bits (minus the project’s umask)
will be set by subsequent aecp(1) commands.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because adding another file logically invalidates
them. If the project configuration file was added, any diff registration will also be canceled.

When the change files are listed (aegis −List Change_Files −TERse) the copied files will appear in the list-
ing. When the project files are listed with an explicit change number (aegis −List Project_Files −TERse

−Change N) none of the change’s files, including the copied files, will appear in the terse listing. These
two features are very helpful when calling aegis from within a DMT to generate the list of source files.

THE BASELINE LOCK
The baseline lock is used to ensure that the baseline remains in a consistent state for the duration of com-
mands which need to read the contents of files in the baseline.

The commands which require the baseline to be consistent (these include the aeb(1), aecp(1) and aed(1)

Reference Manual Aegis 108

aegis −CoPy_file(1) General Commands Manual aegis −CoPy_file(1)

commands) take a baseline read lock. This is a non-exclusive lock, so the concurrent development of
changes is not hindered.

The command which modifies the baseline, aeipass(1), takes a baseline write lock. This is an exclusive
lock, forcing aeipass(1) to block until there are no active baseline read locks.

It is possible that one of the above dev elopment commands will block until an in-progress aegis −Inte-

grate_PASS completes. This is usually of short duration while the project history is updated. The delay is
essential so that these commands receive a consistent view of the baseline. No other integration command
will cause the above dev elopment commands to block.

When aegis’ branch functionality is in use, a read (non-exclusive) lock is taken on the branch baseline and
also each of the "parent" baselines. However, a baseline write (exclusive) lock is only taken on the branch
baseline; the "parent" baselines are only read (non-exclusive) locked.

TEST CORRELATIONS
The “aegis −Test −SUGgest” command may be used to have aegis suggest suitable regression tests for your
change, based on the source files in your change. This automatically focuses testing effort to relevant tests,
reducing the number of regression tests necessary to be confident that you have not introduced a bug.

The test correlations are generated by the “aegis −Integrate_Pass” command, which associates each test in
the change with each source file in the change. Thus, each source file accumulates a list of tests which have
been associated with it in the past. This is not as exact as code coverage analysis, but is a reasonable ap-
proximation in practice.

The aecp(1) and aenf (1) commands are used to associate files with a change. While they do not actively
perform the association, these are the files used by aeipass(1) and aet(1) to determine which source files
are associated with which tests.

Test Correlation Accuracy
Assuming that the testing correlations are accurate and that the tests are evenly distributed across the func-
tion space, there will be a less than 1/number chance that a relevant test has not been run by the “aegis
−Test −SUGgest number” command. A small amount of noise is added to the test weighting, so that unex-
pected things are sometimes tested, and the same tests are not run every time.

Test correlation accuracy can be improved by ensuring that:

• Each change should be strongly focused, with no gratuitous file inclusions. This avoids spurious cor-
relations.

• Each item of new functionality should be added in an individual change, rather than several together.
This strongly correlates tests with functionality.

• Each bug should be fixed in an individual change, rather than several together. This strongly corre-
lates tests with functionality.

• Test correlations will be lost if files are moved. This is because correlations are by name.

The best way for tests to correlate accurately with source files is when a change contains a test and exactly
those files relating to the functionality under test. Too many spurious files will weaken the usefulness of
the testing correlations.

Notification
The copy_file_command in the project config file is run, if set. The project_file_command is also run, if
set, and if there has been an integration recently. See aepconf(5) for more information.

File Action Adjustment
When this command runs, it first checks the change files against the projects files. If there are inconsisten-
cies, the file actions will be adjusted as follows:

create If a file is being created, but another change set is integrated which also creates the file, the file
action in the change set still being developed will be adjusted to "modify".

Reference Manual Aegis 109

aegis −CoPy_file(1) General Commands Manual aegis −CoPy_file(1)

modify If a file is being modified, but another change set is integrated which removes the file, the file ac-
tion in the change set still being developed will be adjusted to "create".

remove If a file is being removed, but another change set is integrated which removes the file, the file will
be dropped from the change set still being developed.

OPTIONS
The following options are understood:

−as-needed
Usually it is an error if a file is already in a change set, and is redundantly added to the change set
again. This option says to ignore such files.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−BRanch number

This option may be used to specify a different branch for the origin file, rather than the baseline.
(See also −TRunk option. Please Note: the −BRanch option does not take a project name, just
the branch number suffix.

−GrandParent
This option may be used to specify the grandparent branch (one up from the current branch) for
the origin file, rather than the baseline. (The −grandparent option is the same as the “−branch ..”
option.)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not
exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

-Help
This option may be used to obtain more information about how to use the aegis program.

−INDependent
This option is used to specify that the copy is to be run independent of any particular change.
The files will be copied relative to the current directory (but see the −Output-Directory option).

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

Reference Manual Aegis 110

aegis −CoPy_file(1) General Commands Manual aegis −CoPy_file(1)

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Output filename

This option may be used to specify an output file of a file being copied from the baseline. Only
one baseline file may be named when this option is used. The file name "−" is understood to
mean the standard output. This option does not add the file to the set of change files. No locks

are taken when this option is used, not even the baseline read lock.

−Output-Directory path

This option may only be used with the −INDependent option, to specify the output directory for
the copied files, rather than the current directory. The directory will be created if it does not exist
already.

-OverWriting
This option may be used to force overwriting of files. The default action is to give an error if an
existing file would be overwritten.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Read_Only
This option may be used to specify that the file is to be used to insulate the change from the base-
line. The user does not intend to edit the file. These files must be uncopied before development
may end.

−REScind
This option may be used to rescind (roll back) a completed change. The change to rescind (roll
back) is specified in the usual way, with one of the −delta options.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also −BRanch option, the −trunk option is the same as the “−branch −” option.)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

Reference Manual Aegis 111

aegis −CoPy_file(1) General Commands Manual aegis −CoPy_file(1)

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aecp ’aegis −cp \!* −v’
sh$ aecp(){aegis −cp "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is already in the change and the −OverWrite option is not specified.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

EXAMPLES
Here are some simple examples. Remember that most commands are relative to the current directory, even
though these examples assume you are at the base of the development directory tree.

Copy Whole Project
To copy the whole project into your change, use the command

aecp .
The trailing dot is part of the command, it means "the currect directory and everything below it". This
works for any directory in your project source tree, if you want to be more seledctive.

Prroduce Earlier Project Version
You you wish to exactly reproduces the sources for an earlier version of your project, you need to know the
edelta number (use ael proj-history to find it). Then use this command:

aecp −delta n .
where n is the delta number from the project history. Again, the trailing dot is part of the command. By us-
ing the $version substitution (see aesub(5) for more information) you can embed this delta number into
your program before distributing it.

It is also possible to give a previous change number, instead, using this command:
aecp −delta-from-change n .

where n is the change number of interest. Again, the trailing dot is part of the command.

Reference Manual Aegis 112

aegis −CoPy_file(1) General Commands Manual aegis −CoPy_file(1)

Rescind a Change
When you need to rescind (back out) a completed change, it will probably have been some time ago, so you
need to know the delta number or change number. Use this command:

aecp −delta n −rescind .
where n is the delta number of interest. All of the other −delta variantrs also work, so if you know the
change number, you can be more selective about which files to copy:

aecp −delta-from-change n ‘aegis −l cf −ter −c n‘
where n is the change number of interest. This only copies the files which were in the offending change.

SEE ALSO
aeb(1) build also takes a baseline read lock (non-exclusive)

aecpu(1)
reverse action of aecp

aedb(1) begin development of a change

aedn(1) assign a name to a delta

aeipass(1)
integrate pass takes a baseline write lock (exclusive)

aemv(1) rename a file as part of a change

aenf (1) add a new file to a change

aerm(1) add files to be deleted to a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 113

aegis −CoPy_file_Undo(1) General Commands Manual aegis −CoPy_file_Undo(1)

NAME
aegis copy file undo − reverse action of aecp

SYNOPSIS
aegis −CoPy_file_Undo [option...] filename...
aegis −CoPy_file_Undo −List [option...]
aegis −CoPy_file_Undo −Help

DESCRIPTION
The aegis −CoPy_file_Undo command is used to delete files previously copied into a change. The named
files will be removed from the list of files in the change.

The file is deleted from the development directory unless the −Keep option is specified. The −Keep option
should be used with great care, as you can confuse tools such as make(1) by leaving these files in place.

You may name a directory to delete from the change all files in that directory tree previously copied into the
change, other files in the tree will be ignored. It is an error if there are no relevant files.

Branch vs Change
The aecpu(1) command may only be applied to a change. If you wish to perform the same operation on a
branch, use the aemt(1) command, through the agency of a change.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because deleting a file logically invalidates them.
If the project configuration file was deleted, any diff registration will also be canceled.

The difference file (,D) will also be removed, however any DMT derived files (e.g a .o file from a .c file)
will not be removed. This is because aegis is decoupled from the DMT, and cannot know what these de-
rived file may be called. You may need to delete derived files manually.

Notification
The copy_file_undo_command in the project config file is run, if set. The project_file_command is also
run, if set, and if there has been an integration recently. See aepconf(5) for more information.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

Reference Manual Aegis 114

aegis −CoPy_file_Undo(1) General Commands Manual aegis −CoPy_file_Undo(1)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more informa-
tion.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Read_Only
This option may be used to specify that only insulation files are to be uncopied. If you specify
−UNChanged as well, only unchanged insulation files will be uncopied.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

Reference Manual Aegis 115

aegis −CoPy_file_Undo(1) General Commands Manual aegis −CoPy_file_Undo(1)

−UNChanged
Examine the named files to see if they are unchanged. Only remove the unchanged files from the
change, and leave the files which have changed. If no files are named on the command line all
change files are checked.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aecpu ’aegis −cpu \!* −v’
sh$ aecpu(){aegis −cpu "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy files into a change

aemt(1) make branch files transparent

aeuconf (5)
user configuration file format

Reference Manual Aegis 116

aegis −CoPy_file_Undo(1) General Commands Manual aegis −CoPy_file_Undo(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 117

aecvsserver(1) aecvsserver(1)

NAME
aecvsserver − serve CVS client protocol against Aegis projects

SYNOPSIS
aecvsserver server
aecvsserver pserver
aecvsserver −VERSion

DESCRIPTION
The aecvsserver command is used to serve the CVS client protocol. The repository, of course, is stored
within Aegis.

The server works by retrieving file contents from locations within Aegis change sets and repositories.
When necessary, appropriate aegis(1) commands are executed by the server to fulfill the requests.

This code is still experimental. At the present time only a limited number of CVS commands are under-
stood. If you would like to extend this code, contributions are welcome. The following commands are
thought to work at this time: add, admin, checkout, commit, init, remove, update.

server
To use the server, you will need to set the following environment variables:

CVSROOT=:ext:hostname/aegis
CVS_RSH=ssh
CVS_SERVER=aecvsserver

pserver
It is also possible to use aecvsserver as a cvs pserver, with all the usual caveats about how insecure this ac-
cess method is, because it transmits the password almost in the clear. The root and modules are as above.

MODULES
The CVS concept of modules is mapped onto Aegis concept of projects and changes. The special CVS-
ROOT administrative module is simulated.

Projects as Modules
Each Aegis project appears to the CVS client as a module; the module’s name is the same as the Aegis
project’s name. This type of module isn’t immediately useful except for the cvs export command, or to per-
form a read-only cvs checkout command.

You can’t commit to a project-named module. This because Aegis requires all operations which would
change the repository to be performed through a change set.

It is theoretically possible to code aecvsserver to create a change (via aenc(1) and aedb(1) commands), then
add the necessary files (via aenf(1) and aecp(1) commands), then build (via the aeb(1) command), then test
(via the aet(1) command), and finally to end development of the change (via the aede(1) command). As the
CVS protocol documentation says

"The protocol makes it possible for updates to be atomic with respect to checkins; that is, if some-
one commits changes to several files in one cvs command, then an update by someone else would
either get all the changes, or none of them. The current cvs server can’t do this, but that isn’t the
protocol’s fault."

This code is yet to be written. Contributions welcome.

The protocol, however, doesn’t make it particularly easy, either. The semantics of the Modify request
change depending on whether it is followed by the commit request or the update request.

Changes as Modules
Each Aegis change set also appears to the CVS client as a module; it’s name is project.Cnumber. All cvs

add commands, cvs remove commands, cvs update commands and cvs commit commands are performed
against the change set, not directly to the baseline. It is necessary for the change set to already exist, and
once you have run the cvs commit command, it will the be necessary to use the aede(1) command and the
rest of the usual Aegis process.

Once a change is no longer in the being developed state, it cannot be changed via aecvsserver(1) and you

Reference Manual Aegis 118

aecvsserver(1) aecvsserver(1)

will need to create a new Aegis change set, and then cvs checkout a new client-side work area.

Please note: if you are experimenting with the interface via cvs −d :fork:/aegis or similar, the work area you
create must be outside the Aegis change set’s dev elopment directory.

CVSROOT
The CVSROOT module’s contents are synthesized from Aegis meta-data. You can’t add or modify files in
this module; you need to administer Aegis directly with aegis(1) commands.

EXIT STATUS
The aecvsserver command will exit with a status of 1 on any error. The aecvsserver command will only
exit with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aecvsserver version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aecvsserver program comes with ABSOLUTELY NO WARRANTY; for details use the ’aecvsserver

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aecvsserver −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 119

aegis −DIFFerence(1) General Commands Manual aegis −DIFFerence(1)

NAME
aegis difference − find differences between a change and the baseline

SYNOPSIS
aegis −DIFFerence [filename...] [option...]
aegis −DIFFerence −List [option...]
aegis −DIFFerence −Help

DESCRIPTION
The aegis −DIFFerence command is used to generate difference listings between source files in the the de-
velopment directory and the baseline. The purpose is to enable reviewers to find each and every edit per-
formed on the source files. The difference listings will be placed into files named for the sources files but
with an additional ",D" suffix.

The command used to perform the differences is specified in the diff_command field of the project configu-
ration file (see aepconf (5) for more information).

It is possible to configure a project to omit the diff step as unnecessary, by the following setting:
diff_command = "exit 0";

This disables all generation, checking and validation of difference file for each change source file. The
merge functions of the aediff(1) command are unaffected by this setting.

Please note that the history_content_limitation field of the project configuration file does not apply to the
diff_command field.

If no files are named on the command line, all files in the change will be differenced.

You may name a directory on the command line, and all files in the change in that directory tree will be dif-
ferenced.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Notification
The actions of the command are controlled by the diff_command and merge_command fields of the project
config file. See aepconf(5) for more information.

THE BASELINE LOCK
The baseline lock is used to ensure that the baseline remains in a consistent state for the duration of com-
mands which need to read the contents of files in the baseline.

The commands which require the baseline to be consistent (these include the aeb(1), aecp(1) and aed(1)
commands) take a baseline read lock. This is a non-exclusive lock, so the concurrent development of
changes is not hindered.

The command which modifies the baseline, aeipass(1), takes a baseline write lock. This is an exclusive
lock, forcing aeipass(1) to block until there are no active baseline read locks.

It is possible that one of the above dev elopment commands will block until an in-progress aegis −Inte-

grate_PASS completes. This is usually of short duration while the project history is updated. The delay is

Reference Manual Aegis 120

aegis −DIFFerence(1) General Commands Manual aegis −DIFFerence(1)

essential so that these commands receive a consistent view of the baseline. No other integration command
will cause the above dev elopment commands to block.

When aegis’ branch functionality is in use, a read (non-exclusive) lock is taken on the branch baseline and
also each of the "parent" baselines. However, a baseline write (exclusive) lock is only taken on the branch
baseline; the "parent" baselines are only read (non-exclusive) locked.

File Action Adjustment
When this command runs, it first checks the change files against the projects files. If there are inconsisten-
cies, the file actions will be adjusted as follows:

create If a file is being created, but another change set is integrated which also creates the file, the file
action in the change set still being developed will be adjusted to "modify".

modify If a file is being modified, but another change set is integrated which removes the file, the file ac-
tion in the change set still being developed will be adjusted to "create".

remove If a file is being removed, but another change set is integrated which removes the file, the file will
be dropped from the change set still being developed.

CONFLICT RESOLUTION
If the version of a file in the change is not the same as the version of the file in the baseline, it is out-of-
date; some other change has altered the file while this change was being developed.

When a difference is requested for an out-of-date file, a merge is performed between the common ancestor,
the version in the baseline, and the version in the development directory. The command used to perform
the merge is specified by the merge_command field of the project configuration file (see aepconf (5) for
more information).

Please note that the history_content_limitation field of the project configuration file does not apply to the
merge_command field.

After the merge is performed the version of the file will be changed to be the current version, marking the
file as up to date, and a new build will be required.

The original file in your development directory is preserved with an ",B" suffix (B for backup). The source
file contains the result of the merge. You should edit the source files, to make sure the automatic merge has
produced sensible results.

This merge process works most of the time. Usually two changes to two logically separate areas of func-
tionality will alter two logically separate parts of any files they may have in common. There are pathologi-
cal cases where this merge process is spectacularly useless, but these are surprisingly rare in practice.

If you don’t want the automatic merge results, simply use the mv(1) command to restore the contents from
the ",B" file.

If any merges are required no differences will be performed. An error message and a non-zero exit status
will also result. This is to ensure that developers notice that merges have been done, and that they reconcile
the sources and the merged ,D files before the next difference. See the −No_Merge and −Only_Merge op-
tions, below, for exact control of when merging is performed.

Cloning and Merging
When you use aeclone(1) to clone a change set, and then integrate one of the two change sets, you will ob-
serve that Aegis says that the files of the un-integrated change are now out-of-date.

If you run aem(1) to bring the out-of-date files back up-to-date, fmerge(1) and some (but not) all other
merging tools, it signals just about everything as a conflict, even though both alternatives are identical.

The problem is that two changes making identical edits to the same place in the same file are a logical con-
flict, even if not an actual conflict, and it takes a human to figure out the difference. Think of a shopping
list: the ensuite needs more soap, and so does the main bathroom. The second "soap" on the merge of the
two shopping lists isn’t a duplicate, you really do need two boxes of soap. Sometimes edits of source files
are the same: sometimes the logical conflict is resolved by applying both identical edits, not just one.

This is just the fmerge(1) command being more conservative than RCS’s merge(1) command.

Reference Manual Aegis 121

aegis −DIFFerence(1) General Commands Manual aegis −DIFFerence(1)

The easiest way to deal with this common situation it to run an
aecpu −unchanged

command before you run the aem(1) merge command, and you will have less grief. It’s also worth remem-
bering that Aegis stashes the original file with a ,B suffix (B for backup) so you can simply

mv fubar,B fubar

if you know that all of the conflicts are logical conflicts.

INTEGRATION
During integration, it is also necessary to difference a change. This provides the difference between the
branch and its parent, for when development on a branch is completed and it is to be reviewed. The base-
line of a branch is the development directory of the composite change it represents.

OPTIONS
The following options are understood:

−ANticipate change-number

This option is used to nominate a source for the reference files, rather than the baseline. This
may be used to synchronize with a change without having to wait for it to arrive in the baseline.
It is an error if the anticipated change is not in one of the ’being reviewed’ or ’awaiting integra-

tion’ or ’being integrated’ states. A merge is always performed, because the anticipated change is
"about" to make any common file out-of-date. You will still have to perform a "real" merge later.

−BRanch number

This option may be used to specify a different branch for the origin file, rather than the baseline.
(See also −TRunk option. Please Note: the −BRanch option does not take a project name, just
the branch number suffix.

−GrandParent
This option may be used to specify the grandparent branch (one up from the current branch) for
the origin file, rather than the baseline. (The −grandparent option is the same as the “−branch ..”
option.)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also −BRanch option, the −trunk option is the same as the “−branch −” option.)

−No_Merge
This option is used to cause only file differences to be generated, even when file versions are out-
of-date. If not set, the default is to use the diff_preference field of the aeuconf (5) file.

−Only_Merge
This option is used to cause only file merges to be performed on files with out-of-date versions.
Other source files are ignored. If not set, the default is to use the diff_preference field of the aeu-

conf (5) file.

Reference Manual Aegis 122

aegis −DIFFerence(1) General Commands Manual aegis −DIFFerence(1)

−Automatic_Merge
This option is used to perform −Only_Merge if any source files have out-of-date versions, other-
wise −No_Merge is performed. Only merges or differences will be performed, it will never use a
mixture. If not set, the default is to use the diff_preference field of the aeuconf (5) file.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aed ’aegis −diff \!* −v’
sh$ aed(){aegis −diff "$@" −v}
For user’s convenience, particularly when they hav e selected the “no merge” preference, there is also a
merge alias:
csh% alias aem ’aegis −diff −only_merge \!* −v’
sh$ aem(){aegis −diff −only_merge $* −v}

ERRORS
It is an error if the change is not in the being developed or being integrated states.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

Reference Manual Aegis 123

aegis −DIFFerence(1) General Commands Manual aegis −DIFFerence(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeb(1) build also takes a baseline read lock (non-exclusive)

aecp(1) copy file also takes a baseline read lock (non-exclusive)

aedb(1) begin development of a change

aeipass(1)
integrate pass takes a baseline write lock (exclusive)

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 124

aegis −Develop_Begin(1) General Commands Manual aegis −Develop_Begin(1)

NAME
aegis develop begin − begin development of a change

SYNOPSIS
aegis −Develop_Begin change-number [option...]
aegis −Develop_Begin −List [option...]
aegis −Develop_Begin −Help

DESCRIPTION
The aegis −Develop_Begin command is used to commence development of a change.

The development directory for the change will be created automatically; below the directory specified in
the default_development_directory field of aeuconf (5), or if not set below the directory specified in the
default_development_directory field of aepattr(5), or if not set below the current user’s home directory. It
is rare to need to know the exact pathname of the development directory, as the aecd(1) command can take
you there at any time.

Successful execution of this command will move the specified change from the awaiting development state
to the being developed state.

aw aiting
development

develop
begin

being
developed

develop
begin
undo

Notification
The develop_begin_command in the project configuration file (see aepconf (5) for more information) will
be run, if specified. This is run after the aegis locks are released, so additional aegis commands may be run
from here, if used with care. The symbolic links (see below) have not yet been created.

Development Directory Location
Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

ADMINISTRATOR OVERRIDE
It is possible for project administrators to use the −User option to force a developer to start developing a
change. Some sites prefer to work this way. Note that developers still have the ability to use the aedbu(1)
command.

Warning: capricious use of this command will rapidly alienate developers. The defaulting rules, particu-
larly for the change number, depend on aegis and the developer agreeing on what the developer is currently
working on.

Reference Manual Aegis 125

aegis −Develop_Begin(1) General Commands Manual aegis −Develop_Begin(1)

The forced_develop_begin_notify_command project attribute (see aepattr(5) for more information) will be
run when an administrator uses the −User option, in an attempt to minimize the surprises for developers. A
suitable command is

forced_develop_begin_notify_command =
"$datadir/db_forced.sh $p $c $developer";

This command will send e-mail to the developer, informing her that the change has been assigned to her.

SYMBOLIC LINKS
Many dependency maintenance tools, and indeed some compilers, have little or no support for include file
search paths, and thus for the concept of the two-level directory hierarchy employed by Aegis. (It becomes
multi-level when Aegis’ branching functionality is used.) To allow these tools to be used, Aegis provides
the ability to maintain a set of symbolic links between the development directory of a change and the base-
line of a project, so it appears to these tools that all of the project’s files are present in the development di-
rectory.

Project Configuration
The development_directory_style field of the project configuration file controls the appearance of the devel-
opment directory. See aepconf(5) for more information.

By using a setting such as
development_directory_style =
{

source_file_symlink = true;
during_build_only = true;

};
the user never sees the symbolic links, because they are added purely for the benefit of the dependency
maintenance tool during the execution of the aeb(1) command.

By using a setting such as
development_directory_style =
{

source_file_symlink = true;
};

(the other will default to false) the symbolic links will be created at develop begin time (see aedb(1) for
more information) and also maintained by each aeb(1) invocation. Note that the symbolic links are only
maintained at these times, so project integrations during the course of editing change sourec files may leave
the symbolic links in an inconsistent state until the next build.

When files are copied from the baseline into a change, using the aecp(1) command, the symbolic link
pointing into the baseline, if any, will be removed before the file is copied.

Note: Using this functionality in either form has implications for how the rules file of the dependency
maintenance tool is written. Rules must remove their targets before creating them (usually with an rm −f

command) if you use any of the link sub-fields (both hard links and symbolic links). This is to avoid at-
tempting to write the result on the symbolic link, which will point at a read-only file in the project baseline.
This is similar to the same requirement for using the link_integration_directory field of the project configu-
ration file.

User Configuration
There is a symbolic_link_preference field in the user configuration file (see aeuconf(5) for more informa-
tion). This controls whether aeb(1) will verify the symbolic links before the build (default) or whether it
will assume they are up-to-date. (This field is only relevant if development_directory__style.source_file_-

symlink is true.)

For medium-to-large projects, verifying the symbolic links can take as long as the build itself. Assuming
the symbolic links are up-to-date can be a large time-saving for these projects. It may be advisable to re-
view your choice of DMT in such a situation.

The aedb(1) command does not consult this preference. Thus, in most situations, the symbolic links will
be up-to-date when the build is performed. The only Aegis function which may result in the symbolic links

Reference Manual Aegis 126

aegis −Develop_Begin(1) General Commands Manual aegis −Develop_Begin(1)

becoming out-of-date is the integration of another change, as this may alter the presence or absence of files
in the baseline. In this situation, the default aeb(1) action is to ignore the user preference and the verify
symbolic links.

There are two command line options which modify aeb(1) behavior further: the −Verify-Symbolic-Links
option says to verify the symbolic links; and the −Assume-Symbolic-Links option says to assume the sym-
bolic links are up-to-date. In each case the option over-rides the default and the user preference.

It is possible to obtain behaviour similar to Tom Lord’a Arch by using a setting such as:
development_directory_style =
{

source_file_link = true;
source_file_symlink = true;

};

It is possible to obtain behaviour similar to CVS by using a setting such as:
development_directory_style =
{

source_file_copy = true;
};

There are many more possible configurations of the development_directory_style, usually with helpful build
side-effects. See aepconf(1) and the Depenedency Maintenance Tool chapter of the User Guide for more
information.

The symbolic link command line options and preferences apply equally to hard links and file copies (the
names have historical origins).

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

Reference Manual Aegis 127

aegis −Develop_Begin(1) General Commands Manual aegis −Develop_Begin(1)

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−User name

This option is used to specify the user who is to develop the change. This option may only be
used by a project administrator.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aedb ’aegis −db \!* −v’
sh$ aedb(){aegis −db "$@" −v}

ERRORS
It is an error if the change does not exist.
It is an error if the change is not in the awaiting development state.
It is an error if the current user is not a developer of the specified project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeb(1) build a change

aecd(1) change directory

aecp(1) copy files into a change

Reference Manual Aegis 128

aegis −Develop_Begin(1) General Commands Manual aegis −Develop_Begin(1)

aed(1) find differences between a change and the baseline

aedbu(1)
undo the effects of aedb

aede(1) complete development of a change

aemv(1) rename a file as part of a change

aenc(1) add a new change to a project

aend(1) add a new dev eloper to a project

aenf (1) add new files to a change

aent(1) add a new test to a change

aepa(1) modify the attributes of a project

aerm(1) add files to be deleted to a change

aet(1) run tests

aepattr(5)
project attributes file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 129

aegis −Develop_Begin_Undo(1) General Commands Manual aegis −Develop_Begin_Undo(1)

NAME
aegis develop begin undo − undo the effects of aedb

SYNOPSIS
aegis −Develop_Begin_Undo change-number [option...]
aegis −Develop_Begin_Undo −List [option...]
aegis −Develop_Begin_Undo −Help

DESCRIPTION
The aegis −Develop_Begin_Undo command is used to reverse the effects of the ’aegis −Develop_Begin’
command. The development directory is discarded, even if the change has files associated with it, and even
if the development directory is not empty; all files in the development directory will be lost. The change is
returned to the awaiting development state.

aw aiting
development

develop
begin

being
developed

develop
begin
undo

Notification
The develop_begin_undo_command field of the project config file is run, if set. See aepconf(5) for more
information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more informa-
tion.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

Reference Manual Aegis 130

aegis −Develop_Begin_Undo(1) General Commands Manual aegis −Develop_Begin_Undo(1)

−New-Change-Undo
By using this option it is possible to end developemnt of the change, and remove the change, all
in the one command. The executing user must have both created the change and be the devloper
of the change, or must be a project administrator. (Order is important here, this option mast ap-
pear on the command line after the −Develop-Begin-Undo option.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−User name

Ignored for backwards compatibility.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aedbu ’aegis −dbu \!* −v’
sh$ aedbu(){aegis −dbu "$@" −v}

ERRORS
It is an error if the change is no assigned to the current user.
It is an error if the change is not in the being developed state.

Reference Manual Aegis 131

aegis −Develop_Begin_Undo(1) General Commands Manual aegis −Develop_Begin_Undo(1)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aedb(1) begin development of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 132

aede-policy(1) aede-policy(1)

NAME
aede-policy − check change set is ready for aede

SYNOPSIS
aede-policy [option...][policy...]
aede-policy −Help
aede-policy −VERSion
aede-policy −List

DESCRIPTION
The aede-policy command is used to verify that a change set is ready to end development. This is intended
to be used by the develop_end_policy_command field of the project configuration file.

develop_end_policy_command =
"aede-policy −p $project −c $change all";

If any of the policies should fail, the aede-policy command will fail with an exit status of 1. This, in turn,
will cause the aede(1) command to leave the change in the being developed state.

Note that the aede(1) command sets the appropriate environment variables, so the −Project and −Change
options are rarely necessary.

If no policies appear on the command line, the aede-policy project specific attribute will be checked. If it
exists, it contains a list of space separated policy names.

The aede-policy(1) command expects to be invoked on changes in the being_developed state. If in-
voked for a change in the being_integrated state (common if invoked as part of the build) it will
silently do nothing. All other change states will result in a fatal error message.

POLICIES
There are a range of policies that can be selected.

all Check all of the copyright, crlf, description and printable policies.

comments
This policy checks for C comments in C++ files, or C++ comments in C files. The forms of the
comments give sublimial hints to the reader as to what language is being read. Mismatched com-
ments make the code subtly harder to read and thus harder to maintain.

copyright
This policy checks that each file in the change set contains a copyright notice of the form

Copyright (C) year something

where year is the current year (you can have a range of years, too). Binary files are ignored. The
something part is either the project specific copyright-owner attribute, or the executing users full
name.

foreign-copyright
Change sets marked with a foreign-copyright=true attribute are ignored, as are files
similarly marked.

crlf This policy checks that all files are using UNIX line termination (NL), not DOS line termination
(CRLF). Binary files are ignored.

description
This policy checks that the change set brief_description and description attributes have been up-
dated to something other than the defaults.

escape-hyphen
This policy checks that hypen in roff sources (such as man(1) pages) that contain unescaped mi-
nus or hyphen characters. This is one of the more annoying warnings produced by lintian(1)
when building Debian packages.

aede-policy-escape-hyphen
This check is not applied to files carrying a aede-policy-escape-hyphen=false attribute.

Reference Manual Aegis 133

aede-policy(1) aede-policy(1)

fsf-address
This policy checks that the FSF address, if present in source files, is up-to-date. This is useful for
Free Software projects.

gpl-version

gpl-version=nn

This policy checks files that cite the GNU GPL in their file headers, to be sure they contain the
correct version of the GNU GPL. Defaults to version 3 if no version number specified.

line-length

line-length=nn

This policy checks that files have this maximum line length. Defaults to 80 if no width is speci-
fied. It understands vim(1) mode lines, particularly for the “tabsize” setting.

aede-policy-line-length
Can be overridden per file using the aede-policy-line-length file attribute.

man-pages
This policy requires that each installable program be accompanied by a man(1) manual page.

merge-fhist
This policy requires that there be no fmerge(1) conflict lines present in any source files. The
name comes from the name of the package containing this tool: fhist.

merge-rcs
This policy requires that there be no merge(1) conflict lines present in any source files. The name
comes from the name of the package containing this tool: rcs.

no-tabs
This policy checks that files have no tabs characters in them. This is useful when a team of de-
velopers all use different editors and different tab stops. By only using spaces, the code is pre-
sented to all developers the same way.

foreign-copyright
This check is not applied to change sets with a foreign-copyright=true attribute, be-
cause you have little control over them (change the tabs in a later change set, if at all).

aede-policy-tabs-allowed
This check is not applied to files which are called Makefile or similar, and it is not
applied to files carrying a aede-policy-tabs-allowed=true attribute.

printable
This policy checks that each file in the change set contains only printable text characters and
white space.

content-type
The content-type file attribute is taken into account; if there is no content-type file attribute, or
there is no charset specified by the content-type file attribute, plain 7-bit ASCII text is assumed.

reserved This policy checks that C and C++ identifiers reserved by the ANSI C and C++ Standards are
used. See section 2.10 of both standards. Only C and C++ source files are checked.

text This policy checks that each file in the change set contains only text, although international char-
acter sets are acceptable. This is basically a test for NUL characters, because everything else
could be part of a valid character encoding of some international character set.

version-info
This policy checks the version-info rules for shared libraries, as laid out by the libtool(1) manual,
and required by the Debian Policy Manual. This is done by examining the actual shared libraries,
the one being built, and the one in the ancestor baseline (i.e. the one to be replaced) to confirm
that the version-info strings conform. By examining the actual shared libraries, an objective view
of what has been added, modified and removed can be obtained.

Reference Manual Aegis 134

aede-policy(1) aede-policy(1)

The shared library to examine is obtained from a project_specific attribute:

aede-policy:version-info:library
This is set to the baseline-relative name of the shared library file. You don’t hav e to
add the secret libtool(1) “.libs” directory, this policy can work that out for itself.

aemakegen:version-info
This is the string which aemakeg en(1) would use if it were invoked. This is also
checked. If you aren’t using aemakeg en(1), it is a good idea to set this attribute anyway
and access it via aesub(1) from within your build system.

This policy requires nm(1)’s −−dynamic option to work correctly on the .so file (it is part of the
GNU binutils package).

vim-mode
This policy checks that each file in the change set contains contains a vim(1) mode line. Binary
files are ignored.

aede-policy-vim-mode-required
Set this attribute to false on files for which this is not to be checked.

white-space
This policy checks that there is no white space on the ends of lines, that there are no blank lines at
the ends of files.

If no policy is specified, only the description policy will be checked.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aede-policy program.

−List List all of the available validations.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aede-policy are long, this means
ignoring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aede-policy command will exit with a status of 1 on any error. The aede-policy command will only
exit with a status of 0 if there are no errors.

Reference Manual Aegis 135

aede-policy(1) aede-policy(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aede(1) end development of a change

aepconf (5)
project configuration file

COPYRIGHT
aede-policy version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aede-policy program comes with ABSOLUTELY NO WARRANTY; for details use the ’aede-policy

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aede-policy −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 136

aegis −Develop_End(1) General Commands Manual aegis −Develop_End(1)

NAME
aegis develop end − complete development of a change

SYNOPSIS
aegis −Develop_End [option...]
aegis −Develop_End −List [option...]
aegis −Develop_End −Help

DESCRIPTION
The aegis −Develop_End command is used to notify aegis of the completion of the development of a
change.

This command checks that you have successfully completed an ’aegis −Build’ command since any change
source file was edited. See aeb(1) for more information.

This command checks that you have successfully completed an ’aegis −DIFFerence’ command since any
change source file was edited. See aed(1) for more information.

This command checks that you have successfully completed an ’aegis −Test’ command since the last suc-
cessful build, unless the change has a test_exempt attribute, or the build command is "exit 0". This
command checks that you have successfully completed an ’aegis −Test −BaseLine’ command, unless the
change has a test_baseline_exempt attribute. This command checks that you have successfully completed
an ’aegis −Test −REGression’ command, unless the change has a test_regression_exempt attribute. See
aet(1) and aecattr(5) for more information.

If the change includes the project configuration file, this command checks project file names, to make sure
they conform to the maximum_filename_length and posix_filename_charset field settings. See aepconf (5)
for more information.

Successful execution of the command advances the change from the being developed state to the being re-

viewed state, by default. The develop_end_action project attribute controls which of the following 3 paths
are taken.

Reference Manual Aegis 137

aegis −Develop_End(1) General Commands Manual aegis −Develop_End(1)

develop_end_action:

goto_awaiting_review

being
developed

develop
end

aw aiting
review

review
begin

being
reviewed

review
pass

aw aiting
integration

develop_end_action:

goto_being_reviewed

being
developed

develop
end

being
reviewed

review
pass

aw aiting
integration

(This is the default.)

develop_end_action:

goto_awaiting_integration

being
developed

develop
end

aw aiting
integration

Please Note: the third alternative, skipping reviews altogether, should only be used for single person
projects. All self-respecting commercial enterprise will avoid this alternative.

Because branches may extend for many months or even years, it is common for the user who initiated the
branch to be no longer with the project, or even the company. For this reason, project administrators may
end the development of branches. For normal changes in this situation, use the aechown(1) command.

If the project configuration file has specified the presence of Signed-off-by: lines, a suitable line con-
taining the current user’s email address will be appended to the change description.

The change is no longer considered assigned to the developer.

Branches
If you get an error message telling you that you can’t end a branch because a file needs to be merged, see
the Branching chapter of the Aegis User Guide for more information.

While changes and branches are almost identical in the ways you manipulate them within Aegis, actual file
changes must always be done in a change. Thus, it is necessary to create a new change on the branch and
do a cross-branch grandparent merge before you will be able to develop-end a branch which is giving you
this error.

Notification
On successful completion of the command, the develop_end_notify_command field of the project attributes
file is run, if set. See aepa(1) and aepattr(5) for more information.

If your project has configured the develop_end_action in the project confifuration file to goto_awaiting_-

integration then the re view_pass_notify_command in the project attributes file is run instead, if set.

OPTIONS
The following options are understood:

Reference Manual Aegis 138

aegis −Develop_End(1) General Commands Manual aegis −Develop_End(1)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

−Signed_Off_By
This option may be used to have a Signed-off-by: line appended to the change set descrip-
tion.

−No_Signed_Off_By
This option may be used to prevent a Signed-off-by: line from being appended to the
change set description.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 139

aegis −Develop_End(1) General Commands Manual aegis −Develop_End(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aede ’aegis −de \!* −v’
sh$ aede(){aegis −de "$@" −v}

ERRORS
It is an error if the change is not assigned to the current user.
It is an error if The change is not in the being developed state.
It is an error if there has been no successful ’aegis −Build’ command since a change file was last edited.
It is an error if there has been no successful ’aegis −DIFFerence’ command since a change file was last
edited.
It is an error if there has been no successful ’aegis −Test’ command since a change file was last edited.
It is an error if there has been no successful ’aegis −Test −BaseLine’ command since a change file was last
edited.

It is an error if an read-only file is still copied into the change. Read-only files are to insulate a change
from the baseline during development; they must be removed before development may end.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeb(1) build a change

aeca(1) list or modify attributes of a change

aed(1) difference a change

aedb(1) begin development of a change

aede-policy(1)
validate change set is ready to end

aedeu(1)
recall a change for further development

aerfail(1)
fail a change review

aerpass(1)
pass a change review

aet(1) test a change

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

Reference Manual Aegis 140

aegis −Develop_End(1) General Commands Manual aegis −Develop_End(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 141

aegis −Develop_End_Undo(1) General Commands Manual aegis −Develop_End_Undo(1)

NAME
aegis develop end undo − recall a change for further development

SYNOPSIS
aegis −Develop_End_Undo change-number [option...]
aegis −Develop_End_Undo −List [option...]
aegis −Develop_End_Undo −Help

DESCRIPTION
The aegis −Develop_End_Undo command is used to recall a change for further development.

Successful execution of this command returns the change to the being developed state.

being
developed

develop
end

aw aiting
review

review
begin

being
reviewed

review
pass

aw aiting
integration

develop end
undo

The files are changed back to being owned by the current user, and cease to be read-only.

Notification
On successful completion of the command, the develop_end_undo_notify_command field of the project at-
tributes file is run, if set. See aepa(1) and aepattr(5) for more information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more

Reference Manual Aegis 142

aegis −Develop_End_Undo(1) General Commands Manual aegis −Develop_End_Undo(1)

information). If that does not exist, when the user is only working on changes within a single
project, the project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aedeu ’aegis −deu \!* −v’
sh$ aedeu(){aegis −deu "$@" −v}

ERRORS
It is an error if the change is not in one of the awaiting review or being reviewed or awaiting integration

states.

If is an error if the project has been configured to use the awaiting review state, and the change is currently
in the being reviewed state. This is because the change currently belongs to the reviewer.

It is an error if the change was not developed by the current user.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 143

aegis −Develop_End_Undo(1) General Commands Manual aegis −Develop_End_Undo(1)

SEE ALSO
aede1 complete development of a change

aerpass1
pass review of a change

aerfail1 fail review of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 144

aediff (1) aediff (1)

NAME
aediff − file differences between deltas

SYNOPSIS
aediff [option...] filename

aediff −Help
aediff −VERSion

DESCRIPTION
The aediff command is used to obtain the difference between versions of the given filename across differ-
ent file versions, a specified by the command lien options.

If two changes or deltas are specified, the difference between the versions of the file in each will be output.

If only one change or delta is specified, the second version defaults to the current change.

If no changes or deltas are specified, the first version defaults to the baseline and the second version de-
faults to the current change.

Examples
To see the difference in the project configuration file, aegis.conf, between deltas 1.2.D003 and 4.5.D067 the
following command may be used:

aediff aegis.conf −c 1.2.D003 −c 4.5.D067
To see the differences in the project configuration file, between the head of the 7.6 branch and the current
change, the following command may be used:

aediff −branch 7.6 −bl aegis.conf
Many, many other combinatiosn are possible.

Using Graphical Tools
It is possible to use a graphical diff tool with the aediff(1) command. This is done by using the −command
option, or setting the AE2DIFF environment variable. For example, to use the tkdiff(1) command to dis-

play the differences you would use a command such as:

aediff −command=tkdiff filename

If you use this option, many of the diff(1)-specific options will be ignored.

OPTIONS
The following options are understood:

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−COMmand string

This option may be used to set the command used to display differences. Using this option will
cause diff(1)-specific options to be ignored. If not set, defaults to the value of the AE2DIFF en-
vironment variable, or "diff" otherwise.

−CONtext [lines]
Use the context output format, showing lines (an integer) lines of context, or three if lines is not
given. For proper operation, patch(1) typically needs at least two lines of context.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not
exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

Reference Manual Aegis 145

aediff (1) aediff (1)

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

−Ignore_Blank_Lines
Ignore changes that just insert or delete blank lines.

−Ignore_All_Space
Ignore white space when comparing lines.

−Ignore_Case
Ignore changes in case; consider upper-case and lower-case to be the same.

−Ignore_Space_Change
Ignore changes in amount of white space.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Show_C_Function
Show which C function each change is in.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also −BRanch option, the −trunk option is the same as the “−branch −” option.)

−unified [lines]
Use the unified output format, showing lines (an integer) lines of context, or three if lines is not
given. For proper operation, patch(1) typically needs at least two lines of context.

-Help
This option may be used to obtain more information about how to use the aediff program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aediff are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aediff command will exit with a status of 1 on any error. The aediff command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 146

aediff (1) aediff (1)

COPYRIGHT
aediff version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aediff program comes with ABSOLUTELY NO WARRANTY; for details use the ’aediff −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aediff −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 147

aedist(1) aedist(1)

NAME
aedist − remotely distribute a change

SYNOPSIS
aedist −Send [option...]
aedist −Receive [option...]
aedist −REPlay [option...] −f URL

aedist −MIssing [option...] −f URL

aedist −PENding [option...] −f URL

aedist −Inventory [option...]
aedist −ARChive [option...]
aedist −List [option...]
aedist −Help
aedist −VERSion

DESCRIPTION
The aedist command is used to send and receive change sets to facilitate geographically distributed devel-
opment. The expected transport mechanism is e-mail, however other mechanisms are equally possible.

The basic function is to reproduce a change, so a command like
aedist −send | aedist −receive

may be used to clone a change, though less efficiently than aeclone(1). The file format used is designed to
withstand mail servers, so activities such as

aedist −send | e-mail | aedist −receive
(where e-mail represents sending, transporting and receiving your e-mail) will reproduce the change on a
remote system. With suitable tools (such as PGP) is it possible to

aedist −send | encrypt | e-mail | decrypt | aedist −receive
The mechanism is also designed to allow web-based distribution such as

aedist −send | web-server → web-browser | aedist −receive
by the use of appropriate CGI scripts and mailcap entries.

It is possible to support both a “push” model and a “pull” model using this command. For suggestions and
ideas for various ways to do this, see the Aegis Users Guide.

SEND
The send variant takes a specified change, or baseline, and constructs a distribution package containing all
of the change attributes and source file attributes and source file contents. The result is compressed, and
encoded into a text format which can be sent as e-mail without being corrupted by the mail transfer agents
along the way.

Options
The following options are understood by the send variant:

−BaseLine
This option may be used to specify the source of a project, rather than a change. Implies the
−Entire_Source option, unless over-ridden.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−COMPAT ibility version-number

This option may be used to specify the version of aedist(1) which will be receiving this change
set. This information is used to select which features to include in the data, and which to omit.
By default, the latest feature set will be used.

−compression-algorithm name

This option may be used to specify the compression to be used. They are listed on order of com-
pression effeciency.

Reference Manual Aegis 148

aedist(1) aedist(1)

none Use no compression (not always meaningful for all commands).

gzip Use the compression used by the gzip(1) program.

bzip2 Use the compression used by the bzip2(1) program.

More compression algorithms may be added in the future.

−COMPress
This option is deprecated in favour of the −comp-alg=gzip or −comp-alg=bzip2 options.

−No_COMPress
This options is deprecated in favour of the −comp-alg=none option.

−Content_Transfer_Encoding name

This option may be used to specify the content transfer encoding to be used. It may take one of
the following values:

None No content transfer encoding is to be performed.

Base64 The MIME base 64 encoding is to be used. This is the default.

Quoted_Printable
The MIME quoted printable encoding is to be used.

Unix_to_Unix_encode
The ancient unix-to-unix encoding is to be used.

These encodings may be abbreviated in the same way as comment line options.

−Ascii_Armor
This means the same as the “−cte=base64” option above.

−No_Ascii_Armor
This means the same as the “−cte=none” option above.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not
exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

−Description_Header
This option may be used to add an RFC 822 style header to the change description being sent,
with a From and Date line. This is the default.

−No_Description_Header
This option suppresses the description header.

−Entire_Source
This option may be used to send the entire source of the project, as well as the change source
files.

−Ignore_UUID
This option may be used to ignore the UUID, if present, of the outgoing change set.

Reference Manual Aegis 149

aedist(1) aedist(1)

−No_Ignore_UUID
This option forces the aedist command to use the outgoing change set’s UUID information. This
is the default (unless the compatibility option will to avoid attributes).

−Mime_Headers
This option may be use to force the presence of mime headers in the output, in circumstances
they would usually be absent.

−No_Mime_Headers
This option may be use to force the absence of mime headers in the output, in circumstances
where they would usually be present.

−Partial_Source
This option may be used to send only source files of a change. This is the default, except for the
−BaseLine option.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−PATch This option is deprecated. Please use the −COMPAT ibility option instead.

−No_PATch
This option is deprecated. Please use the −COMPAT ibility=4.6 option instead.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Signed_Off_By
This option may be used to have a Signed-off-by: line appended to the change set descrip-
tion.

−No_Signed_Off_By
This option may be used to prevent a Signed-off-by: line from being appended to the
change set description.

RECEIVE
The receive variant takes a change package created by the send variant and creates an Aegis change (see
aenc(1)) to implement the change within. Files are added to the change (see aerm(1), aecp(1), aenf(1) and
aent(1)) and then the file contents are unpackaged into the development directory.

The change is then built (see aeb(1)), differenced (see aed(1)), and tested (see aet(1)). If all of this is suc-
cessful, development of the change is ended (see aed(1)). The automatic process stops at this point, so that
a local reviewer can confirm that the change is desired.

Notification
The aedist command invokes various other Aegis commands. The usual notifications that these commands
would issue are issued.

Options
The following options are understood by the receive variant:

−Change number

This option may be used to choose the change number to be used, otherwise one will be chosen
automatically.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
just as for the aecp(1) command. You may also use a delta name instead of a delta number.

Reference Manual Aegis 150

aedist(1) aedist(1)

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−PATch This option may be used to apply patches from the input, if available. This generally results in
fewer merge problems, but it requires the two repositories to be well synchronized. This is the
default.

−No_PATch
This option may be used to ignore patches in the input, if any are present.

−Ignore_UUID
This option may be used to ignore the UUID, if present, of the incoming change set.

−No_Ignore_UUID
This option force the aedist command to use the change set’s UUID. This is the default.

−Output filename

This option may be used to specify a filename which is to be written with the automatically deter-
mined change number. Useful for writing scripts.

−Project name

This option may be used to set the project name. If not specified, the project name in the input
package will be used, rather than the usual project name defaulting mechanism.

−Trojan This option may be used to treat the change set as if it had a Trojan horse attack in it.

−No_Trojan
This option may be used to treat the change set as if it definitely does not have a Trojan horse at-
tack in it. Use with extreme care. You need to have authenticated the message with something
like PGP first and know the the author well.

Security
Receiving changes by e-mail, and automatically committing them to the baseline without checking them,
would be a recipe for disaster. A number of safeguards are provided:

• The format of the package is confirmed to be correct, and the package verified for internal consistency,
before it is unpacked and acted upon.

• The automatic portion of the process stops when development ends. This ensures that a local reviewer
validates the change before it is committed, preventing accidental or malicious damage.

• If the change seeks to update the project config file, the automatic process terminates before the build or
difference occurs. This is because this file could contain trojans for these operations, so a human must
examine the file before the change proceeds any further.

• There is a potential_trojan_horse = [string]; field in the projectconfig file. Nominate build configura-
tion files, shell scripts, code generators, etc here to specify files in addition to the project configuration
file which should cause the automatic processing to halt.

Reference Manual Aegis 151

aedist(1) aedist(1)

• The use of e-mail authentication and encryption systems, such as PGP and GPG, are encouraged. How-
ev er, it is expected that this processing will occur after aedist −send has constructed the package and be-
fore aedist −receive examines and acts on the package. Verification of the sender is the surest defense
against trojan horses.

• Automatic sending and receiving of packages is supported, but not implemented within the aedist com-
mand. It is expected that the aedist command will be used within shell scripts customized for your site
and its unique security requirements. See the Aegis User Guide for several different ways to do this.

• The more you use Aegis’ test management facilities (see aent(1) and aet(1)) the harder it is for an inade-
quate change to get into the baseline.

Duplicate Storms
In a distributed development environment, it is common for change sets to eventually be propagated back to
the originator. There are situations (particularly in some star topologies) where several copies of the pack-
age will return to the originator.

If these change sets are not detected at the review stage, and are propagated out yet again, there is the possi-
bility of an exponential explosion of redundant packages being distributed again and again.

To combat this, changes are checked after the files are unpacked, but before and build or difference or test
is performed. The “aecpu −unchanged” command is used to exclude all files that the local repository al-
ready has in the desired form. If no change files remain after this, the change is dropped entirely (see
aedbu(1) and aencu(1)).

REPLAY
If you are tracking a remote site which makes a project available via the aeget(1) web interface, you can au-
tomatically synchronize with the remote site using the aedist −replay command.

For example, Aegis developers can track the master project with a command of the form:
aedist −p aegis.4.25 −replay −f aegis.sourceforge.net

This command is internally rewritten as
aedist −replay −p aegis.4.25 −f \
http://aegis.sf.net/cgi-bin/aeget/aegis.4.25/?inventory

If your cgi-bin directory is somewhere else, you will need to use the long form.

The change set inventory page is human readable if you want to see what it contains. The links on this
page provide all the information necessary to download any of the change sets listed.

This command reads the list of change set UUIDs from the remote repository, and compares it with the list
of change set UUIDs in the local repository, and fetches any that are not present locally.

Each of the change sets required are downloaded and unpacked by issuing a command such as
aedist −rec −f \
http://aegis.sf.net/cgi-bin/aeget/aegis.4.19.C010/?aedist

If this completes successfully (and it is possible it won’t, either because of trojan warnings, or some con-
flict between local changes and the incoming remote changes), and your project has its develop_end_action

set to goto_awaiting_integration, the change will be integrated using a command such as:
aeintegratq −p aegis.4.25 −c 10

and then starts over again for the next missing change set.

This command will attempt to use the same change number as in the remote repository, if it is available.

Options
The following options are understood by this variant:

−EXclude_UUID UUID

This option may be used to exclude some change sets from being downloaded and unpacked.
This option may be used more than once.

−No_EXclude_UUID UUID

This option may be used to explicitly list change sets to be downloaded and unpacked, to the ex-
clusion of all others. This option may be used more than once.

Reference Manual Aegis 152

aedist(1) aedist(1)

−EXclude_VERsion pattern

This option may be used to explicitly exclude some change set from being downloaded and un-
packed. The pattern is matched against the version as displayed in the inventory. This option
may be used more than once.

−INclude_VERsion pattern

This option may be used to explicitly list change sets to be downloaded and unpacked, to the ex-
clusion of all others. The pattern is matched against the version as displayed in the inventory.
This option may be used more than once.

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−MAXimum
This option may be used to download as many changes as possible by excluding the maximum
number of local changes sets, by excluding both local change sets UUIDs (the default) but also
excluding UUIDs mentioned in change "original-uuid" attributes.

−PErsevere
This option may be used to specify that all relevant change sets should be downloaded, even if
some fail. Defaults to the user’s persevere_preference if not specified, see aeuconf(5) for more
information.

−No_PErsevere
This option may be used to specify that the downloading of change sets should stop after the first
failure. Defaults to the user’s persevere_preference if not specified, see aeuconf(5) for more in-
formation.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Trojan This option is passed to any aedist(1) commands spawned by this command.

−No_Trojan
This option is passed to any aedist(1) commands spawned by this command.

−Not_Compatibility
This option must be used when using aedist −replay against a file based inventory.

MISSING
If you want to see the change sets that aedist −replay may download before it goes ahead and does it, you
can use a command such as:

aedist −missing −f aegis.sf.net
In particular, this allows you to select appropriate UUIDs for the aedist −replay −exclude or −no-exclude

options.

Options
The following options are understood by this variant:

−EXclude_UUID UUID

This option may be used to exclude some change sets from being listed. This option may be used
more than once.

Reference Manual Aegis 153

aedist(1) aedist(1)

−No_EXclude_UUID UUID

This option may be used to explicitly list change sets to be listed, to the exclusion of all others.
This option may be used more than once.

−EXclude_VERsion pattern

This option may be used to explicitly exclude some change set from being listed. The pattern is
matched against the version as displayed in the inventory. This option may be used more than
once.

−INclude_Version pattern

This option may be used to explicitly list change sets to be listed, to the exclusion of all others.
The pattern is matched against the version as displayed in the inventory. This option may be used
more than once.

−MAXimum
This option may be used to download as many changes as possible by excluding the maximum
number of local changes sets, by excluding both local change sets UUIDs (the default) but also
excluding UUIDs mentioned in change "original-uuid" attributes.

PENDING
If you want to see the change sets that a remote repository is missing with respect to yours, you can use a
command such as:

aedist −pending −f aegis.sf.net

Options
The following options are understood by this variant: −EXclude_UUID UUID This option may be used to
exclude some local change sets from being listed. This option may be used more than once.

−No_EXclude_UUID UUID

This option may be used to explicitly list local change sets to be listed, to the exclusion of all oth-
ers. This option may be used more than once.

−EXclude_VERsion pattern

This option may be used to explicitly exclude some local change set from being listed. The pat-

tern is matched against the version as displayed in the inventory. This option may be used more
than once.

−INclude_VERsion pattern

This option may be used to explicitly list local change sets to be listed, to the exclusion of all oth-
ers. The pattern is matched against the version as displayed in the inventory. This option may be
used more than once.

INVENTORY
The inventory variant can be used as an alternative to aeget to generate the inventory used by the replay,
missing and pending variants. The idea is to run the inventory variant on the development machine and
then upload its output to the public repository. In order to generate the inventory you can use a command
such as:

aedist −inventory −proj project > inventory.html

Options
The following options are understood by this variant:

−AEGET
This option is used by aeget to require the original aeget(1) behavior.

−All This option is used to require the inclusion of the UUIDs contained in the original-UUID attribute
of each change.

−EXclude_Version pattern

This option may be used to explicitly exclude some change set to be added to the inventory file.
The pattern is matched against the version as displayed in the inventory. This option may be used
more than once.

Reference Manual Aegis 154

aedist(1) aedist(1)

−INclude_Version pattern

This option may be used to explicitly list change sets to be added to the the inventory file, to the
exclusion of all others. The pattern is matched against the version as displayed in the inventory.
This option may be used more than once.

−path_prefix_add
This option is used to add a path prefix to the URLs generated in the inventory.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

ARCHIVE
As an alternative to using the aeget(1) CGI program, the aedist archive variant is provided. This variant can
be used to populate a directory with the aedist archives of each change with an UUID. The archives will
have a name based on the UUID of the change with extension ".ae", the fingerprint of the archive will be
stored in a file with the same (base)name with extension ".fp". Running the archive variant multiple times
against the same target directory will update that directory, adding the files of changes integrated after the
last run and regenerating the files if a corruption is detected.

Options
The following options are understood by the archive variant:

−Change-Directory directory

This option is used to designate the directory to be populated with the aedist(1) generated files. If
this option is not used then the current directory is used as the target of the command. The direc-
tory must exists and be accessible by the user running the command.

−EXclude_Version pattern

This option may be used to explicitly exclude some change set to be added to the target directory.
The pattern is matched against the version as displayed in the inventory. This option may be used
more than once.

−INclude_Version pattern

This option may be used to explicitly list change sets to be added to the target directory, to the ex-
clusion of all others. The pattern is matched against the version as displayed in the inventory.
This option may be used more than once.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

LIST
The list variant can be used to list the contents of a package without actually unpacking it first. The output
is reminiscent of the aegis −list change-details output.

Options
The following options are understood by the list variant:

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide

Reference Manual Aegis 155

aedist(1) aedist(1)

a progress bar.)

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default. Only useful with the −List option.

OPTIONS
The following options to this command haven’t been mentioned yet:

-Help
This option may be used to obtain more information about how to use the aedist program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aedist are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

FILE FORMAT
The file format re-uses existing formats, rather than introduce anything new. This means it is possible to
extract the contents of a package even when aedist is unavailable.

• The source files and other information is stored as a cpio(1) archive.

• The archive is compressed using the bzip2(1) format. Typically primary source files are ASCII text, re-
sulting in significant compression.

• The compressed result is encoded using the MIME base64 encoding. This makes the result approxi-
mately 33% larger than the compressed binary would be, but still smaller than the primary sources.

The cpio archive is used to store

etc/project-name
This contains the project name to apply the package to, unless over-ridden by the −project com-
mand line option.

etc/change-number
This contains the change number of the original change, this may be preserved if available on the
target repository unless over-ridden by the −change command line option.

etc/change-set
This contains the change attributes and the list of source files and usages, in aecstate(5) format.

patch/filename

Each modified or renamed file in the package (named in etc/change-set) appears under the patch

directory. The file may be empty unless some edits was done on the source repository.

src/filename

Each source file in the package (named in etc/change-set) appears under the src/ directory.

Extra files, or files out of order, are a fatal error.

EXIT STATUS
The aedist command will exit with a status of 1 on any error. The aedist command will only exit with a
status of 0 if there are no errors.

Reference Manual Aegis 156

aedist(1) aedist(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aedist version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aedist program comes with ABSOLUTELY NO WARRANTY; for details use the ’aedist −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aedist −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

CREDITS
This program evolved through discussion with a number of people. If I have forgotten anyone, it wasn’t in-
tentional.
Ralf Fassel <ralf@akutech.de> Catching trojan horses.
Walter Franzini <walter.franzini@sys-net.it> coding −replay download
Florian Xhumari <Florian.Xhumari@inria.fr> On the need for pull interfaces.
Graham Wheeler <gram@cdsec.com> HTTP pull interfacing.

Reference Manual Aegis 157

aegis −DELta_NAme(1) General Commands Manual aegis −DELta_NAme(1)

NAME
aegis delta name − assign a symbolic name to a project delta

SYNOPSIS
aegis −DELta_NAme [option...] name

aegis −Help
aegis −VERSion

DESCRIPTION
The aegis −DELta_NAme command is used to add a symbolic name to a project delta. This is so that this
name may be used, rather than the number, when extracting previous versions of the file using the aecp(1)
command.

The −DELta number option on the command line specifies a delta number of the project. That is, it is the
delta number assigned to an integration. Delta names may only be applied to project baselines. If no delta
number is given on the command line, the current baseline is the default.

A name must be given on the command line. This is the name which will be assigned to the delta. If the
name has already been used, you will be given a fatal error message. If you also specify the −OverWriting
option the name will be removed from its previous delta and assigned to the requested delta.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

−DELta number

This option may be used to specify a particular delta in the project’s history to name.

−DELta_DAte string

This option may be used to specify a particular date and time in the project’s history.

−Delta_From_Change number

This option may be used to specify a particular delta in the project’s history, based on when the
given change was successfully integrated.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-OverWriting
This option may be used to force overwriting of files. The default action is to give an error if an
existing file would be overwritten.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

Reference Manual Aegis 158

aegis −DELta_NAme(1) General Commands Manual aegis −DELta_NAme(1)

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy a file into a change, particularly the −DELta option

aeib(1) start the integration of a change

ael(1) list interesting this, particularly the project_history listing

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 159

aeedit(1) aeedit(1)

NAME
aeedit − edit a change’s files

SYNOPSIS
aeedit [−p project-name] [−c change-number]

DESCRIPTION
The aeedit command is used to edit all of the files in a change. For editors with one buffer per file, this can
be very useful except for changes with huge numbers of files.

The editor’s current directory is changed to the top of the change’s dev elopment directory tree.

If you have PlasticFS installed, the editor’s environment will be configured to present the development di-
rectory as the complete search path.

OPTIONS
The following options are understood:

−p project-name

This option may be used to set the project name.

−c change-number

This option may be used to set the change number.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

COPYRIGHT
aeedit version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Scott Finneran

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

Reference Manual Aegis 160

aegis −File_ATtributes(1) General Commands Manual aegis −File_ATtributes(1)

NAME
aegis file attributes − modify the attributes of a file

SYNOPSIS
aegis −File_ATtributes −File attr-file [option...] filename

aegis −File_ATtributes −Edit [option...] filename

aegis −File_ATtributes [option...] name=value filename

aegis −File_ATtributes −UUID number −File filename

aegis −File_ATtributes −Help

DESCRIPTION
The aegis −File_ATtributes command is used to set, edit or list the attributes of a file.

The output of the −List variant is suitable for use as input at a later time.

See aefattr(5) for a description of the file format.

Attribute names are not case sensitive. File attributes with a name starting with an upper case letter will ap-
pear in ael(1) and aeget(1) listings, while those starting with a lower case letter will not.

Shorthand
If you are only setting the values of unique attributes, it is possible to do this from the command line, using
the name=value form.

Note that this usage will replace the first attribute with the given name. If there is more than one attribute
of that name, the second and subsequent attributes are unchanged. If there is no attribute of the given name,
it will be appended.

You may set more than one attribute at a time, provided that their names are unique. Attribute names are
not case sensitive.

Known Attribute Names
While many of the anticipated uses of file attributes are to allow projects to attach their own specialized
data to individual files, Aegis also uses some attributes for its own purposes (and arguably, should always
have done so to maximize forwards compatibility across Aegis upgrades).

aede-policy-crlf-allowed
boolean. If true, the crlf policy of the aede-policy(1) command does not apply.

aede-policy-escape-hyphen
boolean. If false, the escape-hyphen policy of the aede-policy(1) command does not apply.

aede-policy-line-length
integer. The maximum allowed line length in the line-length policy of the aede-policy(1) com-
mand; infinity if 0.

aede-policy-tabs-allowed
boolean. If true, the no-tabs policy of the aede-policy(1) command does not apply.

aeipass-options:assign-file-uuid
boolean. If false, aeipass will not assign a fresh UUID to this file. This flag is set by aedist −rec
if the action associated with the file is a create and the file is missing the UUID. This behaviour
is needed to prevent the effect of having different UUIDs assigned to the same file in different
repositories.

aemakegen:noinst
boolean. If true, aemakeg en(1) will not cause the program to be installed. Usually attached to
the source file containing the main function, or to script files. Defaults to false if not defined (i.e.

do install program).

content-type
This is taken directly from the MIME definition of Content-Type. It remembers what sort of file
this is. It is anticipated that a diff tool, for example, could make use of this attribute to provide
format-specific file difference listings. Some change set interchange formats are capable of

Reference Manual Aegis 161

aegis −File_ATtributes(1) General Commands Manual aegis −File_ATtributes(1)

carrying this information.

entire-source-hide
boolean. If true, this file is not included by the aedist −entire-source flag. The aetar and aerevml

commands work similarly. Think of it as a "local only" flag.

foreign-copyright
boolean. If true, this file will not be checked by the aede-policy(1) copyright validation.

local-source-hide
boolean. If true, this file is not included by aedist change sets. The aetar and aerevml commands
work similarly. Change sets which contain only thee files will be omitted from the aedist −inven-

tory output. Think of it as a "local only" flag.

test/arch/elapsed
This is used to estimate test duration. See aet(1) for more information.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts. −Universal_Unique_IDentifier number This option may be used to
set the UUID of a file.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see

Reference Manual Aegis 162

aegis −File_ATtributes(1) General Commands Manual aegis −File_ATtributes(1)

aeuconf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aefa ’aegis −fat \!* −v’
sh$ aefa(){aegis −fat "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the specified project.
It is an error if the current user is not the developer of the specified change.
It is an error if the file is not included in the specified change.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeca(5) modify the attributes of a change

aefattr(5)
file attributes file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 163

aefind(1) aefind(1)

NAME
aefind − search for files in directory hierarchy

SYNOPSIS
aefind [option...] path... expression

aefind −Help
aefind −VERSion

DESCRIPTION
The aefind command is used to search the combined directory tree of a change and its project. It is inten-
tionally similar to find (1), however it unifies the directory stack of a change and its branch baseline, and
the branch’s ancestors’ baselines if any.

For each file found in the directory tree, the given expression is evaluated from left to right, according to
the rules of precedence (see the section on OPERATORS, below), only until the outcome is known, at
which point aefind moves on to the next file name.

If no directory is named on the command line, the current directory is assumed.

Files which have been removed from the project, even if they somehow remain in the directory tree, will
not be reported.

OPTIONS
The following options are understood:

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aefind program.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Resolve
This option may be used to request that filenames be absolute paths, referring to the fully re-
solved file name. This is the default.

−No_Resolve
This option may be used to request that filenames be base relative names, relative to the root of
the “stacked” directory tree.

−Verbose
This option may be used to request that the expression be printed again on the standard output.
This is the expression as understood by aefind, to assist you in ensuring that you and the com-
mand agree. The expression is fully parenthesized, and all implicit operators made explicit.
Where possible, constant expressions will have been folded.

Reference Manual Aegis 164

aefind(1) aefind(1)

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aefind are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXPRESSIONS
The expression is made up of basic elements, tests (which return a true or false value), and actions (which
have side effects and return a true or false value), all separated by operators.

BASIC ELEMENTS
{} The value of this expression is the file name of the file currently being considered. The value is

affected the the −Resolve option.

{−} The value of this expression is the file name of the file currently being considered, relative to the
base of the directory stack.

{+} The value of this expression is the absolute path of the file currently being considered.

number Numbers may be specified directly, for use with other tests and operators. In the style of C, they
may be hexadecimal with a “0x” prefix, octal with a “0” prefix, or decimal otherwise.

string Strings may be specified directly, for use with other tests and operators. If the string contains
shell meta-characters, you may need to quote it.

−FAlse The value of this expression is always false.

−NOW The value of this expression is the current time, at the start of execution.

−TRue The value of this expression is always true.

OPERATORS
The −and operator is assumed where the operator is omitted. You will need to quote many of the operators,
to protect them from interpretation by the shell. Each operator must be a separate command line argument.

(expr) Force precedence.

+ expr Unary plus. Is is an error if the argument cannot be coerced to a number.

− expr Unary minus. Result is the numeric negative of the argument. Is is an error if the argument can-
not be coerced to a number.

! expr Logical negation of the sense of the expression. Is is an error if the argument cannot be coerced
to a boolean.
Synonym: −Not

˜ expr Bitwise not of the argument. Is is an error if the argument cannot be coerced to an integer.

expr1 * expr2

This operation multiplies the two values. Is is an error if the arguments cannot be coerced to
numbers.

expr1 / expr2

This operation divides the argument value by the second. Is is an error if the arguments cannot be
coerced to numbers. Is is an error if the second argument is zero.

expr1 % expr2

This operation produces the remainder of the division of the first argument by the argument. Is is
an error if the arguments cannot be coerced to numbers. Is is an error if the second argument is

Reference Manual Aegis 165

aefind(1) aefind(1)

zero.

expr1 ˜ expr2

Is is an error if the arguments cannot be coerced to strings. The first argument is the pattern, and
the second is the string. Is is an error if the first argument is not a valid pattern. The result is true
if the pattern matches, and false if it does not. This operation performs a shell file pattern com-
parison.

expr1 + expr2

This operation adds the two values. Is is an error if the values cannot be coerced to numbers.

expr1 − expr2

This operation subtracts the second values from the first. Is is an error if the values cannot be co-
erced to numbers.

expr1 ## expr2

This operation concatenates the arguments. Is is an error if the arguments cannot be coerced to
strings. (Note: this is not the same as the : operator of the expr(1) command.)

expr1 << expr2

Shift the first argument left by the number of bits specified by the second argument. The left ar-
gument is treated as an unsigned number. Is is an error if the values cannot be coerced to num-
bers.

expr1 >> expr2

Shift the first argument right by the number of bits specified by the second argument. The left ar-
gument is treated as an unsigned number. Is is an error if the values cannot be coerced to num-
bers.

expr1 < expr2

Compare the values and produce true if the first value is less than the second value, false other-
wise. If both values can be coerced to numbers, the comparison is numeric; if both values can be
coerced to strings, the comparison is lexicographic; otherwise is it an error.

expr1 <= expr2

Compare the values and produce true if the first value is less than or equal to the second value,
false otherwise. If both values can be coerced to numbers, the comparison is numeric; if both val-
ues can be coerced to strings, the comparison is lexicographic; otherwise is it an error.

expr1 > expr2

Compare the values and produce true if the first value is greater than the second value, false oth-
erwise. If both values can be coerced to numbers, the comparison is numeric; if both values can
be coerced to strings, the comparison is lexicographic; otherwise is it an error.

expr1 >= expr2

Compare the values and produce true if the first value is greater than or equal to the second value,
false otherwise. If both values can be coerced to numbers, the comparison is numeric; if both val-
ues can be coerced to strings, the comparison is lexicographic; otherwise is it an error.

expr1 == expr2

Compare the values and produce true if the first value is equal to the second value, false other-
wise. If both values can be coerced to numbers, the comparison is numeric; if both values can be
coerced to strings, the comparison is lexicographic; otherwise is it an error.

expr1 != expr2

Compare the values and produce true if the first value is not equal to the second value, false oth-
erwise. If both values can be coerced to numbers, the comparison is numeric; if both values can
be coerced to strings, the comparison is lexicographic; otherwise is it an error.

expr1 & expr2

This operation produces the bitwise-and of the two values. Is is an error if the values cannot be
coerced to numbers.

Reference Manual Aegis 166

aefind(1) aefind(1)

expr1 | expr2

This operation produces the bitwise-or of the two values. Is is an error if the values cannot be co-
erced to numbers.

expr1 && expr2

Result is true if both expressions are true. Short circuit evaluation is used, and so expr2 is not
evaluated if expr1 is false. Is is an error if the arguments cannot be coerced to booleans.
Synonym: −And

expr1 expr2

Logical and (implied). Result is true if both expressions are true. Short circuit evaluation is used,
and so expr2 is not evaluated if expr1 is false. Please note that implicit operator plays merry hell
with operator precedence, because there is no operator. If you are getting odd results, use explicit
operators.

expr1 || expr2

Result is true if either expression is true. Short circuit evaluation is used, and so expr2 is not
evaluated if expr1 is true. Is is an error if the arguments cannot be coerced to booleans.
Synonym: −Or

expr1 ? expr2 : expr3

The value of this expression is expr2 if expr1 is true, and expr3 otherwise. The expr1 is always
evaluated, but only one of expr2 or expr3 will be evaluated. It is an error if the value of expr1

cannot be coerced to boolean.

expr1 , expr2

Both expr1 and expr2 are always evaluated. The value of expr1 is discarded; the value of the ex-
pression is the value of expr2.

Operators have precedence as described by the following table, highest to lowest:

Operator Direction

(unary) + − ˜ ! ←
* / % ˜ →
+ − ## →
<< >> →
< <= > >= →
== != →
& →
ˆ →
| →
&& (implied) -And →
|| -Or →
? : ←
, →

FUNCTIONS
There are a number of built-in functions which may be used in the expression. Functions may be invoked
using a syntax similar to C functions.

name (arguments)
You need to leave spaces around the parentheses so that they are separate command line arguments.

atime This function may be used to determine the last-accessed-time of a file. It takes one argument.

basename
This function returns the basename of the string argument passed to it. It takes one argument.

ctime This function may be used to determine the last-change-time of an inode. It takes one argument.

delete This function may be used to delete a file. It takes one argument. Always returns true. See also
the −delete action, below.

Reference Manual Aegis 167

aefind(1) aefind(1)

execute This function may be used to execute a command. The arguments are assembled into the com-
mand to be executed. Use the special “{}” argument to insert the name of the current file. The
function returns true of the command’s exist status is zero. All following arguments to find are
taken to be arguments to the command until an argument consisting of “;” is encountered. The
command is executed in the starting directory. See also the −execute action, below.

gid This function may be used to determine the gid of a file. It takes one argument.

inode This function may be used to determine the inode number of a file. It takes one argument.

mode This function may be used to determine the access mode (permissions) of a file. It takes one ar-
gument.

mtime This function may be used to determine the last-modified-time of a file. It takes one argument.

print This function may be used to print a value. It takes one argument. Always returns true. See also
the −print action, below.

size This function may be used to determine the size in bytes of a file. It takes one argument.

type This function may be used to determine the type of a file. It takes one argument. It returns a
string: "block_special", "character_special", "directory", "file", "named_pipe", "socket" or "sym-
bolic_link".

uid This function may be used to determine the uid of a file. It takes one argument.

TESTS
Most tests exist to provide compatibility with find(1).

−Access_Minutes [relative-operator] number

True if the current file was accessed exactly number minutes ago, false otherwise. If a relative
operator is given (<, <=, ==, !=, > or >=) a relative comparison will be made, rather than the im-
plicit equality test. This is not identical to the similar find(1) test. This is shorthand for the “(
now − atime ({+})) / 60 relative-operator number” expression.

−Access_Time [relative-operator] number

True if the current file was accessed exactly number days ago, false otherwise. If a relative oper-
ator is given (<, <=, ==, !=, > or >=) a relative comparison will be made, rather than the implicit
equality test. This is not identical to the similar find(1) test. This is shorthand for the “(now −
atime ({+})) / 86400 relative-operator number” expression.

−Change_Minutes number

True if the current file’s inode was changed exactly number minutes ago, false otherwise. If a rel-
ative operator is given (<, <=, ==, !=, > or >=) a relative comparison will be made, rather than the
implicit equality test. This is not identical to the similar find(1) test. This is shorthand for the “(
now − ctime ({+})) / 60 relative-operator number” expression.

−Change_Time number

True if the current file’s inode was changed exactly number days ago, false otherwise. If a rela-
tive operator is given (<, <=, ==, !=, > or >=) a relative comparison will be made, rather than the
implicit equality test. This is not identical to the similar find(1) test. This is shorthand for the “(
now − ctime ({+})) / 86400 relative-operator number” expression.

−Modify_Minutes number

True if the current file was modified exactly number minutes ago, false otherwise. If a relative
operator is given (<, <=, ==, !=, > or >=) a relative comparison will be made, rather than the im-
plicit equality test. This is not identical to the similar find(1) test. This is shorthand for the “(
now − mtime ({+})) / 60 relative-operator number” expression.

−Modify_Time number

True if the current file was modified exactly number days ago, false otherwise. If a relative oper-
ator is given (<, <=, ==, !=, > or >=) a relative comparison will be made, rather than the implicit
equality test. This is not identical to the similar find(1) test. This is shorthand for the “(now −

Reference Manual Aegis 168

aefind(1) aefind(1)

mtime ({+})) / 86400 relative-operator number” expression.

−Newer filename

True if the current file was modified after the given file. This is shorthand for the “mtime ({+})
> mtime (filename)” expression.

−Name pattern

Base of file name (the path with the leading directories removed) matches shell pattern pattern.
This is short-hand for the “pattern ˜ basename ({})” expression.

−PAth pattern

File name matches shell pattern pattern. Note that the file name if affected by the −resolve op-
tion. This is short-hand for the “pattern ˜ {}” expression.

−Type string

The file type matches the type given. This is shorthand for the “type ({}) == string” expression.
Type names are matched similar to options:

Block The file is a block special file.
Character The file is a character special file.
Directory The file is a directory.
File The file is a normal file.
Link The file is a symbolic link.
Pipe The file is FIFO (a named pipe).
Socket The file is a UNIX domain socket.

ACTIONS
−print This will print the full file name on the standard output, followed by a newline. The −Resolve

option will affect what is printed. This is short-hand for the “print ({})” expression.

−delete This will delete the file, if it is in the development directory tree. This is short-hand for the
“delete ({})” expression.

−execute string... ;
The may be used to execute a command. This is short-hand for the “execute (string : ...)” ex-
pression.

EXIT STATUS
The aefind command will exit with a status of 1 on any error. The aefind command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aefind version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aefind program comes with ABSOLUTELY NO WARRANTY; for details use the ’aefind −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aefind −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 169

aefinish(1) aefinish(1)

NAME
aefinish − finish a change

SYNOPSIS
aefinish [option...]
aefinish -Help
aefinish -VERSion

DESCRIPTION
The aefinish command is used to finish development or integration of a change set. It examines the state of
the change set, and executes the necessary Aegis commands to advance the change set to the next state.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aefinish program.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aefinish are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aefinish command will exit with a status of 1 on any error. The aefinish command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 170

aefinish(1) aefinish(1)

COPYRIGHT
aefinish version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aefinish program comes with ABSOLUTELY NO WARRANTY; for details use the ’aefinish −VER-

Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’aefinish −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 171

aefp(1) General Commands Manual aefp(1)

NAME
aefp − calculate file fingerprint

SYNOPSIS
aefp [option...][filename...]
aefp −Help
aefp −VERSion

DESCRIPTION
The aefp program is used to calculate the fingerprints of files. A fingerprint is a hash of the contents of a
file. The default fingerprint is cryptographically strong, so the probability of two different files having the
same fingerprint is less than 1 in 2**200.

The fingerprint is based on Dan Berstien <djb@silverton.berkeley.edu> public domain fingerprint 0.50 beta
package 930809, posted to the alt.sources newsgroup. This program produces identical results; the ex-
pected test results were generated using Dan’s package.

The fingerprint is a base-64-sanely-encoded fingerprint of the input. Imagine this fingerprint as something
universal and permanent. A fingerprint is 76 characters long, containing the following:

1. A Snefru-8 (version 2.5, 8 passes, 512→256) hash. (Derived from the Xerox Secure Hash Function.)

2. An MD5 hash, as per RFC 1321. (Derived from the RSADSI MD5 Message-Digest Algorithm.)

3. A CRC checksum, as in the new cksum utility.

4. Length modulo 2ˆ40.

The output format is not expected to be compatible with anything. However, options are available to pro-
duce the purported output of Merkle’s snefru program, the purported output of RSADSI’s mddriver −x, or
the purported output of the POSIX cksum program.

If no files are named as input, the standard input will be used. The special file name “−” is understood to
mean the standard input.

OPTIONS
The following options are understood:

−Checksum
Print the CRC32 checksum and length of the named file(s).

−Identifier
Print a condensed form of the fingerprint (obtained by performing a CRC32 checksum on the full
fingerprint described above − a definite overkill). This is an 8-digit hexadecimal number, useful
for generating unique short identifiers out of long names. The first character is forced to be a let-
ter (g-p), so there is no problem in using the output as a variable name.

−Help
Provide some help with using the aefp program.

−Message_Digest
Print the RSA Data Security, Inc. MD5 Message-Digest Algorithm hash of the named file(s).

−Snefru Print the Snefru hash of the named file(s), derived from the Xerox Secure Hash Function.

−VERSion
Print the version of the aefp program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.

Reference Manual Aegis 172

aefp(1) General Commands Manual aefp(1)

The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aefp are long, this means ignoring
the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aefp command will exit with a status of 1 on any error. The aefp command will only exit with a status
of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aefp version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aefp program comes with ABSOLUTELY NO WARRANTY; for details use the ’aefp −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aefp −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Portions of this program are derived from sources from other people, sometimes with liberal copyrights,
and sometimes in the public domain. These include:

Dan Bernstien
See common/fp/README for details.

Gary S Brown.
See common/fp/crc32.c for details.

RSA Data Security, Inc.
See common/fp/md5.c for details.

Xerox Corporation
See common/fp/snefru.c for details.

In addition to the above copyright holders, there have been numerous authors and contributors, see the
named files for details. Files names are relative to the root of the aegis distribution.

Reference Manual Aegis 173

aeget(1) aeget(1)

NAME
aeget − Aegis CGI file access

SYNOPSIS
aeget

DESCRIPTION
The aeget command is used with Apache (or CGI conforming any other web server) to access the files of
an Aegis project. The files are searched for along the appropriate search path, including all ancestor
baslines, not just the baseline of the branch.

This is useful when developing web sites using Aegis.

Install
In order to use aeget(1), you need to copy it into your cgi-bin directory.

You may prefer to use a symbolic link, as this will be more stable across Aegis upgrades. However, this re-
quires a corresponding follow-symlinks setting in your web server’s configuration file.

Usage
Once aeget(1) is installed, files may be accessed via

http://localhost/cgi-bin/aeget/project-name/
If no project name is given, a list of projects will be generated. This will lead you through a series of
menus, giving access to manu useful pages of information about your projects.

Cascading Style Sheets
The web interface uses Cascading Style Sheets. You can give the web interface a personalised look and
feel, by creating stylesheets in the web server’s Document Root directory. The interface will use it’s default
styles, then styles from a global style sheet called aedefault.css, and then styles from a project
stylesheet called projectname.css (replace projectname with the name of the project).

There is an example style sheet in /usr/local/share/aedefault.css which demonstrates the
style elements used. This particular stylesheet is not designed to be aesthetically pleasing, but to exercise
all of the elements. Using this stylesheet unmodified will give psychedelic results. Use it as a template.

PROJECT ATTRIBUTES
You can set your own project specific page headers and footers by using the "html:meta", "html:body-be-
gin" and "html:body-end" project specific attributes.

project_specific =
[
{
name = "html:body-begin";

value = "<i>This text goes immediately after the
<BODY> and before any text generated by
<i>aeget</i>(1).</i>";

},
{
name = "html:body-end";

value = "<i>This text goes immediately before the
</BODY> and after all text generated by
<i>aeget</i>(1).</i>";

},
];

These fields may be used to customize your web pages for your project-specific or company-specific needs.
Each project is configured independently.

CHANGE ATTRIBUTES
If you wish to prevent a change set appearing in the change set inventory used by aedist −replay to deter-
mine what needs to be downloaded, set the following change set attribute:

attribute =

Reference Manual Aegis 174

aeget(1) aeget(1)

[
{
name = "aeget:inventory:hide";
value = "true";

},
];

You must use the aeca(1) command for this, the tkaeca(1) command can not edit change set attributes.

DEBUGGING and TESTING
You can run the aeget(1) program from the command line if you set the appropriate environment variables.
This is how you debug or test aeget(1) command.

REQUEST_METHOD
This is how the script is being invoked. For aeget(1) command, this is always "GET".

SCRIPT_NAME
This is the path of the script name, from the HTTP client’s point of view. Typically this is
"/cgi-bin/aeget".

PATH_INFO
This is the portion of the URL between the script name and the question mark. For aeget(1) this
is usually the project name or the project name and the change number. No project name will get
you the project list page.

QUERY_STRING
This the portion of the URL after the question mark.

The above will not means much if you are not familiar with CGI scripts. For the URL http://local-
host/cgi-bin/aeget/aegis.4.1.C10?menu would have Apache set the following environment
variables

REQUEST_METHOD=GET \
SCRIPT_NAME=/cgi-bin/aeget \
PATH_INFO=/aegis.4.1.C10 \
QUERY_STRING=’menu’ \
aeget

Output is written to stdout. Tests scripts can easily capture this and compare it with expected results. Make
sure you avoid false negatives because of the date tacked onto the end of most pages.

Apache
If you see "serious server error" pages when accessing aeget(1) via a web server, the stderr text is usually
available in the server’s error log.

COPYRIGHT
aeget version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aeget program comes with ABSOLUTELY NO WARRANTY; for details use the ’aeget −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aeget −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 175

aegis.cgi(1) aegis.cgi(1)

NAME
aegis.cgi − Aegis web interface script

SYNOPSIS
aegis.cgi

DESCRIPTION
The aegis.cgi command is used to interface between a web server and Aegis.

Deprecated
This scripts is DEPRECATED since a long time and has been removed from the aegis distribution as of
aegis−4.24.1. The preferred way to publish an aegis aegis repository on the Web is using aeget(1).

Installation
If you have a Web server, you may like to install the Aegis web interface. You do this by copying the
aegis.cgi script from /usr/local/bin/aegis.cgi into your web server’s cgi-bin directory. There is an
aegis.cgi.i helper script, if you don’t know where your web server’s cgi-bin directory is.

You may prefer to use a symbolic link, as this will be more stable across Aegis upgrades. However, this re-
quires a corresponding follow-symlinks setting in your web server’s configuration file. (Use the aegis.cgi.i

−s option.)

Within the aegis.cgi script, you may set the AEGIS_PATH environment variable, if you want it to be
able to see more projects than just the global projects. You do this by creating a /usr/local/lib/aegis.cgi.conf

file (there isn’t one, by default) and setting the AEGIS_PATH environment variable in it. This is a fragment
of Bourne shell script, not just the name.

Usage
Once installed, it should be possible to see the project list by following this URL:

http://localhost/cgi−bin/aegis.cgi?
You may need to replace localhost with the machine’s exact name.

Cascading Style Sheets
The web interface uses Cascading Style Sheets. You can give the web interface a personalised look and
feel, by creating stylesheets in the web server’s Document Root directory. The interface will use it’s default
styles, then styles from a global style sheet called aedefault.css, and then styles from a project
stylesheet called projectname.css (replace projectname with the name of the project).

There is an example style sheet in /usr/local/bin/aedefault.css which demonstrates the style
elements used. This particular stylesheet is not designed to be aesthetically pleasing, but to exercise all of
the elements. Using this stylesheet unmodified will give psychedelic results. Use it as a template.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 176

aegrep(1) aegrep(1)

NAME
aegrep − print lines matching a pattern

SYNOPSIS
aegrep [option...] pattern

aegrep −Help
aegrep −VERSion

DESCRIPTION
The aegrep command is used to search the source files for lines containing a match to the given pattern.
By default, aegrep prints the matching lines.

There is no need to name files on the command line, all the project and change source files are supplied au-
tomatically. All non-source files are ignored.

Most of the grep(1) options are understood, in their long form.

OPTIONS
The following options are understood:

−−After−Context=number

Print number lines of trailing context after matching lines. Places a line containing a group sepa-
rator (−−) between contiguous groups of matches.

−−Before−Context=number

Print number lines of trailing context before matching lines. Places a line containing a group sep-
arator (−−) between contiguous groups of matches.

−−Byte−Offset
Print the 0-based byte offset within the input file before each line of output.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−−color Surround the matched (non-empty) strings, matching lines, context lines, file names, line num-
bers, byte offsets, and separators (for fields and groups of context lines) with escape sequences to
display them in color on the terminal.

−−Context=number

Print number lines of output context. Places a line containing a group separator (−−) between
contiguous groups of matches.

−−Count
Suppress normal output; instead print a count of matching lines for each input file. With −−in-
vert−match option count non-matching lines.

−−extended−regexp
Interpret pattern as an extended regular expression.

−−Files−With−Matches
Suppress normal output; instead print the name of each input file from which output would nor-
mally have been printed. The scanning will stop on the first match.

−−Files−WithOut−Matches
Suppress normal output; instead print the name of each input file from which no output would
normally have been printed. The scanning will stop on the first match.

−−fixed−strings
Interpret pattern as a list of fixed strings, separated by newlines, any of which is to be matched.

-Help
This option may be used to obtain more information about how to use the aegrep program.

Reference Manual Aegis 177

aegrep(1) aegrep(1)

−−Ignore−Case
Ignore case distinctions in both the pattern and the source files.

−−Invert−Match
Invert the sense of matching, to select non-matching lines.

−−Initial−Tab
Make sure that the first character of actual line content lies on a tab stop, so that the alignment of
tabs looks normal.

−−Line−Buffered
Use line buffering on output.

−−Line−Number
Prefix each line of output with the 1-based line number within its input file.

−−Line−Regexp

−−Maximum−Count=number

Stop reading a file after number matching lines.

−−no−messages
Suppress error messages about nonexistent or unreadable files.

−−Only−Matching
Print only the matched (non-empty) parts of a matching line, with each such part on a separate
output line.

−−Perl−Regexp
Interpret pattern as a Perl regular expression.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−−Unix−Byte−Offset
Report Unix-style byte offsets.

−−Word−Regexp
Select only those lines containing matches that form whole words. The test is that the matching
substring must either be at the beginning of the line, or preceded by a non-word constituent char-
acter. Similarly, it must be either at the end of the line or followed by a non-word constituent
character. Word-constituent characters are letters, digits, and the underscore.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegrep are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegrep command will exit with a status of 1 on any error. The aegrep command will only exit with a
status of 0 if there are no errors.

Reference Manual Aegis 178

aegrep(1) aegrep(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aefind(1)

search for files in directory hierarchy

grep(1) print lines matching a pattern

COPYRIGHT
aegrep version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegrep program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegrep −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aegrep −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 179

aegis −Integrate_Begin(1) General Commands Manual aegis −Integrate_Begin(1)

NAME
aegis integrate begin − begin integrating a change

SYNOPSIS
aegis −Integrate_Begin change-number [option...]
aegis −Integrate_Begin −List [option...]
aegis −Integrate_Begin −Help

DESCRIPTION
The aegis −Integrate_Begin command is used to begin the integration of a change into the baseline of a
project.

The change will advance from the awaiting integration state to the being integrated state.

aw aiting
integration

integrate
begin

being
integrated

integrate
begin
undo

A (logical) copy of the baseline is created in an integration directory and the the files of the change are
added to the integration directory. The time stamps of files copied from the baseline are preserved, time
stamps on the files copied from the development directory are all set to the time of the beginning of the in-
tegration. The ’aegis −Change_Directory’ command may be used to locate the integration directory. The
change will be assigned to the current user.

Please note that only regular files and symbolic links are copied (linked) from the baseline to the integration
directory. This has some implications:

• Special files (devices, named pipes, etc) will not be reproduced in the integration directory; you will need
to create these as part of the build.

• If the case of the −minimum option (see below), only primary source files are copied (linked) across.
Derived files (including symbolic links) are expected to be created as part of the build.

• If the case of the −minimum option, directories are only created when required to hold a file which satis-
fies the above criteria. If you need special empty directories, or directories which contain only special
files, or only contain derived files, you need to create them as part of the build.

The link_integration_directory field of the project configuration file (see aepconf (5) for more information)
controls whether the copy of the baseline is done by copying the files or by creating hard links to the files.
The hard links are just one of the constraints on the location of the integration directory. The integrate be-
gin will abort with an error if this copy operation fails, e.g. by running out of disk space. If this should hap-
pen, the change will remain in the awaiting integration state, and the integration directory will be removed.

The change will be assigned a delta number. Delta numbers are incremented once for each aegis −Inte-

grate_Begin command for the project. If an integration is subsequently aborted with either the aegis −Inte-

grate_Begin_Undo or aegis −Integrate_FAIL command, the delta number will not be re-used.

It is not possible to choose the integration directory, as there are many constraints upon it, including the fact
that it must be on the same device as the baseline directory, and that many UNIX implementations don’t al-
low renaming directories up and down the trees. The integration directory will be in the project directory,
and named for the delta number.

Notification
On successful completion of this command, the integration_begin_command field of the project config file
is run, if set. See aepconf(5) for more information.

Reference Manual Aegis 180

aegis −Integrate_Begin(1) General Commands Manual aegis −Integrate_Begin(1)

Minimum Integrations
Aegis provides a minimum integration capability which may be used for various reasons. The term mini-
mum may be a bit counter intuitive. One might think it means to the minimum amount of work, however
it actually means use a minimum of files from the baseline in populating the delta directory. This normally
leads to actually building everything in the project from sources and, as such, might be considered the most
robust of builds.

Note that any change which removes a file, whether by aerm, aemv or aemt, results in an implicit mini-
mum integration. This is intended to ensure nothing in the project references the removed file.

A project may adopt a policy that a product release should be based on a minimum integration. Such a pol-
icy may be a reflection of local confidence, or lack thereof, in the project’s DMT (Dependency Mainte-
nance Tool) or build system. Or it may be based on a validation process wishing to make a simple state-
ment on how the released package was produced.

Another, more transient, reason a to require a minimum integration might be when upgrading a third party
library, compiler or maybe even OS lev el. Any of these events would signal the need for a minimum inte-
gration to ensure everything is rebuilt using the new resources.

The cost of a minimum integration varies according to type and size of the project. For very large projects,
especially those building large numbers of binaries, the cost can be large. However large projects also re-
quire significant time to fully populate the delta directory. A minimum integration only copies those files
under Aegis control, skipping all “produced” files. In the case where a file upon which everything depends
is changed, everything will be built anyway so the copy of the already built files is a waste of time. This
means that sometimes a minimum can be as cheap as a normal integration.

Change Set Attributes
The follwoing user-defined change set attributes are understood:

integrate-begin-hint
If this is set to "minimum" or "maximum", it is as if these options appeared on the command line.
Only consulted if neither −minimum nor −maximum appear on the command line.

All other user defined change set attributes are ignored.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-MAXimum
This option may be used to cause all files to be copied into the integration directory. This is the
default, unless the change requires the deletion of a file.

-MINImum
This option may be used to cause only the source files to be copied into the integration directory.
The default is to copy all files, unless the change requires the deletion of a file.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

Reference Manual Aegis 181

aegis −Integrate_Begin(1) General Commands Manual aegis −Integrate_Begin(1)

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeib ’aegis −ib \!* −v’
sh$ aeib(){aegis −ib "$@" −v}

ERRORS
It is an error if the change is not in the awaiting integration state.
It is an error if the current user is not an integrator of the project.
It is an error if there is an integration in progress for the project.
It is an error if the current user developed the change and the project is configured to disallow dev elopers to
integrate their own changes (default).
It is an error if the current user reviewed the change and the project is configured to disallow reviewers to
integrate their such changes (default).

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 182

aegis −Integrate_Begin(1) General Commands Manual aegis −Integrate_Begin(1)

SEE ALSO
aeb(1) build a change

aecd(1) change directory

aeibu(1) reverse the aeib command

aeifail(1)
fail integration of a change

aeintegratq(1)
Automate the integration queue.

aeipass(1)
pass integration of a change

aeni(1) add new integrators to a project

aerpass(1)
pass review of a change

aet(1) run tests

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 183

aegis −Integrate_Begin_Undo(1) General Commands Manual aegis −Integrate_Begin_Undo(1)

NAME
aegis integrate begin undo − reverse the aeib command

SYNOPSIS
aegis −Integrate_Begin_Undo [option...]
aegis −Integrate_Begin_Undo −List [option...]
aegis −Integrate_Begin_Undo −Help

DESCRIPTION
The aegis −Integrate_Begin_Undo command is used to reverse the actions of the ’aegis −Integrate_Begin’

command.

Successful execution of this command will move the change from the being integrated state to the awaiting

integration state. The integration directory will be deleted. The change will cease to be assigned to the
current user.

aw aiting
integration

integrate
begin

being
integrated

integrate
begin
undo

In the unlikely event that an integrator has wandered away and left an integration incomplete (say, went on
holidays and won’t be back for two weeks), project administrators are also able to use this command.

Notification
On successful completion of this command, the integration_begin_undo_command field of the project con-

fig file is run, if set. See aepconf(5) for more information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more

Reference Manual Aegis 184

aegis −Integrate_Begin_Undo(1) General Commands Manual aegis −Integrate_Begin_Undo(1)

information). If that does not exist, when the user is only working on changes within a single
project, the project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeibu ’aegis −ibu \!* −v’
sh$ aeibu(){aegis −ibu "$@" −v}

ERRORS
It is an error if the change is not in the being_integrated state.
It is an error if the change is not assigned to the current user and the current user is not a project administra-
tor.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 185

aegis −Integrate_Begin_Undo(1) General Commands Manual aegis −Integrate_Begin_Undo(1)

SEE ALSO
aeib(1) begin integration of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 186

aegis −Integrate_Fail(1) General Commands Manual aegis −Integrate_Fail(1)

NAME
aegis integrate fail − fail a change integration

SYNOPSIS
aegis −Integrate_Fail −File reason-file [option...]
aegis −Integrate_Fail −REASon ’reason-text’ [option...]
aegis −Integrate_Fail −Edit [option...]
aegis −Integrate_Fail −List [option...]
aegis −Integrate_Fail −Help

DESCRIPTION
The aegis −Integrate_Fail command is used to inform aegis that a change has failed integration.

The change will be returned from the being integrated state to the being developed state. The change will
cease to be assigned to the current user, and will be reassigned to the originating developer. The integration
directory will be deleted.

being
developed

develop
end

aw aiting
review

review
begin

being
reviewed

review
pass

aw aiting
integration

integrate
begin

being
integrated

integrate
fail

The reviewer and the developer will be notified by mail. See the integrate_fail_notify_command in aep-

conf (5) for more information.

The reason-file will contain a description of why the change was failed. The file is in plain text. It is rec-
ommended that you only use newline to terminate paragraphs, (rather than to terminate lines) as with will
result in better formatting in the various listings.

Notification
On successful completion of this command, the integrate_fail_notify_command field of the project attrib-
utes is run, if set. See aepattr(5) and aepa(1) for more information.

Reference Manual Aegis 187

aegis −Integrate_Fail(1) General Commands Manual aegis −Integrate_Fail(1)

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to provide the failure reason on the command line, rather than in a file.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be

Reference Manual Aegis 188

aegis −Integrate_Fail(1) General Commands Manual aegis −Integrate_Fail(1)

added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeifail ’aegis −ifail \!* −v’
sh$ aeifail(){aegis −ifail "$@" −v}

ERRORS
It is an error if the change is not in the being integrated state.
It is an error if the change is not assigned to the current user.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeib(1) begin integration of a change

aeipass(1)
pass integration of a change

aeuconf (5)
user configuration file format

Reference Manual Aegis 189

aegis −Integrate_Fail(1) General Commands Manual aegis −Integrate_Fail(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 190

aeimport(1) aeimport(1)

NAME
aeimport − import foreign repository into Aegis

SYNOPSIS
aeimport [option...] dirname

aeimport −Help
aeimport −VERSion

DESCRIPTION
The aeimport command is used to create a new project, and populate it by importing a foreign repository
(such as RCS or CVS) without loss of project history.

Please note: unless you specify a version (see the −version option, below) this command will default to cre-
ating branches to support version 1.0. If you discovered this too late, all is not lost: you can use the aen-

bru(1) command to get rid of the branches you didn’t want.

Directory
The project directory, under which the project baseline and history and state and change data are kept, will
be created at this time. If the −DIRectory option is not given, the project directory will be created in the
directory specified by the default_project_directory field of aeuconf(5), or if not set in current user’s home
directory; in either case with the same name as the project.

Staff
The project is created with the current user and group as the owning user and group. The current user is an
administrator for the project. The project has no other administrators (use aena(1) to add more).

The project will have all user names found in the history files (see blow) installed as developers, reviewers
and integrators. This is probably too broad, but fairly accurately reproduces the wide-open permissions
found in most repositories, and you will want to use aerd(1), aerrv(1) and aeri(1) as appropriate to winnow
this list.

If only one name is found, the project will be set to “developers_may_review = true;” otherwise
it will be false (see aepattr(5) for more information). Use aepa(1) to change this if you want a different set-
ting.

The project’s umask is derived from the current user’s umask, but modified to guarantee that group mem-
bers will have access and that only the project owner will have write access. In general, it’s best of the
project is not owned by an account with any other role, as this prevents a whole class of “oops, I thought I
was somewhere else” errors.

The project’s history commands (see aepconf(5) for more information) are set to those suitable for RCS.
The build command is set to “exit 0”; you need to set it to something suitable. The symbolic link farm is
turned on.

Pointer
The project pointer will be added to the first element of the search path, or /usr/local/com if no path is set.
If this is inappropriate, use the −LIBrary option to explicitly set the desired location. See the −LIBrary
option for more information.

Alternatively, unset the AEGIS_PATH environment variable to add the project to the global project list.

Version
You may specify the project version in two ways:

1. The version number may be implicit in the project name, in which case the version numbers will be
stripped off. For example, “aeimport −p example.1.2” will create a project called “example” with
branch number 1 created, and sub-branch 2 of branch 1 created.

2. The version number may be stated explicitly, in which case it will be subdivided for branch numbers.
For example, “aeimport −p example −version 1.2” will create a project called “example” with branch
number 1 created, and sub-branch 2 of branch 1 created.

In each case, these branches may be named wherever a project name may be given, such as “−p example.1”

Reference Manual Aegis 191

aeimport(1) aeimport(1)

and “−p example-1.2”. The actual punctuation character is unimportant.

You may have any depth of version numbers you like. Both methods of specifying version numbers may be
used, and they will be combined. If you want no version numbers at all, use −version with a single dash as
the argument, as in “−version −”

If no version number is given, either explicitly or implicitly, version 1.0 is used.

Project Directory Location
Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

THE PROCESS
Most file version systems do not operate using change sets. In order to import such repositories into Aegis
it is necessary to “discover” these change sets. The following steps are taken:

1. The directory (dirpath) giv en on the command line, and all directories below it, are scanned for appro-
priate files (for example, RCS and CVS use files with a “,v” suffix). These files are read to obtain the
file’s history.

If you have been using a non-standard file suffix, aeimport won’t be able to find the files.

If you have more than one module in your CVS repository, aeimport doesn’t (yet) understand the CVS-
ROOT/modules file. Pointing aeimport at your whole CVSROOT may produce an unexpectedly large
result.

2. The history files discovered in the previous step are copied into the location used by Aegis. Unlike
some other tools, Aegis has a repository per project, rather than all projects sharing the same repository.

This also means that Aegis will not modify the original history files. In particular, if the import pro-
duces unexpected results, simply remove the project (see aermpr(1) for more information) and start
again.

It is not possible to leave all your history files under, say, $CVSROOT and have Aegis point to them.

3. For each user mentioned in the various file histories, the time stamps are examined to find groups of
files which were committed at around the same time. Files changed within 1 minute of each other are
considered a group.

Files change within one minute, but by different users, are not considered a group. This does not usu-
ally present a problem as developers mostly work alone. In rare cases where developers work together,
only one of them does the commit.

In some cases the time window may be too large, and several very small changes may be seen as one
larger change set. In practice, this isn’t very common.

4. Groups of files are stored into the Aegis database as completed changes (i.e. as if aeipass(1) has already
run). The description of the change is the concatenation of all the unique comments found attached to
the relevant file versions. The time stamp used for the change is the latest time stamp of any file in the
group.

There are times when small typographical errors between file comments result in longer-than-expected
change descriptions. This can be corrected with aeca(1) or tkaeca(1) if desired. There are also times

Reference Manual Aegis 192

aeimport(1) aeimport(1)

when the reverse is true: some files have no comments at all, and the resulting description is less than
useful.

5. Tags are turned into delta names by transferring delta names from the files they are attached to, to the
change sets they are attached to. When a tag would appear to be attached to more than one change, it is
attached only to the latest change.

In common usage, the tags serve a similar purpose as Aegis’ delta numbers. They are all (typically) ap-
plied in a single CVS command, in order that a particular release may be recreated later. Howev er, be-
cause each file will be at a different version, and each will have had its latest version included in various
random change sets.

Tags are used for other things too. The method given here is simply a guess, but it’s one which works
reasonably well.

Once aeimport has completed importing a project, you will be able to examine the results using the ael

project_history and ael change_details commands. (See ael(1) for more information.)

Limitations
The aeimport program is far from perfect. There are a number of known limitations.

• At this time, there is no support for branching. (As soon as I figure out how to discern the root of a
branch across loosely coupled files, I’ll implement it. Ideas and/or code contributions welcome.)

• Only RCS and SCCS formats are understood at present. It should be straight forward to add support for
additional formats in the future. Only step 1 of the above process requires attention, the rest is file for-
mat neutral.

• There is no support for CVS modules, and there needs to be.

• You can’t specify the time window size used to determine change sets. Time will tell whether this is
necessary, but it begs the question: how will you know what window size you need in order to use the
option at all.

• You can’t import a CVS repository into an existing project. You may only create a new project from a
CVS repository.

• You can’t import a remote CVS repository.

OPTIONS
The following options are understood:

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

−FORmat name

This option may be use to specify which history format is being imported. The following formats are
understood:

RCS Release Control System format has been around for quite a while. It is the format underlying
CVS (Concurrent Version System). This is the default if no format name is specified.
Note: you must have RCS installed before you run aeimport if you use this format, because
RCS commands will be run during the import process. The import will fail if RCS is not in-
stalled. You can find a freeware implementation at ftp.gnu.org, or a local mirror.

SCCS Source Code Control System is one of the earliest Unix version systems. (I’m told this is the
format underlying BitKeeper.)
Note: you must have SCCS installed before you run aeimport if you use this format, because
SCCS commands will be run during the import process. The import will fail if SCCS is not
installed. The GNU Compatibly Stupid Source Control (CSSC) is a freeware implementation

Reference Manual Aegis 193

aeimport(1) aeimport(1)

of SCCS, and it may be found at ftp://alpha.gnu.org/gnu/CSSC/

−LIBrary abspath

This option may be used to specify a directory to be searched for global state files and user state
files. (See aegstate(5) and aeustate(5) for more information.) Several library options may be
present on the command line, and are search in the order given. Appended to this explicit search
path are the directories specified by the AEGIS_PATH environment variable (colon separated),
and finally, /usr/local/lib/aegis is always searched. All paths specified, either on the command
line or in the AEGIS_PATH environment variable, must be absolute.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-Help
This option may be used to obtain more information about how to use the aeimport program.

−VERSion number

This option may be used to specify the version number for the project. Version numbers are im-
plemented as branches. Use a single dash (“−”) as the argument if you want no version branches
created.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aeimport are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aeimport command will exit with a status of 1 on any error. The aeimport command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 194

aeimport(1) aeimport(1)

COPYRIGHT
aeimport version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aeimport program comes with ABSOLUTELY NO WARRANTY; for details use the ’aeimport −VER-

Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’aeimport −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 195

aeintegratq(1) General Commands Manual aeintegratq(1)

NAME
aeintegratq − integrate changes into projects

SYNOPSIS
aeintegratq [option...] project-name...

DESCRIPTION
The aeintegratq command is used to manage the integrations of one or more changes in one or more
projects. Normally run via cron(1) or at(1) with the name of a single project, aeintegratq will manage all
operations for integration even when −Build and −Test are required on multiple architectures. If a change
review is rev oked after the queue is running aeintegratq will notice the bad state and silently move on. If
one or more changes are ended or passed after the queue is running, and −loop has been given, aeintegratq
will notice the new change[s] and integrate them. Additional options allow the integrator full control over
most aspects of queue management such as the order of integration of multiple changes.

OPTIONS
The following options are understood:

Option Summary
−h Help, show usage information.

−H Help, show usage plus all helpful comment information.

−a run on Any machine (normally only IntegrationHost)

−s run remote operations via ssh (default rsh)

−n No action, just tell what would be done.

−ib s Specify (remote) server for ibegin.

−ip s Specify (remote) server for ipass.

−k Keep the scripts and report files.

−K Keep the temp file even if integration passes.

−loop Loop to process more changes if they become available before aeintegratq completes. It will stop
when there is nothing more to be done.

−M list Minimum, run given changes −minimum

−P list Precious, do not IFail changes in list, just stop.

−R list Ready, specify order and subset, e.g. −R 29,45

−S stage Pick up at given stage (diff|build|test|integrate)

−c change-number

specify Change to integrate at Stage

−p project-name

specify single Project name

NOTE: if custom options such as −P −R −S −c −p are given only a single project may be integrated since
the options would be meaningless to the next project given.

Some options are present only for testing and investigation. Note that options are rarely required for nor-
mal operations.

Control Options
The following options are available for special needs. They control the order and disposition of each
change awaiting_integration in a given project.

−R[eady] number1,number2...

This option is used to specify order or subset to integrate. Only those changes listed will be at-
tempted, and in exactly the order given. This applies to queue looping if −loop is given. In partic-
ular note unless the list includes future changes, future loops will not integrate them.

Reference Manual Aegis 196

aeintegratq(1) General Commands Manual aeintegratq(1)

Useful if a particular change must go in before another for some reason. Or if only integrating
one or two changes when several are awaiting_integration in the given project. A single change
may also be specified with the −c[hange] number option, which is common for other aegis com-
mands. However the −R option allows a list and if given will override any −c given.

−P[recious] number1,number2...

−P[recious] all
This option is used to specify that a particular change or subset of changes should be considered
precious. It neither implies order nor limits the queue run to that subset; it only means that the
changes should be considered precious. Note that at least one number (or the keyword all) must
be given.

The concept of precious means that if the given change were to fail anywhere in the integration
process, then the process simply stops and leaves the problem change in the delta directory. The
−IFail would not actually be executed. This is sometimes useful to diagnose a problem which
only occurs during integrations. It is also useful if the failure is due to a transient problem such
as unreliable machines on the network. In such a case the integration can be resumed after fixing
the problem. See the stage options below.

If, on the other hand, a precious change makes it through the integration process successfully, the
option has no effect.

−M[inimum] number1,number2... or all

Integrate the given change[s] with the −minimum option. Such changes will be put on the end of
the queue so that the last integrations of a run will be a minimum. This feature allows practical
use of minimum integrations without requiring −minimum on each and every integration. See
the section below on Minimum integrations for more information. If −loop is given any
change[s] specified as minimum will run at the end of the loop in which they are ready, they will
not be pushed to the final loop.

−ib[server] server-name or ""

−ip[server] server-name or ""
To specify a remote server on which to run −ibegin or 0 respecively. These options are rarely
needed, but may be useful if a project is hosted on a different file server and has a large
baseline. By having the −ibegin run on that server the network traffic would be greatly re-
duced and for large projects and/or slow networks can greatly reduce the time required for
−ibegin. The option form of giving an empty name depends on the output of df −k giving a
parseable host name. If that is not true on your integration host architecture, you will have
to specify the server name.

−display display-value or ""
To specify a valid X display for use during integration operations.

Stage Options
The following options allow [re]starting an integration which has already progressed through some stages.
This is useful to deal with failed (precious) integrations, or to finish automatically an integration begun by
hand.

−S[tage] diff

−S[tage] build

−S[tage] test

−S[tage] integrate
Pick up the integration at the given stage. Requires −c[hange] number option to specify the
change number.

Advanced Controls
The integrator may provide for special situations such as operations required after −Build and before −Test,
or at the end of a queue run. Such capabilities are provided by hooks and strategies described below.

Reference Manual Aegis 197

aeintegratq(1) General Commands Manual aeintegratq(1)

Hooks
There are a set of hooks available which are run, if present, before and after each stage of the integration.
They can be used to help ensure that the integrator actually gets some sleep while managing large projects.

These hooks are searched for in the directory $HOME/integration_hooks. None need exist; aeintegratq
will only pay attention to any that do exist. Hooks may be any form of executable (script, etc) and are
called with 2 arguments: project-name change-number. They run as the integrator on the machine from
which aeintegratq was started. They are named using the project name along with a suffix according to
what place in the integration process you want them to run.

Note that if a hook for project foo exists it is also used for any branches under that project. For example, if
you have provided foo.pre_ip, it will be run for foo.1 and foo.1.0 as well. If for some reason you want dif-
ferent (or no) action for project foo.1.0, then you would provide foo.1.0.pre_ip which does what you wish,
including nothing, effectively overriding foo.pre_ip.

Here is how to map particular places in the integration process to hook suffixes.

run at time extension

before attempting −Integrate_Begin .pre_ib
after −Integrate_Begin completes .ib
before attempting −Diff .pre_d
after −Diff completes .d
before attempting −Build .pre_b
after −Build completes .b
before attempting −Build on <arch> .pre_<arch>b
after −Build on <arch> completes .<arch>b
before attempting −Test .pre_t
after −Test completes .t
before attempting −IPass .pre_ip
after −IPass completes .ip
before attempting −IFail .pre_if
after −IFail completes .if

The hook program should exit with 0 if successful or 1 if not. A non-zero exit causes the change being in-
tegrated to fail immediately unless it was marked precious.

Note that in most cases anything done via an .ip hook should probably be done instead by the ipass_notify

command in the project attributes file (see aepattr(5) for more information), or the build_time_adjust_-

notify_command in the project configuration file (see aepconf(5) for more information), but the hook can
provide a temporary way to keep going until the permanent solution can be implemented.

In addition two special hooks, aeintegratq.end and aeintegratq.fail, are recognized. They are called when
aeintegratq finishes a queue run. They are called with 2 arguments like any other hook (project-name
change-number) although both the project-name and change-number given are of the last change inte-
grated and may be less than useful.

The .end hook is called if/when the queue run is finished and was successful. Note that this does not mean
that no changes failed, only that no queue errors occurred. This hook might be used to invoke another
queue run on a different project/branch, or possibly even on the same project, if other changes may have
been ended and/or reviewed while the first run was in progress, see also the −loop option. These conditions
arise quite often with flex time engineers. Another use of the .end hook is to automatically build a new
package using the newly integrated project as source.

If queue errors were encountered, or a change failed that was marked precious, then the .fail hook is called.
An obvious use of that hook would be an e-mailed page to the integrator.

Strategy or Oops-retry
Sometimes a persistent build problem will plague integrations. This can be very annoying if it ruins an
overnight run, especially if the cure is simple when it happens. Examples of this can be timeouts due to a
busy data server or other transient errors. Note that this applies only to −Build related problems.

Reference Manual Aegis 198

aeintegratq(1) General Commands Manual aeintegratq(1)

To deal with such problems the integrator may provide a strategy script specific to a project. An executable
program should be found in $HOME/strategy.<project_name>. The program will be run as the integrator
with the delta directory as current directory. The program may do any commands necessary to clean up
and/or diagnose the error. If the script finds the problem to be transient and fix-able, it exits successfully
(with 0 status) and aeintegratq will re-launch the −Build and log the re-try. Otherwise the script should exit
with a 1 and the change will fail.

Multi-Architecture integrations
For projects which build and test on multiple architectures, aeintegratq requires arch_hosts be installed and
have available at least one machine of each architecture required. This is also true if the host from which
aeintegratq is run is of a different architecture from the target architecture of the project being integrated.

If you wish to take advantage of multiple architecture automatic integrations, you can install arch_hosts or
provide a more simple script which will return a machine name according to architecture and job type.

Minimum integrations
provides a minimum integration capability which may be used for various reasons. The term minimum

may be a bit counter intuitive. One might think it means to do the minimum amount of work, however it
actually means use a minimum of files from the baseline in populating the delta directory. Since no con-
structed files are put in the delta directory, this normally leads to actually building everything in the project
from sources and, as such, might be considered the most robust of builds.

Note that any change which removes a file, whether by aerm or aemv, results in an implicit minimum inte-
gration. This is intended to ensure nothing in the project references the removed file.

A project may adopt a policy that a product release should be based on a minimum integration. Such a pol-
icy may be a reflection of local confidence, or lack thereof, in the project’s DMT (Dependency Mainte-
nance Tool) or build system. Or it may be based on a validation process wishing to make a simple state-
ment on how the released package was produced.

Another, more transient, reason a to require a minimum integration might be when upgrading a third party
library, compiler or maybe even OS lev el. Any of these events would signal the need for a minimum inte-
gration to ensure everything is rebuilt using the new resources. This can be done with minimum overhead
using the −M option as described above.

The cost of a minimum integration varies according to type and size of the project. For very large projects,
especially those building large numbers of binaries, the cost can be large. However large projects also re-
quire significant time to fully populate the delta directory. A minimum integration only copies those files
under aegis control, skipping all “produced” files. In the case where a file upon which everything depends
is changed, everything will be built anyway so the copy of the already built files is a waste of time. This
means that sometimes a minimum can be as cheap as a normal integration.

Manual Tests
allows tests to be defined as manual which may be necessary if the test requires human interaction or some
transient resource. Such tests can be problematic for automatic integrations and generally must have some
means to pass without running during integrations. For this, and other, reasons most sites seek to avoid
manual tests. There are a number of ways to code a test such that it will pass automatically during integra-
tions. Just one example for shell script tests might be:

CSTATE=‘aesub −p $AEGIS_PROJECT −c $AEGIS_CHANGE ’${state}’‘
if ["$CSTATE" = "being_integrated"]
then

echo "‘basename $0‘ passes during integration"
exit 0

fi

Reference Manual Aegis 199

aeintegratq(1) General Commands Manual aeintegratq(1)

Optional Support Programs
There are some programs which aeintegratq will use if they are installed.

• arch_hosts was mentioned previously. It is optional only if your projects and your file server are of a sin-
gle architecture.

• aelogres may enhance the information provided in −IFail entries. Normally all you get is the last 10 lines
of the log file, which is not bad if tests fail, but can be terrible for failed builds. If you provide a program
named aelogres which knows how to extract a better succinct report of problems, the output of that pro-
gram will be used instead of the simple tail. It is called with a −i option.

• sound_all_machines, if available, will be called when integrations either pass or fail. It can be helpful to
announce the fact that an integration has finished. If it passed, developers will probably want to do an aed
to bring their changes up to date. The audio announcement provides another timely hint.

The sound files are searched for in the /usr/local/com/sounds directory. They will have endings of _pass

and _fail according to the results of a given attempt. Two sound files are required: integration_pass and in-

tegration_fail. Others will be used if provided to customize the sounds so that each developer may have
one or more personal sounds. If a file named <developer>_pass is located, it will be used. If a set of files
exist named <developer_pass.[0-9] they will be used in random sequence. The same search rule applies to
_fail sets. The sound_all_machines program may use a host list and play the sound file on each machine
or, assuming that other audio capabilities exist, might do any form of announcement desired.

EXIT STATUS
The aeintegratq command will exit with a status of 1 on any error. The aeintegratq command will only
exit with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

FILES
Control files are searched for in the $HOME directory. They are named strategy.<project>, They need not
exist if no special action is necessary.

The hook scripts are searched for in the $HOME/integration_hooks directory. They are named
<project>.<stage>. Also aeintegratq.end and aeintegratq.fail. These hooks also need not exist if no special
action is desired.

COPYRIGHT
aeintegratq version 4.25.D510
Copyright © 1998-2005 Endocardial Solutions, Inc.

The aeintegratq program comes with ABSOLUTELY NO WARRANTY; This is free software and you are
welcome to redistribute it under certain conditions;

Reference Manual Aegis 200

aegis −Integrate_Pass(1) General Commands Manual aegis −Integrate_Pass(1)

NAME
aegis integrate pass − pass a change integration

SYNOPSIS
aegis −Integrate_Pass [option...]
aegis −Integrate_Pass −List [option...]
aegis −Integrate_Pass −Help

DESCRIPTION
The aegis −Integrate_Pass command is used to notify aegis that a change has passed integration. The
change is advanced from the being integrated state to the completed state.

being
integrated

integrate
pass

completed

This command updates the file histories, so that future aecp(1) commands may extract previous file ver-
sions from history, and so that future aed(1) commands may merge out-of-date files. The history is up-
dated using the history_create_command and history_put_command fields of the project configuration file
(see aepconf (5) for more information). The integrate pass will abort with an error if one of these history
commands should fail, e.g. by running out of disk space. If this should happen, the change will remain in
the being integrated state, and the integration directory is unaltered.

Once the history has been updated, the integration directory is renamed as the baseline directory, and the
old baseline directory is deleted.

Once integrate pass is complete the change is no longer assigned to the current user.

History Tools Modify Files
Many history tools (e.g. RCS and SCCS) can modify the contents of the file when it is committed. This
usually requires the use of specific “keyword” strings, and there are usually options to turn this behavior
off, but users familiar with version control tools (as opposed to configuration management systems) will of-
ten use these features. The problem is that if the commit changes the file, the source file in the repository
now no longer matches the object file in the repository. I.e. the history tool has compromised the referen-
tial integrity of the repository. By default, a fatal error is emitted if the file is changed by the check-in,
however this can be modified to a be warning or even ignored completely; see the history_put_trashes_file

field of aepconf (5) for more information.

File Modification Times
The modification times of all files modified since the beginning of integration (see aeib(1) for more infor-
mation) are updated to be since the beginning of integrate pass. The order of modification times will be
preserved, however the time range will be compressed to the greatest extent possible. This ensures that
subsequent development builds will notice that baseline files have changed.

Note that if there are many new files with all different timestamps in the integration directory, and if the
number of files with different timestamps exceeds the number of seconds since the start of the integrate-
pass command, Aegis may have to set file modification times into the future.

The build_time_adjust field of the project config file controls Aegis’ behavior in this case. (See aepconf(5)
for more information.) There are three settings:

Reference Manual Aegis 201

aegis −Integrate_Pass(1) General Commands Manual aegis −Integrate_Pass(1)

adjust_and_sleep
This setting, which is the default, causes Aegis to sleep until the file modification times would no
longer be in the future. This avoids both development build problems and integration build prob-
lems, both of which which can arise as a result "interesting" file modification times.

adjust_only
Aegis will issue a warning that the file modification times extend into the future, but will not
sleep. This may cause integration build problems, particularly if you are using aeintegratq(1).
Development builds may perform redundant builds, however aet −reg should not produce false
negatives.

dont_adjust
This is highly inadvisable. It is provided solely for some very rare circumstances. This setting
causes Aegis not to adjust the file modification times at all. This can have very unhappy side-ef-
fects, especially of the integration build was before one or more development builds; the com-
monest symptom being that development builds do not always cause a relink of the necessary ex-
ecutables, and aet −reg may give false negatives. It is strongly recommended that you do not use
this setting.

If you use cook(1), see the time-adjust-back flag for how to compress the time range even further. This
usually makes the sleep (or the warning period) significantly shorter.

Notification
On successful completion of this command, after the directory rename has ocurred and after the database
has been updated, the integration_pass_notify_command field of the project attributes is run, if set. See
aepattr(5) and aepa(1) for more information. This command is run as the project owner.

Some compilers bury absolute path names into object files and executables. The renaming of the integra-
tion directory to become the new baseline breaks these paths. The above command is passed an environ-
ment variable called AEGIS_INTEGRATION_DIRECTORY so that the appropriate symlink may be
placed, if desired.

Other commands run by this command include the history_create_command, history_put_command and
history_query_command fields of the project config file. See aepconf(5) for more information.

THE BASELINE LOCK
The baseline lock is used to ensure that the baseline remains in a consistent state for the duration of com-
mands which need to read the contents of files in the baseline.

The commands which require the baseline to be consistent (these include the aeb(1), aecp(1) and aed(1)
commands) take a baseline read lock. This is a non-exclusive lock, so the concurrent development of
changes is not hindered.

The command which modifies the baseline, aeipass(1), takes a baseline write lock. This is an exclusive
lock, forcing aeipass(1) to block until there are no active baseline read locks.

It is possible that one of the above dev elopment commands will block until an in-progress aegis −Inte-

grate_PASS completes. This is usually of short duration while the project history is updated. The delay is
essential so that these commands receive a consistent view of the baseline. No other integration command
will cause the above dev elopment commands to block.

When aegis’ branch functionality is in use, a read (non-exclusive) lock is taken on the branch baseline and
also each of the "parent" baselines. However, a baseline write (exclusive) lock is only taken on the branch
baseline; the "parent" baselines are only read (non-exclusive) locked.

The History Lock
Where a project has a number of branches active simultaneously, it is possible for independent integrate
pass commands for different branches to be issued very close together. The is an exclusive history lock

taken by integrate pass to ensure that only one branch is updating the file history at a time, thus preventing
history file corruption.

Reference Manual Aegis 202

aegis −Integrate_Pass(1) General Commands Manual aegis −Integrate_Pass(1)

TEST CORRELATIONS
The “aegis −Test −SUGgest” command may be used to have aegis suggest suitable regression tests for your
change, based on the source files in your change. This automatically focuses testing effort to relevant tests,
reducing the number of regression tests necessary to be confident that you have not introduced a bug.

The test correlations are generated by the “aegis −Integrate_Pass” command, which associates each test in
the change with each source file in the change. Thus, each source file accumulates a list of tests which have
been associated with it in the past. This is not as exact as code coverage analysis, but is a reasonable ap-
proximation in practice.

The aecp(1) and aenf (1) commands are used to associate files with a change. While they do not actively
perform the association, these are the files used by aeipass(1) and aet(1) to determine which source files
are associated with which tests.

Test Correlation Accuracy
Assuming that the testing correlations are accurate and that the tests are evenly distributed across the func-
tion space, there will be a less than 1/number chance that a relevant test has not been run by the “aegis
−Test −SUGgest number” command. A small amount of noise is added to the test weighting, so that unex-
pected things are sometimes tested, and the same tests are not run every time.

Test correlation accuracy can be improved by ensuring that:

• Each change should be strongly focused, with no gratuitous file inclusions. This avoids spurious cor-
relations.

• Each item of new functionality should be added in an individual change, rather than several together.
This strongly correlates tests with functionality.

• Each bug should be fixed in an individual change, rather than several together. This strongly corre-
lates tests with functionality.

• Test correlations will be lost if files are moved. This is because correlations are by name.

The best way for tests to correlate accurately with source files is when a change contains a test and exactly
those files relating to the functionality under test. Too many spurious files will weaken the usefulness of
the testing correlations.

METRICS
Aegis is capable of recording metrics as part of the file attributes of a change. This allows various proper-
ties of files to be recorded for later trend analysis, or other uses.

The specific metrics are not dictated by Aegis. It is expected that the integration build will create a metrics
file for each of the source files the change. These metrics files must be in the format specified by aemet-

rics(5).

The name of the metrics file defaults to “filename,S”, however it may be varied, by setting the metrics_-

filename_pattern field of the project config file. See aepconf(5) for more information.

If such a metrics file exists, for each source file in a change, it will be read and remembered at integrate
pass time. If it does not exist, Aegis assumes there are no relevant metrics for that file, and proceeds
silently; it is not an error.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

Reference Manual Aegis 203

aegis −Integrate_Pass(1) General Commands Manual aegis −Integrate_Pass(1)

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeipass ’aegis −ipass \!* −v’
sh$ aeipass(){aegis −ipass "$@" −v}

ERRORS
It is an error if the change is not assigned to the current user.
It is an error if The change is not in the being integrated state.
It is an error if there has been no successful ’aegis −Build’ command for the integration.
It is an error if there has been no successful ’aegis −Test’ command for the integration.
It is an error if there has been no successful ’aegis −Test −BaseLine’ command for the integration.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

Reference Manual Aegis 204

aegis −Integrate_Pass(1) General Commands Manual aegis −Integrate_Pass(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeib(1) begin integration of a change

aeifail(1)
fail integration of a change

aemeasure(1)
simple file metrics

aemetrics(5)
metrics values file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 205

aegis −List(1) General Commands Manual aegis −List(1)

NAME
aegis list − list (possibly) interesting things

SYNOPSIS
aegis −List [option...] list-name

aegis −List −List [option...]
aegis −List −Help

DESCRIPTION
The aegis −List command is used to list information. There are a number of possible list-names, as follows
(abbreviations as for command line options):

Administrators
List the administrators of a project.

Branch_Details
List full information about all the changes in the branch in large format. This listing will recurse
down the full branch tree.

Change_Details
List full information about a change in large format.

Change_Files
List all files in a change. The verbose version includes details such as the action being taken, the
edit number of the file, and whether it’s being moved. The terse version only lists the files names
(and omits removed files), this is useful for shell scripts and interfacing with build tools.

Change_File_History
This listing shows the history of each file in the change. It includes each delta number (so that
you may reproduce it) and brief description, of each change which affected each file.

Change_File_INventory
This listing shows the filenames and their corresponding UUIDs. When a file is renamed, its
UUID remains constant. (If the UUID column has the filename in it, this is a backwards compat-
ibility value, for accessing the file history.)

Change_History
List the history of a change.

Change_INventory
List the changes of a project with their UUIDs.

Changes
List the changes of a project. The verbose version includes details such as the state of the change
and it’s brief description. The terse version lists only the change numbers, which is good for shell
scripts.

Default_Change
List the default change for the specified user (defaults to the current user if no user specified).

Default_Project
List the default project for the specified user (defaults to the current user if no user specified).

Developers
List the developers of a project.

INComplete
List the changes between the awaiting review and being integrated states, inclusive. Defaults to
all users if no user name specified.

Integrators
List the integrators of a project.

Reference Manual Aegis 206

aegis −List(1) General Commands Manual aegis −List(1)

List_List
List all lists available.

Locks
List all currently active locks.

Outstanding_Changes
List all changes owned by the specified user that are not yet completed (default to all users if no
user specified).

All_Outstanding_Changes
List all changes not yet completed, for all projects.

Project_Details
List full information about all the changes in the project in large format. This listing will recurse
down the full branch tree below the project.

Project_Files
List all files in the baseline of a project. The verbose version includes details such as the action
being taken, the edit number of the file. The terse version only lists the files names (and omits re-
moved files), this is useful for shell scripts and interfacing with build tools. If a change number is
given, files included in the change are omitted from the list (giving the change’s perspective on
what the project files are).

Project_File_INventory
This listing shows the filenames and their corresponding UUIDs. When a file is renamed, its
UUID remains constant. (If the UUID column has the filename in it, this is a backwards compat-
ibility value, for accessing the file history.)

Project_History
List the integration history of a project.

Projects
List all projects.

Project_Aliases
List all project aliases. If you use the −Project command line option, the list will only include
aliases of the specified project, or the project of the specified alias.

Reviewers
List the reviewers of a project.

State_File_Name
Prints the absolute path of the project’s or change’s state file. Useful for cookbooks and make-
files.

Users_Changes
List of changes owned by the specified user (defaults to current user if no user specified).

Version
List version of a project or change. This includes the major and minor version number, and the
previous version number if available. The list of copyright years is also printed.

Most of these lists are available from other aegis functions. Many aegis functions provide more specific
lists.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

Reference Manual Aegis 207

aegis −List(1) General Commands Manual aegis −List(1)

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−PAGer The output of listings and help is piped through the pager command given in the PAGER environ-
ment variable (or more if not set). This is the default if the command is in the foreground, and the
output is a TTY. This option may be used to override any preference specified in the aeuconf (5)
file.

−No_PAGer
This option may be used to ensure that the output of listings and help is not piped through a pager
command. This is the default if the command is in the background, or if the output is not a TTY.
This option may be used to override any preference specified in the aeuconf (5) file.

−Page_Length number

This option may be used to set the page length of listings. The default, in order of preference, is
obtained from the system, from the LINES environment variable, or set to 24 lines.

−Page_Width number

This option may be used to set the page width of listings and error messages. The default, in or-
der of preference, is obtained from the system, from the COLS environment variable, or set to 79
characters.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-UNFormatted
This option may be used with most listings to specify that the column formatting is not to be per-
formed. This is useful for shell scripts.

-Page-Header
This option requests that page headings be present in listings and reports. This is the default.

-No-Page-Header
This option requests that page headings be omitted from listings and reports.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 208

aegis −List(1) General Commands Manual aegis −List(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias ael ’aegis −l \!* −v’
sh$ ael(){aegis −l "$@" −v}

ERRORS
It is an error if the list name given is unknown.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aedb(1) begin development of a change (listing option)

aeib(1) begin integration of a change (listing option)

aelcf (1) list change files

aelpf (1) list project files

aer(1) report generator

aerpass(1)
pass review of a change (listing option)

aeuconf (5)
user configuration file format

aels(1) annotated directory listing

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 209

aelcf (1) aelcf (1)

NAME
aelcf − list change files

SYNOPSIS
aelcf [option...]
aelcf −Help
aelcf −VERSion

DESCRIPTION
The aelcf command is used to list the files which make up a change. The file names are printed one per line
on the output.

If there are no files matching your criteria (see below) the output will be empty, and no error will be issued.

This is very similar to the aegis −l cf listing, but it only lists file names, it lists no other attributes, and it is
considerably faster.

If your filenames have newlines in them, you have a problem. You can use any of the posix_filename_-

charset, dos_filename_required, windows_filename_required, or shell_safe_filenames fields in your project
configuration file to prevent this. See aenf(1) and aepconf(5) for more information.

OPTIONS
The following options are understood:

−ACtion name

This option may be used to specify which file actions you are interested in. Valid values are "cre-
ate", "modify", "remove", etc, as may be observed in the Action column of the aegis −l pf listing.
The default is to list files with all actions except removed files. You may use this option more
than once.

−Not_ACtion name

This option may be used to exclude an action from the listing. If no actions are explicitly in-
cluded or excluded, the default is to exclude removed files. You may use this option more than
once.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aelcf program.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−USAge name

This option may be used to specify which file usages you are interested in. Valid values are
"source", "test", etc, as may be observed in the Usage column of the aegis −l pf listing. The de-
fault is to list files with all usages. You may use this option more than once.

−Not_USAge name

This option may be used to exclude usages from the listing. The default is to exclude no usages.
You may use this option more than once.

−Quote-C
This option is used to request that each file name be quoted as C strings are quoted.

Reference Manual Aegis 210

aelcf (1) aelcf (1)

−Quote-COok
This option is used to request that each file name be quoted as cook(1) strings are quoted. When
no quoting is required for individual files, the file name will not be quoted.

−Quote-Shell
This option is used to request that each file name be quoted as sh(1) strings are quoted. When no
quoting is required for individual files, the file name will not be quoted.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aelcf are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aelcf command will exit with a status of 1 on any error. The aelcf command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
ael(1) list interesting things

aelpf(1) list project files

aenf(1) add new files to be created by a change

aepconf(5)
project configuration file

COPYRIGHT
aelcf version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aelcf program comes with ABSOLUTELY NO WARRANTY; for details use the ’aelcf −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aelcf −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 211

GPL(GNU) Free Software Foundation GPL(GNU)

In addition to the following license, as a special exception, the copyright holders give permission to link the
code of this program with the OpenSSL library, and distribute linked combinations including the two. You
must obey the GNU General Public License in all respects for all of the code used other than OpenSSL. If
you modify file(s) with this exception, you may extend this exception to your version of the file(s), but you
are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. If
you delete this exception statement from all source files in the program, then also delete it here.

The full text of the exception is available in the LICENSE.openssl file in the source distribution.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and dis-
tribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program − to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to re-
strict development and use of software on general-purpose computers, but in those that do, we wish to avoid
the special danger that patents applied to a free program could make it effectively proprietary. To prevent
this, the GPL assures that patents cannot be used to render the program non-free.

GNU GPL 212

GPL(GNU) Free Software Foundation GPL(GNU)

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification), mak-
ing available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may con-
vey the work under this License, and how to view a copy of this License. If the interface presents a list of
user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major Compo-
nent, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard
Interface for which an implementation is available to the public in source code form. A “Major Compo-
nent”, in this context, means a major essential component (kernel, window system, and so on) of the spe-
cific operating system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to con-
trol those activities. However, it does not include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow be-
tween those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GNU GPL 213

GPL(GNU) Free Software Foundation GPL(GNU)

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevoca-
ble provided the stated conditions are met. This License explicitly affirms your unlimited permission to run
the unmodified Program. The output from running a covered work is covered by this License only if the
output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or
other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose of
having them make modifications exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any copies of your copy-
righted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law ful-
filling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar
laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any leg al power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means
of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of techno-
logical measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply to
the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this Li-
cense along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all no-
tices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate such permission if you have
separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

GNU GPL 214

GPL(GNU) Free Software Foundation GPL(GNU)

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its result-
ing copyright are not used to limit the access or legal rights of the compilation’s users beyond what the in-
dividual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to
the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you of-
fer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corre-
sponding Source. This alternative is allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the Corresponding Source may be on a differ-
ent server (operated by you or a third party) that supports equivalent copying facilities, provided you
maintain clear directions next to the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is avail-
able for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for incorpora-
tion into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be re-
solved in favor of coverage. For a particular product received by a particular user, “normally used” refers to
a typical or common use of that class of product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected to use, the product. A product is a con-
sumer product regardless of whether the product has substantial commercial, industrial or non-consumer
uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,

GNU GPL 215

GPL(GNU) Free Software Foundation GPL(GNU)

and the conveying occurs as part of a transaction in which the right of possession and use of the User Prod-
uct is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is char-
acterized), the Corresponding Source conveyed under this section must be accompanied by the Installation
Information. But this requirement does not apply if neither you nor any third party retains the ability to in-
stall modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional per-
missions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this Li-
cense; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the mater-
ial (or modified versions of it) with contractual assumptions of liability to the recipient, for any liabil-
ity that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a cov-
ered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files,
a statement of the additional terms that apply to those files, or a notice indicating where to find the applica-
ble terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,

GNU GPL 216

GPL(GNU) Free Software Foundation GPL(GNU)

or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any at-
tempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your li-
cense, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently rein-
stated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to re-
ceive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licen-
sors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing
compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous para-
graph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest,
if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this Li-
cense. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do not include claims that would be in-
fringed only as a consequence of further modification of the contributor version. For purposes of this defin-
ition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements
of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s

GNU GPL 217

GPL(GNU) Free Software Foundation GPL(GNU)

essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however de-
nominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue
for patent infringement). To “grant” such a patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge and under the terms of this License, through a pub-
licly available network server or other readily accessible means, then you must either (1) cause the Corre-
sponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for
this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend
the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that,
but for the patent license, your conveying the covered work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the ex-
ercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted un-
der this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of
the parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the con-
ditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that ob-
ligate you to collect a royalty for further conveying from those to whom you convey the Program, the only
way you could satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section

GNU GPL 218

GPL(GNU) Free Software Foundation GPL(GNU)

13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of fol-
lowing the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DAT A BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect ac-
cording to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiv er of all civil liability in connection with the Program, unless a warranty or assumption of liability ac-
companies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

GNU GPL 219

GPL(GNU) Free Software Foundation GPL(GNU)

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interac-
tive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type “show w”. This is free
software, and you are welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General Pub-
lic License. Of course, your program’s commands might be different; for a GUI interface, you would use
an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary appli-
cations with the library. If this is what you want to do, use the GNU Lesser General Public License instead
of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. # vim: set ts=8
sw=4 et :

GNU GPL 220

aelock(1) aelock(1)

NAME
aelock − take a lock while a command runs

SYNOPSIS
aelock [option...] command

aelock −Help
aelock −VERSion

DESCRIPTION
The aelock" command is used to take a project lock while a command runs. This may be used to ensure
that the project state is stable while it is being backed up.

The named command is looked for as an attribute called aelock:command within the project_specific

field of the project configuration file.

The command is then passed through the usual aesub(5) substitutions before being executed. The com-
mand is executed as the project owner. If the command returns with a non-zero exit status, the aelock(1)
command will return an exit status of one.

Security Issues
This command is a potential security problem. Because it takes a read-only lock of all active branches and
changes in a project, from the trunk down, misuse of this command is a potential denial of service attack.
Thus, this command is limited to project administrators only.

This command could have been designed to take an arbitrary command to execute, like sudo(1), but this
would have granted users, even project administrators, more privileges than usual. For this reason, the
command is held in a source controlled, fully reviewed project configuration file, and is simply indicated by
name.

The command is run as the project owner, not the executing user. It has full write access (that’s the way
Unix permissions work). Like aeb(1), this means it can wreak havoc on the project baseline and meta-data.
Use with extreme care.

OPTIONS
The following options are understood:

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-Help
This option may be used to obtain more information about how to use the aelock program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aelock are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aelock command will exit with a status of 1 on any error. The aelock command will only exit with a
status of 0 if there are no errors.

Reference Manual Aegis 221

aelock(1) aelock(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aelock version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aelock program comes with ABSOLUTELY NO WARRANTY; for details use the ’aelock −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aelock −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 222

aelpf (1) aelpf (1)

NAME
aelpf − list project files

SYNOPSIS
aelpf [option...]
aelpf −Help
aelpf −VERSion

DESCRIPTION
The aelpf command is used to list the files which make up a project. The file names are printed one per line
on the output.

If there are no files matching your criteria (see below) the output will be empty, and no error will be issued.

This is very similar to the aegis −l pf listing, but it only lists file names, it lists no other attributes, and it is
considerably faster.

If a change number is supplied on the command line, the files within that change will be excluded from the
listing. This allows build tools to distinguish between change files which are changing, from project files
which are not, if they care.

If your filenames have newlines in them, you have a problem. You can use any of the posix_filename_-

charset, dos_filename_required, windows_filename_required, or shell_safe_filenames fields in your project
configuration file to prevent this. See aenf(1) and aepconf(5) for more information.

OPTIONS
The following options are understood:

−ACtion name

This option may be used to specify which file actions you are interested in. Valid values are "cre-
ate", "modify", "remove", etc, as may be observed in the Action column of the aegis −l pf listing.
The default is to list files with all actions except removed files. You may use this option more
than once.

−Not_ACtion name

This option may be used to exclude an action from the listing. If no actions are explicitly in-
cluded or excluded, the default is to exclude removed files. You may use this option more than
once.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aelpf program.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−USAge name

This option may be used to specify which file usages you are interested in. Valid values are
"source", "test", etc, as may be observed in the Usage column of the aegis −l pf listing. The de-
fault is to list files with all usages. You may use this option more than once.

−Not_USAge name

This option may be used to exclude usages from the listing. The default is to exclude no usages.
You may use this option more than once.

Reference Manual Aegis 223

aelpf (1) aelpf (1)

−Quote-C
This option is used to request that each file name be quoted as C strings are quoted.

−Quote-COok
This option is used to request that each file name be quoted as cook(1) strings are quoted. When
no quoting is required for individual files, the file name will not be quoted.

−Quote-Shell
This option is used to request that each file name be quoted as sh(1) strings are quoted. When no
quoting is required for individual files, the file name will not be quoted.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aelpf are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aelpf command will exit with a status of 1 on any error. The aelpf command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
ael(1) list interesting things

aelcf(1) list change files

aenf(1) add new files to be created by a change

aepconf(5)
project configuration file

COPYRIGHT
aelpf version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aelpf program comes with ABSOLUTELY NO WARRANTY; for details use the ’aelpf −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aelpf −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 224

aels(1) aels(1)

NAME
aels − annotated directory listing

SYNOPSIS
aels [option...][filename...]
aels −Help
aels −VERSion

DESCRIPTION
The aels command is used to list information about the files and directories named on the command line. If
no files are named, the current directory is listed.

The view presented is from Aegis’ perspective. It unifies the development directory with the baseline.

OPTIONS
The following options are understood:

−Recursive

−LOng This option implies the −Show-Mode, −Show-Attributes, −Show-User, −Show-Group,
−Show-Size and −Show-When options, unless explicitly overridden.

−Show-Dot-Files
This option may be used to show files starting with a dot (.).

−Hide-Dot-Files
This option may be used to hide files starting with a dot (.). This is the default.

−Show-Removed-Files
This option may be used to include removed files in the listing.

−Hide-Removed-Files
This option may be used to exclude removed files from the listing. This is the default.

−Show-Mode
This option may be used to include the mode column in the listing. The mode column indicates
the file type and permissions.

−Hide-Mode
This option may be used to exclude the mode column from the listing. This is the default.

−Show-Attributes
This option may be used to include the attributes column in the listing. The attributes column in-
dicates whether the file is part of the change, the project or neither; whether the file is being cre-
ated, modified or removed; whether the file is a source file, a test file, or neither. This is the de-
fault.

−Hide-Attributes
This option may be used to exclude the attributes column from the listing.

−Show-User
This option may be used to include file owner information in the listing.

−Hide-User
This option may be used to exclude file owner information from the listing. This is the default.

−Show-Group
This option may be used to include file group information in the listing.

−Hide-Group
This option may be used to exclude file group information from the listing. This is the default.

−Show-Size
This option may be used to include file size information in the listing.

Reference Manual Aegis 225

aels(1) aels(1)

−Hide-Size
This option may be used to exclude file size information from the listing. This is the default.

−Show-When
This option may be used to include the file modification time in the listing.

−Hide-When
This option may be used to exclude the file modification time from the listing. This is the de-
fault.

-Help
This option may be used to obtain more information about how to use the aels program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aels are long, this means ignoring
the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aels command will exit with a status of 1 on any error. The aels command will only exit with a status
of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
ls(1) list directory contents

aefind(1)
search for files in directory hierarchy

ael cf List change files.

ael pf List project files.

COPYRIGHT
aels version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aels program comes with ABSOLUTELY NO WARRANTY; for details use the ’aels −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aels −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 226

aelsf (1) aelsf (1)

NAME
aelsf − list source files

SYNOPSIS
aelsf [option...]
aelsf −Help
aelsf −VERSion

DESCRIPTION
The aelsf command is used to list the source files of a change, including project source files and change
source files. The file names are printed one per line on the standard output.

If there are no files matching your criteria (see below) the output will be empty, and no error will be issued.

This is very similar to the aelpf(1) and aelcf(1) commands, almost as if you ran both, but as a single com-
mand.

If your filenames have newlines in them, you have a problem. You can use any of the posix_filename_-

charset, dos_filename_required, windows_filename_required, or shell_safe_filenames fields in your project
configuration file to prevent this. See aenf(1) and aepconf(5) for more information.

OPTIONS
The following options are understood:

−ACtion name

This option may be used to specify which file actions you are interested in. Valid values are "cre-
ate", "modify", "remove", etc, as may be observed in the Action column of the aegis −l pf listing.
The default is to list files with all actions except removed files. You may use this option more
than once.

−Not_ACtion name

This option may be used to exclude an action from the listing. If no actions are explicitly in-
cluded or excluded, the default is to exclude removed files. You may use this option more than
once.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aelsf program.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−USAge name

This option may be used to specify which file usages you are interested in. Valid values are
"source", "test", etc, as may be observed in the Usage column of the aegis −l pf listing. The de-
fault is to list files with all usages. You may use this option more than once.

−Not_USAge name

This option may be used to exclude usages from the listing. The default is to exclude no usages.
You may use this option more than once.

−RESOlve
This option may be used to request the absolute path of each of the source files. This is helpful
when using xargs(1) or grep(1).

Reference Manual Aegis 227

aelsf (1) aelsf (1)

−Quote-C
This option is used to request that each file name be quoted as C strings are quoted.

−Quote-COok
This option is used to request that each file name be quoted as cook(1) strings are quoted. When
no quoting is required for individual files, the file name will not be quoted.

−Quote-Shell
This option is used to request that each file name be quoted as sh(1) strings are quoted. When no
quoting is required for individual files, the file name will not be quoted.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aelsf are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aelsf command will exit with a status of 1 on any error. The aelsf command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aelcf(1) list change files

aelpf(1) list project files

aenf(1) add new files to be created by a change

aepconf(5)
project configuration file

COPYRIGHT
aelsf version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aelsf program comes with ABSOLUTELY NO WARRANTY; for details use the ’aelsf −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aelsf −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 228

aemakeg en(1) aemakeg en(1)

NAME
aemakegen − generate a Makefile.in from file manifest

SYNOPSIS
aemakegen [option...][filename...]
aemakegen −Help
aemakegen −VERSion

DESCRIPTION
The aemakeg en command is used to generate a Makefile.in file from a file manifest. The search path
and file manifest is derived from Aegis meta-data. File names on the command line are considered to be
additional files, and will be added to the manifest.

Project Structure
The aemakeg en command assumes a particular project structure. This is as follows:

lib/ The lib directory contains C++ files to be compiled, and placed into the lib/lib.a file, to be
linked with the other executables. (You can override this with the aemakegen:library-di-
rectory project specific attribute.)

libproject/
An alternative name to lib, above.

If there is a libproject/libproject.h file, this is installed as $(prefix)/in-
clude/libproject/libproject.h and any project file it includes in turn are also installed be-
low $(prefix)/include/libproject/

prog/
The source for each executable is contained in its own directory. Which directories contain pro-
grams are determined by the presence of a main.c or main.cc file.

As a special case, files named test/name/* will be linked as an executable bin/test_name

bin/ Each program is compiled and linked, with the executable placed in the bin directory.

datadir/
These files will be installed into the $(DATADIR)/project-name/ directory.

datarootdir/
These files will be installed into the $(DATAROOTDIR)/ directory. This is usually meta-data to
tell other packages about this package’s existence.

libdir/
These files will be installed into $(LIBDIR)/

test_*/
These commands are expected to be in support of the check target and are compiled but not in-
stalled. (Can use a minus rather than an underscore, if you prefer.)

noinst_*/
These commands are expected to be in support of the build, or the check target, and are com-
piled but not installed. (Can use a minus rather than an underscore, if you prefer.)

configure.ac
If the configure.ac file contains certain lines, additional features will be added to the file. These include:

AC_CHECK_PROGS(GROFF,
The project uses the groff(1) and the GNU Groff documentation suite.

AC_CHECK_PROGS(LIBTOOL, ...
This will cause the library to be built as a shared library, and installed so as to make it accessible
to the programs linked against it. Note that you can set the project_specific attribute ae-
makegen:libtool to true for the same effect.

Reference Manual Aegis 229

aemakeg en(1) aemakeg en(1)

AC_CHECK_PROGS(SOELIM,
One of the programs in the GNU Groff documentation suite.

AC_EXEEXT
The makefile defines the $(EXEEXT) macro, for executable file extensions.

AC_LANG([C])
The source files are all assumed to be in C.

AC_LANG([C++])
The source files are all assumed to be in C++.

AC_LANG_C
The source files are all assumed to be in C.

AC_LANG_CPLUSPLUS
The source files are all assumed to be in C++.

AC_LIBEXT
The makefile defines the $(LIBEXT) macro, for library file extensions.

AC_OBJEXT
The makefile defines the $(OBJEXT) macro, for object file extensions.

AC_PROG_LIBTOOL
Synonym for the longer libtool form, above.

AC_PATH_XTRA
The project uses the X11 window system.

Project Attributes
The following project_specific attributes are known:

aemakegen:debian:brief−description:package

Used by the debian target to set the first line of the Description field of each package.

aemakegen:debian:build-depends
Used by the debian target to set the Build-Depends.

aemakegen:debian:conflicts:package

Used by the debian target to set the Conflicts field of each package.

aemakegen:debian:description:package

Used by the debian target to set the Description field of each package.

aemakegen:debian:dm-upload-allowed
Used by the debian target. If true, the DM-Upload-Allowed field will be set to yes.

aemakegen:debian:homepage
Used by the debian target to set the homepage. Omitted of not set.

aemakegen:debian:priority
Used by the debian target to set the priority. Defaults to "extra" if not set.

aemakegen:debian:maintainer
Used by the debian target to set the maintainer.

aemakegen:debian:provides:package

Used by the debian target to set the Provides field of each package.

aemakegen:debian:recommends:package

Used by the debian target to set the Recommends field of each package.

aemakegen:debian:replaces:package

Used by the debian target to set the Replaces field of each package.

Reference Manual Aegis 230

aemakeg en(1) aemakeg en(1)

aemakegen:debian:section
Used by the debian target to set the section. Defaults to "unknown" if not set.

aemakegen:debian:suggests:package

Used by the debian target to set the Suggests field of each package.

aemakegen:libtool
Boolean, whether or not to use libtool(1) to build the project’s libraries. This is of most interest
to projects which build shared libraries.

aemakegen:rpm-spec:build-requires
Additional packages required to build the project.

aemakegen:rpm-spec:description
A description of the project.

aemakegen:version-info
String; the shared library’s version number (completely different and separate to the project ver-
sion, see libtool(1) for discussion). Three colon-separated decimal numbers. Defaults to 0:0:0 if
not set.

Change Set Attributes
The following change set attributes are known:

aemakegen:debian:accepted
Normally, when the “debian/changelog” file is written, it gathers up all of the Debian “Changed”
information, and places it into the change-log entry for the first (i.e. most recent) change in the
changelog. This ensures it will be transferred into the “*.changes” files. If a change set is
marked with aemakegen:debian:accepted=true, it drops all of the “Closed” informa-
tion, as this has already been processed by the Debian bug tracking system.

File Attributes
The following file attributes are known:

aemakegen:noinst
boolean. If true, aemakeg en(1) will not cause the program to be installed. Usually attached to
the source file containing the main function, or to script files. Defaults to false if not defined (i.e.

do install program).

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−SCRipt pattern

This option may be used to nominate file which are scripts. The patterns are normal shell file
name globbing patterns, so you may need to quote it. You may use this option more than once.
Scripts in the script/ or scripts/ directories will be installed. Scripts with a basename
starting with test_ will be build to support the “make check” target.

Reference Manual Aegis 231

aemakeg en(1) aemakeg en(1)

−TArget name

The option may be used to select the desired output format by name. The known names are:

automake
Generate automake(1) input, suitable for use as a top-level Makefile.am file.

makefile Generate make(1) input, suitable for as as a top-level Makefile.in file. This is the
default.

debian Generate the debian/ directory contents, which will exactly match the Makefile gen-
erated by the above two.

pkg-config
Generate a pkg-config(1) configuration (.pc) file. It will exactly match the above tar-
gets, provided they expect to see this output in a .pc file in the manifest, or are given
on on the command line.

rpm-spec
Generate an RPM .spec file, for use with rpm-build(1).

-Help
This option may be used to obtain more information about how to use the aemakeg en program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aemakeg en are long, this means
ignoring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aemakeg en command will exit with a status of 1 on any error. The aemakeg en command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aemakegen version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aemakegen program comes with ABSOLUTELY NO WARRANTY; for details use the ’aemakeg en

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aemakeg en −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 232

aemeasure(1) aemeasure(1)

NAME
aemeasure − simple file metrics

SYNOPSIS
aemeasure [infile [outfile]]

DESCRIPTION
The aemeasure command is used to measure a few very simple file statistics: lines of code, lines of com-
ments, blank lines. It is an example of a probgram which produces its output in the aemetrics(5) format,
suitable for Aegis to read and understand as file metrics.

The language of the file is determined by examining the file suffix.
.c, .h, .y C language
.cc, .CC, .c++, C++ language
.man, .mm, .ms,
.so

GNU Groff input

METRICS
Aegis is capable of recording metrics as part of the file attributes of a change. This allows various proper-
ties of files to be recorded for later trend analysis, or other uses.

The specific metrics are not dictated by Aegis. It is expected that the integration build will create a metrics
file for each of the source files the change. These metrics files must be in the format specified by aemet-

rics(5).

The name of the metrics file defaults to “filename,S”, however it may be varied, by setting the metrics_-

filename_pattern field of the project config file. See aepconf(5) for more information.

If such a metrics file exists, for each source file in a change, it will be read and remembered at integrate
pass time. If it does not exist, Aegis assumes there are no relevant metrics for that file, and proceeds
silently; it is not an error.

OPTIONS
The following option is understood

−LANGuage name

This option may be used to specify the input language of the file, rather than have the input lan-
guage be guessed fromn the file suffix. The name must be one of the following: C, C++, roff or
generic. Any other name will result in an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aemeasure are long, this means
ignoring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aemeasure command will exit with a status of 1 on any error. The aemeasure command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 233

aemeasure(1) aemeasure(1)

SEE ALSO
aeipass(1)

pass a change integration

aemetrics(5)
metrics values file format

COPYRIGHT
aemeasure version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aemeasure program comes with ABSOLUTELY NO WARRANTY; for details use the ’aemeasure

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aemeasure −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 234

aegis −Make_Transparent(1) aegis −Make_Transparent(1)

NAME
aegis make transparent − make branch file transparent

SYNOPSIS
aegis −Make_Transparent [option...] filename...
aegis −List [option...]
aegis −Help
aegis −VERSion

DESCRIPTION
The aegis −Make_Transparent command is used to add a file to the change which will result in the named
file being made transparent in the branch when the change is integrated. The version of the project file
from the deeper branch will then show through.

You may name a directory to make all files in that directory tree transparent. It is an error if there are no
relevant files.

Branch vs Change
The aecpu(1) command may only be applied to a change. If you wish to perform the same operation on a
branch, use the aemt(1) command, through the agency of a change.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because changing the change file list logically in-
validates them.

Notification
The make_transparent_command in the project configuration file is run, if set. The project_file_command

is also run, if set, and if there has been an integration recently. See aepconf(5) for more information.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

Reference Manual Aegis 235

aegis −Make_Transparent(1) aegis −Make_Transparent(1)

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−UNChanged
Examine the named files to see if they are unchanged. Only remove the unchanged files from the
branch, and leave the files which have changed. If no files are named on the command line all
branch files are checked.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aemt ’aegis −mt \!* −v’
sh$ aemt(){aegis −mt "$@" −v}

This command is dedicated to my wife, Mary-Therese. When I was trying to explain what this command
did, she said “I had one of those on my bicycle when I was young, but it fell off”.

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is not present in the immediate branch.
It is an error if the file is present in the immediate branch, but is not also present in a deeper branch.
It is an error if the file is only present in the trunk branch.

Reference Manual Aegis 236

aegis −Make_Transparent(1) aegis −Make_Transparent(1)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecpu(1)

uncopy copy files from a change

aemtu(1)
cease making branch files transparent

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 237

aegis −Make_Transparent_Undo(1) aegis −Make_Transparent_Undo(1)

NAME
aegis make transparent undo − no longer make branch file transparent

SYNOPSIS
aegis −Make_Transparent_Undo [option...] filename...
aegis −Make_Transparent_Undo −List
aegis −Make_Transparent_Undo −Help

DESCRIPTION
The aegis −Make_Transparent_Undo command is used to reverse the effects of the aegis −Make_Trans-

parent command. The named files will be removed from the list of files in the change.

The file is deleted from the development directory unless the −Keep option is specified. The −Keep option
should be used with great care, as you can confuse tools such as make(1) by leaving these files in place.

You may name a directory to delete from the change all files in that directory tree previously copied into the
change, other files in the tree will be ignored. It is an error if there are no relevant files.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because deleting a file logically invalidates them.
If the project config file was deleted, any diff registration will also be canceled.

The difference file (,D) will also be removed, however any DMT derived files (e.g a .o file from a .c file)
will not be removed. This is because aegis is decoupled from the DMT, and cannot know what these de-
rived file may be called. You may need to delete derived files manually.

Notification
The make_transparent_undo_command in the project config file is run, if set. The project_file_command is
also run, if set, and if there has been an integration recently. See aepconf(5) for more information.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

Reference Manual Aegis 238

aegis −Make_Transparent_Undo(1) aegis −Make_Transparent_Undo(1)

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more informa-
tion.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

Reference Manual Aegis 239

aegis −Make_Transparent_Undo(1) aegis −Make_Transparent_Undo(1)

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aemtu ’aegis −mtu \!* −v’
sh$ aemtu(){aegis −mtu "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecpu(1)

no longer modify a file

aemt(1) make branch files transparent

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 240

aegis −MoVe_file(1) General Commands Manual aegis −MoVe_file(1)

NAME
aegis move file − rename one or more files as part of a change

SYNOPSIS
aegis −MoVe_file [option...] old-file-name new-file-name [old1 new1 [old2 new2 ...]]
aegis −MoVe_file −List [option...]
aegis −MoVe_file −Help

DESCRIPTION
The aegis −MoVe_file command is used to copy a file into a change and change its name at the same time.

The named files will be copied from the baseline (old-file-name) into the development directory (new-file-

name), and added to the list of files in the change.

Warning: If there is already files in the development directory of either the old-name or the new-name they
will be overwritten.

The old-file-name in the development directory will contain 1KB of random text. The random text is suffi-
ciently revolting that most compilers will give error messages, should the file be referenced accidentally.
This is often very helpful when moving include files.

You may rename directories. All the files in the old-name directory tree will be renamed to be below the
new-name directory tree.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because adding another file logically invalidates
them.

When the change files are listed (aegis −List Change_Files −TERse) the new files (new-file-name) will ap-
pear in the listing, and the removed files (old-file-name) will not appear in the terse listing. Similarly, when
the project files are listed with an explicit change number (aegis −List Project_Files −TERse −Change N)
none of the change’s files, including both the new and removed files, will appear in the terse listing. These
two features are very helpful when calling aegis from within a DMT to generate the list of source files.

Notification
The new_file_command and remove_file_command in the project config file are run, if set. The project_-

file_command is also run, if set, and if there has been an integration recently. See aepconf(5) for more in-
formation.

WHITEOUT
Aegis provides you with what is often called a “view path” which indicates to development tools (compil-
ers, build systems, etc) look first in the development directory, then in the branch baseline, and so on up to
the trunk baseline.

The problem with view paths is that in order to remove files, you need some kind of "whiteout" to say “stop
looking, it’s been removed.”

Reference Manual Aegis 241

aegis −MoVe_file(1) General Commands Manual aegis −MoVe_file(1)

When you user the aerm(1) or aemv(1) commands, this means "add information to this change which will
remove the file from the baseline when this change is integrated". I.e. while the change is in the being de-

veloped state, the file is only "removed" in the development directory − it’s still present in the baseline, and
will be until the change is successfully integrated.

When you use the aerm(1) or aemv(1) commands, Aegis will create a 1K file to act as the whiteout. It’s
contents are rather ugly so that if you compile or include the "removed" file accidentally, you get a fatal er-
ror. This will remind you to remove obsolete references.

When the change in integrated, the removed file is not copied/linked from the baseline to the integration di-
rectory, and is not copied from the development directory. At this time it is physically gone (no whiteout).
It is assumed that because of the error inducing whiteout all old references were found and fixed while the
change was in the being developed state.

File Manifests
When generating list of files to be compiled or linked, it is important that the file manifest be generated
from information known by Aegis, rather than from the file system. This is for several reasons:

(a) Aegis knows exactly what (source) files are where, whereas everything else is inferring Aegis’
knowledge; and

(b) looking in the file system is hard when the view path is longer that 2 directories (and Aegis’
branching method can make it arbitrarily long); and

(c) The whiteout files, and anything else left “lying around”, will confuse any method which interro-
gates the file system.

The easiest way to use Aegis’ file knowledge is with something like an awk(1) script processing the Aegis
file lists. For example, you can do this with make(1) as follows:

generate the file manifest
manifest.make.inc: manifest.make.awk

(aegis −l cf −ter ; aegis −l pf −ter) | \
awk −f manifest.make.awk > manifest.make.inc

now include the file manifest
include manifest.make.inc

Note: this would be inefficient of you did it once per directory, but there is nothing stopping you writing nu-
merous assignments into the manifest.make.inc file, all in one pass.

It is possible to do the same thing with Aegis’ report generator (see aer(1) for more information), but this is
more involved than the awk(1) script. However, with the information "straight from the horse’s mouth" as
it were, it can also be much smarter.

This file manifest would become out-of-date without an interlock to Aegis’ file operations commands. By
using the project-file_command and change_file_command fields of the project config file (see aepconf(5)
for more information), you can delete this file at strategic times.

/* run when the change file manifest is altered */
change_file_command = "rm −f manifest.make.inc";
/* run when the project file manifest is altered */
project_file_command = "rm −f manifest.make.inc";

The new file manifest will thus be re-built during the next aeb(1) command.

Options and Preferences
There is a −No-WhiteOut option, which may be used to suppress whiteout files when you use the aerm(1)
and aemv(1) commands. There is a corresponding −WhiteOut option, which is usually the default.

There is a whiteout_preference field in the user preferences file (see aeuconf(5) for more information) if
you want to set this option more permanently.

Whiteout File Templates
The whiteout_template field of the project config file may be used to produce language-specific error files.
If no whiteout template entry matches, a very ugly 1KB file will be produced − it should induce compiler
errors for just about any language.

Reference Manual Aegis 242

aegis −MoVe_file(1) General Commands Manual aegis −MoVe_file(1)

If you want a more human-readable error message, entries such as
whiteout_template =
[

{
pattern = ["*.[ch]"];
body = "#error This file has been removed.";

}
];

can be very effective (this example assumes gcc(1) is being used).

If it is essential that no whiteout file be produced, say for C source files, you could use a whiteout template
such as

whiteout_template =
[

{ pattern = ["*.c"]; }
];

because an absent body sub-field means generate no whiteout file at all.

You may have more than one whiteout template entry, but note that the order of the entries is important.
The first entry which matches will be used.

Notification
On successful completion of this command, the notifications usually performed by the aerm(1), aenf(1) and
aent(1) commands are run, as appropriate. These include the project_file_command, new_file_command,
new_test_command and remove_file_command fields of the project config file. See aepconf(5) for more in-
formation.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

Reference Manual Aegis 243

aegis −MoVe_file(1) General Commands Manual aegis −MoVe_file(1)

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−WhiteOut
This option may be used to request that deleted files be replaced by a “whiteout” file in the devel-
opment directory. The idea is that compiling such a file will result in a fatal error, in order that all
references may be found. This is usually the default.

−No_WhiteOut
This option may be used to request that no “whiteout” file be placed in the development directory.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aemv ’aegis −mv \!* −v’
sh$ aemv(){aegis −mv "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if either file is already in the change.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy files into a change

aedb(1) begin development of a change

aemvu(1)
undo the rename files as part of a change

aenf (1) add files to be created by a change

aenfu(1) remove files to be created by a change

Reference Manual Aegis 244

aegis −MoVe_file(1) General Commands Manual aegis −MoVe_file(1)

aerm(1) add files to be deleted by a change

aermu(1)
remove files to be deleted by a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 245

aegis −MoVe_file_Undo(1) General Commands Manual aegis −MoVe_file_Undo(1)

NAME
aegis move file undo − undo the rename a file as part of a change

SYNOPSIS
aegis −MoVe_file_Undo [option...] filename...
aegis −MoVe_file_Undo −List [option...]
aegis −MoVe_file_Undo −Help

DESCRIPTION
The aegis −MoVe_file_Undo command is used to reverse the effects of the aegis −MoVe_file command.
You only need to name one half of the rename, the other half will be determined automatically. You may
apply this command to whole directories.

The named files will be removed from the development directory, and removed from the list of files in the
change.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because adding another file logically invalidates
them.

Notification
The new_file_undo_command and remove_file_undo_command in the project config file are run, if set. The
project_file_command is also run, if set, and if there has been an integration recently. See aepconf(5) for
more information.

WHITEOUT
Aegis provides you with what is often called a “view path” which indicates to development tools (compil-
ers, build systems, etc) look first in the development directory, then in the branch baseline, and so on up to
the trunk baseline.

The problem with view paths is that in order to remove files, you need some kind of "whiteout" to say “stop
looking, it’s been removed.”

When you user the aerm(1) or aemv(1) commands, this means "add information to this change which will
remove the file from the baseline when this change is integrated". I.e. while the change is in the being de-

veloped state, the file is only "removed" in the development directory − it’s still present in the baseline, and
will be until the change is successfully integrated.

When you use the aerm(1) or aemv(1) commands, Aegis will create a 1K file to act as the whiteout. It’s
contents are rather ugly so that if you compile or include the "removed" file accidentally, you get a fatal er-
ror. This will remind you to remove obsolete references.

When the change in integrated, the removed file is not copied/linked from the baseline to the integration di-
rectory, and is not copied from the development directory. At this time it is physically gone (no whiteout).
It is assumed that because of the error inducing whiteout all old references were found and fixed while the
change was in the being developed state.

Reference Manual Aegis 246

aegis −MoVe_file_Undo(1) General Commands Manual aegis −MoVe_file_Undo(1)

File Manifests
When generating list of files to be compiled or linked, it is important that the file manifest be generated
from information known by Aegis, rather than from the file system. This is for several reasons:

(a) Aegis knows exactly what (source) files are where, whereas everything else is inferring Aegis’
knowledge; and

(b) looking in the file system is hard when the view path is longer that 2 directories (and Aegis’
branching method can make it arbitrarily long); and

(c) The whiteout files, and anything else left “lying around”, will confuse any method which interro-
gates the file system.

The easiest way to use Aegis’ file knowledge is with something like an awk(1) script processing the Aegis
file lists. For example, you can do this with make(1) as follows:

generate the file manifest
manifest.make.inc: manifest.make.awk

(aegis −l cf −ter ; aegis −l pf −ter) | \
awk −f manifest.make.awk > manifest.make.inc

now include the file manifest
include manifest.make.inc

Note: this would be inefficient of you did it once per directory, but there is nothing stopping you writing nu-
merous assignments into the manifest.make.inc file, all in one pass.

It is possible to do the same thing with Aegis’ report generator (see aer(1) for more information), but this is
more involved than the awk(1) script. However, with the information "straight from the horse’s mouth" as
it were, it can also be much smarter.

This file manifest would become out-of-date without an interlock to Aegis’ file operations commands. By
using the project-file_command and change_file_command fields of the project config file (see aepconf(5)
for more information), you can delete this file at strategic times.

/* run when the change file manifest is altered */
change_file_command = "rm −f manifest.make.inc";
/* run when the project file manifest is altered */
project_file_command = "rm −f manifest.make.inc";

The new file manifest will thus be re-built during the next aeb(1) command.

Options and Preferences
There is a −No-WhiteOut option, which may be used to suppress whiteout files when you use the aerm(1)
and aemv(1) commands. There is a corresponding −WhiteOut option, which is usually the default.

There is a whiteout_preference field in the user preferences file (see aeuconf(5) for more information) if
you want to set this option more permanently.

Whiteout File Templates
The whiteout_template field of the project config file may be used to produce language-specific error files.
If no whiteout template entry matches, a very ugly 1KB file will be produced − it should induce compiler
errors for just about any language.

If you want a more human-readable error message, entries such as
whiteout_template =
[

{
pattern = ["*.[ch]"];
body = "#error This file has been removed.";

}
];

can be very effective (this example assumes gcc(1) is being used).

If it is essential that no whiteout file be produced, say for C source files, you could use a whiteout template
such as

Reference Manual Aegis 247

aegis −MoVe_file_Undo(1) General Commands Manual aegis −MoVe_file_Undo(1)

whiteout_template =
[

{ pattern = ["*.c"]; }
];

because an absent body sub-field means generate no whiteout file at all.

You may have more than one whiteout template entry, but note that the order of the entries is important.
The first entry which matches will be used.

Notification
On successful completion of this command, the notifications usually performed by the aermu(1), aenfu(1)
and aentu(1) commands are run, as appropriate. These include the project_file_command, new_file_undo_-

command, new_test_undo_command and remove_file_undo_command fields of the project config file. See
aepconf(5) for more information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your

Reference Manual Aegis 248

aegis −MoVe_file_Undo(1) General Commands Manual aegis −MoVe_file_Undo(1)

configuration. The name is an historical accident, hard links and file copies are included.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−WhiteOut
This option may be used to request that deleted files be replaced by a “whiteout” file in the devel-
opment directory. The idea is that compiling such a file will result in a fatal error, in order that all
references may be found. This is usually the default.

−No_WhiteOut
This option may be used to request that no “whiteout” file be placed in the development directory.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aemvu ’aegis −mvu \!* −v’
sh$ aemvu(){aegis −mvu "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is not being moved by the change.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy files into a change

aedb(1) begin development of a change

aemv(1) rename files as part of a change

aenf (1) add files to be created by a change

aenfu(1) remove files to be created by a change

Reference Manual Aegis 249

aegis −MoVe_file_Undo(1) General Commands Manual aegis −MoVe_file_Undo(1)

aerm(1) add files to be deleted by a change

aermu(1)
remove files to be deleted by a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 250

aegis −New_Administrator(1) General Commands Manual aegis −New_Administrator(1)

NAME
aegis new administrator − add a new administrator to a project

SYNOPSIS
aegis −New_Administrator user-name... [option...]
aegis −New_Administrator −List [option...]
aegis −New_Administrator −Help

DESCRIPTION
The aegis −New_Administrator command is used to add a new administrator to a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 251

aegis −New_Administrator(1) General Commands Manual aegis −New_Administrator(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aena ’aegis −na \!* −v’
sh$ aena(){aegis −na "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.
It is an error if any of the named users have a uid of less than 100.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aepa(1) modify the attributes of a project

aera(1) remove administrators from a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 252

aegis −New_BRanch(1) General Commands Manual aegis −New_BRanch(1)

NAME
aegis new branch − create a new branch

SYNOPSIS
aegis −New_BRanch [number][option...]
aegis −New_BRanch −Help

DESCRIPTION
The aegis −New_BRanch command is used to create a new branch. A branch is very similar to a change,
except that a branch may have changes (or branches) of its own, and a change may not.

You may choose your own branch number, if you want. Zero and positives are legal, but negatives are not.
It is an error if that number has already been used for a change or another branch. If you do not specify a
change number, the lowest available positive number (1 or more) will be used.

The new branch will be a special sort of change. It will be in the ’being developed’ state, but the usual
commands in that stat (build, diff, etc) will not work. Instead, you must create changes on the branch, and
when those changes are integrated into the branch, this is the equivalent of build, diff, etc, on the branch.
Once the branch is completed, the aede(1) command may be used to advance it to the being reviewed state,
and from then on it becomes a normal change. Should it be returned to the being developed state for any
reason, it will once again require sub-changes to alter anything.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

−Output filename

This option may be used to specify a filename which is to be written with the automatically deter-
mined branch number. Useful for writing scripts.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

Reference Manual Aegis 253

aegis −New_BRanch(1) General Commands Manual aegis −New_BRanch(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenbr ’aegis −nbr \!* −v’
sh$ aenbr(){aegis −nbr "$@" −v}

SEE ALSO
aenbru(1)

remove a branch

aenc(1) create a new change

aede(1) develop end

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 254

aegis −New_BRanch_Undo(1) General Commands Manual aegis −New_BRanch_Undo(1)

NAME
aegis new branch undo − remove a branch

SYNOPSIS
aegis −New_BRanch_Undo number [option...]
aegis −New_BRanch_Undo −Help

DESCRIPTION
The aegis −New_BRanch_Undo command is used to remove a branch created with the aenbr(1) command.

Note: This command will completely remove all trace of the branch from Aegis’ database. This includes
all changes performed on the branch and all of its sub-branches. (This history remains in the history files,
but is inaccessible.)

If you wish to finish development of a branch, and commit all of its changes to the parent branch, use the
aede(1) command, instead.

If you wish to stop anyone from developing more changes on the branch, use the aerd(1) command to re-
move all the developers.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Reference Manual Aegis 255

aegis −New_BRanch_Undo(1) General Commands Manual aegis −New_BRanch_Undo(1)

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenbr(1)

create a new branch

aencu(1)
new change undo

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 256

aegis −New_Change(1) General Commands Manual aegis −New_Change(1)

NAME
aegis new change − add a new change to a project

SYNOPSIS
aegis −New_Change [number] −File attr-file [option...]
aegis −New_Change [number] −Edit [option...]
aegis −New_Change −List [option...]
aegis −New_Change −Help

DESCRIPTION
The aegis −New_Change command is used to add a new change to a project. See aecattr(5) for informa-
tion on the format of the attr-file.

The change is created in the awaiting development state. The change is not assigned to any user. The
change has no development directory.

new
change

aw aiting
development

develop
begin

being
developed

new
change
undo

develop
begin
undo

You may choose your own change number if you want, provided that it has not been used already. If you
do not specify a change number, aegis will allocate the lowest unused change number. The first few change
numbers are reserved for branches later in the project, and so automatically allocated change numbers will
usually not start from 1. See aepa(1) and aepattr(5) for more information.

You must give the −Project option, see below.

Notification
This is one of the rare "state transitions" which does not have a notification command. The assumption is
this command is invoked by the system which usually receives notifications.

OPTIONS
The following options are understood:

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

Reference Manual Aegis 257

aegis −New_Change(1) General Commands Manual aegis −New_Change(1)

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Output filename

This option may be used to specify a filename which is to be written with the automatically deter-
mined change number. Useful for writing scripts.

−Project name

This option is used to select the project for the new change.

You must supply the −Project option to this command. Experience has shown that when a site
has a number of active projects or several active branches on a project, new changes are fre-
quently created against the wrong project or the wrong branch. Making the project explicit re-
duces this problem.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenc ’aegis −nc \!* −v’
sh$ aenc(){aegis −nc "$@" −v}

Reference Manual Aegis 258

aegis −New_Change(1) General Commands Manual aegis −New_Change(1)

ERRORS
It is an error if the current user is not an administrator of the project. (In some cases it is possible for devel-
opers of a project to create changes, see aepattr(5) for more information.)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
tkaenc(1)

GUI interface to the aenc(1) command.

aeca(1) modify the attributes of a change

aedb(1) begin development of a change

aena(1) add a new administrator to a project

aencu(1)
remove a new change from a project

aenpr(1)
create a new project

aepa(1) modify the attributes of a project

aecattr(5)
change attributes file format

aepattr(5)
project attributes file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 259

aegis −New_Change_Undo(1) General Commands Manual aegis −New_Change_Undo(1)

NAME
aegis new change undo − remove a new change from a project

SYNOPSIS
aegis −New_Change_Undo [option...]
aegis −New_Change_Undo −List [option...]
aegis −New_Change_Undo −Help

DESCRIPTION
The aegis −New_Change_Undo command is used to remove a new change from a project.

It wasn’t called ’aegis −Remove_Change’ in order to emphasize that fact the the change must be in the
awaiting development state. In practice it is possible, with a combination of commands, to remove any
change which has not reached the completed

new
change

aw aiting
development

develop
begin

being
developed

new
change
undo

develop
begin
undo

state.

In general, only project administrators may destroy changes. However, if the project developers_may_-

create_changes attribute is true, and you are a developer and you created a particular change, you may also
destroy it.

Notification
This is one of the rare "state transitions" which does not have a notification command. The assumption is
this command is invoked by the system which usually receives notifications. It’s probably a bad assump-
tion.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

Reference Manual Aegis 260

aegis −New_Change_Undo(1) General Commands Manual aegis −New_Change_Undo(1)

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aencu ’aegis −ncu \!* −v’
sh$ aencu(){aegis −ncu "$@" −v}

ERRORS
It is an error if the change is not in the awaiting development state.
It is an error if any use other than a project administrator or the creator of the change attempts to run this
command.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenc(1) add a new change to a project

aeuconf (5)
user configuration file format

Reference Manual Aegis 261

aegis −New_Change_Undo(1) General Commands Manual aegis −New_Change_Undo(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 262

aegis −New_Developer(1) General Commands Manual aegis −New_Developer(1)

NAME
aegis new dev eloper − add new dev elopers to a project

SYNOPSIS
aegis −New_Developer user-name... [option...]
aegis −New_Developer −List [option...]
aegis −New_Developer −Help

DESCRIPTION
The aegis −New_Developer command is used to add new dev elopers to a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 263

aegis −New_Developer(1) General Commands Manual aegis −New_Developer(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aend ’aegis −nd \!* −v’
sh$ aend(){aegis −nd "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aerd(1) remove dev elopers from a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 264

aegis −New_File(1) General Commands Manual aegis −New_File(1)

NAME
aegis new file − add new files to be created by a change

SYNOPSIS
aegis −New_File file-name... [option...]
aegis −New_File −List [option...]
aegis −New_File −Help

DESCRIPTION
The aegis −New_File command is used to add new files to a change. The named files will be added to the
list of files in the change.

For each file named, a new file is created in the development directory, if it does not exist already. If the
file already exists, it will not be altered.

If you want a new source file to be executable (shell scripts, for example) then you simply use the normal
chmod(1) command. If any of the file’s executable bits are set at aede(1) time the file is remembered as ex-
ecutable and all execute bits (minus the project’s umask) will be set by subsequent aecp(1) commands.

If you name a directory on the command line, the entire directory tree will be searched for new files.
(Note: absolutely everything will be added, including dot files and binary files, so you will need to clean
out any junk first.) Files below this named directory which are already in the change, or in the project, will
be ignored. The file_name_accept and file_name_reject patterns in the project aegis.conf file will also be
applied, see aepconf(5) for more information.

Directory Example
There are times when a command such as

$ aenf fubar/*
aegis: project "example": change 42: "fubar/glorp" already in
change
aegis: project "example": change 42: found 1 fatal error, no new
files added
$

will fail as shown. There are several ways to deal with this, the easiest being to simply name the directory:
$ aenf fubar
aegis: project "example": change 42: file "fubar/smiley" added
aegis: project "example": change 42: file "fubar/frownie" added
$

You could also use the find(1) command for arbitrarily complex file selection, but you must first exclude
files that the above command excludes automatically:

$ aelcf > exclude
$ aelpf >> exclude
$ find fubar −type f | \

grep −v −f exclude | \
xargs aegis −−new-file −v

aegis: project "example": change 42: file "fubar/smiley" added
aegis: project "example": change 42: file "fubar/frownie" added
$

If you aren’t using the exclude list, the find(1) command will need fine tuning for your development direc-
tory style. If you are using the symlink-style, you will need to add the find −nlink 1 option in addition to
the find −type f option.

$ find fubar −type f −nlinks 1 | \
xargs aegis −−new-file −v

aegis: project "example": change 42: file "fubar/smiley" added
aegis: project "example": change 42: file "fubar/frownie" added
$

If you are using the full-copy dev elopment directory style, you will have to use the exclude list method,
above.

Reference Manual Aegis 265

aegis −New_File(1) General Commands Manual aegis −New_File(1)

File Templates
When a new file is created in the development directory the project config file is searched for a template for
the new file. If a template is found, the new file will be initialized to the template, otherwise it will be cre-
ated empty. See aepconf(5) for more information.

The simplest form is to use template files, such as
file_template =
[

{
pattern = ["*.c"];
body = "${read_file ${source template/c abs}}";

},
{

pattern = ["test/*/.sh"];
body = "${read_file ${source template/test abs}}";

},
];

As you can see, the template files are part of the project source, so you can add the appropriate copyright
notices, and wrappers, etc. The $source substitution locates them, if they are not part of the current change
(and they usually are not).

The template files themselves contain substitutions. The $filename substitution is available, and contains
the name of the file being created. This can be manipulated in various ways when constructing the appro-
priate file contents. See aesub(5) for more information about substitutions.

It is also possible to run a command to create the new file. You can do this instead of specifying a body
string, viz:

file_template =
[

{
pattern = ["*"];
body_command = "perl ${source template.pl abs} $filename";

},
];

The command is run with a current directory set to the top of the development directory. It is an error if the
command fails to create the file. You can mix-and-match the two techniques, body string and body_com-

mand, if you want.

File Name Limitations
There are a number of controls available to limit the form of project file names. All of these controls may
be found in the project configuration file, see aepconf (5) for more information. The most significant are
briefly described here:

maximum_filename_length = integer;
This field is used to limit the length of filenames. All new files may not have path components
longer than this. Defaults to 255 if not set. For maximum portability you should set this to 14.

posix_filename_charset = boolean;
This field may be used to limit the characters allowed in filenames to only those explicitly al-
lowed by POSIX. Defaults to false if not set, meaning whatever your operating system will tol-
erate, except white space and high-bit-on characters. For maximum portability you should set
this to true.

dos_filename_required = boolean;
This field may be used to limit filenames so that they conform to the DOS 8+3 filename limits
and to the DOS filename character set. Defaults to false if not set.

Reference Manual Aegis 266

aegis −New_File(1) General Commands Manual aegis −New_File(1)

windows_filename_required = boolean;
This field may be used to limit filenames so that they conform to the Windows98 and Win-
dowsNT filename limits and character set. Defaults to false if not set.

shell_safe_filenames = boolean;
This field may be used to limit filenames so that they do not contain shell special characters. De-
faults to true if not set. If this field is set to false, you will need to use the ${quote} substitution
around filenames in commands, to ensure that filenames containing shell special characters do
not have unintended side effects. Weird characters in filenames may also confuse your depen-
dency maintenance tool.

allow_white_space_in_filenames = boolean;
This field may be used to allow white space characters in file names. This will allow the follow-
ing characters to appear in file names: backspace (BS, \b, 0x08), horizontal tab (HT, \t, 0x09),
new line (NL, \n, 0x0A), vertical tab (VT, \v, 0x0B), form feed (FF, \f, 0x0C), and carriage return
(CR, \r, 0x0D). Defaults to false if not set.

Note that this field does not override other file name filters. It will be necessary to explicitly set
shell_safe_filenames = false as well. It will be necessary to set dos_filename_required = false

(the default) as well. It will be necessary to set posix_filename_charset = false (the default) as
well.

The user must take great care to use the ${quote} substitution around all file names in commands
in the project configuration. And ev en then, substitutions which expect a space separated list of
file names will have undefined results.

allow_non_ascii_filenames = boolean;
This field may be used to allow file names with non-ascii-printable characters in them. Usually
this would mean a UTF8 or international charset of some kind. Defaults to false if not set.

Note that this field does not override other file name filters. It will be necessary to explicitly set
shell_safe_filenames = false as well. It will be necessary to set dos_filename_required = false

(the default) as well. It will be necessary to set posix_filename_charset = false (the default) as
well.

filename_pattern_accept = [string];
This field is used to specify a list of patterns of acceptable filenames. Defaults to "*" if not set.

filename_pattern_reject = [string];
This field is used to specify a list of patterns of unacceptable filenames.

Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the

Reference Manual Aegis 267

aegis −New_File(1) General Commands Manual aegis −New_File(1)

integration directory path, to determine a baseline-relative name. It is an error if the file named is outside
one of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Changing the Type of a File
If you want to change the type of a file (say, from a test to a source file, or vice versa) you could do it as
two changes, by first using aerm(1) in one change and then using aenf(1) or aent(1) in a second change, or
you can combine both steps in the same change. Remember to use the aerm −nowhiteout option or you
will get a most peculiar new file template.

File Action Adjustment
When this command runs, it first checks the change files against the projects files. If there are inconsisten-
cies, the file actions will be adjusted as follows:

create If a file is being created, but another change set is integrated which also creates the file, the file
action in the change set still being developed will be adjusted to "modify".

modify If a file is being modified, but another change set is integrated which removes the file, the file ac-
tion in the change set still being developed will be adjusted to "create".

remove If a file is being removed, but another change set is integrated which removes the file, the file will
be dropped from the change set still being developed.

Notification
The new_file_command in the project configuration file is run, if set. The project_file_command is also
run, if set, and if there has been an integration recently. See aepconf(5) for more information.

TEST CORRELATIONS
The “aegis −Test −SUGgest” command may be used to have aegis suggest suitable regression tests for your
change, based on the source files in your change. This automatically focuses testing effort to relevant tests,
reducing the number of regression tests necessary to be confident that you have not introduced a bug.

The test correlations are generated by the “aegis −Integrate_Pass” command, which associates each test in
the change with each source file in the change. Thus, each source file accumulates a list of tests which have
been associated with it in the past. This is not as exact as code coverage analysis, but is a reasonable ap-
proximation in practice.

The aecp(1) and aenf (1) commands are used to associate files with a change. While they do not actively
perform the association, these are the files used by aeipass(1) and aet(1) to determine which source files
are associated with which tests.

Test Correlation Accuracy
Assuming that the testing correlations are accurate and that the tests are evenly distributed across the func-
tion space, there will be a less than 1/number chance that a relevant test has not been run by the “aegis
−Test −SUGgest number” command. A small amount of noise is added to the test weighting, so that unex-
pected things are sometimes tested, and the same tests are not run every time.

Test correlation accuracy can be improved by ensuring that:

• Each change should be strongly focused, with no gratuitous file inclusions. This avoids spurious cor-
relations.

• Each item of new functionality should be added in an individual change, rather than several together.
This strongly correlates tests with functionality.

• Each bug should be fixed in an individual change, rather than several together. This strongly corre-
lates tests with functionality.

Reference Manual Aegis 268

aegis −New_File(1) General Commands Manual aegis −New_File(1)

• Test correlations will be lost if files are moved. This is because correlations are by name.

The best way for tests to correlate accurately with source files is when a change contains a test and exactly
those files relating to the functionality under test. Too many spurious files will weaken the usefulness of
the testing correlations.

OPTIONS
The following options are understood

−as-needed
Usually it is an error if a file is already in a change set, and is redundantly added to the change set
again. This option says to ignore such files.

−Build
This option may be used to specify that the file is constructed during a build (often only an inte-
grate build), so that history of it may be kept. This is useful for generating patch files, where a
history of generated files is important. Files created in this way may not be copied into a change,
though they may be deleted. Av oid using files of this type, if at all possible.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−CONFIGured
This option may be used to specify that the file is an Aegis project configuration file. The default
project configuration file is called aegis.conf, howev er any file name may be used. You may also
use more than one file, splitting the content across several files, all of which must be of this type.

-Help
This option may be used to obtain more information about how to use the aegis program.

−INDependent
The option may be used to request all the necessary actions, but not to actually add the new file to
the change set.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

Reference Manual Aegis 269

aegis −New_File(1) General Commands Manual aegis −New_File(1)

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−TEMplate
This option may be used to specify that a new file template should be used, even if the file al-
ready exists.

−No_TEMplate
This option may be used to specify that a new file template should not be used, even if the file
does not exist (any empty file will be created).

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−Universal_Unique_IDentifier string

This option may be used to set the UUID of a file.

−Not_Universal_Unique_IDentifier
This option may be used to require that the file is created without an UUID. The aeipass-op-
tion:assign-file-uuid is set to false for the file to avoid automatic UUID assignment when
aeipass(1) is invoked.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenf ’aegis −nf \!* −v’
sh$ aenf(){aegis −nf "$@" −v}

Reference Manual Aegis 270

aegis −New_File(1) General Commands Manual aegis −New_File(1)

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is already part of the change.
It is an error if the file is already part of the baseline.
It is an error if the files named on the command line are not normal files and not directories. (If you need
symbolic links or special files, create them at build time.)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy files into a change

aedb(1) begin development of a change

aemv(1) rename a file as part of a change

aenfu(1) remove new files from a change

aent(1) add new tests to a change

aerm(1) add files to be deleted by a change

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 271

aegis −New_File_Undo(1) General Commands Manual aegis −New_File_Undo(1)

NAME
aegis new file undo − remove new files from a change

SYNOPSIS
aegis −New_File_Undo file-name... [option...]
aegis −New_File_Undo −List [option...]
aegis −New_File_Undo −Help

DESCRIPTION
The aegis −New_File_Undo command is used to remove new files from a change (reverse the actions of the
’aegis −New_File’ command). The file is removed from the list of files in the change.

The file is removed from the development directory unless the −Keep option is used. The −Keep option
should be used with great care, as you can confuse tools such as make(1) by leaving these files in place.

You may specify a directory name to remove all new files in the named directory tree, other files in the tree
will be ignored. It is an error if there are no relevant files.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Notification
The new_file_undo_command in the project config file is run, if set. The project_file_command is also run,
if set, and if there has been an integration recently. See aepconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because deleting a file logically invalidates them.

The difference file (,D) will also be removed, however any DMT derived files (e.g a .o file from a .c file)
will not be removed. This is because aegis is decoupled from the DMT, and cannot know what these de-
rived file may be called. You may need to delete derived files manually.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

Reference Manual Aegis 272

aegis −New_File_Undo(1) General Commands Manual aegis −New_File_Undo(1)

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more informa-
tion.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see

Reference Manual Aegis 273

aegis −New_File_Undo(1) General Commands Manual aegis −New_File_Undo(1)

aeuconf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenfu ’aegis −nfu \!$ −v’
sh$ aenfu(){aegis −nfu "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is not in the change.
It is an error if the file was not added to the change with the ’aegis −New_File’ command.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenf (1) add new files to a change

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 274

aegis −New_Integrator(1) General Commands Manual aegis −New_Integrator(1)

NAME
aegis new integrator − add new integrators to a project

SYNOPSIS
aegis −New_Integrator user-name... [option...]
aegis −New_Integrator −List [option...]
aegis −New_Integrator −Help

DESCRIPTION
The aegis −New_Integrator command is used to add new integrators to a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 275

aegis −New_Integrator(1) General Commands Manual aegis −New_Integrator(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeni ’aegis −ni \!* −v’
sh$ aeni(){aegis −ni "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeri(1) remove integrators from a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 276

aegis −New_Project_Alias(1) aegis −New_Project_Alias(1)

NAME
aegis new project alias − create a new project alias

SYNOPSIS
aegis −New_Project_Alias [option...] project-name alias-name

aegis −Help
aegis −VERSion

DESCRIPTION
The aegis −New_Project_Alias command is used to create a projects alias, so that branches of projects may
be referred by a shorter or more specific name.

The project name must be given on the command line; the default project is not sufficient. The project
named may be a top-level project, or it may be a branch (to any depth of branch).

The new alias name must also be given on the command line, and it must be the second name. Project
aliases have fewer limits than project names: they must not need shell quoting, that’s all.

Example
Aliases may be used in may ways. The most common is to give a particular release a code name. You
would do this by saying

aenpa example.4.2 sydney
This would make “sydney” an alias for the “example.4.2” branch.

Another use for aliases is to have a fixed alias for your active branch, so that your developer team does not
need to change their default project, even though the branch number moves on for each release. You could
say

aenpa example.4.2 example.cur
This would make “example.cur” an alias for the “example.4.2” branch. When this was finished, and 4.3
started, a project administrator could say

aerpa example.cur
aenpa example.4.3 example.cur

Now “example.cur” is an alias for the “example.4.3” branch, but the developers need only reference “exam-
ple.cur” to always work on the right branch.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

ERRORS
It is an error if the old project does not exist.
It is an error if the current user is not a project administrator.
It is an error if the new alias name look like a branch name.
It is an error if the new alias contains unprintable characters.

Reference Manual Aegis 277

aegis −New_Project_Alias(1) aegis −New_Project_Alias(1)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aerpa(1) Remove project alias.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 278

aegis −New_PRoject(1) General Commands Manual aegis −New_PRoject(1)

NAME
aegis new project − create a new project

SYNOPSIS
aegis −New_PRoject project-name [option...]
aegis −New_PRoject −List [option...]
aegis −New_PRoject −Help

DESCRIPTION
The aegis −New_PRoject command is used to create a new project. The project is created as an empty di-
rectory structure with no staff except the administrator, no changes, and branches to implement the version
specified.

Please note: unless you specify a version (see the −version option, below) this command will default to cre-
ating branches to support version 1.0. If you discovered this too late, all is not lost: you can use the aen-

bru(1) command to get rid of the branches you didn’t want.

Directory
The project directory, under which the project baseline and history and state and change data are kept, will
be created at this time. If the −DIRectory option is not given, the project directory will be created in the
directory specified by the default_project_directory field of aeuconf (5), or if not set in current user’s home
directory; in either case with the same name as the project.

Staff
The project is created with the current user and group as the owning user and group. The current user is an
administrator for the project. The project has no developers, reviewers, integrators or other administrators.
The project’s umask is derived from the current user’s umask, but guaranteeing that group members will
have access and that only the project owner will have write access.

Pointer
The project pointer will be added to the first element of the search path, or /usr/local/com if no path is set.
If this is inappropriate, use the −LIBrary option to explicitly set the desired location. See the −LIBrary
option for more information.

Version
You may specify the project version in two ways:

1. The version number may be implicit in the project name, in which case the version numbers will be
stripped off. For example, “aenpr example.1.2” will create a project called “example” with branch
number 1 created, and sub-branch 2 of branch 1 created.

2. The version number may be stated explicitly, in which case it will be subdivided for branch numbers.
For example, “aenpr example −version 1.2” will create a project called “example” with branch number
1 created, and sub-branch 2 of branch 1 created.

In each case, these branches may be named wherever a project name may be given, such as “−p example.1”
and “−p example-1.2”. The actual punctuation character is unimportant.

You may have any depth of version numbers you like. Both methods of specifying version numbers may be
used, and they will be combined. If you want no version numbers at all, use −version with a single dash as
the argument, as in “−version −”

If no version number is given, either explicitly or implicitly, version 1.0 is used.

Project Directory Location
Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are

Reference Manual Aegis 279

aegis −New_PRoject(1) General Commands Manual aegis −New_PRoject(1)

(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

OPTIONS
The following options are understood:

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

-Help
This option may be used to obtain more information about how to use the aegis program.

−Keep This option may be used to re-attach a project detached using aermpr −keep and possibly moved
by the system administrator.

−LIBrary abspath

This option may be used to specify a directory to be searched for global state files and user state
files. (See aegstate(5) and aeustate(5) for more information.) Several library options may be
present on the command line, and are search in the order given. Appended to this explicit search
path are the directories specified by the AEGIS_PATH environment variable (colon separated),
and finally, /usr/local/lib/aegis is always searched. All paths specified, either on the command
line or in the AEGIS_PATH environment variable, must be absolute.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

Reference Manual Aegis 280

aegis −New_PRoject(1) General Commands Manual aegis −New_PRoject(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−VERSion number

This option may be used to specify the version number for the project. Version numbers are im-
plemented as branches. Use a single dash (“−”) as the argument if you want no version branches
created.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenpr ’aegis −npr \!* −v’
sh$ aenpr(){aegis −npr "$@" −v}

ERRORS
It is an error if the project name already exists.
It is an error if the project directory already exists.
It is an error if the current user does not have sufficient permissions to create the directory specified with
the −DIRectory option.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aena(1) add a new administrator to a project

aenbru(1)
Remove a new branch. This can often be useful if aenpr(1) created some default branches for
you, and now you want to get rid of them.

Reference Manual Aegis 281

aegis −New_PRoject(1) General Commands Manual aegis −New_PRoject(1)

aenc(1) add a new change to a project

aend(1) add a new dev eloper to a project

aenrls(1)
create a new project from an existing project

aenrv(1)
add a new reviewer to a project

aermpr(1)
remove project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 282

aegis −New_ReLeaSe(1) General Commands Manual aegis −New_ReLeaSe(1)

NAME
aegis new release − create a new project from an old-style project.

SYNOPSIS
aegis −New_ReLeaSe project-name [new-project-name][option...]
aegis −New_ReLeaSe −List [option...]
aegis −New_ReLeaSe −Help

DESCRIPTION
The aegis −New_ReLeaSe command is used to create a new project from an existing project. It creates a

new post-3.0 project from an old pre-3.0 project.

Please Note: If your old-style project does not have a version number in the project name, you must supply
a new project name, otherwise you will get an error. (If you want to re-use the old project name, you need
to rename the old project, and then use aenrls to create a new new-style project with the old name. See the
HOWTO for how to change a project’s name.)

This command was essential before the introduction of branches into the Aegis model. It is more useful to
create a new release of a project by ending development on the branch of the previous release and starting
development of a new branch numbered for the desired release.

Once you have a new-style project, use the aenbr(1) command to create new branches on this project. This
provides more efficient release management, and allows historical versions to be reproduced more simply.

If no new-project-name is specified, it will be derived from the project given as follows: any minor version
dot suffix will be removed from the name, then any major version dot suffix will be removed from the
name. A major version dot suffix will be appended, and then a minor version dot suffix will be appended.
As an example, "foo.1.0" would become "foo.1.1" assuming the default minor version increment, and "foo"
would become "foo.1.1" assuming the same minor version increment.

The entire project baseline will be copied. The project state will be as if change 1 had already been inte-
grated, naming every file (in the old project) as a new file. The history files will reflect this. No build will
be necessary; it is assumed that the old baseline was built successfully. Change numbers will commence at
2, as will build numbers. Test numbers will commence where the old project left off (because all the earlier
test numbers were used by the old project).

The default is for the minor version number to be incremented. If the major version number is incremented
or set, the minor version number will be set to zero if it is not explicitly given.

The pointer to the new project will be added to the first element of the search path, or /usr/local/com if
none is set. If this is inappropriate, use the −LIBrary option to explicitly set the desired location. See the
−LIBrary option for more information.

The project directory, under which the project baseline and history and state and change data are kept, will
be created at this time. If the −DIRectory option is not given, the project directory will be created in the
directory specified by the default_project_directory field of the project user’s aeuconf (5), or if not set in
project user’s home directory; in either case with the same name as the project.

All staff will be copied from the old project to the new project without change, as will all of the project at-
tributes.

THE BASELINE LOCK
The baseline lock is used to ensure that the baseline remains in a consistent state for the duration of com-
mands which need to read the contents of files in the baseline.

The commands which require the baseline to be consistent (these include the aeb(1), aecp(1) and aed(1)
commands) take a baseline read lock. This is a non-exclusive lock, so the concurrent development of
changes is not hindered.

The command which modifies the baseline, aeipass(1), takes a baseline write lock. This is an exclusive
lock, forcing aeipass(1) to block until there are no active baseline read locks.

It is possible that one of the above dev elopment commands will block until an in-progress aegis

Reference Manual Aegis 283

aegis −New_ReLeaSe(1) General Commands Manual aegis −New_ReLeaSe(1)

−Integrate_PASS completes. This is usually of short duration while the project history is updated. The de-
lay is essential so that these commands receive a consistent view of the baseline. No other integration com-
mand will cause the above dev elopment commands to block.

When aegis’ branch functionality is in use, a read (non-exclusive) lock is taken on the branch baseline and
also each of the "parent" baselines. However, a baseline write (exclusive) lock is only taken on the branch
baseline; the "parent" baselines are only read (non-exclusive) locked.

Project Directory Location
Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

OPTIONS
The following options are understood:

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

-Help
This option may be used to obtain more information about how to use the aegis program.

−LIBrary abspath

This option may be used to specify a directory to be searched for global state files and user state
files. (See aegstate(5) and aeustate(5) for more information.) Several library options may be
present on the command line, and are search in the order given. Appended to this explicit search
path are the directories specified by the AEGIS_PATH environment variable (colon separated),
and finally, /usr/local/lib/aegis is always searched. All paths specified, either on the command
line or in the AEGIS_PATH environment variable, must be absolute.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

Reference Manual Aegis 284

aegis −New_ReLeaSe(1) General Commands Manual aegis −New_ReLeaSe(1)

−VERSion number

This option may be used to specify the version number for the project. Version number are im-
plemented as branches. Use the empty string as the argument if you want no version branches
created.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenrls ’aegis −nrls \!* −v’
sh$ aenrls(){aegis −nrls "$@" −v}

ERRORS
It is an error if the old project named does not exist.

It is an error if the old project named has not yet had any changes integrated.

It is an error if the old project named has any changes not in the completed state.

It is an error if the current user is not an administrator of the old project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenpr(1)

create a new project

aermpr(1)
remove project

aeuconf (5)
user configuration file format

Reference Manual Aegis 285

aegis −New_ReLeaSe(1) General Commands Manual aegis −New_ReLeaSe(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Aegis User Guide

The chapter on Branching has useful information about releases and branching.

Reference Manual Aegis 286

aegis −New_ReViewer(1) General Commands Manual aegis −New_ReViewer(1)

NAME
aegis new reviewer − add new reviewers to a project

SYNOPSIS
aegis −New_ReViewer user-name... [option...]
aegis −New_ReViewer −List [option...]
aegis −New_ReViewer −Help

DESCRIPTION
The aegis −New_ReViewer command is used to add new reviewers to a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 287

aegis −New_ReViewer(1) General Commands Manual aegis −New_ReViewer(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aenrv ’aegis −nrv \!* −v’
sh$ aenrv(){aegis −nrv "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aerrv(1) remove reviewers from a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 288

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

NAME
aegis new test − add a new test to a change

SYNOPSIS
aegis −New_Test [option...][filename...]
aegis −New_Test −List [option...]
aegis −New_Test −Help

DESCRIPTION
The aegis −New_Test command is used to add a new test to a change. A new file is created in the develop-
ment directory.

New tests default to “automatic” unless otherwise specified.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Test Filename Generation
You may choose your own filename for a test, by specifying it on the command line.

If no filename is specified on the command line, a test filename is automatically generated. This is con-
trolled by the new_test_filename field of the project configuration file (see aepconf (5) for more informa-
tion. All automatically generated test filenames within a project are numbered uniquely. The default pat-
tern for new test filenames is "test/XX/tXXXX[am].sh", where XX is the first 2 digits of the test number,
XXXX is the whole test number, and [am] is a for automatic tests and m for manual tests.

Modifying Tests
Tests may be modified in future by adding them to a change with the aecp(1) command. Tests are treated
just like any other source file, and are subject to the same process.

File Templates
When a new file is created in the development directory the project config file is searched for a template for
the new file. If a template is found, the new file will be initialized to the template, otherwise it will be cre-
ated empty. See aepconf(5) for more information.

The simplest form is to use template files, such as
file_template =
[

{
pattern = ["*.c"];
body = "${read_file ${source template/c abs}}";

},
{

pattern = ["test/*/.sh"];
body = "${read_file ${source template/test abs}}";

},
];

As you can see, the template files are part of the project source, so you can add the appropriate copyright

Reference Manual Aegis 289

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

notices, and wrappers, etc. The $source substitution locates them, if they are not part of the current change
(and they usually are not).

The template files themselves contain substitutions. The $filename substitution is available, and contains
the name of the file being created. This can be manipulated in various ways when constructing the appro-
priate file contents. See aesub(5) for more information about substitutions.

It is also possible to run a command to create the new file. You can do this instead of specifying a body
string, viz:

file_template =
[

{
pattern = ["*"];
body_command = "perl ${source template.pl abs} $filename";

},
];

The command is run with a current directory set to the top of the development directory. It is an error if the
command fails to create the file. You can mix-and-match the two techniques, body string and body_com-

mand, if you want.

Be careful to make sure that the test filename template pattern matches the new_test_filename field.

File Name Limitations
There are a number of controls available to limit the form of project file names. All of these controls may
be found in the project configuration file, see aepconf (5) for more information. The most significant are
briefly described here:

maximum_filename_length = integer;
This field is used to limit the length of filenames. All new files may not have path components
longer than this. Defaults to 255 if not set. For maximum portability you should set this to 14.

posix_filename_charset = boolean;
This field may be used to limit the characters allowed in filenames to only those explicitly al-
lowed by POSIX. Defaults to false if not set, meaning whatever your operating system will tol-
erate, except white space and high-bit-on characters. For maximum portability you should set
this to true.

dos_filename_required = boolean;
This field may be used to limit filenames so that they conform to the DOS 8+3 filename limits
and to the DOS filename character set. Defaults to false if not set.

windows_filename_required = boolean;
This field may be used to limit filenames so that they conform to the Windows98 and Win-
dowsNT filename limits and character set. Defaults to false if not set.

shell_safe_filenames = boolean;
This field may be used to limit filenames so that they do not contain shell special characters. De-
faults to true if not set. If this field is set to false, you will need to use the ${quote} substitution
around filenames in commands, to ensure that filenames containing shell special characters do
not have unintended side effects. Weird characters in filenames may also confuse your depen-
dency maintenance tool.

allow_white_space_in_filenames = boolean;
This field may be used to allow white space characters in file names. This will allow the follow-
ing characters to appear in file names: backspace (BS, \b, 0x08), horizontal tab (HT, \t, 0x09),
new line (NL, \n, 0x0A), vertical tab (VT, \v, 0x0B), form feed (FF, \f, 0x0C), and carriage return
(CR, \r, 0x0D). Defaults to false if not set.

Note that this field does not override other file name filters. It will be necessary to explicitly set
shell_safe_filenames = false as well. It will be necessary to set dos_filename_required = false

(the default) as well. It will be necessary to set posix_filename_charset = false (the default) as

Reference Manual Aegis 290

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

well.

The user must take great care to use the ${quote} substitution around all file names in commands
in the project configuration. And ev en then, substitutions which expect a space separated list of
file names will have undefined results.

allow_non_ascii_filenames = boolean;
This field may be used to allow file names with non-ascii-printable characters in them. Usually
this would mean a UTF8 or international charset of some kind. Defaults to false if not set.

Note that this field does not override other file name filters. It will be necessary to explicitly set
shell_safe_filenames = false as well. It will be necessary to set dos_filename_required = false

(the default) as well. It will be necessary to set posix_filename_charset = false (the default) as
well.

filename_pattern_accept = [string];
This field is used to specify a list of patterns of acceptable filenames. Defaults to "*" if not set.

filename_pattern_reject = [string];
This field is used to specify a list of patterns of unacceptable filenames.

Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

Changing the Type of a File
If you want to change the type of a file (say, from a test to a source file, or vice versa) you could do it as
two changes, by first using aerm(1) in one change and then using aenf(1) or aent(1) in a second change, or
you can combine both steps in the same change. Remember to use the aerm −nowhiteout option or you
will get a most peculiar new file template.

Notification
The new_test_command in the project config file is run, if set. The project_file_command is also run, if set,
and if there has been an integration recently. See aepconf(5) for more information.

TEST PROCESS
Each change is required to be accompanied by tests, and those tests are required to be run against the built
development directory, and they must pass. This ensures that new functionality is accompanied by tests to
verify its correctness, and bug fixes are accompanied by tests which confirm that the bug has been fixed.

Regression Tests
Tests are treated as any other source file, and are maintained in the baseline and history with all other
source files. The tests which must accompany every change accumulate in the project baseline, providing a
definition of correct function for the baseline. These accumulated tests may be executed using an “aegis
−REGression” command, to verify that the project will not “regress” as a result of a change.

Baseline Tests
Bug fixes are required to have their tests fail against the project baseline (in contrast to the development di-
rectory). This ensures that the test actually demonstrates the bug in the baseline, as well as demonstrating
that it is fixed by the change. New functionality trivially fails against the baseline, and so aegis does not at-
tempt to guess if a test is a bug fix test or new functionality test, it simply requires tests to fail against the

Reference Manual Aegis 291

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

baseline.

This requirement applies both to new tests being created by a change and also to tests which have been
copied into a change for modification.

Reviewing Tests
Reviewers may be confident that aegis has enforced the test requirements; that a change must have tests,
that the change must build, that the tests pass against the development directory, and that the tests fail
against the baseline. These conditions are enforced by aede(1) and the change will not be advanced to the
being reviewed state until these conditions are met. Reviewers should thus review tests for completeness of
coverage of the code in the change, and insensitivity to changes in the execution environment (e.g. not date
sensitive). Reviewers should also use “aegis −list change_details” to verify that a change does or does not
have testing exemptions.

Exemptions
Various test exemptions may be granted by project administrators, see aepa(1) and aepattr(5) for more in-
formation. Copying tests into a change, or adding new tests to a change, may cancel those exemptions.

TEST CORRELATIONS
The “aegis −Test −SUGgest” command may be used to have aegis suggest suitable regression tests for your
change, based on the source files in your change. This automatically focuses testing effort to relevant tests,
reducing the number of regression tests necessary to be confident that you have not introduced a bug.

The test correlations are generated by the “aegis −Integrate_Pass” command, which associates each test in
the change with each source file in the change. Thus, each source file accumulates a list of tests which have
been associated with it in the past. This is not as exact as code coverage analysis, but is a reasonable ap-
proximation in practice.

The aecp(1) and aenf (1) commands are used to associate files with a change. While they do not actively
perform the association, these are the files used by aeipass(1) and aet(1) to determine which source files
are associated with which tests.

Test Correlation Accuracy
Assuming that the testing correlations are accurate and that the tests are evenly distributed across the func-
tion space, there will be a less than 1/number chance that a relevant test has not been run by the “aegis
−Test −SUGgest number” command. A small amount of noise is added to the test weighting, so that unex-
pected things are sometimes tested, and the same tests are not run every time.

Test correlation accuracy can be improved by ensuring that:

• Each change should be strongly focused, with no gratuitous file inclusions. This avoids spurious cor-
relations.

• Each item of new functionality should be added in an individual change, rather than several together.
This strongly correlates tests with functionality.

• Each bug should be fixed in an individual change, rather than several together. This strongly corre-
lates tests with functionality.

• Test correlations will be lost if files are moved. This is because correlations are by name.

The best way for tests to correlate accurately with source files is when a change contains a test and exactly
those files relating to the functionality under test. Too many spurious files will weaken the usefulness of
the testing correlations.

OPTIONS
The following options are understood;

-AUTOmatic
This option may be used to specify automatic tests. Automatic tests require no human assistance.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

Reference Manual Aegis 292

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Edit Edit the new test files one they hav e been created. (This avoids the copy-and-paste step required
to edit the new test script when it has an automatically generated file name.)

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-MANual
This option may be used to specify manual tests. Manual tests require some human intervention,
e.g.: confirmation of some screen behavior (X11, for instance), or some user action, "unplug eth-
ernet cable now".

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Output filename

This option may be used to specify a filename which is to be written with the automatically deter-
mined test file name. Useful for writing scripts.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−TEMplate
This option may be used to specify that a new file template should be used, even if the file al-
ready exists.

−No_TEMplate
This option may be used to specify that a new file template should not be used, even if the file
does not exist (any empty file will be created).

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

−Universal_Unique_IDentifier string

This option may be used to set the UUID of a file.

−Not_Universal_Unique_IDentifier
This option may be used to require that the file is created without an UUID. The aeipass-op-
tion:assign-file-uuid is set to false for the file to avoid automatic UUID assignment when
aeipass(1) is invoked.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

Reference Manual Aegis 293

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aent ’aegis −nt \!* −v’
sh$ aent(){aegis −nt "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy an existing test into a change

aedb(1) begin development of a change

aentu(1) remove a new test from a change

aerm(1) remove an existing test as part of a change

aet(1) run tests

aeuconf (5)
user configuration file format

Reference Manual Aegis 294

aegis −New_Test(1) General Commands Manual aegis −New_Test(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 295

aegis −New_Test_Undo(1) General Commands Manual aegis −New_Test_Undo(1)

NAME
aegis new test undo − remove new tests from a change

SYNOPSIS
aegis −New_Test_Undo file-name... [option...]
aegis −New_Test_Undo −List [option...]
aegis −New_Test_Undo −Help

DESCRIPTION
The aegis −New_Test_Undo command is used to remove new tests from a change (reverse the actions of
the ’aegis −New_Test’ command). The file is removed from the development directory.

You may specify a directory name to remove all new tests in the named directory tree, other files in the tree
will be ignored. It is an error if there are no relevant files.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Notification
The new_test_undo_command in the project config file is run, if set. The project_file_command is also run,
if set, and if there has been an integration recently. See aepconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because deleting a file logically invalidates them.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more informa-
tion.

Reference Manual Aegis 296

aegis −New_Test_Undo(1) General Commands Manual aegis −New_Test_Undo(1)

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

Reference Manual Aegis 297

aegis −New_Test_Undo(1) General Commands Manual aegis −New_Test_Undo(1)

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aentu ’aegis −ntu \!$ −v’
sh$ aentu(){aegis −ntu "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is not in the change.
It is an error if the file was not added to the change with the ’aegis −New_Test’ command.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aent(5) add a new test to a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 298

aegis −Project_Attributes(1) General Commands Manual aegis −Project_Attributes(1)

NAME
aegis project attributes − modify the attributes of a project

SYNOPSIS
aegis −Project_Attributes attr-file [option...]
aegis −Project_Attributes −Edit [option...]
aegis −Project_Attributes −List [option...]
aegis −Project_Attributes −Help

DESCRIPTION
The aegis −Project_Attributes command is used to set, edit or list the attributes of a project.

The output of the −List variant is suitable for use as input at a later time.

See aepattr(5) for a description of the file format.

OPTIONS
The following options are understood:

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

Reference Manual Aegis 299

aegis −Project_Attributes(1) General Commands Manual aegis −Project_Attributes(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aepa ’aegis −pa \!* −v’
sh$ aepa(){aegis −pa "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the specified project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
tkaepa(1)

Graphical interface to the aepa(1) command.

aeca(1) modify the attributes of a change

aepattr(5)
project attribute file format

aepstate(5)
project state file format

aeuconf (5)
user configuration file format

Reference Manual Aegis 300

aegis −Project_Attributes(1) General Commands Manual aegis −Project_Attributes(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 301

aepatch(1) aepatch(1)

NAME
aepatch − send and receive changes as patches

SYNOPSIS
aepatch −send [option...]
aepatch −receive [option...]
aepatch −list [option...]
aepatch −Help
aepatch −VERSion

DESCRIPTION
The aepatch command is used to send Aegis changes as patches, or receive patches and turn them into
Aegis changes.

Please note that this only works for text files. If your project uses binary files, the aepatch program will not
be useful because the diff(1) and patch(1) commands only work on text files. Also, this only works for files
with names which do not contain white space.

If you need to merge matches together, you could use the GNU patch utils, which include a tool to merge
patches together.

SEND
The send variant takes a specified change and constructs a patch containing all of the changes to all of the
files in that change. The result is compressed, and encoded into a text format which can be sent as e-mail
without being corrupted by the mail transfer agents along the way.

The output of the aepatch −send command is a normal Unix patch, as you would produce using diff(1),
bzip2(1) and a MIME encoder such as mpack(1). There are no special formats. The output can be uncom-
pressed with the normal bunzip2(1) command and applied with the normal patch(1) command.

The compression algorithm is selectable via the −compression-algorithm option, see the OPTIONS sec-
tion, below, for details. The −compatibility option also understands compression needs.

Generating Traditional Patches
If you wish to send "traditional" patches to developers who are not using Aegis to manage the sources at
their end, you can use the following options:

aepatch −send −cte=none −comp-alg=none
This says to use no Content Transfer Encoding, and no compression. If you wish to also omit the Aegis
meta data, you can use the following options:

aepatch −send −cte=none −nocomp −compat=4.16
This setting for the −compatibility option omits all Aegis extensions.

By default, a context diff is generated. Some projects prefer to use the unified diff format. This is con-
trolled by the patch_diff_command field of the project configuration file (see aepconf(5) for more informa-
tion). If you have GNU diff, use the following command:

patch_diff_command = "set +e; "
"diff −u −−text "
"−L ${quote $index} −L ${quote $index} "
"${quote $original} ${quote $input} > ${quote $output}; "
"test $? −le 1"";

This setting will cause the aepatch(1) command to produce unified diff patches instead of context diff
patches. As you can see from this command, the aepatch(1) command is onlu of use if you have text
source files; it produces less than ideal results for binary files.

Options
The following options are understood by the send variant:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

Reference Manual Aegis 302

aepatch(1) aepatch(1)

−COMPAT ibility version-number

This option may be used to specify the version of aepatch(1) which will be receiving this change
set. This information is used to select which features to include in the data, and which to omit.
By default, the latest feature set will be used.

−compression-algorithm name

This option may be used to specify the compression to be used. They are listed on order of com-
pression effeciency.

none Use no compression (not always meaningful for all commands).

gzip Use the compression used by the gzip(1) program.

bzip2 Use the compression used by the bzip2(1) program.

More compression algorithms may be added in the future.

−COMPress
This option is deprecated in favour of the −comp-alg=gzip or −comp-alg=bzip2 options.

−No_COMPress
This options is deprecated in favour of the −comp-alg=none option.

−Content_Transfer_Encoding name

This option may be used to specify the content transfer encoding to be used. It may take one of
the following values:

None No content transfer encoding is to be performed.

Base64 The MIME base 64 encoding is to be used. This is the default.

Quoted_Printable
The MIME quoted printable encoding is to be used.

Unix_to_Unix_encode
The ancient unix-to-unix encoding is to be used.

These encodings may be abbreviated in the same way as comment line options.

−Ascii_Armor
This means the same as the “−cte=base64” option above.

−No_Ascii_Armor
This means the same as the “−cte=none” option above.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not
exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

Reference Manual Aegis 303

aepatch(1) aepatch(1)

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Signed_Off_By
This option may be used to have a Signed-off-by: line appended to the change set descrip-
tion.

−No_Signed_Off_By
This option may be used to prevent a Signed-off-by: line from being appended to the
change set description.

RECEIVE
The receive variant takes a patch and creates an Aegis change (see aenc(1)) to implement the change
within. Files are added to the change (see aenf(1), aecp(1), aerm(1), aent(1)) and then the patch contents
are unpackaged into the development directory, and the changes applied to the files.

The patch does not have to be produced by the aepatch(1) command. Normal patches produced by diff(1)
command are also valid input. The intent is that you can particicate in normal open source development,
and also use Aegis, even if your fellow dev elopers are not.

Once unpacked, the change is then built (see aeb(1)), differenced (see aed(1)), and tested (see aet(1)). The
automatic process stops at this point, so that you can confirm that the change is desired.

File Names
It is common for patch files generated using the usual diff −r mechanism to contain extra path prefixes.
The aepatch(1) command attempts to remove these automagically. This is usually possible because patches
usually modify files within the project, so the patch file names are compared with project file names to
guess which and how much path prefixes to remove.

−Remove_Path_Prefix string

This option may be used to explicitly specify path prefixes to be removed, if present. It may be
specified more than once.

If you have a complex project directory structure, from time to time people may send you patches relative
to a sub-directory, rather than relative to the project root. The aepatch(1) program can’t guess this by itself.

−Add_Path_Prefix string

This option may be used to specify the path of a project sub-directory in which to apply the patch.

Notification
The aepatch command invokes various other Aegis commands. The usual notifications that these com-
mands would issue are issued.

Options
The following options are understood by the receive variant:

−Change number

This option may be used to choose the change number to be used, otherwise the change number
in the patch (if present) will be used if it is available, otherwise one will be chosen automatically.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
just as for the aecp(1) command. You may also use a delta name instead of a delta number.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Reference Manual Aegis 304

aepatch(1) aepatch(1)

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−Project name

This option may be used to set the project name. If not specified the project name in the input
package will be used (if present), otherwise the usual project name default will be used.

−Trojan This option may be used to treat the change set as if it had a Trojan horse attack in it.

−No_Trojan
This option may be used to treat the change set as if it definitely does not have a Trojan horse at-
tack in it. Use with extreme care. You need to have authenticated the message with something
like PGP first and know the the author well.

−Output filename

This option may be used to specify a filename which is to be written with the automatically deter-
mined change number. Useful for writing scripts.

Security
Receiving changes by e-mail, and automatically committing them to the baseline without checking them,
would be a recipe for disaster. A number of safeguards are provided:

• The format of the package is confirmed to be correct, and the package verified for internal consistency,
before it is unpacked and acted upon.

• The automatic portion of the process stops before development ends. This ensures that the receiver vali-
dates the change before it is committed, and then it must also be reviewed, preventing accidental or mali-
cious damage.

• The more you use Aegis’ test management facilities (see aent(1) and aet(1)) the harder it is for an inade-
quate change to get into the baseline.

LIST
The list variant can be used to list the contents of a package without actually unpacking it first. The output
is reminiscent of the aegis −list change-details output.

Options
The following options are understood by the list variant:

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default. Only useful with the −List option.

OPTIONS
The following options to this command haven’t been mentioned yet:

Reference Manual Aegis 305

aepatch(1) aepatch(1)

-Help
This option may be used to obtain more information about how to use the aepatch program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aepatch are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

FILE FORMAT
The file format re-uses existing formats, rather than introduce anything new. This means it is possible to
extract the contents of a package even when aepatch is unavailable.

• On sending, the source files are generated using the diff(1) program, in the same way a normal Unix
patch is generated.
On receiving, the differences are applied to the source files, in the same manner as the normal patch(1)
program.

• On sending, the patch is compressed using the GNU gzip format. Typically primary source files are
ASCII text, resulting in significant compression. (This is optional.)
On receiving, if the patch is compressed it will be automagically uncompressed, detection is automatic,
you do not need to do this yourself.

• On sending, the compressed patch is encoded using the MIME base64 encoding. This makes the result
approximately 33% larger than the compressed binary would be, but still smaller than the primary
sources. (This is optional.)
On receiving, if the patch is MIME64 encoded it will be automatically decoded, detetcion is automatic,
you do not need to do this yourself.

EXIT STATUS
The aepatch command will exit with a status of 1 on any error. The aepatch command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aepatch version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aepatch program comes with ABSOLUTELY NO WARRANTY; for details use the ’aepatch −VER-

Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’aepatch −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 306

aepromptcmd(1) aepromptcmd(1)

NAME
aepromptcmd − change prompt color by change state

SYNOPSIS
PROMPT_COMMAND="aepromptcmd"

DESCRIPTION
The bash(1) shell has an interesting property: If the PROMPT_COMMAND vaiable is set, the value is ex-
ecuted as a command prior to issuing each primary prompt. (Actually, it can be a seties of semicolon sepa-
rated commands.)

In order to change the text back to normal, the PS1 variable needs to have "\33[0m" somewhere near the
end, otherwise things can get a little difficult to read. If you are using bash(1), you need to let it know these
are unprintable (like this: "\[\33[0m\]") or it messes up command line editing.

The aepromptcmd command is used to set the color of the prompt, based on the state of the current change.
This is an idea taken from Kent Beck’s Test Driven Development book. If the change is in the being devel-

oped or being integrated state and it needs to be built, the prompt is red; if it is built but it needs to be
tested, the prompt is magenta, otherwise it is green.

Example
Here is a short script you can put in your .bashrc file to turn on prompt coloring:

if ["$PS1"] then
case "$PROMPT_COMMAND" in
"")

PROMPT_COMMAND="aepromptcmd"
PS1="$PS1ˆ[[0m"
;;

aepromptcmd)
;;

*)
PROMPT_COMMAND="$PROMPT_COMMAND;aepromptcmd"
PS1="$PS1\[\33[0m\]"
;;

esac
export PROMPT_COMMAND
export PS1 fi

Note that this usually leaves your prompt default (black) when you are not somewhere inside a develop-
ment directory.

Limitations
The aepromptcmd command uses the ANSI color escape sequences. It really should to use the tigetstr(3)
function from terminfo(3) to do this in a terminal independent way. Code contributions welcome.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

Reference Manual Aegis 307

aepromptcmd(1) aepromptcmd(1)

-Help
This option may be used to obtain more information about how to use the aepromptcmd program.

−Verbose
By default error messages are supressed, so that the prompt will be normal when you are outside
an Aegis work area. Use this option to tuen error messages back on.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aepromptcmd are long, this means
ignoring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aepromptcmd command will exit with a status of 1 on any error. The aepromptcmd command will
only exit with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aepromptcmd version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aepromptcmd program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-

promptcmd −VERSion License’ command. This is free software and you are welcome to redistribute it un-
der certain conditions; for details use the ’aepromptcmd −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 308

aereport(1) General Commands Manual aereport(1)

NAME
aegis report − report generator

SYNOPSIS
aereport [option...] report-name

aereport [option...] −File filename

aereport −RePorT −List
aereport −Help
aereport −VERSion

DESCRIPTION
The aereport command is used to generate reports from aereport’ database. Reports are specified in a C-
like language described in the aer(5) manual entry.

For a list of the reports available on your system, use the ’aer −list’ command. These reports live in the
/usr/local/share/report directory, and it initially contains the reports distributed with aereport, however sites
are free to add their own here.

WRITING REPORT SCRIPTS
Getting started writing report scripts can be difficult. You are best to have a look at the reports distributes
with Aegis, and try to adapt them. The report script files are kept in the /usr/local/share/report directory.

For information about the data structures which may be accessed from a report script, you need to see the
relevant manual entries:

the projects list
See aegstate(1) for the member fields.

a specific project
See aepstate(1) for the member fields.

a specific change
See aecstate(1) for the member fields.

a specific file
See aefstate(1) for the member fields.

Each of the above man pages also contains a section towards the end which specifically addresses report
generator use, usually with code fragments.

OPTIONS
The following options are understood:

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

−BRanch number

This option may be used to specify a different branch for the origin file, rather than the baseline.
(See also −TRunk option. Please Note: the −BRanch option does not take a project name, just
the branch number suffix.

−GrandParent
This option may be used to specify the grandparent branch (one up from the current branch) for
the origin file, rather than the baseline. (The −grandparent option is the same as the “−branch ..”
option.)

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not

Reference Manual Aegis 309

aereport(1) General Commands Manual aereport(1)

exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

−File filename

Take the report script from the specified file, rather than looking for the named report in the li-
brary of reports distributed with Aegis. The filename “−” is understood to mean the standard in-
put.

-Help
This option may be used to obtain more information about how to use the aereport program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also −BRanch option, the −trunk option is the same as the “−branch −” option.)

-UNFormatted
This option may be used with most listings to specify that the column formatting is not to be per-
formed. This is useful for shell scripts.

-Page-Header
This option requests that page headings be present in listings and reports. This is the default.

-No-Page-Header
This option requests that page headings be omitted from listings and reports.

-Verbose
This option may be used to cause aereport to produce more output. By default aereport only pro-
duces output on errors. When used with the -List option this option causes column headings to
be added.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.

Reference Manual Aegis 310

aereport(1) General Commands Manual aereport(1)

The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aereport are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aer ’aereport \!* −v’
sh$ aer(){aereport "$@" −v}

SEE ALSO
ael(1) list (possibly) interesting things

aer(5) report script language definition

EXIT STATUS
The aereport command will exit with a status of 1 on any error. The aereport command will only exit with
a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aereport version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aereport program comes with ABSOLUTELY NO WARRANTY; for details use the ’aereport −VER-

Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’aereport −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 311

aegis −Remove_Administrator(1) General Commands Manual aegis −Remove_Administrator(1)

NAME
aegis remove administrator − remove administrators from a project

SYNOPSIS
aegis −Remove_Administrator user-name ... [option...]
aegis −Remove_Administrator −List [option...]
aegis −Remove_Administrator −Help

DESCRIPTION
The aegis −Remove_Administrator command is used to remove administrators from a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 312

aegis −Remove_Administrator(1) General Commands Manual aegis −Remove_Administrator(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aera ’aegis −ra \!* −v’
sh$ aera(){aegis −ra "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

It is an error if an attempt is made to remove the last administrator from the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aena(1) add new administrators to a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 313

aegis −Review_Begin(1) General Commands Manual aegis −Review_Begin(1)

NAME
aegis review begin − begin a change review

SYNOPSIS
aegis −Review_Begin [option...]
aegis −Review_Begin −List [option...]
aegis −Review_Begin −Help

DESCRIPTION
The aegis −Review_Begin command is used to notify aegis that you have begun to review a change.

The change will be advanced from the awaiting review state to the being reviewed state.

aw aiting
review

review
begin

being
reviewed

review
begin
undo

Notification
If the re view_begin_notify_command has been set in the project attributes, this command will be run. This
is usually used to tell other reviewers that you have started review, and they need not. See aepattr(5) and
aepa(1) for more information.

If used when the develop_end_action project attribute is set to goto_being_reviewed, then only the notifica-
tion message is sent.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

Reference Manual Aegis 314

aegis −Review_Begin(1) General Commands Manual aegis −Review_Begin(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerb ’aegis −rb \!* −v’
sh$ aerb(){aegis −rb "$@" −v}

ERRORS
It is an error if the change is not in the awaiting review state.
It is an error if the current user is not a reviewer of the project.
Its is an error if the current user developed the change and the project is configured to not permit developers
to review their own changes (default).

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecd(1) change directory

aede(1) complete development of a change

aedeu(1)
recall a change for further development

aerpass(1)
pass review of a change

aeib(1) begin integrating a change

aenrv(1)
add a reviewer to a project

Reference Manual Aegis 315

aegis −Review_Begin(1) General Commands Manual aegis −Review_Begin(1)

aerfail(1)
fail review of a change

aerpu(1)
rescind a change review pass

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 316

aegis −Review_Begin_Undo(1) aegis −Review_Begin_Undo(1)

NAME
aegis review begin undo − stop reviewing a change

SYNOPSIS
aegis −Review_Begin_Undo [option...]
aegis −Help
aegis −VERSion

DESCRIPTION
The aegis −Review_Begin_Undo command is used to stop reviewing a change. It is moved from the being

re viewed state back to the awaiting review state.

aw aiting
review

review
begin

being
reviewed

review
begin
undo

Notification
If the re view_begin_undo_notify_command has been set in the project attributes, this command will be run.
This is usually used to tell other reviewers that you have stopped reviewing, and they may like to do so in-
stead. See aepattr(5) and aepa(1) for more information.

If used when the develop_end_action project attribute is set to goto_being_reviewed, then only the notifica-
tion message is sent.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

Reference Manual Aegis 317

aegis −Review_Begin_Undo(1) aegis −Review_Begin_Undo(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerbu ’aegis −rbu \!* −v’
sh$ aerbu(){aegis −rbu "$@" −v}

ERRORS
It is an error if the change is not in the being reviewed state.
It is an error if the current user is not the reviewer of the change.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecd(1) change directory

aede(1) complete development of a change

aedeu(1)
recall a change for further development

aerb(1) begin review of a change

aenrv(1)
add a reviewer to a project

aerfail(1)
fail review of a change

Reference Manual Aegis 318

aegis −Review_Begin_Undo(1) aegis −Review_Begin_Undo(1)

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 319

aegis −Remove_Developer(1) General Commands Manual aegis −Remove_Developer(1)

NAME
aegis remove dev eloper − remove dev elopers from a project

SYNOPSIS
aegis −Remove_Developer user-name... [option...]
aegis −Remove_Developer −List [option...]
aegis −Remove_Developer −Help

DESCRIPTION
The aegis −Remove_Developer command is used to remove dev elopers from a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 320

aegis −Remove_Developer(1) General Commands Manual aegis −Remove_Developer(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerd ’aegis −rd \!* −v’
sh$ aerd(){aegis −rd "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aend(1) add a new dev eloper to a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 321

aerect(1) aerect(1)

NAME
aerect − draw a rectangle

SYNOPSIS
aerect [option...] width height

aegis -Help
aegis -VERSion

DESCRIPTION
The aerect command is used to draw rectangles for use with the intranet interface.

OPTIONS
The following options are understood:

−Bevel size

This option may be used to specify the bevel size. A size of 0 may be use to specify no bevel.
Defaults to 3 if not specified.

−Color red green blue

This option may be used to specify the color of the rectangle. The components are specified in a
range from 0 to 255. If not specified, the color will be based on the size of the rectangle.

-Help
This option may be used to obtain more information about how to use the aegis program.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 322

aerect(1) aerect(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 323

aerevml(1) aerevml(1)

NAME
aerevml − send and receive RevML change sets

SYNOPSIS
aerevml −Send [option...]
aerevml −Receive [option...]
aerevml −Help
aerevml −VERSion

DESCRIPTION
The aerevml command is used to send and receive change sets using the RevML format. This format is in-
dependent of any particular VC/SCM tool or vendor. It allows export from any RevML capable VC/SCM
system and import into any other RevML capable VC/SCM system.

The basic function is to reproduce a change, so a command like
aerevml −send | aerevml −receive

may be used to clone a change, though less efficiently than aeclone(1). The file format used is designed to
withstand mail servers, so activities such as

aerevml −send | e-mail | aerevml −receive
(where e-mail represents sending, transporting and receiving your e-mail) will reproduce the change on a
remote system. With suitable tools (such as PGP) is it possible to

aerevml −send | encrypt | e-mail | decrypt | aerevml −receive
The mechanism is also designed to allow web-based distribution such as

aerevml −send | web-server → web-browser | aerevml −receive
by the use of appropriate CGI scripts and mailcap entries.

It is possible to support both a “push” model and a “pull” model using this command. For suggestions and
ideas for various ways to do this, see the Aegis Users Guide.

RevML Project
The RevML format is used for copying revision controlled files and change sets between various SCM
repositories. The RevML project may be found at http://public.perforce.com/public/-
revml/index.html

The latest RevML DTD may be found at http://public.perforce.com/public/revml/-
revml.dtd

SEND
The send variant takes a specified change, or baseline, and constructs a distribution package containing all
of the change attributes and source file attributes and source file contents. The result is compressed, and
encoded into a text format which can be sent as e-mail without being corrupted by the mail transfer agents
along the way.

Options
The following options are understood by the send variant:

−BaseLine
This option may be used to specify the source of a project, rather than a change. Implies the
−Entire_Source option, unless over-ridden.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−COMPAT ibility version-number

This option may be used to specify the version of aerevml(1) which will be receiving this change
set. This information is used to select which features to include in the data, and which to omit.
By default, the latest feature set will be used.

−compression-algorithm name

This option may be used to specify the compression to be used. They are listed on order of com-
pression effeciency.

Reference Manual Aegis 324

aerevml(1) aerevml(1)

none Use no compression (not always meaningful for all commands).

gzip Use the compression used by the gzip(1) program.

bzip2 Use the compression used by the bzip2(1) program.

More compression algorithms may be added in the future.

−COMPress
This option is deprecated in favour of the −comp-alg=gzip or −comp-alg=bzip2 options.

−No_COMPress
This options is deprecated in favour of the −comp-alg=none option.

−Content_Transfer_Encoding name

This option may be used to specify the content transfer encoding to be used. It may take one of
the following values:

None No content transfer encoding is to be performed.

Base64 The MIME base 64 encoding is to be used. This is the default.

Quoted_Printable
The MIME quoted printable encoding is to be used.

Unix_to_Unix_encode
The ancient unix-to-unix encoding is to be used.

These encodings may be abbreviated in the same way as comment line options.

−Ascii_Armor
This means the same as the “−cte=base64” option above.

−No_Ascii_Armor
This means the same as the “−cte=none” option above.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not
exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

−Description_Header
This option may be used to add an RFC 822 style header to the change description being sent,
with a From and Date line. This is the default.

−No_Description_Header
This option suppresses the description header.

−Entire_Source
This option may be used to send the entire source of the project, as well as the change source
files.

−Mime_Headers
This option may be use to force the presence of mime headers in the output, in circumstances
they would usually be absent.

Reference Manual Aegis 325

aerevml(1) aerevml(1)

−No_Mime_Headers
This option may be use to force the absence of mime headers in the output, in circumstances
where they would usually be present.

−Partial_Source
This option may be used to send only source files of a change. This is the default, except for the
−BaseLine option.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Signed_Off_By
This option may be used to have a Signed-off-by: line appended to the change set descrip-
tion.

−No_Signed_Off_By
This option may be used to prevent a Signed-off-by: line from being appended to the
change set description.

RECEIVE
The receive variant takes a change package created by the send variant and creates an Aegis change (see
aenc(1)) to implement the change within. Files are added to the change (see aerm(1), aecp(1), aenf(1) and
aent(1)) and then the file contents are unpackaged into the development directory.

The change is then built (see aeb(1)), differenced (see aed(1)), and tested (see aet(1)). If all of this is suc-
cessful, development of the change is ended (see aed(1)). The automatic process stops at this point, so that
a local reviewer can confirm that the change is desired.

Notification
The aerevml command invokes various other Aegis commands. The usual notifications that these com-
mands would issue are issued.

Options
The following options are understood by the receive variant:

−Change number

This option may be used to choose the change number to be used, otherwise one will be chosen
automatically.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
just as for the aecp(1) command. You may also use a delta name instead of a delta number.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

Reference Manual Aegis 326

aerevml(1) aerevml(1)

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−Ignore_UUID
This option may be used to ignore the UUID, if present, of the incoming change set.

−No_Ignore_UUID
This option force the aerevml command to use the change set’s UUID. This is the default.

−Project name

This option may be used to set the project name. If not specified, the project name in the input
package will be used, rather than the usual project name defaulting mechanism.

−Trojan This option may be used to treat the change set as if it had a Trojan horse attack in it.

−No_Trojan
This option may be used to treat the change set as if it definitely does not have a Trojan horse at-
tack in it. Use with extreme care. You need to have authenticated the message with something
like PGP first and know the the author well.

Security
Receiving changes by e-mail, and automatically committing them to the baseline without checking them,
would be a recipe for disaster. A number of safeguards are provided:

• The format of the package is confirmed to be correct, and the package verified for internal consistency,
before it is unpacked and acted upon.

• The automatic portion of the process stops when development ends. This ensures that a local reviewer
validates the change before it is committed, preventing accidental or malicious damage.

• If the change seeks to update the project config file, the automatic process terminates before the build or
difference occurs. This is because this file could contain trojans for these operations, so a human must
examine the file before the change proceeds any further.

• There is a potential_trojan_horse = [string]; field in the projectconfig file. Nominate build configura-
tion files, shell scripts, code generators, etc here to specify files in addition to the project configuration
file which should cause the automatic processing to halt.

• The use of e-mail authentication and encryption systems, such as PGP and GPG, are encouraged. How-
ev er, it is expected that this processing will occur after aerevml −send has constructed the package and
before aerevml −receive examines and acts on the package. Verification of the sender is the surest de-
fense against trojan horses.

• Automatic sending and receiving of packages is supported, but not implemented within the aerevml com-
mand. It is expected that the aerevml command will be used within shell scripts customized for your site
and its unique security requirements. See the Aegis User Guide for several different ways to do this.

• The more you use Aegis’ test management facilities (see aent(1) and aet(1)) the harder it is for an inade-
quate change to get into the baseline.

Duplicate Storms
In a distributed development environment, it is common for change sets to eventually be propagated back to
the originator. There are situations (particularly in some star topologies) where several copies of the pack-
age will return to the originator.

If these change sets are not detected at the review stage, and are propagated out yet again, there is the possi-
bility of an exponential explosion of redundant change sets being distributed again and again.

To combat this, changes are checked after the files are unpacked, but before and build or difference or test
is performed. The “aecpu −unchanged” command is used to exclude all files that the local repository al-
ready has in the desired form. If no change files remain after this, the change is dropped entirely (see
aedbu(1) and aencu(1)).

Reference Manual Aegis 327

aerevml(1) aerevml(1)

LIST
The list variant can be used to list the contents of a package without actually unpacking it first. The output
is reminiscent of the aegis −list change-details output.

Options
The following options are understood by the list variant:

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default. Only useful with the −List option.

OPTIONS
The following options to this command haven’t been mentioned yet:

-Help
This option may be used to obtain more information about how to use the aerevml program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aerevml are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aerevml command will exit with a status of 1 on any error. The aerevml command will only exit with
a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aerevml version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aerevml program comes with ABSOLUTELY NO WARRANTY; for details use the ’aerevml −VER-

Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’aerevml −VERSion License’ command.

Reference Manual Aegis 328

aerevml(1) aerevml(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 329

aegis −Review_FAIL(1) General Commands Manual aegis −Review_FAIL(1)

NAME
aegis review fail − fail a change review

SYNOPSIS
aegis −Review_FAIL −File reason-file [option...]
aegis −Review_FAIL −REAson ’reason-text’ [option...]
aegis −Review_FAIL −Edit [option...]
aegis −Review_FAIL −List [option...]
aegis −Review_FAIL −Help

DESCRIPTION
The aegis −Review_FAIL command is used to inform aegis that a change has failed review.

The change will be returned from the being reviewed state to the being developed state. The change will
cease to be assigned to the current user, and will be reassigned to the originating developer.

being
developed

develop
end

aw aiting
review

review
begin

being
reviewed

review
fail

The developer will be notified by mail. See the review_fail_notify_command in aepattr(5) for more infor-
mation.

The reason-file will contain a description of why the change was failed. The file is in plain text. It is rec-
ommended that you only use newline to terminate paragraphs, (rather than to terminate lines) as this will
result in better formatting in the various listings.

Notification
On successful completion of this command, the re view_fail_notify_command field of the project attributes
is run, if set. See aepattr(5) and aepa(1) for more information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

Reference Manual Aegis 330

aegis −Review_FAIL(1) General Commands Manual aegis −Review_FAIL(1)

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to provide the failure reason on the command line, rather than in a file.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

Reference Manual Aegis 331

aegis −Review_FAIL(1) General Commands Manual aegis −Review_FAIL(1)

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerfail ’aegis −rfail \!* −v’
sh$ aerfail(){aegis −rfail "$@" −v}

ERRORS
It is an error if the change is not in the being reviewed state.
It is an error if the current user is not a reviewer for the project.
It is an error if the current user developed the change and the project is configured to disallow dev elopers to
review their own changes (default).

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecd(1) change directory

aede(1) complete development of a change

aedeu(1)
recall a change for further development

aenrv(1)
add a reviewer to a project

aerpass(1)
pass review of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 332

aegis −Remove_Integrator(1) General Commands Manual aegis −Remove_Integrator(1)

NAME
aegis remove integrator − remove integrators from a project

SYNOPSIS
aegis −Remove_Integrator user-name... [option...]
aegis −Remove_Integrator −List [option...]
aegis −Remove_Integrator −Help

DESCRIPTION
The aegis −Remove_Integrator command is used to remove integrators from a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 333

aegis −Remove_Integrator(1) General Commands Manual aegis −Remove_Integrator(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeri ’aegis −ri \!* −v’
sh$ aeri(){aegis −ri "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeni(1) add a new administrator to a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 334

aegis −ReMove_file(1) General Commands Manual aegis −ReMove_file(1)

NAME
aegis remove file − add files to be deleted to a change

SYNOPSIS
aegis −ReMove_file file-name... [option...]
aegis −ReMove_file −List [option...]
aegis −ReMove_file −Help

DESCRIPTION
The aegis −ReMove_file command is used to add files to be deleted to a change. The file will be added to
the list of files in the change, and will be removed from the baseline at integration time.

This command may be used to remove tests, not just source files. Tests are treated just like any other
source file, and are subject to the same process.

A file will be created in the development directory containing 1KB of random text. The random text is suf-
ficiently revolting that most compilers will give error messages, should the file be referenced accidentally.
This is often very helpful when removing include files.

You may specify a directory name to remove all files in the named directory tree. It is an error if there are
no relevant files.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because adding a file logically invalidates them.

When the change files are listed (aegis −List Change_Files −TERse) the removed files will not appear in
the terse listing. Similarly, when the project files are listed with an explicit change number (aegis −List

Project_Files −TERse −Change N) none of the change’s files, including the the removed files, will not ap-
pear in the terse listing. These two features are very helpful when calling aegis from within a DMT to gen-
erate the list of source files.

Changing the Type of a File
If you want to change the type of a file (say, from a test to a source file, or vice versa) you could do it as
two changes, by first using aerm(1) in one change and then using aenf(1) or aent(1) in a second change, or
you can combine both steps in the same change. Remember to use the aerm −nowhiteout option or you
will get a most peculiar new file template.

Notification
The remove_file_command in the project config file is run, if set. The project_file_command is also run, if
set, and if there has been an integration recently. See aepconf(5) for more information.

WHITEOUT
Aegis provides you with what is often called a “view path” which indicates to development tools (compil-
ers, build systems, etc) look first in the development directory, then in the branch baseline, and so on up to
the trunk baseline.

The problem with view paths is that in order to remove files, you need some kind of "whiteout" to say “stop

Reference Manual Aegis 335

aegis −ReMove_file(1) General Commands Manual aegis −ReMove_file(1)

looking, it’s been removed.”

When you user the aerm(1) or aemv(1) commands, this means "add information to this change which will
remove the file from the baseline when this change is integrated". I.e. while the change is in the being de-

veloped state, the file is only "removed" in the development directory − it’s still present in the baseline, and
will be until the change is successfully integrated.

When you use the aerm(1) or aemv(1) commands, Aegis will create a 1K file to act as the whiteout. It’s
contents are rather ugly so that if you compile or include the "removed" file accidentally, you get a fatal er-
ror. This will remind you to remove obsolete references.

When the change in integrated, the removed file is not copied/linked from the baseline to the integration di-
rectory, and is not copied from the development directory. At this time it is physically gone (no whiteout).
It is assumed that because of the error inducing whiteout all old references were found and fixed while the
change was in the being developed state.

File Manifests
When generating list of files to be compiled or linked, it is important that the file manifest be generated
from information known by Aegis, rather than from the file system. This is for several reasons:

(a) Aegis knows exactly what (source) files are where, whereas everything else is inferring Aegis’
knowledge; and

(b) looking in the file system is hard when the view path is longer that 2 directories (and Aegis’
branching method can make it arbitrarily long); and

(c) The whiteout files, and anything else left “lying around”, will confuse any method which interro-
gates the file system.

The easiest way to use Aegis’ file knowledge is with something like an awk(1) script processing the Aegis
file lists. For example, you can do this with make(1) as follows:

generate the file manifest
manifest.make.inc: manifest.make.awk

(aegis −l cf −ter ; aegis −l pf −ter) | \
awk −f manifest.make.awk > manifest.make.inc

now include the file manifest
include manifest.make.inc

Note: this would be inefficient of you did it once per directory, but there is nothing stopping you writing nu-
merous assignments into the manifest.make.inc file, all in one pass.

It is possible to do the same thing with Aegis’ report generator (see aer(1) for more information), but this is
more involved than the awk(1) script. However, with the information "straight from the horse’s mouth" as
it were, it can also be much smarter.

This file manifest would become out-of-date without an interlock to Aegis’ file operations commands. By
using the project-file_command and change_file_command fields of the project config file (see aepconf(5)
for more information), you can delete this file at strategic times.

/* run when the change file manifest is altered */
change_file_command = "rm −f manifest.make.inc";
/* run when the project file manifest is altered */
project_file_command = "rm −f manifest.make.inc";

The new file manifest will thus be re-built during the next aeb(1) command.

Options and Preferences
There is a −No-WhiteOut option, which may be used to suppress whiteout files when you use the aerm(1)
and aemv(1) commands. There is a corresponding −WhiteOut option, which is usually the default.

There is a whiteout_preference field in the user preferences file (see aeuconf(5) for more information) if
you want to set this option more permanently.

Reference Manual Aegis 336

aegis −ReMove_file(1) General Commands Manual aegis −ReMove_file(1)

Whiteout File Templates
The whiteout_template field of the project config file may be used to produce language-specific error files.
If no whiteout template entry matches, a very ugly 1KB file will be produced − it should induce compiler
errors for just about any language.

If you want a more human-readable error message, entries such as
whiteout_template =
[

{
pattern = ["*.[ch]"];
body = "#error This file has been removed.";

}
];

can be very effective (this example assumes gcc(1) is being used).

If it is essential that no whiteout file be produced, say for C source files, you could use a whiteout template
such as

whiteout_template =
[

{ pattern = ["*.c"]; }
];

because an absent body sub-field means generate no whiteout file at all.

You may have more than one whiteout template entry, but note that the order of the entries is important.
The first entry which matches will be used.

File Action Adjustment
When this command runs, it first checks the change files against the projects files. If there are inconsisten-
cies, the file actions will be adjusted as follows:

create If a file is being created, but another change set is integrated which also creates the file, the file
action in the change set still being developed will be adjusted to "modify".

modify If a file is being modified, but another change set is integrated which removes the file, the file ac-
tion in the change set still being developed will be adjusted to "create".

remove If a file is being removed, but another change set is integrated which removes the file, the file will
be dropped from the change set still being developed.

OPTIONS
The following options are understood:

−as-needed
Usually it is an error if a file is already in a change set, and is redundantly added to the change set
again. This option says to ignore such files.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

Reference Manual Aegis 337

aegis −ReMove_file(1) General Commands Manual aegis −ReMove_file(1)

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−WhiteOut
This option may be used to request that deleted files be replaced by a “whiteout” file in the devel-
opment directory. The idea is that compiling such a file will result in a fatal error, in order that all
references may be found. This is usually the default.

−No_WhiteOut
This option may be used to request that no “whiteout” file be placed in the development directory.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerm ’aegis −rm \!* −v’
sh$ aerm(){aegis −rm "$@" −v}

Reference Manual Aegis 338

aegis −ReMove_file(1) General Commands Manual aegis −ReMove_file(1)

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file does not exist in the baseline.
It is an error if the file is already part of the change.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecp(1) copy files into a change

aedb(1) begin development of a change

aemv(1) rename a file as part of a change

aenf (1) add files to be created to a change

aermu(1)
remove files to be deleted from a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 339

aegis −ReMove_PRoject(1) General Commands Manual aegis −ReMove_PRoject(1)

NAME
aegis remove project − remove project

SYNOPSIS
aegis −ReMove_Project project-name [option...]
aegis −ReMove_Project −List [option...]
aegis −ReMove_Project −Help

DESCRIPTION
The aegis −ReMove_PRoject command is used to remove a project, either entirely, or just from aegis’ su-
pervision.

Project aliases to the removed project are also removed.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more informa-
tion.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

−LIBrary abspath

This option may be used to specify a directory to be searched for global state files and user state
files. (See aegstate(5) and aeustate(5) for more information.) Several library options may be
present on the command line, and are search in the order given. Appended to this explicit search
path are the directories specified by the AEGIS_PATH environment variable (colon separated),
and finally, /usr/local/lib/aegis is always searched. All paths specified, either on the command
line or in the AEGIS_PATH environment variable, must be absolute.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

Reference Manual Aegis 340

aegis −ReMove_PRoject(1) General Commands Manual aegis −ReMove_PRoject(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aermpr ’aegis −rmpr \!* −v’
sh$ aermpr(){aegis −rmpr "$@" −v}

ERRORS
It is an error if the project has any changes between the being developed and being integrated states, inclu-
sive.
It is an error if the current user is not an administrator.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenpr(1)

create a new project

aenrls(1)
create a new project from an existing project

Reference Manual Aegis 341

aegis −ReMove_PRoject(1) General Commands Manual aegis −ReMove_PRoject(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 342

aegis −ReMove_file_Undo(1) General Commands Manual aegis −ReMove_file_Undo(1)

NAME
aegis remove file undo − remove files to be deleted from a change

SYNOPSIS
aegis −ReMove_file_Undo file-name... [option...]
aegis −ReMove_file_Undo −List [option...]
aegis −ReMove_file_Undo −Help

DESCRIPTION
The aegis −ReMove_file_Undo command is used to remove files to be deleted from a change. The files is
removed from the list of files in the change.

You may specify a directory name to delete from the change all files being removed in the named directory
tree, other files in the tree will be ignored. It is an error if there are no relevant files.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

Notification
The remove_file_undo_command in the project config file is run, if set. The project_file_command is also
run, if set, and if there has been an integration recently. See aepconf(5) for more information.

Process Side Effects
This command will cancel any build or test registrations, because deleting a file logically invalidates them.

OPTIONS
The following options are understood:

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s

Reference Manual Aegis 343

aegis −ReMove_file_Undo(1) General Commands Manual aegis −ReMove_file_Undo(1)

$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(5).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

−Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aermu ’aegis −rmu \!* −v’
sh$ aermu(){aegis −rmu "$@" −v}

ERRORS
It is an error if the change is not in the being developed state.
It is an error if the change is not assigned to the current user.
It is an error if the file is not in the change.
It is an error if the was not added to the change using the aegis −ReMove_file command.

Reference Manual Aegis 344

aegis −ReMove_file_Undo(1) General Commands Manual aegis −ReMove_file_Undo(1)

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aerm(1) add files to be deleted to a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 345

aegis -Remove_Project_Alias(1) aegis -Remove_Project_Alias(1)

NAME
aegis remove project alias − remove a project alias

SYNOPSIS
aegis −Remove_Project_Alias [option...] project-alias

aegis -Help
aegis -VERSion

DESCRIPTION
The aegis -Remove_Project_Alias command is used to remove a project alias.

The project alias must be given on the command line, the default project is not sufficient.

Example
Aliases may be used in may ways. The most common is to give a particular release a code name. You
would do this by saying

aenpa example.4.2 sydney
This would make “sydney” an alias for the “example.4.2” branch.

Another use for aliases is to have a fixed alias for your active branch, so that your developer team does not
need to change their default project, even though the branch number moves on for each release. You could
say

aenpa example.4.2 example.cur
This would make “example.cur” an alias for the “example.4.2” branch. When this was finished, and 4.3
started, a project administrator could say

aerpa example.cur
aenpa example.4.3 example.cur

Now “example.cur” is an alias for the “example.4.3” branch, but the developers need only reference “exam-
ple.cur” to always work on the right branch.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

ERRORS
It is an error if the current user is not a project administrator.
It is an error if the given name is not a project alias.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 346

aegis -Remove_Project_Alias(1) aegis -Remove_Project_Alias(1)

SEE ALSO
aenpa(1)

Create a new project alias.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 347

aegis −Review_PASS(1) General Commands Manual aegis −Review_PASS(1)

NAME
aegis review pass − pass a change review

SYNOPSIS
aegis −Review_PASS [option...]
aegis −Review_PASS −List [option...]
aegis −Review_PASS −Help

DESCRIPTION
The aegis −Review_PASS command is used to notify aegis that a change has passed review.

The default configuration requires only a single reviewer for each change set. It is possible to have more
than one reviewer, and/or project specific policies about who may review certain files, by configuring Aegis
to use an external review policy command.

The state transition performed depends on the settings of the review_policy_command field of the
project configuration file and the develop_end_action field of the project attributes.

review_policy_command not set:
The change will be advanced from the being reviewed state to the awaiting integration state.

review_policy_command set:
The command will be executed, and the exit status examined.

Zero:
The change will be advanced from the being reviewed state to the awaiting integration state.

Non-Zero:
The setting of the develop_end_action of the project attributes is examined:

goto_awaiting_review:
The change will be advanced from the being reviewed state to the awaiting integration

state.

Otherwise:
The change will remain in the being reviewed state. It is expected that a future
review_policy_command execution will satisfy the project criteria and exit zero.

being
reviewed

review
pass

aw aiting
integration

being
reviewed

review
pass

being
reviewed

aw aiting
review

review
pass

It is possible to avoid the being reviewed state altogether by setting the develop_end_action field of the
project confituration file to goto_awaiting_integration.

If the project configuration file has specified the presence of Signed-off-by: lines, a suitable line con-
taining the current user’s email address will be appended to the change description.

If you use one of the −File, −Edit or −Reason options to add comments, the file is to be in plain text, and it

Reference Manual Aegis 348

aegis −Review_PASS(1) General Commands Manual aegis −Review_PASS(1)

is recommended that you only use a newline to terminate paragraphs (rather than to terminate lines) as this
will result in better formatting in the various listings.

Notification
On successful completion of this command, the re view_pass_notify_command field of the project attributes
is run, if set. See aepattr(5) and aepa(1) for more information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a −file option.

The −edit option may not be used in the background, or when the standard input is not a terminal.

−Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command

field in aeuconf(1) for how to override this specifically for Aegis.

−File filename

Take the attributes from the specified file. The filename ‘−’ is understood to mean the standard
input.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

−Signed_Off_By
This option may be used to have a Signed-off-by: line appended to the change set descrip-
tion.

−No_Signed_Off_By
This option may be used to prevent a Signed-off-by: line from being appended to the
change set description.

Reference Manual Aegis 349

aegis −Review_PASS(1) General Commands Manual aegis −Review_PASS(1)

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerpass ’aegis −rpass \!* −v’
sh$ aerpass(){aegis −rpass "$@" −v}

ERRORS
It is an error if the change is not in the being reviewed state.
It is an error if the current user is not a reviewer of the project.
Its is an error if the current user developed the change and the project is configured to disallow dev elopers
to review their own changes (default).

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aecd(1) change directory

aede(1) complete development of a change

aedeu(1)
recall a change for further development

aeib(1) begin integrating a change

Reference Manual Aegis 350

aegis −Review_PASS(1) General Commands Manual aegis −Review_PASS(1)

aenrv(1)
add a reviewer to a project

aerfail(1)
fail review of a change

aerpu(1)
rescind a change review pass

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 351

aegis −Review_Pass_Undo(1) General Commands Manual aegis −Review_Pass_Undo(1)

NAME
aegis review pass undo − rescind a change review pass

SYNOPSIS
aegis −Review_Pass_Undo [option...]
aegis −Review_Pass_Undo −List [option...]
aegis −Review_Pass_Undo −Help

DESCRIPTION
The aegis −Review_Pass_Undo command is used to notify aegis that a change review pass has been re-
scinded.

The change will be moved from the awaiting integration state to the being reviewed state.

being
reviewed

review
pass

aw aiting
integration

review
pass

undo

Notification
On successful completion of this command, the re view_pass_undo_notify_command field of the project at-
tributes is run, if set. See aepattr(5) and aepa(1) for more information.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−REAson text

This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

Reference Manual Aegis 352

aegis −Review_Pass_Undo(1) General Commands Manual aegis −Review_Pass_Undo(1)

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerpu ’aegis −rp \!* −v’
sh$ aerpu(){aegis −rp "$@" −v}

ERRORS
It is an error if the change is not in the awaiting integration state.
It is an error if the current user is not the reviewer of the change.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aerpass(1)

pass review of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

Reference Manual Aegis 353

aegis −Review_Pass_Undo(1) General Commands Manual aegis −Review_Pass_Undo(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 354

aegis −Remove_ReViewer(1) General Commands Manual aegis −Remove_ReViewer(1)

NAME
aegis remove reviewer − remove reviewers from a project

SYNOPSIS
aegis −Remove_ReViewer user-name... [option...]
aegis −Remove_ReViewer −List [option...]
aegis −Remove_ReViewer −Help

DESCRIPTION
The aegis −Remove_ReViewer command is used to remove reviewers from a project.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−Descend_Project_Tree
This option may be used to request that the command should be applied to the project and all its
branches and sub-branches.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

Reference Manual Aegis 355

aegis −Remove_ReViewer(1) General Commands Manual aegis −Remove_ReViewer(1)

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aerrv ’aegis −rrv \!* −v’
sh$ aerrv(){aegis −rrv "$@" −v}

ERRORS
It is an error if the current user is not an administrator of the project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenrv(1)

add a new reviewer to a project

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 356

aesub(1) aesub(1)

NAME
aesub − substitute and echo strings

SYNOPSIS
aesub [option...] string ...
aesub −Help
aesub −VERSion

DESCRIPTION
The aesub command is used to perform the usual aesub(5) substitutions on its command line arguments,
and then echo them to the standard output.

Shell Script Quoting
The aesub(1) command is often used in shell scripts. It is important to remember that the shell will do its
own substitutions on the command line argument before it invokes the aesub(1) command. Usually, you
don’t want this to happen, so you need to use single (’) quotes to do this. (The shell continues to substitute
inside double (") quotes.)

Quote aesub(1) arguments using ’ single ’ quotes.

OPTIONS
The following options are understood:

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−File filename

Take the text to be substituted from the specified file. The filename ‘−’ is understood to mean the
standard input.

-Help
This option may be used to obtain more information about how to use the aesub program.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aesub are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aesub command will exit with a status of 1 on any error. The aesub command will only exit with a
status of 0 if there are no errors.

Reference Manual Aegis 357

aesub(1) aesub(1)

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aesub(5)

Av ailable string substitutions.

COPYRIGHT
aesub version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aesub program comes with ABSOLUTELY NO WARRANTY; for details use the ’aesub −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aesub −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 358

aesubunit(1) aesubunit(1)

NAME
aesubunit − run SubUnit tests

SYNOPSIS
aesubunit [option...] filename...
aesubunit −Help
aesubunit −VERSion

DESCRIPTION
The aesubunit command is used to invoke tests via the http://www.robertcollins.net/unittest/subunit unit
testing interface.

The shape of the external unittest should not need to be known a priori. After the test has run, tests should
still exist as discrete objects, so that anything taking a reference to them doesn’t get 50 copies of the same
object.

The aesubunit command may be used to replace the test_command or batch_test_command fields of the
project configuration file.

Control Protocol
The results of the test are obtained by examining the standard output of the tests as they run. The text is
meant to be human readable, so that tests may run stand-alone.

Tests should ideally print a header of the form
test
testing
test: test label

testing: test label

A successful test will produce lines of the form
success
success:
successful test label

successful: test label

A test failure will produce text of the form
failure test label failure: test label failure test label [] failure: test label []

The square brackets indicate text which may describe the test in more detail. It will be printed on the stan-
dartd output by the aesubunit program.

A test which produces no result (neither succes nor failure) uses the following forms
error: test label error: test label []

In general, unexpected output from the test will be sent through to the aesubunit standard output.

If a subunit test terminates with an exit status other than zero, this is taken to be a no result indication for
that test.

OPTIONS
The following options are understood:

−Batch This option may be useed to specify that a batch test should be performed, and produce results in
the appropriate form.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

Reference Manual Aegis 359

aesubunit(1) aesubunit(1)

-Help
This option may be used to obtain more information about how to use the aesubunit program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aesubunit are long, this means ig-
noring the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aesubunit command will exit with a status of 1 on any error. The aesubunit command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aesubunit version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aesubunit program comes with ABSOLUTELY NO WARRANTY; for details use the ’aesubunit

−VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aesubunit −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 360

aesvt(1) aesvt(1)

NAME
aesvt − simple version tool

SYNOPSIS
aesvt −CHeck_Out −HIstory file −File output-file [−e edit]
aesvt −CHeck_In −HIstory file −File input-file [−e edit] [name=value ...]
aesvt −List −HIstory file

aesvt −Query −HIstory file

aesvt −Version

DESCRIPTION
The aesvt program may be used to manage history version files. This is a minimalist history tool, which
makes no provision for managing a work area.

It is able to cope with binary files, and with reasonable efficiently if they are not too large.

It has good end-to-end properties because it keeps a checksum for each file version, and a checksum for the
whole history file.

There is no provision for keyword substitution of any kind. A check-out will exactly reproduce the input
file. A check-in will never alter the input file.

OPTIONS
The following options are understood:

−History history-file

This option is used to specify the name of the history file.

−File file-name

This option is used to specify the name of the input or output file. On check-out, the file name
"−" is understood to mean the standard output. There is no equivalent for check-in.

−Edit edit-number

This option is used to specify the edit number (version number). On check-out, if no version
number is specified, the most recent version is given. On check-in, if no version number is speci-
fiued (and it usually isn’t), the previous version will have one added to it, or version 1 will be
used if this is the first check-in.

−CHeck_In
This option is used to check a file into the history.

−CHeck_Out
This option is used to check-out a file from the history.

−compression-algorithm name

This option may be used to specify the compression to be used. They are listed on order of com-
pression effeciency.

none Use no compression (not always meaningful for all commands).

gzip Use the compression used by the gzip(1) program.

bzip2 Use the compression used by the bzip2(1) program.

More compression algorithms may be added in the future.

−COMPress
This option is deprecated in favour of the −comp-alg=gzip or −comp-alg=bzip2 options.

−No_COMPress
This options is deprecated in favour of the −comp-alg=none option.

−List This option is used to list the file’s history.

Reference Manual Aegis 361

aesvt(1) aesvt(1)

−Query This option is used to query edit number of most recent check-in.

−Version
This option is used to print version number.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aesvt are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aesvt command will exit with a status of 1 on any error. The aesvt command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

FILE FORMAT
Each version in the history file consists of an RFC822 header, plus the file contents. The header includes
(at least) the Content-Length, used to remember the length of the file data in bytes; the Checksum, used to
remember the Adler32 checksum of the file data; and Version, used to remember the version number. The
file data can be text or binary, because its length is determined by the header. There is no quoting mecha-
nism of any kind for the data. Except for the mandatory fields, additional user-defined us-ascii meta-data
may also be stored in the header. There is no diff or delta of any kind for any version.

This combination of header and data has good end-to-end behaviour, because there is a checksum to vali-
date the file data against. Bad blocks in the data will be detected then next time a check-in or check-out is
attempted.

The format of the history file consists of one or more file versions with the above layout, joined head-to-tail
with no separators or boundary indicators of any kind. The versions are in descending order, from most re-
cent (greatest edit number) to least recent (version number one). To determine where one version stops and
the next version starts, use the Content-Length field in the header. The entire history file is then com-
pressed using the bunzip2 algorithm (via libbz2). There is no diff or delta of any kind in the history file.

The advantage of compressing the file is that there is usually a very high redundancy between file versions.
For example, if two identical versions are checked in (not necessarily sequentially) the second copy will
compress to only a few bytes. Unlike diff(1) style deltas, this also copes very will with moving blocks of
data within the file. The use of bunzip2 formatting means there is also a checksum for the whole history
file, which allows you to detect bad blocks in the header portions; it also means there is a simple way to ex-
tract the data from a history file even without the aesvt program, or for testing, or because you are curious.

You can actually choose from a number of compression algorithms, including GNU Zip and bunzip2, via
the −compression-algorithm option. More copmpresison algoritthms may be added in the future.
The best available comression is used, because this results in the most compact history files. Future ver-
sions will always be able to access the compression used by earlier versions.

Reference Manual Aegis 362

aesvt(1) aesvt(1)

End-To-End Issues
See also Saltzer, J.H. et al (1981) End-to-end arguments in system design, http://web.mit.edu/Saltzer/-
www/publications/endtoend/endtoend.pdf

Xdelta
This style of history file was inspired by RFC 3284 − The VCDIFF Generic Differencing and Compression

Data Format. While the aesvt format does not use RFC3284 internally, the arguments for compression
across file versions are just as relevant.

COPYRIGHT
aesvt version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aesvt program comes with ABSOLUTELY NO WARRANTY; for details use the ’aesvt −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aesvt −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 363

aegis −Test(1) General Commands Manual aegis −Test(1)

NAME
aegis test − run tests

SYNOPSIS
aegis −Test [option...][name=value][file-name...]
aegis −Test −INDependent [option...][name=value][file-name...]
aegis −Test −List [option...]
aegis −Test −Help

DESCRIPTION
The aegis −Test command is used to run tests. If no files are named, all relevant tests are run. By default
both automatic and manual tests are run.

You may name directories on the command line, and all relevant tests in that directory tree in the change
will be run. It is an error if there are no relevant tests.

Each architecture must be tested separately. This is because there may be subtle problems that are only re-
vealed on some architectures. Some projects may also have different code for different architectures.

The status of the last test run is remembered so that tests are not run if there is no need. (This does not ap-
ply to −REGression tests, unfortunately.) Tests must be re-run if the test previously failed, if the test file
has changed, if there has been a build, and for each architecture.

name=value
You can add name=value pairs to the command line, these will be passed unchanged to the test command.
Usually on the end of the command line, but this can be changed in the project configuration file.

The −force option results in an implicit force=1 variable being added to the list of variable assignments,
and thus added to the end of the command. This is of most use when using the batch_test_command filed
of the project configuration file.

This may initially look like a dev elopment process end-run, allowing test scripts to be written so that they
give all the right answers without actually doing anything. You have always been able to do this with envi-
ronment variables, so this isn’t anything new.

It is possible to get all of the variable assignments to turn into environment variables by putting $var at the
start of the command, before the name of the shell, rather than at the default location at the end of the com-
mand.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one
of these directory trees.

The −BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(5) for more information.

TEST PROCESS
Each change is required to be accompanied by tests, and those tests are required to be run against the built
development directory, and they must pass. This ensures that new functionality is accompanied by tests to
verify its correctness, and bug fixes are accompanied by tests which confirm that the bug has been fixed.

Regression Tests
Tests are treated as any other source file, and are maintained in the baseline and history with all other
source files. The tests which must accompany every change accumulate in the project baseline, providing a

Reference Manual Aegis 364

aegis −Test(1) General Commands Manual aegis −Test(1)

definition of correct function for the baseline. These accumulated tests may be executed using an “aegis
−REGression” command, to verify that the project will not “regress” as a result of a change.

Baseline Tests
Bug fixes are required to have their tests fail against the project baseline (in contrast to the development di-
rectory). This ensures that the test actually demonstrates the bug in the baseline, as well as demonstrating
that it is fixed by the change. New functionality trivially fails against the baseline, and so aegis does not at-
tempt to guess if a test is a bug fix test or new functionality test, it simply requires tests to fail against the
baseline.

This requirement applies both to new tests being created by a change and also to tests which have been
copied into a change for modification.

Reviewing Tests
Reviewers may be confident that aegis has enforced the test requirements; that a change must have tests,
that the change must build, that the tests pass against the development directory, and that the tests fail
against the baseline. These conditions are enforced by aede(1) and the change will not be advanced to the
being reviewed state until these conditions are met. Reviewers should thus review tests for completeness of
coverage of the code in the change, and insensitivity to changes in the execution environment (e.g. not date
sensitive). Reviewers should also use “aegis −list change_details” to verify that a change does or does not
have testing exemptions.

Exemptions
Various test exemptions may be granted by project administrators, see aepa(1) and aepattr(5) for more in-
formation. Copying tests into a change, or adding new tests to a change, may cancel those exemptions.

TEST COMMAND CONFIGURATION
The command used to execute tests is defined by the test_command field in the project configuration file
(see aepconf (5) for more information), this defaults to using the Bourne shell if not set. The current direc-
tory will be the top of the appropriate directory tree. If tests require temporary files, they should create
them in /tmp, as a test cannot expect to have write permission in the current directory.

If you want to use a more sophisticated test engine, rather than a simple shell script, but this test engine
does not return result codes suitable for use with aegis, you could wrap it in a shell script which re-writes
the exit status into the values aegis expects. You could also achieve the same results by writing a more
complex test_command in the project config file.

It is also possible to write test commands which are able to test more than one file at once. This is con-
trolled by the batch_test_command field of the project config file. In this case, the ${output} substitution
indicates the name of a file the test command must create, in aetest(5) format, to contain the results of the
tests run. This is often used on systems with multiple CPUs or the ability to distribute jobs across several
computers on a network.

Substitutions
All of the aesub(5) substitutions are available in the test commands. Some of them are of particular note:

ARCHitecture

This substitution is replaced by the name of the architecture to be tested.

Search_Path

This substitution is replaced by a colon separated list of absolute paths to search when looking for
test support files.

Search_Path_Executable

This substitution is replaced by a colon separated list of absolute paths to search when looking for
executable support files (library files and sub-commands).

Most of the time $Search_Path_Executable are exactly the same. However, during “aegis −t −bl” they will
be different, with $Seach_Path starting at the development directory (the test being run) and
$Seach_Path_Executable starting at the baseline (the executable being run).

Reference Manual Aegis 365

aegis −Test(1) General Commands Manual aegis −Test(1)

Test Result Codes
As each test is run (via the test_command field in the project config file), aegis determines whether the test
succeeded or failed by looking at its exit status. This exit status is mostly as expected for UNIX com-
mands.

Success
A test should exit 0 to indicate success, i.e. that the specific function under test worked as expected.

Failure
A test should exit 1 to indicate failure, i.e. that the specific function under test did not work as ex-
pected.

No Result
A test should exit 2 to indicate no result, i.e. that the specific function under test could not be exercised
because something else went wrong. For example, running out of disk space when creating the test in-
put files in the /tmp directory.

Skipped
A test should exit 77 to indicate that it was skipped. This is usually to do with the current architecture
not being meaningful. Whenever possible, use “No Result” instead. (The value was chosen for com-
patibility with other test systems.)

Actually, any exit code other than 0, 1 or 77 will be interpreted as “no result”. However, always using 0, 1,
2 or 77 means that if a new result code is required by a later release of Aegis your existing tests will con-
tinue to work.

TEST CORRELATIONS
The “aegis −Test −SUGgest” command may be used to have aegis suggest suitable regression tests for your
change, based on the source files in your change. This automatically focuses testing effort to relevant tests,
reducing the number of regression tests necessary to be confident that you have not introduced a bug.

The test correlations are generated by the “aegis −Integrate_Pass” command, which associates each test in
the change with each source file in the change. Thus, each source file accumulates a list of tests which have
been associated with it in the past. This is not as exact as code coverage analysis, but is a reasonable ap-
proximation in practice.

The aecp(1) and aenf (1) commands are used to associate files with a change. While they do not actively
perform the association, these are the files used by aeipass(1) and aet(1) to determine which source files
are associated with which tests.

Test Correlation Accuracy
Assuming that the testing correlations are accurate and that the tests are evenly distributed across the func-
tion space, there will be a less than 1/number chance that a relevant test has not been run by the “aegis
−Test −SUGgest number” command. A small amount of noise is added to the test weighting, so that unex-
pected things are sometimes tested, and the same tests are not run every time.

Test correlation accuracy can be improved by ensuring that:

• Each change should be strongly focused, with no gratuitous file inclusions. This avoids spurious cor-
relations.

• Each item of new functionality should be added in an individual change, rather than several together.
This strongly correlates tests with functionality.

• Each bug should be fixed in an individual change, rather than several together. This strongly corre-
lates tests with functionality.

• Test correlations will be lost if files are moved. This is because correlations are by name.

The best way for tests to correlate accurately with source files is when a change contains a test and exactly
those files relating to the functionality under test. Too many spurious files will weaken the usefulness of
the testing correlations.

Reference Manual Aegis 366

aegis −Test(1) General Commands Manual aegis −Test(1)

OPTIONS
The following options are understood:

-AUTOmatic
This option may be used to specify automatic tests. Automatic tests require no human assistance.

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

−BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

−CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−FOrce This option may be used to specify that all tests should be run, even if the status of the last test
run indicates that there is no need to run a specific test.

-Help
This option may be used to obtain more information about how to use the aegis program.

-INDependent
This option is used to specify that the test is to be run independent of any particular change. If no
tests are named, all tests in the baseline will be run.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

-MANual
This option may be used to specify manual tests. Manual tests require some human intervention,
e.g.: confirmation of some screen behavior (X11, for instance), or some user action, "unplug eth-
ernet cable now".

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

−PErsevere
This option may be used to specify that all tests should be run, even if some fail. Defaults to the
user’s persevere_preference if not specified, see aeuconf (5) for more information.

−No_PErsevere
This option may be used to specify that the test run should stop after the first failure. Defaults to
the user’s persevere_preference if not specified, see aeuconf (5) for more information.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

−PROGress
This option may be used to specify that progress messages should be issued before each test run
or before each batch test run in case batch_test_command field specified in project config file
(see aeuconf (5) for more information).

Reference Manual Aegis 367

aegis −Test(1) General Commands Manual aegis −Test(1)

−No_PROGress
This option may be used to specify that progress messages should be suppressed. This is the de-
fault.

−REGression
This option is used to specify that the regression test suite is to be run. The regression test suite
consists of all tests in the baseline which do not appear in the change. It is an error if there are no
regression tests. You may not name tests on the command line when using the −REGression op-
tion. You may name individual tests to be run on the command line, without using the −REGres-
sion option; if they are not part of the change, the tests of the same name in the baseline will be
run.

−SUGgest [number]
The “aegis −Integrate_Pass” command collects test correlation statistics when changes are inte-
grated. This option may be used to request that aegis suggest which tests should be run, using
these testing correlations. If no number is specified, 10 tests will be suggested. This option im-
plies the −REGression option.

−SUGgest_Limit minutes

This option may be used to limit the number of tests to a certain number of minutes. They will be
run from most relevant to least relevant.

−SUGgest_Noise number

This option may be used to control the amount of noise injected into the test selection performed
by the −SUGgest option. The number is a percentage of noise to be injected. Defaults to 10 if
not specified. The injection of noise ensures that a variety of tests are run on subsequent runs,
and also some from left-field as a sanity check.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

−Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

−No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-

conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

Reference Manual Aegis 368

aegis −Test(1) General Commands Manual aegis −Test(1)

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aet ’aegis −t \!* −v’
sh$ aet(){aegis −t "$@" −v}

ERRORS
It is an error if the change is not in one of the being developed or being integrated states.
It is an error if the change is not assigned to the current user.
It is an error if your have no relevant tests and no relevant exemption.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeb(1) build a change

aeca(1) modify the attributes of a change

aedb(1) begin development of a change

aeib(1) begin integration of a change

aent(1) add a new test to a change

aecp(1) copy an existing test into a change

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 369

aetar(1) aetar(1)

NAME
aetar − remotely distribute a change via tar

SYNOPSIS
aetar −Send [option...]
aetar −Receive [option...]
aetar −List [option...]
aetar −Help
aetar −VERSion

DESCRIPTION
The aetar command is used to send and receive change sets via tar(1) to facilitate geographically distrib-
uted development.

The basic function is to reproduce a change, so a command like
aetar −send | aetar −receive

may be used to clone a change, though less efficiently than aeclone(1). The file format used is an ordinary
gzip(1) compressed tar(1) archive.

SEND
The send variant takes a specified change, or baseline, and constructs a distribution package containing all
of the source file contents. No change meta-data is included.

It is not necessary for the recipient to have the aetar(1) command. It is possible to use the regular tar xzf

command to extract the files from the archive.

Options
The following options are understood by the send variant:

−BaseLine
This option may be used to specify the source of a project, rather than a change.

−Add_Path_Prefix string

This option may be used to specify a path prefix to be added to every filename in the archive.
This means that when the archive is unpacked, it will all be placed in the one directory.

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−COMPAT ibility version-number

This option may be used to specify the version of aetar(1) which will be receiving this change
set. This information is used to select which features to include in the data, and which to omit.
By default, the latest feature set will be used.

−compression-algorithm name

This option may be used to specify the compression to be used. They are listed on order of com-
pression effeciency.

none Use no compression (not always meaningful for all commands).

gzip Use the compression used by the gzip(1) program.

bzip2 Use the compression used by the bzip2(1) program.

More compression algorithms may be added in the future.

−COMPress
This option is deprecated in favour of the −comp-alg=gzip or −comp-alg=bzip2 options.

−No_COMPress
This options is deprecated in favour of the −comp-alg=none option.

Reference Manual Aegis 370

aetar(1) aetar(1)

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
rather than the most current version. If the delta has been given a name (see aedn(1) for how)
you may use a delta name instead of a delta number. It is an error if the delta specified does not
exist. Delta numbers start from 1 and increase; delta 0 is a special case meaning “when the
branch started”.

−DELta_Date string

This option may be used to specify a particular date and time in the project’s history to copy the
file from, rather than the most current version. It is an error if the string specified cannot be inter-
preted as a valid date and time. Quote the string if you need to use spaces.

−DELta_From_Change number

This option may be used to specify a particular project delta from its change number.

−Entire_Source
This option may be used to send the entire source of the project, as well as the change source
files. This is the default.

−Partial_Source
This option may be used to send only source files of a change.

−Include_Build
This option may be used to send also build files.

−Not_Include_Build
This option may be used to send only source (source, test, config but not build) files. This is the
default.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

RECEIVE
The receive variant takes a tarball and creates an Aegis change (see aenc(1)) to implement the change
within. Files are added to the change (see aenf(1), aecp(1), aerm(1), aent(1)) and then the file contents are
unpackaged into the development directory.

It is not necessary for the sender to have the aetar(1) command. It is possible to use the regular tar czf

command to create the the tarball. You may want to use the tardy(1) command to manipulate the filenames
before extraction.

File Names
It is common for tar files generated to distribute open source projects to contain a path prefix.

−Remove_Path_Prefix string

This option may be used to explicitly specify path prefixes to be removed, if present. It may be
specified more than once.

−Remove_Path_Prefix number

Strip the smallest prefix containing num leading slashes from each file name found in the patch
file. A sequence of one or more adjacent slashes is counted as a single slash.

If you have a complex project directory structure, from time to time people may send you tarballs relative
to a sub-directory, rather than relative to the project root.

Reference Manual Aegis 371

aetar(1) aetar(1)

−Add_Path_Prefix string

This option may be used to specify the path of a project sub-directory in which to apply the tar-
ball.

Notification
The aetar command invokes various other Aegis commands. The usual notifications that these commands
would issue are issued.

Options
The following options are understood by the receive variant:

−Change number

This option may be used to choose the change number to be used, otherwise one will be chosen
automatically.

−DELta number

This option may be used to specify a particular delta in the project’s history to copy the file from,
just as for the aecp(1) command. You may also use a delta name instead of a delta number.

−DIRectory path

This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

−EXCLude
This option may be used to exclude certain files in the tarball from consideration.

You can also add more exclusions using the project_specific field of the project configuration, us-
ing the aetar:exclude attribute listing file names to exclude separated by spaces.

−Exclude_Auto_Tools
This option may be used to exclude files common to tarballs of open source projects which used
GNU Autoconf or GNU Automake. This is triggered by the presence of configure.ac, config-

ure.in or Makefile.am files. This only works for simple projects, more complex projects will need
to use the project exclude attributes.

You can set this automatically using the boolean aetar:exclude-auto-tools attribute in
the project_specific field of the project configuration file.

−Exclude_CVS
This option may be used to exclude files common to CVS repositories, which implement the
repository functions, rather than contain source code. It will also look inside .cvsignore files
for additional files to ignore.

You can set this automatically using the boolean aetar:exclude-cvs attribute in the
project_specific field of the project configuration file.

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more

Reference Manual Aegis 372

aetar(1) aetar(1)

information). If that does not exist, when the user is only working on changes within a single
project, the project name defaults to that project. Otherwise, it is an error.

−Trojan This option may be used to treat the change set as if it had a Trojan horse attack in it.

−No_Trojan
This option may be used to treat the change set as if it definitely does not have a Trojan horse at-
tack in it. Use with extreme care. You need to have authenticated the message with something
like PGP first and know the the author well.

Security
Downloading a tarball and automatically committing it to the baseline without checking it would be a
recipe for disaster. A number of safeguards are provided:

• The file sare unpacked into a new change. You need to edit the change description. You need to uncopy
unchanged files. You need to difference the change. You need to build and test the change. This ensures
that a local reviewer validates the change before it is committed, preventing accidental or malicious dam-
age.

• The use of authentication and encryption systems, such as PGP and GPG, are encouraged. However, it is
expected that this processing will occur after aetar −send has constructed the package and before aetar

−receive examines and acts on the package. Verification of the sender is the surest defense against trojan
horses.

• Automatic sending and receiving of packages is supported, but not implemented within the aetar com-
mand. It is expected that the aetar command will be used within shell scripts customized for your site
and its unique security requirements. See the Aegis User Guide for several different ways to do this.

• The more you use Aegis’ test management facilities (see aent(1) and aet(1)) the harder it is for an inade-
quate change to get into the baseline.

LIST
The list variant can be used to list the contents of a tarball without actually unpacking it first.

Options
The following options are understood by the list variant:

−File filename

Read the change set from the specified file. The default is to read it from the standard input. The
filename ‘−’ is understood to mean the standard input.

If your system has libcurl(3), and Aegis was configured to use it at compile time (this is the de-
fault if it is available) you will also be able to specify a Uniform Resource Locator (URL) in
place of the file name. The relevant data will be downloaded. (The −Verbose option will provide
a progress bar.)

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default. Only useful with the −List option.

OPTIONS
The following options to this command haven’t been mentioned yet:

-Help
This option may be used to obtain more information about how to use the aetar program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Reference Manual Aegis 373

aetar(1) aetar(1)

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aetar are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

FILE FORMAT
The file format re-uses existing formats, rather than introduce anything new. This means it is possible to
extract the contents of a package even when aetar is unavailable.

• The source files and other information is stored as a normal Unix tar(1) archive.

• On sending, the tarball is compressed using the GNU gzip format. Typically primary source files are
ASCII text, resulting in significant compression. (This is optional.)
On receiving, if the tarball is compressed it will be automagically uncompressed, detection is automatic,
you do not need to do this yourself.

EXIT STATUS
The aetar command will exit with a status of 1 on any error. The aetar command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aetar version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aetar program comes with ABSOLUTELY NO WARRANTY; for details use the ’aetar −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aetar −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 374

aegis −VERSion(1) General Commands Manual aegis −VERSion(1)

NAME
aegis version − give version information

SYNOPSIS
aegis −VERSion [info-name]
aegis −VERSion −Help

DESCRIPTION
The aegis −VERSion command is used to give version information and conditions of use.

There are a number of possible info-names, as follow (abbreviations as for command line options):

Copyright
The copyright notice for the aegis program. Version information will also be printed. This is the
default.

Redistribution
Print the conditions of use and redistribution.

Warranty
Print the limited warranty.

OPTIONS
The following options are understood:

-Help
This option may be used to obtain more information about how to use the aegis program.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aev ’aegis −vers \!*’
sh$ aev(){aegis −vers "$@"}

ERRORS
It is an error if the info-name given is unknown.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

Reference Manual Aegis 375

aegis −VERSion(1) General Commands Manual aegis −VERSion(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 376

aexml(1) aexml(1)

NAME
aexml − Aegis database to XML

SYNOPSIS
aexml [option...] listname

aexml -Help
aexml -List
aexml -VERSion

DESCRIPTION
The aexml command is used to extract portions of Aegis’ database in XML format.

List Names
The following list names may be given

Change_Files
Internal change file state. See aefstate(5) for structure.

Change_State
Internal change state. See aecstate(5) for structure.

Projects List of projects. See aegstate(5) for structure.

Project_Change_State
Internal project change state. See aecstate(5) for structure.

Project_Config_File
The project configuration file. See aepconf(5) for structure.

Project_Files
Internal project file state. See aefstate(5) for structure.

Project_Files_By_Delta
Historical project file state as it appeared immediately after the integrate pass of the specified
change or delta. See aefstate(5) for structure.

Project_State
Internal project state. See aepstate(5) for structure.

User_Config_File
User configuration file. See aeuconf(5) for structure.

The abbreviations foe the list names follows the same rules as for command line options.

OPTIONS
The following options are understood:

−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aexml program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

−Output filename

This option may be used to specify the output file. The output is sent to the standard output by
default.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more

Reference Manual Aegis 377

aexml(1) aexml(1)

information). If that does not exist, when the user is only working on changes within a single
project, the project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts. If the file name ends with ".gz" it will be compressed with the
gzip(1) algorithm, if it ends with ".bz" or ".bz2" it will be compressed with the bzip2(1) algo-
rithm.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “−project”, “−PROJ” and “−p” are all interpreted to mean the −Project option.
The argument “−prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aexml are long, this means ignor-
ing the extra leading ’−’. The “−−option=value” convention is also understood.

EXIT STATUS
The aexml command will exit with a status of 1 on any error. The aexml command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aexml version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aexml program comes with ABSOLUTELY NO WARRANTY; for details use the ’aexml −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aexml −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 378

aexver(1) aexver(1)

NAME
aexver − graphical file history

SYNOPSIS
aexver

DESCRIPTION
The aexver command is used to to view historical versions of files in an Aegis repository.

A list box is displayed with all project filenames in it. When ther user double-clicks on a file, another box
is displayed listing all the revisions of that file. Selecting any two revisions will bring up a diff comparing
those revisions to each other.

ENVIRONMENT VARIABLES
AE2DIFF

The name of the program to perform the 2-way diff. Default to xidff if not set.

EXIT STATUS
The aexver command will exit with a status of 1 on any error. The aexver command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
aexver version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aexver program comes with ABSOLUTELY NO WARRANTY; for details use the ’aexver −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’aexver −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 379

tkaeca(1) tkaeca(1)

NAME
tkaeca − GUI interface for aeca, using TCL/TK

SYNOPSIS
tkaeca

DESCRIPTION
The tkaeca command is used to provide a GUI interface to aeca(1). Its use should be self-evident to any-
one familiar with Aegis.

The top line of the screen contains button for selecting the project and the change. They will be defaulted
whenever possible, using the usual Aegis defaulting rules. Click on the buttons to obtain a pick list if you
want to change; then double-click an item to select it. (I would have used tk_optionMenu, but it doesn’t
have a scroll bar, even when all the items don’t fit on the screen.)

The middle section contains text entry areas, for editing the brief_description and description fields of the
change attributes. The text wraps in a natural way, both here and in (say) the “tkaeca −list chand details”
listing, so only use newlines to indicate end-of-paragraph.

The lower section contains two boxes. The first is the testing required for the change − select as many or as
few as is appropriate. The second a set of radio buttons to select the change cause − pick one.

The “OK” and “Cancel” buttons do what you expect. The cancel button simply quits. The OK button runs
the aeca(1) command − if anything goes wrong (e.g. asking for testing exemptions you can’t hav e) then the
error message will be displayed in the message area at the bottom of the window.

OPTIONS
There are no command line options. It is best to run this command in the background.

EXIT STATUS
The tkaeca command will exit with a status of 1 on any error. The tkaeca command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aeca(1) View and edit change attributes, from the command line.

tkaegis(1)
GUI interface for Aegis, using TCL/TK

COPYRIGHT
tkaeca version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The tkaeca program comes with ABSOLUTELY NO WARRANTY; for details use the ’tkaeca −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’tkaeca −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 380

tkaegis(1) tkaegis(1)

NAME
tkaegis − GUI interface for Aegis, using TCL/TK

SYNOPSIS
tkaegis

DESCRIPTION
The tkaegis command is used to provide a GUI interface to Aegis. Its use should be self-evident to anyone
familiar with Aegis.

There are some areas where tkaegis is still missing functionality; these are primarily related to project and
change attributes that are not yet included in the dialogs, and also issues such as configuring the change and
history tools, the architectures, and so on.

INSTALLATION
First, you will need Tcl/Tk installed, and will need to modify the path in the first line of tkaegis to reflect
the path of your Tk wish interpreter. Hopefully, the ./configure script took care of this.

Next, you may need to modify some important variables that occur immediately below these comments, to
specify the architecture, project base directory, and the editor you are using (if you leave that blank, tkaegis
will try to determine the editor to use from the EDITOR environment variable; if that fails, it will fall back
to emacs or vi).

NAVIGATION
When you run tkaegis, a window will appear with a menu at the top. The window is used to display the
output of aegis commands and some other feedback. The menu will initially have only two items, Project
and Help. At this stage the Help menu only has an About dialog box.

The Project menu will allow you to create new projects, select from your existing projects, clear the con-
tents of the feedback window, or exit the program. If you create a new project, a dialog box will appear al-
lowing you to enter the project name, directory, and initial branch number. When you press OK the project
will be created and should then appear in the Project menu.

If you select an existing project, a new option will be added to the Project menu, allowing you to delete the
project. A Branch menu will also appear. This is similar to the Project menu, but allows you to create,
delete, or select project branches.

If you select a branch in the branch menu, a Role menu will appear. This will allow you to choose the role
that you will be playing, namely one of administrator, dev eloper, reviewer, or integrator. tkaegis uses your
UNIX login name and the names of the roleplayers associated with the project and branch, to determine
which of the roles it will allow you to choose. If you create a new project, only the administrator role will
appear.

Selecting a role will put you in a ‘mode’, which will determine what other menus appear and what you can
do next. Each mode will now be described in turn, by giving a brief description of the role-specific menu
hierarchy. Following the name of each menu item is the corresponding aegis command, where applicable.

ADMINISTRATOR MODE
In this mode, you can modify the staff and roles associated with the branch, and create, remove, and change
the attributes of change requests, and view all the change requests.

Admin:

Edit Branch Attributes (aepa) −
Change the attributes for the branch

Staff:

Administrators:

Add (aena) −
Add an administrator for the branch

Reference Manual Aegis 381

tkaegis(1) tkaegis(1)

View (ael a) −
View the administrators for the branch

Remove (aera) −
Remove an administrator for the branch

Developers:

Add (aend) −
Add a developer for the branch

View (ael d) −
View the developers for the branch

Remove (aerd) −
Remove a dev eloper for the branch

Reviewers:

Add (aenrv) −
Add a reviewer for the branch

View (ael r) −
View the reviewers for the branch

Remove (aerrv) −
Remove a reviewer for the branch

Integrators:

Add (aeni) −
Add an integrator for the branch

View (ael i) −
View the integrators for the branch

Remove (aeri) −
Remove an integrator for the branch

Change:

Add New Change (aenc) −
Add a new change request

New Change Undo (aencu) −
Undo the addition of a change request

Edit Change Attributes (aeca) −
Modify the attributes of a change request

View Changes (ael c) −
View the set of changes

DEVELOPER MODE
This mode is used by developers. When entering this mode, the Develop menu will appear, but no others.
A change must be selected after which the other menus will appear. If there is only one change awaiting
development, this will be auto-selected.

Develop:

View Changes (ael c) −
View all the change requests

Begin Change (aedb) −
Start work on a new change

Reference Manual Aegis 382

tkaegis(1) tkaegis(1)

Continue Change −
Continue work on a change in development

View Differences (aediff) −
Show all the diffs for this change

Abort Change (aedbu) −
Abort working on the change

End Change (aede) −
(Attempt to) end working on the change

Resume Change (aedeu) −
Resume work on a change awaiting review

File:

Edit Files −
Allow files to be loaded into an editor

Add New File (aenf) −
Add a new file to the project

Discard New File (aenfu) −
Discard a newly added file

Remove Existing File (aerm) −
Discard a previously existing file

Restore Existing File (aermu) −
Undo discard of a previously existing file

Change Existing File (aecp) −
Allow an existing file to be edited

Undo Changes to Existing File (aecpu) −
Lose changes to an existing file

Build:

Build Project (aeb) −
Attempt to build the project

Test:

Add New Test Script (aent) −
Add a new test script to the project

Discard New Test Script (aentu) −
Remove a new test script

Run New Tests (aet) −
Run the new tests

Run Regression Tests (aet −reg) −
Run the old tests

Run Baseline Test (aet −bl) −
Run the baseline test

REVIEWER MODE
In this mode you are able to review changes.

Review:

View Changes (ael c) −
View all the changes

Reference Manual Aegis 383

tkaegis(1) tkaegis(1)

Begin Review (aerb) −
Start reviewing a change

Abort Review (aerbu) −
Abort reviewing a change

Pass (aerpass) −
Pass a change review

Fail (aerfail) −
Fail a change review

Undo Pass (aerpu) −
Undo a previously passed review

INTEGRATOR MODE
In this mode you can perform integration activities.

Integrate:

View Changes (ael c) −
View all the changes

Start Integration (aeib) −
Start integrating a change

Resume Integration −
Resume an integration in progress

Cancel Integration (aeibu) −
Cancel an integration

View Differences (aediff) −
Show the file differences for the change

Build (aeb) −
Build the project

New Tests (aet) −
Run the new tests

Baseline Test (aet −bl) −
Run the baseline test

Regression Test (aet −reg) −
Run the regression tests

Pass (aeipass) −
Pass the integration

Fail (aeifail) −
Fail the integration

SEE ALSO
tkaeca(1)

GUI interface for the aeca(1) command.

tkaenc(1)
GUI interface for the aenc(1) command.

tkaepa(1)
GUI interface for the aepa(1) command.

COPYRIGHT
tkaegis version 4.25
Copyright © 1995, 1999 Graham Wheeler

Reference Manual Aegis 384

tkaegis(1) tkaegis(1)

AUTHOR
Graham Wheeler <gram@cdsec.com>
Citadel Data Security

Reference Manual Aegis 385

tkaenc(1) tkaenc(1)

NAME
tkaenc − GUI interface for aenc, using TCL/TK

SYNOPSIS
tkaenc

DESCRIPTION
The tkaenc command is used to provide a GUI interface to aenc(1). Its use should be self-evident to any-
one familiar with Aegis.

The top line of the screen contains button for selecting the project. It will be defaulted using the usual
Aegis defaulting rules. Click on the buttons to obtain a pick list if you want to change it; then double-click
an item to select it. (I would have used tk_optionMenu, but it doesn’t hav e a scroll bar, even when all the
items don’t fit on the screen.)

The middle section contains text entry areas, for editing the brief_description and description fields of the
change attributes. The text wraps in a natural way, both here and in (say) the “tkaenc −list change_details”
listing, so only use newlines to indicate end-of-paragraph.

The lower section contains three boxes. The first is the testing required for the change − select as many or
as few as is appropriate. The second a set of radio buttons to select the change cause − pick one.

The third box is whether to begin development immediately (it will also run the aedb(1) command), or
whether to leave the change in awaiting development.

The “OK” and “Cancel” buttons do what you expect. The cancel button simply quits. The OK button runs
the aenc(1) command − if anything goes wrong (e.g. asking for testing exemptions you can’t hav e) then the
error message will be displayed in the message area at the bottom of the window.

The number of the change will be printed on a message on the standard output, just as for a normal aenc(1)
command.

OPTIONS
There are no command line options.

EXIT STATUS
The tkaenc command will exit with a status of 1 on any error. The tkaenc command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aenc(1) Create new changes from the command line.

aedb(1) Begin development of changes from the command line.

tkaegis(1)
GUI interface for Aegis, using TCL/TK

Reference Manual Aegis 386

tkaenc(1) tkaenc(1)

COPYRIGHT
tkaenc version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The tkaenc program comes with ABSOLUTELY NO WARRANTY; for details use the ’tkaenc −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’tkaenc −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 387

tkaepa(1) tkaepa(1)

NAME
tkaepa − GUI interface for aeca, using TCL/TK

SYNOPSIS
tkaepa

DESCRIPTION
The tkaepa command is used to provide a GUI interface to aepa(1). Its use should be self-evident to any-
one familiar with project administration under Aegis.

The top line of the screen contains button for selecting the project The project will be defaulted whenever
possible, using the usual Aegis. defaulting rules. Click on the buttons to obtain a pick list if you want to
change; then double-click an item to select it.

There is a text entry areas for editing the description attribute. The lower section contains a number of
checks boxes for the various attributes.

The “OK” and “Cancel” buttons do what you expect. The cancel button simply quits. The OK button runs
the aepa(1) command − if anything goes wrong the error message will be displayed in the message area at
the bottom of the window.

OPTIONS
There are no command line options. It is best to run this command in the background.

EXIT STATUS
The tkaepa command will exit with a status of 1 on any error. The tkaepa command will only exit with a
status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aepa(1) View and edit project attributes, from the command line.

tkaegis(1)
GUI interface for Aegis, using TCL/TK

COPYRIGHT
tkaepa version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The tkaepa program comes with ABSOLUTELY NO WARRANTY; for details use the ’tkaepa −VERSion

License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the ’tkaepa −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 388

tkaer(1) tkaer(1)

NAME
tkaer − GUI tool for reviewing Aegis change sets, using TCL/TK

SYNOPSIS
tkaer

DESCRIPTION
The tkaer command is used to provide an easy and convenient way to review Aegis change sets. It provides
a front-end to other tools which are used to view the modifications.

Files in the change set are shown in one of four lists. The choice of list is based on the operation performed
on the file by the change (create, modify, move or remove). Empty lists are not shown. The change details,
as provided by ael(1) may be displayed by clicking on the “Details” button.

MODIFIED AND MOVED FILES
tkdiff is used to show the differenceces between the change and baseline versions of modified and moved
files. (In the case of moved files, the original name is used to access the baseline version.)

Double-clicking button 1 on a filename (or pressing the space key when the filename is highlighted) will
show the differences between the change and the current branch baseline. Holding down button 3 (or press-
ing the “a” key) will invoke a pop-up menu presenting the reviewer with a list of grandparent branches
which also contain the file. This is particularly useful when rolling in branches.

NEW AND REMOVED FILES
New files are viewed by opening a new xterm and using vi (in read-only mode) to display its contents. This
method is also used for removed files, however it is the baseline version that is displayed (so that the re-
viewer can see what has been removed).

ADDITIONAL FEATURES FOR REVIEWERS.
If the change is in the being reviewed state, the reviewer may open the comments editor by clicking on the
“Comments” button. These comments will be submitted should the reviewer decide that the review has
failed. An outline of the files included in the change is automatically created.

Once the review is complete, clicking the “Finished” button results in a dialog box which will allow the re-
viewer to pass or fail (via the aerpass(1) and aerfail(1) commands) the change. Alternatively, the reviewer
may resume reviewing or quit, leaving the change state unmodified. If the change was not in the being re-

viewed state, the “Finished” button simply causes tkaer to exit.

CONFIGURING TKAER
tkaer may be customised by the .tkaer file. This file is created by tkaer in the users home directory when it
is first run. This newly created file contains the default configuration as described above, such as the choice
of tools used in reviewing. The configuration file itself is a tcl script which is executed by the tkaer script
using the tcl “source” command. Each entry takes the form of a “set” statement which adds an item to the
pref array. Items currently supported are:

pref(diff_command)
This is the tool used to visually display the difference between a changes modified or moved file
and the baseline version. The default setting is
set pref(diff_command) "tkdiff"

You can change it to
set pref(diff_command) "mgdiff"

If you have the mgdiff(1) command installed.

pref(view_command)
This is the tool used to visually display a new file or a removed files, prior contents. The default
is vi(1)

pref(view_edit_font)
This is the font used by both the change details viewer and the review comments editor. Any
available X11 font may be used.

Reference Manual Aegis 389

tkaer(1) tkaer(1)

OPTIONS
−Change number

This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

−Project name

This option may be used to select the project of interest. When no −Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
$HOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

EXIT STATUS
The tkaer command will exit with a status of 1 on any error. The tkaer command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aerpass(1)

pass review of a change

aerfail(1)
fail review of a change

tkaegis(1)
GUI interface for Aegis, using TCL/TK

tkdiff by John M. Klassa. TkDiff Home Page http://www.accurev.com/free/tkdiff

AUTHOR
tkaer contributed by Scott Finneran <sfinneran@lucent.com>

Reference Manual Aegis 390

aecattr(5) File Formats Manual aecattr(5)

NAME
aecattr − aegis change attributes file

DESCRIPTION
A change attributes file is used to describe the modifiable portion of a change.

CONTENTS
A change attributes file contains the following fields:

description = string;
This field contains a detailed description of the change.

brief_description = string;
This field contains a brief description of the change.

cause = (...);
This field describes the cause which motivated the change.

external_bug
The change was created in response to a bug report from outside the development team.
This repairs existing functionality.

external_enhancement
The change was created in response to an enhancement request from outside the devel-
opment team. This adds new functionality.

external_improvement
The change was created in response to an improvement request from outside the devel-
opment team. This improves existing functionality.

internal_bug
The change was created in response to a bug report from inside the development team.
This repairs existing functionality.

internal_enhancement
The change was created in response to an enhancement request from inside the devel-
opment team. This adds new functionality.

internal_improvement
The change was created in response to an improvement request from inside the devel-
opment team. This improves existing functionality.

chain
This cause is where you have a fix to fix a fix; tracking these is an interesting quality
metric.

test_exempt = boolean;
This field is true if it is not necessary to test the change. It is, in general, desirable to test all
changes, whether new functionality or a bug fix. This is, however, a project management issue.

test_baseline_exempt = boolean;
This field is true if it is not necessary to test the change against the baseline before it is changed.
The test of the baseline is required to fail; this is to establish that the test has isolated the bug, and
that the change has fixed that isolated bug.

regression_test_exempt = boolean;
This field is true if it is not necessary to perform a full regression test on the change. If absent,
defaults to true for all causes except improvements.

architecture = [string];
This field is a list of names of system and machine architectures on which the change must suc-
cessfully build and test.

Reference Manual Aegis 391

aecattr(5) File Formats Manual aecattr(5)

copyright_years = [integer];
This field details the years in which the change was worked on. This field is present in trunk,
branch and leaf nodes.

As a change is edited, years in which the change was worked on accumulate in this field automat-
ically. Branches accumulate years as integrations occur. You may need to manually edit this,
though it should be rare.

version_previous = string;
This field records the "previous" version, mostly to simplify patch generation. It is only mean-
ingful for trunks and branches. It is set automatically when a branch is started or integrated.

attribute = [{ ... }];
This is a list of (name,value) pairs, defining user specified attributes.

name = string;
The name of the attribute. By convention, names which start with an upper-case letter
will appear in listings, and lower-case will not. Attribute names are case-insensitive.

value = string;
The value of the attribute.

Arguably, most change attributes which may be altered by the user (and some that can’t) should
be of this form. Due to an accident of history, this is not the case.

SEE ALSO
aenc(1) create a new change

aeca(1) modify the attributes of a change

aegis(5) aegis file format syntax

aecstate(5)
change state file format

aepattr(5)
project attributes file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 392

aecstate(5) File Formats Manual aecstate(5)

NAME
aecstate − aegis change state file

SYNOPSIS
project/info/change/[0−9]/[0−9][0−9][0−9]

DESCRIPTION
A change state file is used to store information about a change. These files are created and maintained by
aegis. These files should not be edited by humans. These files is owned by the project owner and group.

The change number is at least 3 digits, zero padded if necessary. (More digits will be used if a project has a
thousand or more changes in any one release, although this is rare.) The files are spread across a directory
tree, 100 per subdirectory, to improve the directory search times, and to avoid various systems’ directory
length limitations.

CONTENTS
description = string;

This field contains a detailed description of the change.

brief_description = string;
This field contains a brief description of the change.

cause = (...);
This field describes the cause which motivated the change.

external_bug
The change was created in response to a bug report from outside the development team.
This repairs existing functionality.

external_enhancement
The change was created in response to an enhancement request from outside the devel-
opment team. This adds new functionality.

external_improvement
The change was created in response to an improvement request from outside the devel-
opment team. This improves existing functionality.

internal_bug
The change was created in response to a bug report from inside the development team.
This repairs existing functionality.

internal_enhancement
The change was created in response to an enhancement request from inside the devel-
opment team. This adds new functionality.

internal_improvement
The change was created in response to an improvement request from inside the devel-
opment team. This improves existing functionality.

chain
This cause is where you have a fix to fix a fix; tracking these is an interesting quality
metric.

test_exempt = boolean;
This field is true if it is not necessary to test the change. It is, in general, desirable to test all
changes, whether new functionality or a bug fix. This is, however, a project management issue.

test_baseline_exempt = boolean;
This field is true if it is not necessary to test the change against the baseline before it is changed.
The test of the baseline is required to fail; this is to establish that the test has isolated the bug, and
that the change has fixed that isolated bug.

Reference Manual Aegis 393

aecstate(5) File Formats Manual aecstate(5)

regression_test_exempt = boolean;
This field is true if it is not necessary to perform a full regression test on the change. If absent,
defaults to true for all causes except improvements.

architecture = [string];
This field is a list of names of system and machine architectures on which the change must suc-
cessfully build and test.

copyright_years = [integer];
This field details the years in which the change was worked on. This field is present in trunk,
branch and leaf nodes.

As a change is edited, years in which the change was worked on accumulate in this field automat-
ically. Branches accumulate years as integrations occur. You may need to manually edit this,
though it should be rare.

version_previous = string;
This field records the "previous" version, mostly to simplify patch generation. It is only mean-
ingful for trunks and branches. It is set automatically when a branch is started or integrated.

attribute = [{ ... }];
This is a list of (name,value) pairs, defining user specified attributes.

name = string;
The name of the attribute. By convention, names which start with an upper-case letter
will appear in listings, and lower-case will not. Attribute names are case-insensitive.

value = string;
The value of the attribute.

Arguably, most change attributes which may be altered by the user (and some that can’t) should
be of this form. Due to an accident of history, this is not the case.

state = (...);
This field is used to describe what state the change is in. The state determines what operations
may be performed on the change.

aw aiting_development
The change has been created, but has yet to be worked on.

being_developed
The change is being developed.

aw aiting_review
The change has been developed, and is waiting to be review. (Optional, controlled by
the develop end action project attribute.)

being_reviewed
The change has been developed, and is being reviewed. (Optional, controlled by the
develop end action project attribute.)

aw aiting_integration
The change has passed review, and is queued ready for integration.

being_integrated
The change is being integrated.

completed
The change has been completed and is now part of the baseline. Changes in this state
can not be reversed.

given_test_exemption = boolean;
This field is the value of test_exemption (see aecattr(5)) when the change was created.

Reference Manual Aegis 394

aecstate(5) File Formats Manual aecstate(5)

given_regression_test_exemption = boolean;
This field is the value of regression_test_exemption (see aecattr(5)) when the change was cre-
ated.

delta_number = integer;
This field records the delta number for this change. It is only present if the change is in one of
the being_integrated or completed states.

delta_uuid = string;
This field records a universally unique identifier for this configuration. It is supplements the
delta_number field in that it is unique across all replicas of the project, whereas the delta number
is ambiguous across replicas. It is only present in the being_integrated and completed states.

minimum_integration = boolean;
This field records whether the change was placed into the being_integrated state using the −mini-
mum option (or that option was implicitly set due to a file being removed). It is only present if
the change is in the being_integrated state.

project_file_command_sync = integer;
This field records the last change integrated into the project. If it disagrees with the project, a
’project_file_command’ (from pconf) needs to be executed at the next build.

test_time = time;
This field records the time the last successful aegis −Test command was run for all architectures.
It is only present in the being_developed and being_integrated states.

test_baseline_time = time;
This field records the time the last successful aegis −Test −BaseLine command was run for all ar-
chitectures. It is only present in the being_developed and being_integrated states.

regression_test_time = time;
This field records the time the last successful aegis −Test −REGression command was run for all
architectures. It is only present in the being_developed and being_integrated states.

build_time = time;
This field records the last time the last successful aegis −Build command was run for all architec-
tures. It is only present in the being_developed and being_integrated states.

architecture_times = [{ ... }];
This field records the time of various operations for each variant named in the architecture field.
It is only present in the being_developed and being_integrated states.

variant = string;
This field is one of the patterns named in the architecture field.

node = string;
This field is the computer on which the command was run which last changed this
structure.

test_time = time;
This field records the last time the last successful aegis −Test command was run for
this specific pattern instance.

test_baseline_time = time;
This field records the last time the last successful aegis −Test −BaseLine command was
run for this specific pattern instance.

regression_test_time = time;
This field records the last time the last successful aegis −Test −REGression command
was run for this specific pattern instance.

Reference Manual Aegis 395

aecstate(5) File Formats Manual aecstate(5)

build_time = time;
This field records the last time the last successful aegis −Build command was run for
this specific pattern instance.

development_directory = string;
This field is the absolute path of a change’s dev elopment directory. It is only present of the
change is in a state between being_developed and being_integrated inclusive.

However, branches are treated slightly differently to changes. The directory is relative to the root
of the project tree, in order to facilitate moving the project without rewriting any of the database.
Note that its doesn’t point to the branch baseline, but one level up; just as the project root doesn’t
point to the trunk baseline, but rather one level up.

integration_directory = string;
This field is the absolute path of the change’s integration directory. It is only present of the
change is in the being_integrated state.

history = [{ ... }, ...];
This field records the history of the change, in the form of state transitions. The history records
have the form

when = time;
This field records the time the state transition occurred.

what = (...);
This field records what happened. Valid value names echo the various aegis functions.

who = string;
This field records the user name of the user who caused the state transition.

why = string;
This field is optional. It is a comment of some sort. In the cases of re view_fail and in-

tegrate_fail, this field will contain why the change failed.

uuid = string;
This field provides a globally unique identifier for the change set, even when geographically dis-
tributed development is happening.

branch = { ... };
This field is only present for branches (long transactions).

umask = integer;
File permission mode mask. See umask(2) for more information. This value will al-
ways be OR’ed with 022, because aegis is paranoid.

developer_may_review = boolean;
If this field is true, then a developer may review her own change. This is probably only
a good idea for projects of less than 3 people. The idea is for as many people as possi-
ble to critically examine a change.

Note that the develop_end_action field may not contradict the developer_may_review

field. If developers may not review their own work, then their changes may not goto di-
rectly to the being integrated state (as this means much the same thing).

developer_may_integrate = boolean;
If this field is true, then a developer may integrate her own change. This is probably
only a good idea for projects of less than 3 people. The idea is for as many people as
possible to critically examine a change.

reviewer_may_integrate = boolean;
If this field is true, then a reviewer may integrate a change she reviewed. This is proba-
bly only a good idea for projects of less than 3 people. The idea is for as many people
as possible to critically examine a change.

Reference Manual Aegis 396

aecstate(5) File Formats Manual aecstate(5)

developers_may_create_changes = boolean;
This field is true if developers may created changes, in addition to administrators. This
tends to be a very useful thing, since developers find most of the bugs.

forced_develop_begin_notify_command = string;
This command is used to notify a developer that a change requires developing; it is is-
sued when a project administrator uses an aedb −User command to force development
of a change by a specific user. All of the substitutions described in aesub(5) are avail-
able. This field is optional.

Executed as: the new dev eloper. Current directory: the development directory of the
change for the new dev eloper. Exit status: ignored.

develop_end_notify_command = string;
This command is used to notify that a change is ready for review. It will probably use
mail, or it could be an in-house bulletin board. This field is optional, if not present no
notification will be given. This command could also be used to notify other manage-
ment systems, such as progress and defect tracking. All of the substitutions described
by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change.
Exit status: ignored.

develop_end_undo_notify_command = string;
This command is used to notify that a change had been withdrawn from review for fur-
ther development. It will probably use mail, or it could be an in-house bulletin board.
This field is optional, if not present no notification will be given. This command could
also be used to notify other management systems, such as progress and defect tracking.
All of the substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change.
Exit status: ignored.

review_begin_notify_command = string;
This command is used to notify that a review has begun. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification
will be given. This command could also be used to notify other management systems,
such as progress and defect tracking. All of the substitutions described by aesub(5) are
available.

Executed as: the reviewer. Current directory: the development directory of the change.
Exit status: ignored.

review_begin_undo_notify_command = string;
This command is used to notify that a review is no longer in progress, the reviewer has
withdrawn. It will probably use mail, or it could be an in-house bulletin board. This
field is optional, if not present no notification will be given. This command could also
be used to notify other management systems, such as progress and defect tracking. All
of the substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change.
Exit status: ignored.

review_pass_notify_command = string;
This command is used to notify that a review has passed. It will probably use mail, or
it could be an in-house bulletin board. This field is optional, if not present no notifica-
tion will be given. This command could also be used to notify other management sys-
tems, such as progress and defect tracking. All of the substitutions described by ae-

sub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change.
Exit status: ignored.

Reference Manual Aegis 397

aecstate(5) File Formats Manual aecstate(5)

review_pass_undo_notify_command = string;
This command is used to notify that a review has passed. It will probably use mail, or
it could be an in-house bulletin board. This field is optional, if not present no notifica-
tion will be given. This command could also be used to notify other management sys-
tems, such as progress and defect tracking. Defaults to the same action as the de-

velop_end_notify_command field. All of the substitutions described by aesub(5) are
available.

Executed as: the reviewer. Current directory: the development directory of the change.
Exit status: ignored.

review_fail_notify_command = string;
This command is used to notify that a review has failed. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification
will be given. This command could also be used to notify other management systems,
such as progress and defect tracking. All of the substitutions described by aesub(5) are
available.

Executed as: the reviewer. Current directory: the development directory of the change.
Exit status: ignored.

integrate_pass_notify_command = string;
This command is used to notify that an integration has passed. It will probably use
mail, or it could be an in-house bulletin board. This field is optional, if not present no
notification will be given. This command could also be used to notify other manage-
ment systems, such as progress and defect tracking. All of the substitutions described
by aesub(5) are available.

Some compilers bury absolute path names into object files and executables. The re-
naming of the integration directory to become the new baseline breaks these paths.
This command is passed an environment variable called AEGIS_INTEGRATION_-
DIRECTORY so that the appropriate symlink may be placed, if desired.

Executed as: the project owner. Current directory: the new project baseline. Exit sta-
tus: ignored.

integrate_fail_notify_command = string;
This command is used to notify that an integration has failed. It will probably use mail,
or it could be an in-house bulletin board. This field is optional, if not present no notifi-
cation will be given. This command could also be used to notify other management
systems, such as progress and defect tracking. All of the substitutions described by ae-

sub(5) are available.

Executed as: the integrator. Current directory: the development directory of the change.
Exit status: ignored.

default_test_exemption = boolean;
This field contains what to do when a change is created with no test exemption speci-
fied.

default_test_regression_exemption = boolean;
This field contains what to do when a change is created with no regression test exemp-
tion specified.

history = [{ ... }];
This field contains a history of integrations for the project. Updated by each successful
’aegis −Integrate_Pass’ command.

delta_number = integer;
The delta number of the integration.

Reference Manual Aegis 398

aecstate(5) File Formats Manual aecstate(5)

change_number = integer;
The number of the change which was integrated.

name = [string];
The names by which this delta is known.

uuid = string;
The uuid assigned to the change.

when = time;
This field record the time of the change integration.

is_a_branch = (...)
This field is used to remember if the completed change was a branch.

unknown
It is unknown if the change is a branch, this is the default value usu-
ally associated with change integrated with an older version of
aegis.

no
The change is not a branch.

yes
The change is a branch.

change = [integer];
The list of changes which have been created on this branch to date.

sub_branch = [integer];
The list of branches which have been created on this branch to date. This will
be a subset of the above (possibly empty, possibly complete, never larger).

administrator = [string];
The list of administrators of the branch.

developer = [string];
The list of developers of the branch.

reviewer = [string];
The list of reviewers of the branch.

integrator = [string];
The list of integrators of the branch.

currently_integrating_change = integer;
The change currently being integrated. Only one change (within a branch)
may be integrated at a time. Only set when an integration is in progress.

default_development_directory = string;
The pathname of where to place new dev elopment directories. The pathname
must be absolute. This field is only consulted if the field of the same name in
the user configuration file is not set.

minimum_change_number = integer;
The minimum change number for aenc(1), if no change number is specified.
This allows the low-numbered change numbers to be used for branches later
in the project. Defaults to 10 if not set, may not be less than 1.

reuse_change_numbers = boolean;
This controls whether the automatically selected aenc(1) change numbers
“fill in” any gaps. Defaults to true if not set.

Reference Manual Aegis 399

aecstate(5) File Formats Manual aecstate(5)

minimum_branch_number = integer;
The minimum branch number for aenbr(1), if no branch number is specified.
Defaults to 1 if not set.

skip_unlucky = boolean;
This field may be set to true if you want to skip various unlucky numbers for
changes, branches and tests. Various traditions are avoided, both Eastern and
Western. Defaults to false if not set.

compress_database = boolean;
This field may be set to true if you want to compress the database on writing.
(It is always uncompress on reading if necessary.) Defaults to false if not set.

Unless you have an exceptionally large project, coupled with fast CPUs and
high network latency, there is probably very little benefit in using this feature.
(The database is usually less than 5% of the size of the repository.) On slow
networks, however, this can improve the performance of file-related com-
mands.

develop_end_action = (...);
This field controls the state the change enters after a successful aede(1) ac-
tion.

goto_being_reviewed

This means that the change goes from the being_developed state to
the being_reviewed state. The aerb(1) command only sends infor-
mative email.

goto_awaiting_review

This means that the change goes from the being_developed state to
the awaiting_review state. The aerb(1) command is now manda-
tory.

goto_awaiting_integration

This means that the change goes from the being_developed state
into the awaiting_integration state. Code review is skipped en-
tirely.

Note that the develop_end_action field may not contradict the developer_-

may_review field. If developers may not review their own work, then their
changes may not goto directly to the being integrated state (as this means
much the same thing). A contradictory setting will be replaced with goto_-

being_reviewed.

Obsolete Fields
The following fields are only present is old projects. They will be moved to an appropriate file state when
the change is next modified. See aefstate(5) for more information.

src = [{ ... }, ...];
This field is a list of all the files in the change. The records have the form

file_name = string;
This file names the file. The name is relative to the root of the baseline directory tree.

uuid = string;
This field uniquely identifies the file for its entire lifetime. This field remains constant
across file renames. The value of this field shall be formatted as a valid UUID, all in
lower case.

action = (create, modify, remove);
This field describes what is being done with the file.

Reference Manual Aegis 400

aecstate(5) File Formats Manual aecstate(5)

edit_number = string;
This field records the edit number of the file when it was added to the change (or up-
dated using the aegis −DIFFerence command). This field is not present for new files.

usage = (source, config, build, test, manual_test);
This field describes what function the file serves.

diff_time = time;
This field records the last time modified of the change file when the last aegis −DIF-

Ference command was run. It is only present between the being_developed and be-

ing_integrated states, inclusive. It is not present for files which are being deleted. This
field is used to determine if a difference has been done, and if the file has been tam-
pered with before state transitions.

diff_file_time = time;
This field records the last time modified of the difference file when the last aegis

−DIFFerence command was run. It is only present between the being_developed and
being_integrated states, inclusive. This field is used to determine if a difference has
been done, and if the difference file has been tampered with before state transitions.

move = string;
To change the name of a file, a combination of deleting the old name and creating the
new name is used. With deleted files, this field is used to say where it went. With new
files, this field is used to say where it came from.

WRITING REPORT SCRIPTS
When attempting to access these fields from within the report generator, you need a code fragment similar
to the following:

auto ps;
ps = project[project_name()].state;
auto cs;
cs = ps.branch.change[change_number()];

All of the fields mentioned in the man page can now be accessed as members of the cs variable. For ex-
ample, cs.state contains the state the change is in.

If this change state refers to a branch, when you access a member of the branch.change field, you are given
access to the change state data of that change on the branch.

When you index the src field by a filename string, you may obtain access the the relevant file state (see aef-

state(5) for more information).

SEE ALSO
aenc(1) create a new change

aegis(5) aegis file format syntax

aecattr(5)
change attributes file format

aefstate(5)
file state file format

Reference Manual Aegis 401

aecstate(5) File Formats Manual aecstate(5)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 402

aedir(5) File Formats Manual aedir(5)

NAME
aedir − aegis directory structures

DESCRIPTION
The project directory structure is dictated by aegis at the top level, but is completely under the project’s
control from various points below the top level.

The project directory has the following contents
project/

baseline/
aegis.conf
...project specific...

test/
[0−9][0−9]/

t[0−9][0−9][0−9][0−9]a.sh
t[0−9][0−9][0−9][0−9]m.sh

history/
...echo of baseline...

delta.[0−9][0−9][0−9]/
...echo of baseline...

info/
state
change/

[0−9]/
[0−9][0−9][0−9]

The directory is structured in this way so that it is possible to pick an entire project up off the disk, and be
confident that you got it all.

The location of the root of this tree is configurable, and may even be changed during the life of a project.

The contents of the baseline subdirectory, other than those given, are defined by the project, and not dic-
tated by aegis.

The contents of the delta.NNN directory, when it exists, are an image of the baseline directory. It is fre-
quently linked with the baseline, rather than a copy of it; see the link_integration_directory field description
in aepconf (5) for more information.

The contents of the history contains the edit histories of the baseline directory, and is in all other ways an
image of it. Note that baseline always contains the latest source; the history directory is just history. The
actual files in the history directory tree will not always have names the same as those in the baseline; com-
pare the methods used by SCCS and RCS.

The contents of the baseline/test directory are the tests which are created by changes. Test histories are
also stored in the history subdirectory. Tests are treated as project source.

The edit histories are separated out to simplify the task of taking a "snapshot" of the source of a project,
without airing all the dirty laundry.

The baseline directory always contains the latest source, and so the history directory need not be readily ac-
cessible, because the build mechanism (something like make(1), but preferably better) does not need to
know anything about it. Similarly for tests.

The baseline/aegis.conf file is used to tell aegis everything else it needs to know about a project. See aep-

conf (5) for more information. This file is a source file of the project, and is treated in the same way as all
source files. The name of this file is not mandatory.

SEE ALSO
aenc(1) create a new change

Reference Manual Aegis 403

aedir(5) File Formats Manual aedir(5)

aenpr(1)
create a new project

aegis(5) aegis file format syntax

aepconf (5)
project configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 404

aefattr(5) File Formats Manual aefattr(5)

NAME
aefattr − aegis file attribute file format

SYNOPSIS
aefa −edit filename

DESCRIPTION
This file format is used to set or edit file attributes.

CONTENTS
attribute = [{ ... }];

This is a list of (name,value) pairs, defining user specified attributes.

name = string;
The name of the attribute. By convention, names which start with an upper-case letter
will appear in listings, and lower-case will not.

value = string;
The value of the attribute.

SEE ALSO
aegis(5) aegis file format syntax

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 405

aefstate(5) File Formats Manual aefstate(5)

NAME
aefstate − aegis file state file

SYNOPSIS
project/info/change/[0−9]/[0−9][0−9][0−9].fs

DESCRIPTION
A file state file is used to store information about the files in a transaction. These files are created and
maintained by aegis. These files should not be edited by humans. These files is owned by the project
owner and group.

CONTENTS
src = [{ ... }, ...];

This field is a list of all the files in the change. The records have the form

file_name = string;
This file names the file. The name is relative to the root of the baseline directory tree.

uuid = string;
This field uniquely identifies the file for its entire lifetime. This field remains constant
across file renames. The value of this field shall be formatted as a valid UUID, all in
lower case.

action = (create, modify, remove, insulate, transparent);
This field describes what is being done with the file.

create The file is being created. Once integrated, the edit fields record the file ver-
sion created and stored in the history.

modify The file is being created. Once integrated, the edit fields record the file ver-
sion stored in the history.

remove The file is being created. The edit field is only informational, and describes
the file version at the time it was removed from the repository.

insulate The file is insulating a development directory from changes to the baseline, it
shall be uncopied before development may end. This action shall only be
present in changes. It shall never be present in branch change state files.

transparent
The file wasonce present in the branch, however it is desired that the ancestor
version "show through". This is the equivalent of "uncopy" for branches.
When the branch is integrated, this file will be omitted.

edit = { ... };
For a project or an active branch, this field records the head revision of the file. For a
completed change or branch, this field records the revision number after integrate pass.

revision = string;
This is the edit number, as reported by the history_get_command in the
project config file at integrate pass time.

encoding = (none, quoted_printable, base64);
This field records the encoding used when the file was added to the history at
integrate pass time, as configured by one of the history_put_command or
history_get_command and history_content_limitation fields of the project
config file.

none No encoding was applied to the file. Either it had no binary charac-
ters, or the history tool is able to cope with binary files.

quoted_printable
The MIME Quoted Printable encoding (see RFC 1521) has been
used to escape the binary characters of the file content.

Reference Manual Aegis 406

aefstate(5) File Formats Manual aefstate(5)

base64 The MIME Base 64 encoding (see RFC 1521) has been used to en-
code the file content.

The history_content_limitation field of the project config file is used to deter-
mine which files need encoding. The size of the encoded file is compared to
determine which of quoted printable and base 64 encodings is used; the
smaller is chosen.

uuid = string;
This is the UUID of the change responsible for the edit.

edit_number = string;
This field is obsolescent. It is only present for backwards compatibility. It has been re-
placed by the edit field.

edit_origin = { ... };
This field records the edit number of the file when it was added to the change or
branch. In changes, this field is not present for new files. (A change file is out of date
if it’s edit number_origin field does not equal the edit_number field in the project.)

It has the same fields, with the same meaning, as the edit field, above.

edit_number_origin = string;
This field is obsolescent. It is only present for backwards compatibility. It has been re-
placed by the edit_origin field.

edit_origin_new = { ... };
This field records the edit number of the file to replace the edit_number_origin field in
the branch at integrate pass time. This is used to perform cross branch merging. This
field cleared at integrate pass time.

It has the same fields, with the same meaning, as the edit field, above.

edit_number_origin_new = string;
This field is obsolescent. It is only present for backwards compatibility. It has been re-
placed by the edit_origin_new field.

usage = (source, config, build, test, manual_test);
This field describes what function the file serves.

file_fp = fingerprint;
This field records the last time modified of the source file. It is only present between
the being_developed and being_integrated states, inclusive (for both changes and
branches). It is not present for files which are being deleted. This field is used to deter-
mine if a difference has been done, or a test has been done if the source file is a test,
and if the file has been tampered with before state transitions.

The fingerprint consists of the following fields:

youngest = time;
The youngest time see for this file with this fingerprint.

oldest = time;
The oldest time see for this file with this fingerprint.

crypto = string;
This field records a cryptographically strong fingerprint for the file. There is
no known method of constructing a file to match a given fingerprint, and
there is less than 1 in 2**200 chance that two files will have the same finger-
print. Thus if the fingerprint is the same, the file can reliably assumed to be
the same.

Reference Manual Aegis 407

aefstate(5) File Formats Manual aefstate(5)

diff_file_fp = fingerprint;
This field records the last time modified of the difference file when the last aegis

−DIFFerence command was run. It is only present between the being_developed and
being_integrated states, inclusive (for both changes and branches). This field is used to
determine if a difference has been done, and if the difference file has been tampered
with before state transitions.

idiff_file_fp = fingerprint;
This field records the last time modified of the integration difference file when the last
aegis −DIFFerence command was run. It is only present in the being_integrated state.
This field is used to determine if a difference has been done.

architecture_times = [{ ... }];
This field records the time of various operations for each variant named in the architec-

ture field. It is only present in the being_developed and being_integrated states. This
field is used to determine if a test has been done, and thus optimize test runs.

variant = string;
This field is one of the patterns named in the architecture field.

test_time = time;
This field records the last time the last successful aegis −Test command was
run for this specific pattern instance.

test_baseline_time = time;
This field records the last time the last successful aegis −Test −BaseLine

command was run for this specific pattern instance.

move = string;
To change the name of a file, a combination of deleting the old name and creating the
new name is used. With deleted files, this field is used to say where it went. With new
files, this field is used to say where it came from.

locked_by = integer;
The change which locked this file.
Caveat: this field is redundant, you can figure it out by scanning all of he change files.
Having it here is very convenient, even though it means multiple updates.

about_to_be_created_by = integer;
The change which is about to create this file for the first time. Same caveat as above.

about_to_be_copied_by = integer;
For each change file that is acting on a project file from a deeper baseline than the im-
mediate parent project’s baseline, the file needs to be added to the immediate parent
project. Note that this field says that this file record is a place marker, so that it can be
deleted again should the change not be integrated for some reason.

deleted_by = integer;
The change which last deleted this file. We nev er throw them away, because (a) it may
be created again, and more important (b) we need it to recreate earlier deltas.

test = [string];
This field is used to remember test correlations for source files. This is used by aet(1) to suggest
suitable tests.

metrics = [{ ... }];
This field is used to describe various file metrics. It is committed during aeipass(1), when the
file is added to the history. The name must be given, and exactly one value.

name = string;
This is the name of the metric. This field must be set.

Reference Manual Aegis 408

aefstate(5) File Formats Manual aefstate(5)

value = real;
This is the value of the metric. This field must be set. (If you have an integer-valued
metric, just use integers, Aegis will cope. If you have a string-valued metric, assign in-
tegers to the enumerands.)

executable = boolean;
This field is used to remember whether the source file had any executable permission bits set at
develop end time. This mode will be restored (taking the project umask into account) when the
file is copied.

This field is only meaningful for changes in the completed state, because this field is only set by
aeip(1). Until then, the mode if the file itself is the authority.

attribute = [{ ... }];
This is a list of (name,value) pairs, defining user specified attributes.

name = string;
The name of the attribute. By convention, names which start with an upper-case letter
will appear in listings, and lower-case will not. Attribute names are case-insensitive.

value = string;
The value of the attribute.

Arguably, most file properties which may be altered by the user (and some that can’t) should be
of this form. Due to an accident of history, this is not the case.

WRITING REPORT SCRIPTS
When attempting to access these fields from within the report generator, you need a code fragment similar
to the following:

auto ps, pfs;
ps = project[project_name()].state;
fps = ps.src["somefile"];

auto cs, cfs;
cs = ps.branch.change[change_number()];
cfs = cs.src["somefile"];

Notice that the top-level fields of the file state are not available, but instead are mapped onto the relevant
project file and change file src arrays.

All of the src member fields mentioned in the man page can now be accessed as members of the pfs or
cfs variables.

SEE ALSO
aegis(5) aegis file format syntax

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 409

aegis(5) File Formats Manual aegis(5)

NAME
aegis − meta-data file format

DESCRIPTION
The files used by the aegis program all have the same format. Some of the files used by aegis are created
and maintained by humans, and some are created an maintained by aegis itself. The various manual entries
say which is which.

LEXICAL CONSIDERATIONS
Names are any C identifier. Comments are C-style comments (or C++ or shell). Numbers are decimal, oc-
tal or hexadecimal, as for C constants. Whitespace (spaces, tabs and newlines) are ignored except in strings
or as they serve to separate tokens.

Strings are C-style strings, and similar to C, sequential string constants are silently catenated together.

In addition, there is a style of @string@ which use at-signs (@) for quoting. Unlike the C style of string,
newlines are allowed within these strings. To get an at-sign in such a string, double the at-sign. There is no
other escape mechanism available.

GRAMMAR
The format of all aegis files is described by a yacc (1) grammar.

%%
file

: field_list
;

A file contains a field list.
field_list

: /* empty */
| field_list field
;

A field list is zero or more fields.
field

: NAME ’=’ value ’;’
;

A field is set by giving a name and a value.
value

: NAME
| INTEGER
| STRING
| structure
| list
;

A value may be a member of an enumeration (NAME), or an integer constant, or a literal string. More
complex values may be constructed from these simple values.

structure
: ’{’ field_list ’}’
;

A structure is a grouped list of fields.
list

: ’[’ list_body ’]’
;

list_body
: /* empty */
| value_list
| value_list ’,’
;

value_list

Reference Manual Aegis 410

aegis(5) File Formats Manual aegis(5)

: value
| value_list ’,’ value

A list is a sequential list of values separated by commas. It may be empty, or it may have a trailing comma.

SEMANTICS
The types of the values must match those in the definition of the file. See the relevant man pages for more
information.

Files which are rewritten by aegis will lose any comments placed in them. When time fields are emitted by
aegis they are usually followed by a human readable date in a comment.

SEE ALSO
aegis(1) a project change supervisor

aecattr(5)
change attribute file format

aecstate(5)
change state file format

aedir(5) directory structures

aegstate(5)
aegis state file

aepattr(5)
project attribute file format

aepconf (5)
project configuration file format

aepstate(5)
project state file format

aesub(5)
available command substitutions

aeuconf (5)
user configuration file format

aeustate(5)
user state file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 411

aegstate(5) File Formats Manual aegstate(5)

NAME
aegstate − aegis global state file

SYNOPSIS
/usr/local/com/state

DESCRIPTION
The aegis state file is used to store the pointers to project directories.

CONTENTS
where = [{ ... }];

This field is a table relating project name to project directory. The structure is as follows:

project_name = string;
The name of a project.

directory = string;
Absolute path of the project’s directory. (Only set of alias_for is not set.)

alias_for = string;
This is the name of another project, possibly including branch numbers. It allows you
to have shorter or more meaningful project names. (Only set if directory is not set.)

WRITING REPORT SCRIPTS
When attempting to access these fields from within the report generator, you need a code fragment similar
to the following:

auto p;
p = project[project_name()];

That is, the where field is represented by the project array variable, however, it does not mention the
aliases, only the actual projects, similar to the “ael projects” command. (You can, however, index the
projects array by an alias, or even by a project name with branches on the end.)

In addition to the project_name and directory fields specified above, the report generator insets a state field,
which gives you access to the project state fields (see aepstate(5) for more information).

SEE ALSO
aegis(5) aegis file format syntax

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 412

aegis locking(5) aegis locking(5)

NAME
aegis locks − how locking works, and which commands use them

DESCRIPTION
Aegis maintains a database of information about the projects in its care, and the various changes, both com-
pleted and in progress. In order to ensure the integrity of this database, and also your project repository, it
uses locks.

From time to time, these locks are visible to the users, because they will be told that a command is waiting
for a particular lock. For some transactions, this can be a long wait.

Dining Philosophers
While UNIX supplies locks in various flavors, if you need an entire set of locks simultaneously, there is no
elegant “all or nothing ” interface available. This is unsurprising, as this is one of the classic computer sci-
ence problems, known as the Dining Philosophers problem.

The master lock is used to solve the Dining Philosophers problem, and is meant to be very transient. It is
only held while the other locks which are required (frequently two or more, hence the problem) are re-
quested − non-blocking. Once they are all obtained (or not, and any partials given back) the master lock is
released. It is usually held for much less than a second. If you notice the master lock being held, it is al-
most always a symptom of the NFS lock daemon misbehaving.

If the lock(s) could not be obtained, the blocking lock is waited on (without the master). This is when the
"waiting for" message is issued. When obtained, it is released and the whole cycle starts again. This is
why you occasionally see a series of "waiting for" messages. (This could maybe be optimized some, but it
is still possible to block on yet another lock, and they you have to release all and wait again. As yet, I’m
not convinced the extra code complexity is required.)

Listing Locks
There is a command available to list the current Aegis locks.

aegis −list locks
Note that the project names are change numbers are guesses as the locks are hashed over a 16-bit range, and
range overlaps are possible. Collisions are also possible, but fortunately rarer.

Known Problems
There is a known problem with the HP/UX NFS clients. If you see persistent “no locks available” error
messages when /usr/local/lib is NFS mounted, try making the /usr/local/lib/lockfile file world writable.
chmod 666 /usr/local/lib/lockfile There is the possibility of a denial of service attack (which is why the de-
fault is 0600) but since you are presently denied service anyway, it’s academic.

COMMANDS
The following table shows the locks taken by the various commands. Note that theoretically some of the
commands take too few locks, but this has yet to prove to be a problem in practice. Also, "project state file"
and "change state file" are the same thing for branches, it just depends which way you are looking at them
at the time.
Command Global

State File
Project
State File

Project
Baseline

Ancestor
Baselines

Change
State File

User State
File

aeb (dev) . . shared shared exclusive .
aeb (int) . . . shared exclusive .
aeca exclusive .
aechown exclusive exclusive
aeclean exclusive .
aeclone . exclusive . . exclusive exclusive
aecp . , , , exclusive .
aecpu exclusive .
aed . , , , exclusive .
aedb exclusive exclusive
aedbu exclusive exclusive

Reference Manual Aegis 413

aegis locking(5) aegis locking(5)

aede . , . . exclusive exclusive
aedeu exclusive exclusive
aedn . exclusive
aeib . exclusive . . exclusive exclusive
aeibu . exclusive . . exclusive exclusive
aeifail . exclusive . . exclusive exclusive
aeipass . exclusive exclusive . exclusive exclusive
aemv . , , , exclusive .
aena . exclusive
aenbr . exclusive
aenbru exclusive exclusive
aenc . exclusive
aencu . exclusive
aend . exclusive
aenf exclusive .
aenfu exclusive .
aeni . exclusive
aenpa exclusive
aenpr exclusive
aenrv . exclusive
aent . exclusive . . exclusive .
aentu exclusive .
aepa . exclusive
aera . exclusive
aerd . exclusive
aerfail exclusive exclusive
aeri . exclusive
aerm . , . . exclusive .
aermu exclusive .
aermpr exclusive
aerpa exclusive
aerpass exclusive .
aerpu exclusive .
aerrv . exclusive
aet . . , , exclusive .

SEE ALSO
You may wish to see the manual pages of all of the above commands. Many hav e descriptions of the lock-
ing interactions.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 414

aemetrics(5) aemetrics(5)

NAME
aemetrics − metrics values file format

SYNOPSIS
filename,S

DESCRIPTION
Metrics files are created at integration build time, and recorded into the file attributes at integration pass
time. This allows trend analysis and other statistics to be calculated.

CONTENTS
metrics = [{ ... }];

This field is used to describe various file metrics. It is committed during aeipass(1), when the
file is added to the history. The name must be given, and exactly one value.

name = string;
This is the name of the metric. This field must be set.

value = real;
This is the value of the metric. This field must be set. (If you have an integer-valued
metric, just use integers, Aegis will cope. If you have a string-valued metric, assign in-
tegers to the enumerands.)

SEE ALSO
aegis(5) aegis file format syntax

aemeasure(1)
simple file metrics

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 415

aepattr(5) File Formats Manual aepattr(5)

NAME
aepattr − aegis project attribute file

DESCRIPTION
The project attribute file is used to store modifiable information about a project.

CONTENTS
description = string;

This field contains a description of the project. Large amounts of prose are not required; a single
line is sufficient.

developer_may_review = boolean;
If this field is true, then a developer may review her own change. This is probably only a good
idea for projects of less than 3 people. The idea is for as many people as possible to critically ex-
amine a change.

Note that the develop_end_action field may not contradict the developer_may_review field. If de-
velopers may not review their own work, then their changes may not goto directly to the being in-

tegrated state (as this means much the same thing).

developer_may_integrate = boolean;
If this field is true, then a developer may integrate her own change. This is probably only a good
idea for projects of less than 3 people. The idea is for as many people as possible to critically ex-
amine a change.

reviewer_may_integrate = boolean;
If this field is true, then a reviewer may integrate a change she reviewed. This is probably only a
good idea for projects of less than 3 people. The idea is for as many people as possible to criti-
cally examine a change.

developers_may_create_changes = boolean;
This field is true if developers may created changes, in addition to administrators. This tends to
be a very useful thing, since developers find most of the bugs.

forced_develop_begin_notify_command = string;
This command is used to notify a developer that a change requires developing; it is issued when a
project administrator uses an aedb −User command to force development of a change by a spe-
cific user. All of the substitutions described in aesub(5) are available. This field is optional.

Executed as: the new dev eloper. Current directory: the development directory of the change for
the new dev eloper. Exit status: ignored.

develop_end_notify_command = string;
This command is used to notify that a change is ready for review. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification will be
given. This command could also be used to notify other management systems, such as progress
and defect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

develop_end_undo_notify_command = string;
This command is used to notify that a change had been withdrawn from review for further devel-
opment. It will probably use mail, or it could be an in-house bulletin board. This field is op-
tional, if not present no notification will be given. This command could also be used to notify
other management systems, such as progress and defect tracking. All of the substitutions de-
scribed by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

Reference Manual Aegis 416

aepattr(5) File Formats Manual aepattr(5)

review_begin_notify_command = string;
This command is used to notify that a review has begun. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

review_begin_undo_notify_command = string;
This command is used to notify that a review is no longer in progress, the reviewer has with-
drawn. It will probably use mail, or it could be an in-house bulletin board. This field is optional,
if not present no notification will be given. This command could also be used to notify other
management systems, such as progress and defect tracking. All of the substitutions described by
aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

review_pass_notify_command = string;
This command is used to notify that a review has passed. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

review_pass_undo_notify_command = string;
This command is used to notify that a review has passed. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. Defaults to the same action as the develop_end_notify_command field. All of the
substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

review_fail_notify_command = string;
This command is used to notify that a review has failed. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

integrate_pass_notify_command = string;
This command is used to notify that an integration has passed. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification will be
given. This command could also be used to notify other management systems, such as progress
and defect tracking. All of the substitutions described by aesub(5) are available.

Some compilers bury absolute path names into object files and executables. The renaming of the
integration directory to become the new baseline breaks these paths. This command is passed an
environment variable called AEGIS_INTEGRATION_DIRECTORY so that the appropriate sym-
link may be placed, if desired.

Executed as: the project owner. Current directory: the new project baseline. Exit status: ignored.

Reference Manual Aegis 417

aepattr(5) File Formats Manual aepattr(5)

integrate_fail_notify_command = string;
This command is used to notify that an integration has failed. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification will be
given. This command could also be used to notify other management systems, such as progress
and defect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the integrator. Current directory: the development directory of the change. Exit sta-
tus: ignored.

default_development_directory = string;
The pathname of where to place new dev elopment directories. The pathname must be absolute.
This field is only consulted if the field of the same name in the user configuration file is not set.

umask = integer;
File permission mode mask. See umask(2) for more information. This value will always be
OR’ed with 022, because aegis is paranoid.

default_test_exemption = boolean;
This field contains what to do when a change is created with no test exemption specified.

default_test_regression_exemption = boolean;
This field contains what to do when a change is created with no regression test exemption speci-
fied.

minimum_change_number = integer;
The minimum change number for aenc(1), if no change number is specified. This allows the
low-numbered change numbers to be used for branches later in the project.

reuse_change_numbers = boolean;
This controls whether the automatically selected aenc(1) change numbers “fill in” any gaps. De-
faults to true if not set.

minimum_branch_number = integer;
The minimum branch number for aenbr(1), if no branch number is specified. Defaults to 1 if not
set.

skip_unlucky = boolean;
This field may be set to true if you want to skip various unlucky numbers for changes, branches
and tests. Various traditions are avoided, both Eastern and Western. Defaults to false if not set.

compress_database = boolean;
This field may be set to true if you want to compress the database on writing. (It is always un-
compressed on reading if necessary.) Defaults to false if not set.

Unless you have an exceptionally large project, coupled with fast CPUs and high network latency,
there is probably very little benefit in using this feature. (The database is usually less than 5% of
the size of the repository.) On slow networks, however, this can improve the performance of file-
related commands.

develop_end_action = (...);
This field controls the state the change enters after a successful aede(1) action.

goto_being_reviewed

This means that the change goes from the being_developed state to the being_reviewed

state. The aerb(1) command only sends informative email.

goto_awaiting_review

This means that the change goes from the being_developed state to the awaiting_review

state. The aerb(1) command is now mandatory.

goto_awaiting_integration

This means that the change goes from the being_developed state into the awaiting_-

integration state. Code review is skipped entirely. If the developer_may_review is

Reference Manual Aegis 418

aepattr(5) File Formats Manual aepattr(5)

false, it is not possible to use this setting.

Note that the develop_end_action field may not contradict the developer_may_review field. If de-
velopers may not review their own work, then their changes may not goto directly to the being in-

tegrated state (as this means much the same thing). A contradictory setting will be replaced with
goto_being_reviewed.

protect_development_directory = boolean;
This field may be used to protect the development directory after the being developed state. It
does this by making it read-only at develop end time. Should the change ever be returned to the
being developed state, it will be made writable again.

The default is false, meaning to leave the development directory writable while is being reviewed
and integrated. Aegis’ normal tampering detection will notice if files are changed, but there is no
reminder to the developer that the change should be left alone.

This field defaults to false, because it can sometimes be slow.

SEE ALSO
aepa(1) modify the attributes of a project

aegis(5) aegis file format syntax

aecattr(5)
change attributes file format

aecstate(5)
change state file format, particularly as branches are used to remember most project state

aepstate(5)
project state file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 419

aepconf (5) File Formats Manual aepconf (5)

NAME
aepconf − aegis project configuration file

SYNOPSIS
project/baseline/aegis.conf (default)

project/baseline/config (obsolete)

DESCRIPTION
A project configuration file is used to store information about a project. This file is under source control,
and is one of the project’s source files. Developers may thus modify this file as part of a change.

As of aegis.4.17, it is possible to assign any arbitrary name to the project configuration file or files. See
aenf(1) for more information.

This file contains a number of commands to be executed by Aegis. There are times when the substitutions
in these commands may contain shell special characters, which would change the meaning of the com-
mands in unintended ways. There are two main sources of these problems: file names and architecture
names. In order to have shell special characters in filenames, you must set the shell_safe_filenames field
(see below) to false. If you do this, you will need to use the quote substitution (see aesub(5)) to quote
them, so that the shell does not abuse them. Other things which may need quoting include architecture
names if you get creative, and edit numbers if unusual ones are generated by your history tool.

Getting Started
Because the project aegis.conf file is under source control like any other file, you must create the project
aegis.conf file in the very first change of your project. Use the

$ aenf aegis.conf
$

command and then editing the file to fill in the fields. Subsequent Aegis commands in that change will use
that file. Once the change is completed (see aeipass(1) for more information) the file will be present in the
baseline, and be used by all users and all changes.

If you ever need to change one of the fields of the project aegis.conf file, you do this the same way as for
any other source file, by copying it into a change using the

$ aecp aegis.conf
$

command and then edit the file to make the desired changes. While it’s being developed your change will
use it’s copy of the project aegis.conf file, but once the change is completed (see aeipass(1) for more infor-
mation), it becomes the new version used by all users and changes.

If you would prefer a different name for the project configuration file, use the aenf −config option. For ex-
ample, the

$ aenf −config project.configuration
$

command would create a file called project.configuration and Aegis would then proceed to use it to obtain
project configuration information for the duration of the project. This attribute will even be preserved
across file renames (see the aemv(1) command).

CONTENTS
This file contains the following fields:

configuration_directory = string;
This field names a directory which will be searched for additional configuration files. (This di-
rective is only legal or meaningful in the master project aegis.conf file.)

All source files (change source files and project source files) present in this directory will be read
in as if they were added to the end of the project "aegis.conf" file.

The usual priority of files (development directory, branch baseline, etc, project trunk baseline) is
observed when these files are read.

Please note that the physical directories are never searched, only the Aegis concept of the change
and project files is consulted (i.e. files created and modified in the usual way with aenf(1) and

Reference Manual Aegis 420

aepconf (5) File Formats Manual aepconf (5)

aecp(1) commands). Placing additional files in the physical directories will have no effect.

It is recommended that if you use this field at all, that your top level project aegis.conf file should
only contain this one field. This is to avoid overly-large re-reading of this file when it is joined to
all the others.

build_command = string;
This field describes how to build the project (actually, how to do an integration build). This field
is mandatory. Used by the aeb(1) command. All of the substitutions described by aesub(5) are
available.

Executed as: the integrator (for integration builds) or the developer (for development builds).
Current directory: the integration directory of the change (for integration builds) the development
directory of the change (for development builds). Exit status: zero is considered success, non-
zero is a failure and a subsequent successful (exit zero) build will be required.

If this field is set to "exit 0" then no integration build will be required, and will not be
checked for by the aeipass(1) command.

development_build_command = string;
This field describes how to do a dev elopment build. If this field is absent, it defaults to the above.
Used by the aeb(1) command. All of the substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: zero is considered success, non-zero is a failure and a subsequent successful (exit zero) build
will be required.

If this field is set to "exit 0" then no development build will be required, and will not be
checked for by the aede(1) command.

development_directory_style = { ... };
This field encapsulates a set of parameters controlling the appearance of the development direc-
tory. It has significant implications for the way the DMT is used, and the directory appearance
presented to the DMT.

source_file_link = boolean;
This field is true if hard links are to be used for project source files (which are not part
of the change) so that the work area has a complete set of source files.

Defaults to false if not set.

If the host system does not have hard links, this field will be ignored.

Maintaining the hard links can be time consuming for large projects, and add quite a
noticeable delay before builds start doing anything. If possible, change your build sys-
tem to use the $search_path substitution instead and avoid links.

source_file_symlink = boolean;
This field is true if symbolic links are to be used for project source files (which are not
part of the change) so that the work area has a complete set of source files.

Defaults to false if not set. [If the obsolete create_symlinks_before_build field is set,
defaults to the value of that field, with a warning.]

If (source_file_link == true and hard links are available) this field will be ignored. If
the host system does not have symbolic links, this field will be ignored.

Maintaining the symbolic links can be time consuming for large projects, and add quite
a noticeable delay before builds start doing anything. If possible, change your build
system to use the $search_path substitution instead and avoid symbolic links.

source_file_copy = boolean;
This field is true if copies are to be used for project source files (which are not part of
the change) so that the work area has a complete set of source files. File modification
time attributes will be preserved.

Reference Manual Aegis 421

aepconf (5) File Formats Manual aepconf (5)

Defaults to false if not set.

If ((source_file_link == true and hard links are available) OR (source_file_symlink ==
true and symbolic links are available)) this field will be ignored.

Maintaining the copies can be time consuming (and space consuming) for large
projects, and add quite a noticeable delay before builds start doing anything. If possi-
ble, change your build system to use the $search_path substitution instead and avoid
file copies.

source_file_whiteout = boolean;
The source_file_whiteout field mat be used to specify the presence (true) or absence
(false) of white-out files, used to "cover up" files being removed by a change set. These
files contain 1kB of random data, intended to cause a syntax error should be build refer-
ence them.

It is rarely necessary to explicitly set this field. It defaults to false if you set any of the
source_file_link, source_file_symlink or source_file_copy to true; it defaults to true only
if none of them are true.

Not meaningful (always false) for integration builds.

derived_file_link = boolean;
This field is true if hard links are to be used for non-source files which are present in
the project baseline(s) but which are not present in the work area, so that the work area
has a complete set of derived files. This allows work areas to take advantage of "pre-
compiled" object files (etc) in the baseline(s).

Defaults to false if not set.

If the host system does not have hard links, this field will be ignored.

Maintaining the links can be time consuming for large projects, and add quite a notice-
able delay before builds start doing anything. If possible, change your build system to
use the $search_path substitution instead and avoid hard links. Alternatively, set de-

rived_at_start_only = true; and your work area will get a "head start" but the derived
files will not be checked for every build, but this will occasionally result in long build
times after integrations.

See also the integrate_begin_exceptions and symlink_exceptions fields (they apply to
hard links as well as symbolic links).

derived_file_symlink = boolean;
This field is true if symbolic links are to be used for non-source files which are present
in the project baseline(s) but which are not present in the work area, so that the work
area has a complete set of derived files. This allows work areas to take advantage of
"precompiled" object files (etc) in the baseline(s).

Defaults to false if not set. [If the obsolete create_symlinks_before_build field is set,
defaults to the value of that field, with a warning.]

If (derived_file_link == true and hard links are available) this field will be ignored. If
the host system does not have symbolic links, this field will be ignored.

Maintaining the symbolic links can be time consuming for large projects, and add quite
a noticeable delay before builds start doing anything. If possible, change your build
system to use the $search_path substitution instead and avoid symbolic links. Alterna-
tively, set derived_at_start_only = true; and your work area will get a "head start" but
the derived files will not be checked for every build, occasionally resulting in long build
times after integrations.

See also the integrate_begin_exceptions and symlink_exceptions fields.

Reference Manual Aegis 422

aepconf (5) File Formats Manual aepconf (5)

derived_file_copy = boolean;
This field is true if copies are to be used for non-source files which are present in the
project baseline(s) but which are not present in the work area, so that the work area has
a complete set of derived files. This allows work areas to take advantage of "precom-
piled" object files (etc) in the baseline(s).

Defaults to false if not set.

If ((derived_file_link == true and hard links are available) or (derived_file_symlink ==
true and symbolic links are available)) this field will be ignored.

Maintaining the copies can be time consuming (and space consuming) for large
projects, and add quite a noticeable delay before builds start doing anything. If possi-
ble, change your build system to use the $search_path substitution instead and avoid
symbolic links. Alternatively, set derived_at_start_only = true; and your work area
will get a "head start" but the derived files will not be checked for every build, occa-
sionally resulting in long build times after integrations.

See also the integrate_begin_exceptions and symlink_exceptions fields (they apply to
copies as well as symbolic links).

during_build_only = boolean;
This field is set to true if you want the symbolic links, hard links and/or copies removed
again after each build. This allows the user to maintain the illusion of using a search
path, without actually doing so. This option is not especially efficient.

Defaults to false if not set. [If the obsolete remove_symlinks_after_build field is set,
defaults to the value of that field, with a warning.]

If this field is false, the development directory will be populated by the develop begin
(aedb) command, and the integration directory will be populated by the integrate begin
(aeib) command.

derived_at_start_only = boolean;
This field controls whether the above fields controlling the appearance of derived files
are acted upon before every build (false) or only when the work area is created (true).

Defaults to false if not set.

This field is ignored if the during_build_only field is true.

This field can be complex. Here are a few examples; but much, much more is possible. The first
example will get you a development directory very similar to one presented by CVS:

development_directory_style =
{

source_file_copy = true;
};

Note that this is hugely space inefficient, and can be quite slow. The second example will get you
a dev elopment directory very similar to one presented by Tom Lord’s arch:

development_directory_style =
{

source_file_link = true;
source_file_symlink = true;
source_file_copy = true;

};
Ideally, howev er, you should use the $search_path substitution of the build_command field. This
is because the view path scales better than any other method. On the other hand, you need a
DMT with an excellent view path implementation (and GNU make doesn’t).

The development directory style is applied after the develop_begin_command hook is run.

Reference Manual Aegis 423

aepconf (5) File Formats Manual aepconf (5)

integration_directory_style = { ... };
This field encapsulates a set of parameters controlling the appearance of the integration directory.
It has significant implications for the way the DMT is used, and the directory appearance pre-
sented to the DMT.

Defaults to the value of the development_directory_style field if not set. Note that the obsolete
create_symlinks_before_integration_build and remove_symlinks_after_integration_build fields
affect this default (with a warning) but only if they are explicitly set.

Note that the link_integration_directory field is still relevant. That field controls how the baseline
is cloned to form the integration directory. This field operates after that operation.

build_time_adjust_notify_command = string;
This command is run when Aegis adjusts the last-time-modified time-stamp on files in the inte-
gration directory. If the build tool uses additional information to supplement file modification
times, this command gives you the opportunity to re-sync the associated database.

Executed as: the project owner.

Current directory: the integration directory. This is what is about to be come the new baseline.

Exit status: NOT ignored. Note that a failure here puts the change in a partial state from which re-
covery may be difficult. Best to define this command with a set+e so that errors are ignored at the
command level.

build_covers_all_architectures = boolean;
This field is set to true if the build command, when executed on any architecture, results in all ar-
chitectures being built. This may be accomplished, for example, by using cross-compilation tech-
niques, or Cook’s ability to nominate hosts on which to execute each build rule.

test_covers_all_architectures = boolean;
This field is set to true if the test command, when executed on any architecture, results in all ar-
chitectures being tested. This may be accomplished, for example, by using Cook’s ability to
nominate hosts on which to execute each test rule.

symlink_exceptions = [string];
This field is used to list filename patterns for which symbolic links must not be made between the
development directory and the baseline. These are usually state files for various tools. The pat-
terns are matched against the whole filename; naming only the last filename path element will not

work (unless the pattern starts with “*”).

change_file_command = string;
This field contains a command to be executed whenever a ´aegis −CoPy_file´, ´aegis −New_File´
´aegis −New_Test´ ´aegis −MoVe_file´ or ´aegis −ReMove_file´ command is successful. See also
command-specific overrides. If this field is absent, nothing is done. Used by the aecp(1),
aenv(1), aenf (1), aerm(1), and aemv(1) commands. All of the substitutions described by ae-

sub(5) are available; in addition,

${File_List}
Space separated list of files named.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

change_file_undo_command = string;
This field contains a command to be executed whenever a ´aegis −CoPy_file_Undo’, ´aegis
−MoVe_file_Undo’ ´aegis −New_File_Undo’, ´aegis −New_Test_Undo’, or ´aegis −Re-
Move_file_Undo’ command is successful. Default to change_file_command if absent. See also
command-specific overrides. If both fields are absent, nothing is done. Used by the aecpu(1),
aemvu(1), aenfu(1), aentu(1) or aermu(1), commands. All of the substitutions described by ae-

sub(5) are available; in addition,

Reference Manual Aegis 424

aepconf (5) File Formats Manual aepconf (5)

${File_List}
Space separated list of files named.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

new_file_command = string;
Executed whenever the aegis −new_file command is run successfully. Defaults to
‘change_file_command’ if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

new_test_command = string;
Executed whenever the aegis −new_test command is run successfully. Defaults to
‘change_file_command’ if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

copy_file_command = string;
Executed whenever the aegis −copy_file command is run successfully. Defaults to
‘change_file_command’ if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

remove_file_command = string;
Executed whenever the aegis −remove_file command is run successfully. Defaults to
‘change_file_command’ if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

new_file_undo_command = string;
Executed whenever the aegis −new_file_undo command is run successfully. Defaults to
change_file_undo_command if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

Reference Manual Aegis 425

aepconf (5) File Formats Manual aepconf (5)

new_test_undo_command = string;
Executed whenever the aegis −new_test_undo command is run successfully. Defaults to
change_file_undo_command if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer Current directory: the development directory of the change Exit sta-
tus: ignored

copy_file_undo_command = string;
Executed whenever the aegis −copy_file_undo command is run successfully. Defaults to
change_file_undo_command if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer Current directory: the development directory of the change Exit sta-
tus: ignored

remove_file_undo_command = string;
Executed whenever the aegis −remove_file_undo command is run successfully. Defaults to
change_file_undo_command if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer Current directory: the development directory of the change Exit sta-
tus: ignored

make_transparent_command = string;
The make_transparent_command is executed whenever the aegis −make_transparent command is
run successfully. Defaults to change_file_command if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer Current directory: the development directory of the change Exit sta-
tus: ignored

make_transparent_undo_command = string;
The make_transparent_undo_command is executed whenever the aegis −make_transparent_undo
command is run successfully. Defaults to change_file_undo_command if not set.

All of the substitutions described in aesub(5) are available. In addition:

${File_List}
Space separated list of files named (at times, can be empty).

Executed as: the developer Current directory: the development directory of the change Exit sta-
tus: ignored

project_file_command = string;
This field contains a command to be executed during a development build before the development

build command above, when (a) it is the first build after a develop begin, or (b) some other
change has been integrated into the baseline since the last build. If this field is absent, nothing is
done. Used by the aeb(1) command. All of the substitutions described by aesub(5) are available.

Reference Manual Aegis 426

aepconf (5) File Formats Manual aepconf (5)

develop_begin_early_command = string;
This field contains a command to be executed at the beginning of a ’aegis −Develop_Begin’ com-
mand, immediately after the development directory has been created. If this field is absent, noth-
ing is done. Used by the aedb(1) command. All of the substitutions described by aesub(5) are
available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

Note: This command is run from inside the lock, so running any Aegis command that modifies
the change state will cause a deadlock.

develop_begin_command = string;
This field contains a command to be executed whenever a ’aegis −Develop_Begin’ command is
successful. If this field is absent, nothing is done. Used by the aedb(1) command. All of the
substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

develop_begin_undo_command = string;
This field contains a command to be executed whenever a ’aegis −Develop_Begin_Undo’ com-
mand is successful. If this field is absent, nothing is done. Used by the aedbu(1) command. All
of the substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: wherever the command was executed from. Exit
status: ignored.

integrate_begin_command = string;
This field contains a command to be executed whenever a ’aegis −Integrate_Begin’ command is
successful. If this field is absent, nothing is done. Used by the aeib(1) command. All of the sub-
stitutions described by aesub(5) are available.

Executed as: the project owner. Current directory: the integration directory. Exit status: ignored.

link_integration_directory = boolean;
This flag is true if Aegis should link the files from the baseline into the integration directory,
rather than copy them (the default). This has risks, as the build script (e.g. Howto.cook or Make-

file, etc) must unlink targets before rebuilding them; if this is not done the baseline will be cor-
rupted. Used by the aeib(1) command.

integrate_begin_exceptions = [string];
This field may be used to specify a list of file names (and file name patterns) which are to be
omitted from the copy (link) of the baseline when creating the integration directory. Used by the
aeib(1) command. This field only applies to derived files, it does not apply to source files. The
patterns are matched against the whole filename; naming only the last filename path element will
not work (unless the pattern starts with “*”).

history_create_command = string;
This field is used to create a new history. The command is always executed as the project owner.
Used by the aeipass(1) command.

It is strongly recommended that the history_create_command and history_put_command fields
are identical. If not set, the history_create_command field defaults to the same value as the
history_put_command field.

All of the substitutions described by aesub(5) are available; in addition,

${Input}
Absolute path of the source file.

Reference Manual Aegis 427

aepconf (5) File Formats Manual aepconf (5)

${History}
Absolute path of the history file. This may need to be reworked with the Dirname and
Basename substitutions to yield a string suitable for the history tool in question.

${File_Name}
The base relative file name of the file for this check-in. Note that the file name can
vary over the lifetime of the file as it is renamed, but the history file name (above) nev er
varies. Do not use this as the name of the history file. (Optional)

${UUID}
The universally unique identifier of the source file. This is invariant for the lifetime of
the file. Do not use use this as the name of the history file. (Optional)

See also the history_put_trashes_file field, below.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: zero
indicates success, all non-zero exits indicate failure (the integrate pass will fail).

Note: For projects created Aegis 4.26 or later, it is possible to change the history tool used by the
project simply changing the various history_*_command documented in this man page. It is also
possible to change the history tool for projects created with aeimport 4.26 or later, howev er the
original tool must be available to access older file’s revisions.

history_get_command = string;
This field is used to get a file from history. The command may be executed by developers. Used
by the aeipass(1) and aecp(1) commands. All of the substitutions described by aesub(5) are
available; in addition,

${History}
The absolute path of the history file. This may need to be reworked with the Dirname

and Basename substitutions to yield a string suitable for the history tool in question.

${Edit}
The edit number to be extracted. It may be an arbitrary string, varying on the particular
history tool.

${Output}
The absolute path of the destination file.

Executed as: the developer (or the executing user, in the case of the −independent option). Cur-
rent directory: the base of the history tree Exit status: zero indicates success, all non-zero exits in-
dicate failure (the aecp will fail).

history_put_command = string;
This field is used to add a new change to the history. The command is always executed as the
project owner. Used by the aeipass(1) command.

It is strongly recommended that the history_put_command and history_create__command fields
are identical. If not set, the history_put_command field defaults to the same value as the
history_create_command field.

All of the substitutions described by aesub(5) are available; in addition,

${Input}
The absolute path of the source file.

${History}
The absolute path of the history file. This may need to be reworked with the Dirname

and Basename substitutions to yield a string suitable for the history tool in question.

${File_Name}
The base relative file name of the file for this check-in. Note that the file name can
vary over the lifetime of the file as it is renamed, but the history file name (above) nev er
varies. Do not use this as the name of the history file. (Optional)

Reference Manual Aegis 428

aepconf (5) File Formats Manual aepconf (5)

${UUID}
The universally unique identifier of the source file. This is invariant for the lifetime of
the file. Do not use use this as the name of the history file. (Optional)

See also the history_put_trashes_file field, below.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: zero
indicates success, all non-zero exits indicate failure (the integrate pass will fail).

history_transaction_begin_command = string;
The history_transaction_begin_command field is used to specify a command to be run by
aeipass(1) before any history create or history put commands are run. The default is to do noth-
ing.

All of the substitutions described in aesub(5) are available. If you need a transaction ID, use the
$version substitution.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: zero
indicates success, all non-zero exits indicate failure (the integrate pass will fail).

history_transaction_end_command = string;
The history_transaction_end_command field is used to specify a command to be run by
aeipass(1) after any history create or history put commands are run, but before any history query
commands are run. The default is to do nothing.

All of the substitutions described in aesub(5) are available. If you need a transaction ID, use the
$version substitution.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: zero
indicates success, all non-zero exits indicate failure (the integrate pass will fail).

history_transaction_abort_command = string;
The history_transaction_abort_command field is used to specify a command to be run by
aeipass(1) to indicate that a transaction has been abandoned. The default is to do nothing.

All of the substitutions described in aesub(5) are available. If you need a transaction ID, use the
$version substitution.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: ig-
nored (the integrate pass has already failed).

history_query_command = string;
This field is used to query the topmost edit of a history file. Result to be printed on the standard
output. This command may be executed by developers. Used by the aeipass(1) and aecp(1)
commands. All of the substitutions described by aesub(5) are available; in addition,

${History}
The absolute path of the history file. This may need to be reworked with the Dirname

and Basename substitutions to yield a string suitable for the history tool in question.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: zero
indicates success, all non-zero exits indicate failure (the integrate pass will fail).

history_label_command = string;
This field contains a command to be executed whenever a aeipass(1) or aedn(1) command is suc-
cessful. This command is invoked for ev ery file in the project. So using it incurs a performance
penalty. If this field is absent, nothing is done. All of the substitutions described by aesub(5) are
available; in addition,

${History}
The absolute path of the history file.

${Edit}
The edit number to be labeled. It may be an arbitrary string, varying on the particular
history tool.

Reference Manual Aegis 429

aepconf (5) File Formats Manual aepconf (5)

${Label}
The label to be attached to the history. When executed from aeipass(1) this value is
the same as ${Version}, which may need to be reworked with the ${Subst} substitutions
to yield a string suitable for the history tool in question. When executed from aedn(1)
it is set to the value passed in from the command line.

Executed as: the project owner. Current directory: the base of the history tree. Exit status: zero
indicates success, all non-zero exits indicate failure (a warning will be issued).

Labeling does not scale, so the use of this command is not encouraged. If you have a project with
10,000 files, and a change modified exactly one of them, only one history_put_command execu-
tion is required, which operates on one history file. If you have labeling turned on, it will also be
necessary to execute 10,000 history_label_commands, to add information Aegis will never use.

history_put_trashes_file = (fatal, warn, ignore);
Many history tools (e.g. RCS) can modify the contents of the file when it is committed. While
there are usually options to turn this off, they are seldom used. The problem is: if the commit
changes the file, the source in the repository now no longer matches the object file in the reposi-
tory − i.e. the history tool has compromised the referential integrity of the repository.

fatal
Emit a fatal error if one or more source files are modified by a history_put_command or his-

tory_create_command . This is the default.

warn
Emit a warning if a source file is modified.

ignore
Ignore a source file changing. You sure better hope it was only in a comment!

history_content_limitation = (ascii_text, international_text, binary_capable);
This field describes the content style which the history tool is capable of working with.

ascii_text
The history tool can only cope with files which contain printable ASCII characters, plus
space, tab and newline. The file must end with a newline. This is the default.

international_text
The history tool can only cope with files which do not contain the NUL character. The
file must end with a newline.

binary_capable
The history tool can cope with all files without any limitation on the form of the con-
tents.

When a file is added to the history (by either the history_create_command or the history_put_-

command field) it is examined for conformance to this limitation. If there is a problem, the file is
encoded in either quoted printable for MIME64, whichever is smaller, before being given to the
history tool. This encoding is transparent, the file in the baseline is unchanged.

On extract (the history_get_command field) the encoding is reversed, using information attached
to the change file information. This is because each put could use a different encoding (although
in practice, file contents rarely change that dramatically, and the same encoding is likely to be de-
duced every time).

Please note that this field does not apply to the diff_command or merge_command fields.

diff_command = string;
This field is used to difference of 2 files. The command is always executed by developers. Used
by the aed(1) command. All of the substitutions described by aesub(5) are available; in addition,

Reference Manual Aegis 430

aepconf (5) File Formats Manual aepconf (5)

${ORiginal}
The absolute path of the original file copied into the change. Usually in the baseline,
but not always.

${Input}
The absolute path of the file in the development directory.

${Output}
The absolute path of the file in which to write the difference listing.

Executed as: the project owner (for integration diffs), or the developer (for development diffs).
Current directory: the integration directory (for integration diffs), or the development directory
(for development diffs). Exit status: zero indicates success, all non-zero exits indicate failure (the
aed will fail).

Note: It is possible to configure a project to omit the diff step as unnecessary, by the following
setting:

diff_command = "exit 0";
This disables all generation, checking and validation of difference file for each change source file.
The merge functions of the aediff(1) command are unaffected by this setting.

merge_command = string;
This field is used to merge two competing edits to a file. The command is always executed by
developers. The current directory will be the development directory. This field is used by the
aed(1) command. All of the substitutions described by aesub(5) are available; in addition,

${ORiginal}
The absolute path of the original file copied into the change. Usually not in the base-
line, often a temporary file.

${Most_Recent}
The absolute path of the competing edit, usually in the baseline.

${Input}
The absolute path of the file in the development directory. This is the “preferred” edit,
if the tool has this concept when highlighting conflicting edits.

${Output}
The absolute path of the file in which to write the merged result. This will usually be
the name if a change source file in the development directory.

It is important that this command does not move files around. (See the obsolete diff3_command

field, below, for some history.)

Executed as: the project owner (for integration diffs), or the developer (for development diffs).
Current directory: the integration directory (for integration diffs), or the development directory
(for development diffs). Exit status: zero indicates success, all non-zero exits indicate failure (the
aed will fail).

patch_diff_command = string;
The difference of 2 files, to send around as a patch. (This isn’t the same as diff_command, be-
cause it’s aimed at GNU Patch, not at humans.) The command is always executed by developers.
Used by the aepatch(1) command.

Defaults to "set +e; diff −c −L $index −L $index $original $input >
$output; test $? −le 1" if not set.

All of the substitutions described by aesub(5) are available; in addition,

${ORiginal}
The absolute path of the original file copied into the change. Usually in the baseline,
but not always.

Reference Manual Aegis 431

aepconf (5) File Formats Manual aepconf (5)

${Input}
The absolute path of the file in the development directory.

${Output}
The absolute path of the file in which to write the difference listing.

${INDex}
The project-relative name of the file, for use when the file name is embedded in the out-
put. (Optional.)

Executed as: the project owner (for integration diffs), or the developer (for development diffs).
Current directory: the integration directory (for integration diffs), or the development directory
(for development diffs). Exit status: zero indicates success, all non-zero exits indicate failure (the
aed will fail).

annotate_diff_command = string;
The difference of 2 files, for the use of the aeannotate(1) command. (This isn’t the same as the
diff_command field, because it’s aimed at aeannotate(1), not at humans.) The command is al-
ways executed by developers. Used by the aeannotate(1) command.

Extreme care should be taken if you are considering setting this field, otherwise the result re-
ported by aeannotate(1) may bear little relation to reality. The most useful option is GNU diff’s
−−ignore-all-space option, which will have the effect of ignoring the majority of indenting and
code formatting changes. The −−ignore-case option could also be useful for case insensitive lan-
guages such as FORTRAN or PL/1. Av oid options which would alter the number of lines, such
as − −ignore-blank-lines or −−context as these will produce misleading results.

Defaults to "set +e; diff $option $original $input > $output; test $?
−le 1" if not set.

All of the substitutions described by aesub(5) are available; in addition,

${ORiginal}
The absolute path of the original file copied into the change. Usually in the baseline,
but not always.

${Input}
The absolute path of the file in the development directory.

${Output}
The absolute path of the file in which to write the difference listing.

${INDex}
The project-relative name of the file, for use when the file name is embedded in the out-
put. (Optional.)

${OPTion}
Extra options to be passed to the diff command, as set by the aeannotate(1) −diff-op-
tion command line option. Use with extreme care.

Executed as: the project owner (for integration diffs), or the developer (for development diffs).
Current directory: the integration directory (for integration diffs), or the development directory
(for development diffs). Exit status: zero indicates success, all non-zero exits indicate failure (the
aed will fail).

review_policy_command = string;
This field is used to set the command to be executed by the aerpass(1) command. This command
is useful in cases where the enterprise has determined that more than one review is necessary or
that the reviewer must be senior to the developer, etc. Defaults to "exit 0" if not set.

The exit status is examined. An zero exit status (success) means that the change will proceed to
the awaiting integration state; a non-zero exit status (failure) means that the change requires fur-
ther review state, and the develop_end_action is consulted to determine the appropriate state

Reference Manual Aegis 432

aepconf (5) File Formats Manual aepconf (5)

(awaiting_review or being_reviewed) for the change to move to.

All of the substitutions described by aesub(5) are available. Of particular interest are
${Change_Developer_List} and ${Change_Reviewer_List} for passing the spe-
cific staff inv olved with the change.

Executed as: the current reviewer. Current directory: the development directory. Exit status: zero
indicates success, non-zero indicates failure.

For example, to have a script which is a project source file to be used to gate the code review
process, a setting such as the following may be used:

review_policy_command =
"$sh ${source script/reviewpolicy.sh} "
"−p $project −c $change "
"−d ${developer_list} "
"−r ${reviewer_list}"
;

This is only one of many ways to implement a project specific review policy.

develop_end_policy_command = string;
This field is used to set the command to be executed by the aede(1) command. This command is
useful in cases where the enterprise has determined that additional pre-conditions must be met (in
addition to those already imposed by the aede(1) command) before a change may leave the being

developed state. Defaults to "exit 0" if not set.

The exit status is examined. An zero exit status (success) means that the change may leave to the
being developed state; a non-zero exit status (failure) means that the change requires further de-
velopment.

All of the substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: the development directory. Exit status: zero indi-
cates success, non-zero indicates failure.

There are some common validations available in the aede-policy(1) command; you may choose
all or only some of them, or you may choose to write a policy command specific to your project.

unchanged_file_develop_end_policy = (...);
This field may be used to control what happens when development of a change is ended, and the
change contains files which have not had their contents or their attributes changed.

ignore Does not look for or warn about unchanged files. This the default.

warning If the change sets contains unchanged files, a warning will be issued for each one.

error If the change set contains unchanged files, an error will be issued for each one, and de-
velop end will not complete (the change will remain in the being developed state).

unchanged_file_integrate_pass_policy = (...);
This field may be used to control what happens when a change is completed, and the change con-
tains files which have not had their contents or their attributes changed.

ignore Does not look for or warn about unchanged files. The file version will be added to the
history. This the default.

warning If the change sets contains unchanged files, a warning will be issued for each one. The
file version will be added to the history.

remove If the change set contains an unchanged file, it will be silently removed from the
change set. The file version will not be added to the history. The project file is unaf-
fected.

test_command = string;
This field is used to set the command to be executed by the aet(1) command. Defaults to "$shell
$file_name" if not set.

Reference Manual Aegis 433

aepconf (5) File Formats Manual aepconf (5)

All of the substitutions described in aesub(5) are available. In addition:

${File_Name}
The absolute path of the test to be executed.

${Search_Path}
Colon separated list of directories to search for tests and test support files. (This is a
normal aesub(5) substitution.)

${Search_Path_Executable}
Colon separated list of directories to search for executable files and executable support
files. Usually it is the same as the above, except during an “aet −bl” command.

${VARiables}
The text of name=value variable settings from the command line, suitably quoted to
protect special character from the shell. Will be appended to the end of the command if
not used explicitly.

Note that tests are source files, and thus never hav e the execute bit set.

Executed as: the project owner (for integration tests) or the developer (for development tests), or
the executing user (for −independent tests). Current directory: the integration directory (for inte-
gration tests), the development directory (for development tests), the project baseline (for −bl
tests), or the current directory (for −independent tests). Exit status: zero indicates success, one
indicates failure, anything else indicates "no result".

development_test_command = string;
This field is used to set the command to be executed by the aet(1) command when a change is in
the being developed state. Defaults to be the same as the test_command field if not set.

Note: It is a significantly bad idea to make tests behave differently in being development and be-

ing integrated states; avoid this at all costs.

All of the substitutions described in aesub(5) are available. In addition:

${File_Name}
The absolute path of the test to be executed.

${File_Name}
The absolute path of the test to be executed.

${Search_Path}
Colon separated list of directories to search for tests and test support files. (This is a
normal aesub(5) substitution.)

${Search_Path_Executable}
Colon separated list of directories to search for executable files and executable support
files. Usually it is the same as the above, except during an “aet −bl” command.

${VARiables}
The text of name=value variable settings from the command line, suitably quoted to
protect special character from the shell. Will be appended to the end of the command if
not used explicitly.

Note that tests are source files, and thus never hav e the execute bit set.

Executed as: the developer. Current directory: the development directory (for development tests),
the project baseline (for −bl tests). Exit status: zero indicates success, one indicates failure, any-
thing else indicates "no result".

batch_test_command = string;
This field is used to set the command to be executed by the aet(1) command, in preference to the
test_command or development_test_command, if set. It is capable of running more than one test
at once.

Reference Manual Aegis 434

aepconf (5) File Formats Manual aepconf (5)

All of the substitutions described in aesub(5) are available. In addition:

${Output}
This is the name of the file to be generated to hold the test results. See aetest(5) for the
format of this file.
A space separated list of absolute paths of the tests to be executed.

${File_Names}
The absolute path of the tests to be executed.

${File_Name}
The absolute path of the test to be executed.

${Search_Path}
Colon separated list of directories to search for tests and test support files. (This is a
normal aesub(5) substitution.)

${Search_Path_Executable}
Colon separated list of directories to search for executable files and executable support
files. Usually it is the same as the above, except during an “aet −bl” command.

${Current}
Number of first test in the batch.

${Total}
Total number of tests. If this is 0 then no progress messages should be issued.

${VARiables}
The text of name=value variable settings from the command line, suitably quoted to
protect special character from the shell. Will be appended to the end of the command if
not used explicitly.

Note that tests are source files, and thus never hav e the execute bit set.

It is strongly recommended that you design your test scripts so that they may be executed by ei-
ther batch or non-batch methods. This permits simple migration when your environment
changes.

Executed as: the project owner (for integration tests) or the developer (for development tests), or
the executing user (for −independent tests). Current directory: the integration directory (for inte-
gration tests), the development directory (for development tests), the project baseline (for −bl
tests), or the current directory (for −independent tests). Exit status: zero indicates success, one
indicates failure, anything else indicates "no result".

architecture_discriminator_command = string;
If this field is present it is used as a command to be executed in order to further identify the plat-
form architecture (see below). All of the substitutions described by aesub(5) are available;
Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: zero indicates success, all non-zero exits indicate failure.

architecture = [{ ... }];
This field is a list of system and machine architectures on which each change must successfully
build and test. May be assigned more than once. The structures listed have fields as follows:

name = string;
The name of the architecture. This name is available in the ${ARCHitecture} substitu-
tion (see aesub(5) for more information), as well as being used internally by Aegis.
You may use almost any name for your architecture, but it is best to avoid shell special
characters and white space, because it may be substituted into commands to be exe-
cuted by Aegis.

Reference Manual Aegis 435

aepconf (5) File Formats Manual aepconf (5)

pattern = string;
The system and machine architecture are determined by using the uname(2) system
call. The uname(2) return value is assembled into a string of the form "sysname-re-

lease-version-machine", or "sysname-release-version-machine-disc" if architec-

ture_discriminator_command is used.

The pattern field must match this uname result string. The first match found is used.
The pattern is a shell file name pattern, see sh(1) for more information.

For example, the pattern SunOS-4.1*-*-sun4* matches a machine the author commonly
uses, which returns SunOS-4.1.3-8-sun4m from the uname(2) system call.

mode = (required, optional, forbidden);
The mode field is used to control how the architecture information is used.

required Architectures of thus mode will be copied into changes as their required ar-
chitectures when the change is created. This is the default.

optional Architectures of thus mode will not be copied into changes as their required
architectures when the change is created. However, if you add them subse-
quently, they become required for that change.

forbidden
Aegis will refuse to build or test on architectures of this mode.

When a change is created, the required architecture names are copied into the change’s
architecture list. Once names are in this list, they are required for the change, and the
project attributes are less relevant.

If the architecture field is not set, it defaults to
architecture =
[

{
name = "unspecified";
pattern = "*";
mode = required;

}
];

file_template = [{ ... }];
The file template is consulted whenever a new file is created, by one of the aenf (1) or aent(1)
commands. May be assigned more than once. Each list item has the form:

pattern = [string];
The name of the file, relative to the development directory. Each string is a shell file
name pattern; see sh(1) for more information. The patterns are matched against the
whole filename; naming only the last filename path element will not work (unless the
pattern starts with “*”).

body_command = string;
Command to run to initialize the body of the file.
Executed as: the developer. Current directory: the development directory of the change.
Exit status: ignored.

body = string;
What to initialize the body of the file to.

All of the substitutions described in aesub(5) are available for the body and body_command

strings. (Only specify one of them.) In addition:

${File_Name}
will be replaced by the name of the new file.

Reference Manual Aegis 436

aepconf (5) File Formats Manual aepconf (5)

whiteout_template = [{ ... }];
The file template is consulted whenever a file is removed, by one of the aerm(1) or aemv(1) com-
mands. It is used to place a “whiteout” entry in the development directory, in order to induce
compile errors of the removed file is referenced during the build. Each list item has the form:

pattern = [string];
The name of the file, relative to the development directory. Each string is a shell file
name pattern; see sh(1) for more information. The patterns are matched against the
whole filename; naming only the last filename path element will not work (unless the
pattern starts with “*”).

body = string;
What to initialize the body of the file to. If not present, no whiteout file will be created;
if the empty string, a zero-length whiteout file will be created.

All of the substitutions described in aesub(5) are available for the body string. In addition:

${File_Name}
will be replaced by the name of the removed file.

If the name of the file being removed does not match any of the filename patterns, a file consist-
ing of 1KB of very ugly garbage will be generated. The idea is that it will produce a syntax error
for most languages if you try to run it, compile it, or include it.

maximum_filename_length = integer;
This field is used to limit the length of file names. All new files may not have path components
longer than this. Existing files are not affected. The last component must also allow for the ",D"
suffix of difference files. Where this value is larger than the file system allows, the file system
limit will be imposed. Defaults to 255 if not set. Legal values range from 9 to 255.

The file name lengths of project files will be checked at develop end if the project aegis.conf file
is in the change. See aede (1) for more information.

posix_filename_charset = boolean;
This field may be used to limit the characters allowed in file names to only those explicitly al-
lowed by POSIX. Defaults to false if not set.

For a filename to be portable across conforming implementations of IEEE Std 1003.1-1988, it
shall consist only of alphanumeric characters, dot, hyphen or underscore. Hyphen shall not be
used as the first character of a portable filename.

If this field is false, all characters are allowed except non-printing characters, space characters
and leading hyphens.

dos_filename_required = boolean;
This field may be used to limit file names so that they conform to the DOS 8+3 filename limits
and to the DOS filename character set. Also denies file names which look like devices (AUX,
etc). Defaults to false if not set. This field is used in combination with the other filename fields,
it does not replace them.

windows_filename_required = boolean;
This field may be used to limit file names so that they conform to the Windows98 and Win-
dowsNT filename limits and character set. Also denies file names which look like devices (AUX,
etc). Defaults to false if not set. This field is used in combination with the other filename fields,
it does not replace them.

shell_safe_filenames = boolean;
This field may be used to limit file names so that they may not contain shell special characters. If
you do not set this to true, you will need to use the ${quote} substitution around file names in
commands, or risk unexpected errors.

This field defaults to true if not set.

Reference Manual Aegis 437

aepconf (5) File Formats Manual aepconf (5)

The white space characters (space, tab, newline, etc) are considered shell special characters.

allow_white_space_in_filenames = boolean;
This field may be used to allow white space characters in file names. This will allow the follow-
ing characters to appear in filenames: backspace (BS, \b, 0x08), horizontal tab (HT, \t, 0x09), new
line (NL, \n, 0x0A), vertical tab (VT, \v, 0x0B), form feed (FF, \f, 0x0C), and carriage return (CR,
\r, 0x0D).

Defaults to false if not set.

Note that this field does not override other file name filters. It will be necessary to explicitly set
shell_safe_filenames = false as well. It will be necessary to set dos_filename_required = false

(the default) as well. It will be necessary to set posix_filename_charset = false (the default) as
well.

The user must take great care to use the ${quote} substitution around all file names in commands
in the project configuration. And ev en then, substitutions which expect a space separated list of
file names will have undefined results.

allow_non_ascii_filenames = boolean;
This field may be used to allow file names with non-ascii-printable characters in them. Usually
this would mean a UTF8 or international charset of some kind.

Defaults to false if not set.

Note that this field does not override other file name filters. It will be necessary to explicitly set
shell_safe_filenames = false as well. It will be necessary to set dos_filename_required = false

(the default) as well. It will be necessary to set posix_filename_charset = false (the default) as
well.

filename_pattern_accept = [string];
This field is used to specify a list of patterns of acceptable file names. The patterns are matched
against each filename path element. The patterns are constructed from the usual shell filename
wild-cards. Defaults to "*" if not set.

filename_pattern_reject = [string];
This field is used to specify a list of patterns of unacceptable file names. The patterns are
matched against each filename path element. The patterns are constructed from the usual shell
filename wild-cards. Defaults to "*,D" if not set. The pattern "*,D" is always appended. Where
the filename_pattern_accept and filename_pattern_reject fields conflict, the reject takes prece-
dence.

new_test_filename = string;
This field is used to form the filename of new tests, where the filename is not specified on the
aent command line. Defaults to "test/${zpad $hundred 2}/t${zpad $number 4}${left $type
1}.sh" if not set.

All of the substitutions defined in aesub(5) are available. The following three substitutions are
also available:

$Hundred
The test number divided by 100, optional

$Number
The test number, mandatory

$Type The test type: "automatic" or "manual", optional

development_directory_template = string;
This field is used to determine the name of the development directory at develop begin. All of the
substitutions defined in aesub(5) are available. The following substitutions is also available:

Reference Manual Aegis 438

aepconf (5) File Formats Manual aepconf (5)

Default_Development_Directory
The directory within which the development directory is to be created.

Magic A single letter, starting from “C”, which can be inserted. This must be used, as it al-
lows Aegis to try different names should there be a conflict.

If not set, defaults to "$ddd/${left $p ${expr ${namemax $ddd} − ${length
.$magic$c}}}.$magic$c".

For DOS compatibility (8+3 file names), a useful setting is "$ddd/${downcase ${left
${id $p} 8}.$magic${right 0$c 2}}". This ensures that the filename is always a
valid 8.3 filename, that it is always lowercase, and it translates any punctuation in the project
name into underscores.

metrics_filename_pattern = string;
This field is used to form the name of the metrics file, given a source file. All of the substitutions
defined in aesub(5) are available. The following substitutions is also available:

File_Name
The absolute path name of the source file.

Defaults to "$filename,S" if not set.

trojan_horse_suspect = [string];
This list of filename patterns is consulted by aedist −receive when it is checking for files which
could be used to host Trojan horse attacks. This will be different for different projects, so you
will need to update this yourself. The patterns are matched against the whole filename; naming
only the last filename path element will not work (unless the pattern starts with “*”).

project_specific = [{ ... }];
This is a list of name and value pairs for use within the ${project-specific} substitution (see ae-

sub(5) for more information). May be assigned more than once. The sub-fields are

name = string;
The name of the value. By convention, names which start with an upper-case letter will
appear in listings, and lower-case will not. Attribute names are case-insensitive.

value = string;
The value to be substituted.

There are almost no limitations on the strings which may appear in either of these fields.

There are several attribute names which are known to and used by Aegis, these include:

aede-policy
This attribute is used when no policy names are listed on the aede-policy(1) command
line.

ae-repo-ci:commit-message
See ae-repo-ci(1) for more information.

aede-policy
See aede-policy(1) for more information.

aede-policy:version-info:library
See aede-policy(1) for more information.

aeget:inventory:hide
See aeget(1) for more information.

aemakegen:debian:build-depends
See aemakeg en(1) for more information.

aemakegen:debian:copyright
See aemakeg en(1) for more information.

Reference Manual Aegis 439

aepconf (5) File Formats Manual aepconf (5)

aemakegen:debian:depends
See aemakeg en(1) for more information.

aemakegen:debian:description:name

See aemakeg en(1) for more information.

aemakegen:debian:extended-description:name

See aemakeg en(1) for more information.

aemakegen:debian:homepage
See aemakeg en(1) for more information.

aemakegen:debian:maintainer
See aemakeg en(1) for more information.

aemakegen:debian:priority
See aemakeg en(1) for more information.

aemakegen:debian:section
See aemakeg en(1) for more information.

aemakegen:pkg-config:cflags
See aemakeg en(1) for more information.

aemakegen:pkg-config:conflicts
See aemakeg en(1) for more information.

aemakegen:pkg-config:libs
See aemakeg en(1) for more information.

aemakegen:pkg-config:libs.private
See aemakeg en(1) for more information.

aemakegen:pkg-config:requires
See aemakeg en(1) for more information.

aemakegen:version-info
See aemakeg en(1) for more information.

aetar:exclude
This attribute is used by he aetar(1) receive command to exclude files in tarballs from
consideration. This is a space separated list of file names.

copyright-owner
This string is available via the ${copyright-owner} substitution, and is the one checked
by the aede-policy(1) command. Only set this attribute if your project is a work-for-
hire under copyright law. It defaults to the value of ${user name} if not set, this is al-
most always correct for Open Source projects.

html:body-begin
This attribute is used by the aeget(1) command to customize generated web pages. See
aeget(1) for more information.

html:meta
This attribute is used by the aeget(1) command to customize generated web pages. See
aeget(1) for more information.

html:body-end
This attribute is used by the aeget(1) command to customize generated web pages. See
aeget(1) for more information.

svn:password
See ae-repo-ci for more information.

Reference Manual Aegis 440

aepconf (5) File Formats Manual aepconf (5)

svn:username
See ae-repo-ci for more information.

When commands are executed by Aegis, it ensures that the AEGIS_PROJECT,
AEGIS_CHANGE, AEGIS_ARCH, LINES and COLS environment variables are set appropri-
ately. The project configuration file’s project_specific field is also consulted, looking for value’s
whose name starts with "setenv:" and sets the corresponding environment variable. All of the
substitutions described by aesub(5) are available. For example: specifying a PATH and a
SEARCH_PATH to be used for all commands may be set as follows:

project_specific =
[
{
name = "setenv:PATH";
value = "/usr/bin:/bin";

},
{
name = "setenv:SEARCH_PATH";
value = "${search_path}";

},
];

As many environment variables as desired may be specified in this way.

build_time_adjust = (...);
This field controls the adjustment of file modification times at the end of integrate-pass. File
times are adjusted so that development directories are, in the main, out of date with respect to the
baseline. The idea is that, at the very least, programs need to be re-linked so that aet −reg does
not give false negatives.

Combining this with the project_file_command (above) can alleviate the vast majority of file
modification time inconsistencies experienced as a result of a project integration and the subse-
quent changes in the baseline’s file modification times.

Unless you are a masochist, do not set this field. Leave it as the default.

adjust_and_sleep
Causes the file times to be adjusted, and if the file times would extend into the future,
aeipass will sleep until that time has passed. This is the default.

adjust_only
Causes the file times to be adjusted. If the file time extend into the future, a warning is
issued.

dont_adjust
File modification times are not adjusted. This is a really bad idea. Really. Make sure
that, at the very minimum, project_file_command touches all of the change’s files, oth-
erwise the build problems which ensue are going to take you weeks to track down and
lose you much productivity. You have been warned.

See also the build_time_adjust_notify_command field.

signed_off_by = boolean;
If this field is set each aedb(1), aechown(1), aede(1) and aerpass(1) will append a Signed-
off-by line to the change description. This field should only be set to true for open source
projects.

For a description of Signed-off-by see http://www.ussg.iu.edu/hypermail/linux/ker-
nel/0405.2/1301.html and http://www.osdl.org/newsroom/press_re-
leases/2004/2004_05_24_dco.html

Reference Manual Aegis 441

aepconf (5) File Formats Manual aepconf (5)

cache_project_file_list_for_each_delta = boolean;
It is possible to have Aegis cache the list of project files that were present at integrate pass for
each delta (integrated change set). This is used to optimize all project-history-based operations,
such as aecp −delta or aepatch(1).

This cache will optimize many operations which would otherwise require time to reconstruct the
project state using the roll-forward data available in each change set. However, it comes at the
cost of disk space, and not everyone can afford more and more disk.

This field defaults to true if not set.

clean_exceptions = [string];
It is possible to have Aegis exclude from the clean process any file that match one of the pattern
listed in the clean_exceptions list.

This field default to an empty list if not set.

cache_project_file_list_for_each_delta = boolean;
It is possible to have Aegis cache the list of project files that were present at integrate pass for
each delta (integrated change set). This is used to optimize all project-history-based operations,
such as aecp −delta or aepatch(1).

This cache will optimize many operations which would otherwise require time to reconstruct the
project state using the roll-forward data available in each change set. However, it comes at the
cost of disk space, and not everyone can afford more and more disk.

This field defaults to true if not set.

RSS FEEDS
Aegis has the ability to feed RSS channels when change sets transition states. See the User Guide for full
details. Following is a brief description of the project-specific attributes used to control this process.

Create / Add to a channel
An RSS channel is specified with the rss:feedfilename project_specific attribute:

project_specific =
[
{
name = "rss:feedfilename−<filename>";
value = "<space-separated list of states>";

}
]

Specify the Description of an RSS channel
The description of an RSS channel is specified with the rss:feeddescription project_specific at-
tribute:

project_specific =
[
{
name = "rss:feeddescription−<filename>";
value = "<description>";

}
]

Specify the Title of an RSS channel
The title of an RSS channel is specified with the rss:feedtitle project_specific attribute:

project_specific =
[
{
name = "rss:feedtitle−<filename>";
value = "<title>";

Reference Manual Aegis 442

aepconf (5) File Formats Manual aepconf (5)

}
]

Specify the Language of an RSS channel
The language of an RSS channel is specified with the rss:feedlanguage project_specific attribute:

project_specific =
[
{
name = "rss:feedlanguage−<filename>";
value = "<language";

}
]

OBSOLETE FIELDS
There are some obsolete fields in the file. They are provided for backwards compatibility only, and should
not be used.

diff3_command = string;
This field is used to difference 3 files. The command is always executed by developers. Used by
the aed(1) command. All of the substitutions described by aesub(5) are available; in addition,

${ORiginal}
The absolute path of the original file copied into the change. Usually not in the base-
line.

${Most_Recent}
The absolute path of the competing edit, usually in the baseline.

${Input}
The absolute path of the file in the development directory.

${Output}
The absolute path of the file in which to write the difference listing.

Executed as: the project owner (for integration diffs), or the developer (for development diffs).
Current directory: the integration directory (for integration diffs), or the development directory
(for development diffs). Exit status: zero indicates success, all non-zero exits indicate failure (the
aed will fail).

The problem with this field was that the default usage placed the merged source in a strange
place. And subsequent aed(1) commands would over-write it. This meant that merges would be
lost, causing a number of nasty problems. Some sites overcame this by adding “mv” commands
to put the output back where the input came from, but this meant that Aegis’ commentary was
misleading. Use the “merge_command” field instead. It is almost identical, but Aegis will move
the files around for you − so you get the good behavior by default (no lost merges) and the error
message is consistent.

create_symlinks_before_build = boolean;
This flag is true if Aegis should create symlinks from the development directory to the baseline
for all files in the baseline not in the development directory immediately before a develop-
ment_build_command is issued. Usually used to trick dumb DMTs into believing the develop-
ment directory contains an entire copy of the project, though sometimes the DMT is smart
enough, the tools it must work with are not. Symlinks in the development directory which point
to nonexistent files will be removed.

Defaults to false if not set.

create_symlinks_before_integration_build = boolean;
This flag is true if Aegis should create symlinks from the integration directory to the ancestral
baseline for all files in the ancestral not in the integration directory immediately before a
build_command is issued. Usually used to trick dumb DMTs into believing the integration

Reference Manual Aegis 443

aepconf (5) File Formats Manual aepconf (5)

directory contains an entire copy of the project, though sometimes the DMT is smart enough, the
tools it must work with are not. Symlinks in the integration directory which point to nonexistent
files will be removed.

Defaults to the same value as create_symlinks_before_build if not set.

remove_symlinks_after_build = boolean;
This flag is true if Aegis should remove symlinks which point from the development directory to
the baseline directory immediately after a development_build_command is issued. Only con-
sulted if the create_symlinks_before_build field is true, for the purpose of reversing the actions of
the create_symlinks_before_build field.

Defaults to false if not set.

remove_symlinks_after_integration_build = boolean;
This flag is true if Aegis should remove symlinks which point from the integration directory to
the ancestral baseline directory immediately after a build_command is issued. Only consulted if
the create_symlinks_before_integration_build field is true, for the purpose of reversing the ac-
tions of the create_symlinks_before_integration_build field.

Defaults to true if not set. This default is intentional. It is important that there are no symlinks in
the (new) baseline, because they could go stale between integrations. If you set this field to false,
caveat emptor.

CHANGING HISTORY TOOL
Since version Aegis 4.26 it is possible to change the history tool, if needed. Note, however, that the old tool
is still required to retrieve file’s revisions saved before the switch to the new tool. As an example it is not
advisable to uninstall the fhist package if a project switched to aesvt, since fhist will be required to retrieve
file’s revisions pre−dating the switch.

The aeipass(1) command stores the history_get_command as the aegis:history_get_command user defined
change’s attribute, that command will be used later to retrieve files altered by the change.

In any project created using Aegis v. 4.26 (or later) it is possible to use a different history tool simply edit-
ing the appropriate aepconf(5) fields.

It is possible to change the history tool of projects created with a older Aegis version, but it’s required to
properly set the aegis:history_get_command user defined attribute for each change integrated before the
switch.

SEE ALSO
aeb(1) build a change

aecp(1) copy a file into a change

aecpu(1)
reverse action of aecp

aed(1) find differences between a change and the baseline

aede(1) end development of a change aede-policy(1) check things about a change

aerpass(1)
pass a review of a change

aeib(1) begin integration of a change

aeipass(1)
pass integration of a change

aemv(1) rename a file as part of a change

aenf (1) add new files to be created by a change

Reference Manual Aegis 444

aepconf (5) File Formats Manual aepconf (5)

aenfu(1) remove new files from a change

aent(1) add a new test to be created by a change

aentu(1) remove new tests from a change

aet(1) run tests

aegis(5) aegis file format syntax

aesub(5)
available command substitutions

aetest(5)
batch test results file

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 445

aepstate(5) File Formats Manual aepstate(5)

NAME
aepstate − aegis project state file

SYNOPSIS
project/info/state

DESCRIPTION
The project/info/state file is used to store state information about a project.

This file is maintained by aegis and thus should not be edited by humans.

CONTENTS
next_test_number = integer;

Each test is numbered uniquely across all branches of the project. The name is of the form
t[0−9][0−9][0−9][0−9][am].sh (’a’ for automatic and ’m’ for manual.)

Almost Obsolete Fields
The following fields are obsolete. They will persist until the next aenrls(1), and the new project so gener-
ated will use them to define its default branching.

version_major = integer;
The major version number of this release of the project. Always one or more.

version_minor = integer;
The minor version number of this release of the project. Always zero or more.

Obsolete Fields
The following fields are obsolete. They are only present in projects which have yet to be converted to the
new branch format. When Aegis sees them, they will be moved into the "trunk" transaction.

description = string;
This field contains a description of the project. Large amounts of prose are not required; a single
line is sufficient.

owner_name = string;
This field is ignored.

group_name = string;
This field is ignored.

developer_may_review = boolean;
If this field is true, then a developer may review her own change. This is probably only a good
idea for projects of less than 3 people. The idea is for as many people as possible to critically ex-
amine a change.

developer_may_integrate = boolean;
If this field is true, then a developer may integrate her own change. This is probably only a good
idea for projects of less than 3 people. The idea is for as many people as possible to critically ex-
amine a change.

reviewer_may_integrate = boolean;
If this field is true, then a reviewer may integrate a change she reviewed. This is probably only a
good idea for projects of less than 3 people. The idea is for as many people as possible to criti-
cally examine a change.

developers_may_create_changes = boolean;
This field is true if developers may created changes, in addition to administrators. This tends to
be a very useful thing, since developers find most of the bugs.

forced_develop_begin_notify_command = string;
This command is used to notify a developer that a change requires developing; it is issued when a
project administrator uses an aedb −User command to force development of a change by a spe-
cific user. All of the substitutions described in aesub(5) are available. This field is optional.

Executed as: the new dev eloper. Current directory: the development directory of the change for

Reference Manual Aegis 446

aepstate(5) File Formats Manual aepstate(5)

the new dev eloper. Exit status: ignored.

develop_end_notify_command = string;
This command is used to notify that a change is ready for review. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification will be
given. This command could also be used to notify other management systems, such as progress
and defect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

develop_end_undo_notify_command = string;
This command is used to notify that a change had been withdrawn from review for further devel-
opment. It will probably use mail, or it could be an in-house bulletin board. This field is op-
tional, if not present no notification will be given. This command could also be used to notify
other management systems, such as progress and defect tracking. All of the substitutions de-
scribed by aesub(5) are available.

Executed as: the developer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

review_pass_notify_command = string;
This command is used to notify that a review has passed. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

review_pass_undo_notify_command = string;
This command is used to notify that a review has passed. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. Defaults to the same action as the develop_end_notify_command field. All of the
substitutions described by aesub(5) are available.

review_fail_notify_command = string;
This command is used to notify that a review has failed. It will probably use mail, or it could be
an in-house bulletin board. This field is optional, if not present no notification will be given.
This command could also be used to notify other management systems, such as progress and de-
fect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the reviewer. Current directory: the development directory of the change. Exit sta-
tus: ignored.

integrate_pass_notify_command = string;
This command is used to notify that an integration has passed. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification will be
given. This command could also be used to notify other management systems, such as progress
and defect tracking. All of the substitutions described by aesub(5) are available.

Some compilers bury absolute path names into object files and executables. The renaming of the
integration directory to become the new baseline breaks these paths. This command is passed an
environment variable called AEGIS_INTEGRATION_DIRECTORY so that the appropriate sym-
link may be placed, if desired.

Executed as: the project owner. Current directory: the new project baseline. Exit status: ignored.

integrate_fail_notify_command = string;
This command is used to notify that an integration has failed. It will probably use mail, or it
could be an in-house bulletin board. This field is optional, if not present no notification will be

Reference Manual Aegis 447

aepstate(5) File Formats Manual aepstate(5)

given. This command could also be used to notify other management systems, such as progress
and defect tracking. All of the substitutions described by aesub(5) are available.

Executed as: the integrator. Current directory: the development directory of the change. Exit sta-
tus: ignored.

default_development_directory = string;
The pathname of where to place new dev elopment directories. The pathname must be absolute.
This field is only consulted if the field of the same name in the user configuration file is not set.

umask = integer;
File permission mode mask. See umask(2) for more information. This value will always be
OR’ed with 022, because aegis is paranoid.

default_test_exemption = boolean;
This field contains what to do when a change is created with no test exemption specified.

copyright_years = [integer];
This field contains a list of copyright years, for use in copyright notices, etc. It is updated each
integrate_begin, if necessary, to include the current year. Available as the ${Copyright_Years}
substitution, and included in the version listing.

next_change_number = integer;
Changes are numbered sequentially from one. This field records the next unused change number.

next_delta_number = integer;
Deltas are numbered sequentially from one. This field records the next unused delta number.

src = [{ ... }];
If you are writing a report, see aefstate(5) for the current documentation for this field. This field
is a list of files in the project. Each list item has the form:

file_name = string;
The name of the file, relative to the baseline.

usage = (source, config, build, test, manual_test);
What the file is for.

edit_number = string;
The edit number of the file.

locked_by = integer;
The change which locked this file.
Caveat: this field is redundant, you can figure it out by scanning all of he change files.
Having it here is very convenient, even though it means multiple updates.

about_to_be_created_by = integer;
The change which is about to create this file for the first time. Same caveat as above.

deleted_by = integer;
The change which last deleted this file. We nev er throw them away, because (a) it may
be created again, and more important (b) we need it to recreate earlier deltas.

history = [{ ... }];
This field contains a history of integrations for the project. Updated by each successful ’aegis
−Integrate_Pass’ command.

delta_number = integer;
The delta number of the integration.

change_number = integer;
The number of the change which was integrated.

Reference Manual Aegis 448

aepstate(5) File Formats Manual aepstate(5)

name = [string];
The names by which this delta is known.

change = [integer];
The list of changes which have been created to date.

administrator = [string];
The list of administrators of the project.

developer = [string];
The list of developers of the project.

reviewer = [string];
The list of reviewers of the project.

integrator = [string];
The list of integrators of the project.

currently_integrating_change = integer;
The change currently being integrated. Only one change (within a project) may be integrated at a
time. Only set when an integration is in progress.

version_major = integer;
The major version number of this release of the project. Always one or more.

version_minor = integer;
The minor version number of this release of the project. Always zero or more.

version_previous = string;
The version number this project was derived from. This is of most use when producing "patch"
files.

WRITING REPORT SCRIPTS
When attempting to access these fields from within the report generator, you need a code fragment similar
to the following:

auto ps;
ps = project[project_name()].state;

All of the fields mentioned in the man page can now be accessed as members of the ps variable.

When you access the branch field, you obtain access to the change state of the branch. Even the trunk has
one of these, it just doesn’t hav e a number, and it is perpetually being developed.

When you index the branch.change field by a change number, you obtain access to the change state of that
change.

When you index the branch.src field by a filename string, you may obtain access the the relevant project
file state (see aefstate(5) for more information).

In addition to the above fields, the report generator inserts a name field containing the project name, and a
directory field containing the project directory path.

SEE ALSO
aenpr(1)

create a new project

aegis(5) aegis file format syntax

aepattr(5)
project attributes file format

aecstate(5)
change state file

aefstate(5)
file state file

Reference Manual Aegis 449

aepstate(5) File Formats Manual aepstate(5)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 450

aer(5) File Formats Manual aer(5)

NAME
aer − aegis report script language definition

DESCRIPTION
This manual entry describes the report generator script language used by the aer(1) command. The lan-
guage resembles C, with a touch of awk and perl for flavour. It also closely resembles the appearance of
aegis’ database files.

This language grew out of the need to have a general purpose programming language to describe reports,
and yet be as familiar as possible to the people who will be using it.

WORDS AND SYMBOLS
This section describes the various words and symbols understood by the language.

Names
A name is a contiguous set of alphanumeric characters, including underscore (_). It must not start with a
digit. Names may be of any length. Names are case sensitive, so uppercase and lowercase letters are
unique.

Here are some examples of names

print sqrt if
how_long UpperCase dig57

Some words are reserved as keywords. These are the words which appear in bold in the statement descrip-
tions, below.

Integer Constants
An integer constant may be decimal, any sequence of digits. Constants may be octal, any sequence of octal
digits starting with a zero. Constant may be hexadecimal, any sequence of hexadecimal digits, starting with
a 0x prefix. These are represented by the internal long type, so significance is limited.

Here are some examples of integer constants:

43 015 0xbeEf
2147483647 017777777777 0x7FFFFFFF

Floating Point Constants
A floating point constant has an integer part, a fraction part and an exponent part.

Here are some examples of floating point constants:

1.2e3 4.2e+1 1.628e-94
0.567 5e6 .67

String Constants
A string constant is represented as characters within double quotes ("). All characters in the script file are
required to be printable, so special characters are represented by escape sequences. These escape se-
quences are:

\" the " character
\\ the \ character
\n Newline
\f Form Feed
\r Carriage Return
\b Backspace
\t Horizontal Tab
\nnn octal character value

Here are some examples of string constants:

"Hello, World!" "Go aw ay" ""
"The End0 "slosh is \\" "Say \"Please\""

Reference Manual Aegis 451

aer(5) File Formats Manual aer(5)

Symbols
The non-alphanumeric characters are used to represent symbols, usually expression operators or statement
terminators. The symbols used include:

! != !˜ ## ##=
% %= & && &=
() * ** **=
*= + ++ += ,
− −− −= . /
/= : ; < <<
<<= <= = == >
>= >> >>= ? [
] ˆ ˆ= { |
|= || } ˜ ˜˜

White Space
White space serves to separate words and symbols, and has no other significance. The language is free-
form. White space includes the SPACE, TAB, FF, and NEWLINE characters.

Comments
Comments are delimited by /* and */ pairs, and are treated as a single white space character.

STATEMENTS
Statement serve to control the flow of execution of the program, or the existence of variables.

The Expression Statement
The commonest statement consists of an expression terminated by a semicolon. The expression is evalu-
ated, and any result is discarded.

Examples of this statement include
x = 42;
print("Hello, World!0);

The If Statement
The if statement is used to conditionally execute portions of code. Examples if the if statement include:

if (x == 42)
x = 1;

if (x * x < 1)
print("no");

else
print("yes");

The For Statement
The for statement has two forms. The first form is described as

for (expr1; expr2; expr3)
stmt

The expr1 is done before the loop begins. The expr2 controls, the loop; if it does not evaluate to true the
loop terminates. The loop body is the stmt. The loop increment is done by the expr3, and the the test is
performed again.

Each of the expressions is optional; any or all may be omitted.

Here is an example of a for loop:
for (j = 0; j < 10; ++j)

print(j);

The second form of the for statement looks like this:
for (name in keys(passwd))

print(name, passwd[name].pw_comment);

Reference Manual Aegis 452

aer(5) File Formats Manual aer(5)

The Break Statement
The break statement is used to break out of a loop.

Here is an example of a break statement:
for (j = 0; ; j = 2 * j + 4)
{

print(j);
if (j >= 0x800)

break;
}

The break statement works within all loop statements.

The Continue Statement
The continue statement is used to terminate the loop body and start another repetition.

Here is an example of a continue statement:
for (j = 0; j < 1000; j = 2 * j + 4)
{

if (j < 42)
continue;

print(j);
}

The continue statement works within all loop statements.

The While Statement
The while statement is another loop construct. The condition is evaluated before the loop body.

line = 0;
while (line < 7)
{

print("");
++line;

}

The Do Statement
The do statement is another loop construct. The condition is evaluate after the loop body.

do
print("yuck");

while
(line++ < 7);

The Compound Statement
The compound statement is a way of grouping other statements together. It is enclosed in curly braces.

if (lines < 7)
{

print("This\n");;
print("could\n");;
print("have\n");;
print("been\n");;
print("seven\n");;
print("blank\n");;
print("lines.\n");;

}

The Local Statement
The auto statement is used to declare variables and initialize them to be nul.

auto x, y, z;
x = 42;

All user-defined variables must be declared before they are used.

Reference Manual Aegis 453

aer(5) File Formats Manual aer(5)

The Null Statement
The null statement does nothing. It consists of a single semicolon. It is most often seen as a loop body.

for (n = 0, bit = 1; n < bit_num; ++n, bit <<= 1)
;

The Try Catch Statement
The try catch statement is used to catch errors which would usually cause the report to fail.

try
statement1

catch (variable)
statement2

The first statement is executed. If no error occurs, nothing else is done. If an error occurs in the execution
of the first statement the firsdt statement execution is terminated and then the given variable is set to a de-
scription of the error and the second statement is executed.

EXPRESSIONS
Expressions are much the same as in C, using the same operators. The following table describes operator
precedence and associativity:

[] subscripting value [expr]
() function call expr (expr_list)
() grouping (expr)

++ post increment lvalue ++
++ pre increment ++lvalue

−− post decrement lvalue −−
−− pre decrement −−lvalue

˜ compliment ˜ expr

! not ! expr

- unary minus − expr

+ unary plus + expr

** exponentiation expr ** expr

* multiply expr * expr

/ divide expr / expr

% modulo (remainder) expr % expr

˜˜ matches expr ˜˜ expr

!˜ does not match expr !˜ expr

in list member expr in expr

+ addition (plus) expr + expr

− subtraction (minus) expr − expr

list and string join expr ## expr

<< shift left expr << expr

>> shift right expr >> expr

< less than expr < expr

<= less than or equal expr <= expr

> greater than expr > expr

>= greater than or equal expr >= expr

== equal expr == expr

!= not equal expr != expr

Reference Manual Aegis 454

aer(5) File Formats Manual aer(5)

& bitwise AND expr & expr

ˆ bitwise exclusive OR expr ˆ expr

| bitwise inclusive OR expr | expr

? : arithmetic if expr ? expr : expr

= simple assignment expr = expr

*= multiply and assign expr *= expr

/= divide and assign expr /= expr

%= modulo and assign expr %= expr

+= add and assign expr += expr

-= subtract and assign expr −= expr

<<= shift left and assign expr <<= expr

>>= shift right and assign expr >>= expr

&= AND and assign expr &= expr

ˆ= exclusive OR and assign expr ˆ= expr

|= inclusive OR and assign expr |= expr

, comma (sequencing) expr , expr

Most of these operators behave as they do in C, but some of these operators will require some explanation.

Exponentiation
The ** operator raises the left argument to the right’th power. It is right associative.

Match
The ˜˜ operator compares two strings. It returns a number between 0.0 and 1.0. Zero means completely
different, one means identical. Case is significant.

Not Match
The !˜ is used to compare two strings, and returns the opposite of the ˜˜ operator; one if completely dif-
ferent, and zero if identical.

String Join
The ## operator is used to join two strings together.

TYPES
There are several types used within the report language.

array Values of this type contain other values, indexed by a string. If you attempt to index by an arith-
metic type, it will be silently converted to a string. Use the keys function to determine all of the
keys; use the count function to determine how many entries an array has. The type of an array el-
ement is not restricted, only the index must be a string.

boolean This type has two values: true and false. These value arise from the boolean operators de-
scribed earlier.

integer This type is represented by the long C type. It has a limited range of values (usually −2e9 to 2e9
approximately). If used in a string context, it will be silently converted to a string. For exact con-
trol of the format, used the sprintf function.

list Values of this type contain a list of other values. The type of these values is not restricted. The
array index operator (e[e]) may be used to access list elements; indexes start at zero (0).

string Values of this type are an arbitrary string of C characters, except the NUL character (). Strings
may be of any length.

struct Values of this type contain additional values. These values are accessed using the "dot" operator.
These values may also be treated as if they were arrays.

Reference Manual Aegis 455

aer(5) File Formats Manual aer(5)

real This type is represented the the double C type. If used in a string context, it will be silently con-
verted to a string. For exact control of the format, used the sprintf function.

FUNCTIONS
There are a number of built-in functions.

basename
This function is used to extract the last element from a file path.

capitalize
This function converts it argument to a capitalized string in Title Case.

ceil This function is used to round a number to an integer, tow ards positive infinity.

change_number
This function is used to determine the change number. It may be set by the −Change command
line option, or it may default. The return value is an integer.

change_number_set
This function maybe used to determine if the change number was set by the −Change command
line option. The return value is a boolean.

columns This function is used to define the report columns. Each argument is a structure containing some
or all of the following fields:

left the left margin, counting characters from 0 on the left
right the right margin, plus one
width the width in characters, defaults to 7 if right not specified
padding white space between columns, defaults to 1 if not set
title the title for this column, separate multiple lines with \n

The columns must be defined before the print function is used.

count This function is used to count the number of elements in a list or array.

dirname This function is used to extract all but the last element from a file path.

downcase
This functions converts its argument to lower case.

eject This function is used to start a new page of output.

floor This function is used to round a number to an integer, tow ards negative infinity.

getenv This function is used to get the value of an environment variable. Will return the empty string if
not set.

gettime This function is used to parse a string to produce a time. It understands a variety of different date
formats.

getuid This function takes no arguments, and returns the user ID of the process which invoked the report
generator. The return value is an integer.

keys This function may be given an array or a list as argument. It returns a list of keys which may be
used to index the argument. Most often seen in for loops.

length This function is used to find the length of a string.

mktime This a synonym for the gettime function.

mtime This function may be used to obtain the modification time of a file.

need This function is used to insert a page break into the report if the required number of lines is not
available before the end of page. If sufficient lines are available, only a single blank line will be
inserted. The return value is void.

now This function takes no arguments, and returns the current time.

Reference Manual Aegis 456

aer(5) File Formats Manual aer(5)

page_length
This function may be used to determine the length of the output page in lines. The return value is
an integer.

page_width
This function may be used to determine the width of the output page in columns. The return
value is an integer.

print This function is used to print into the defined columns. Columns will wrap around.

project_name
This function is used to determine the project name. It may be set by the −Project command line
option, or it may default. The return value is a string.

project_name_set
This function maybe used to determine if the project name was set by the −Project command line
option. The return value is a boolean.

quote_html
This function quotes its argument string to insulate HTML special characters; these include “less
than” (<), “ampersand” (&) and non-printing characters. This is most often used to generate suit-
able text for web pages.

quote_tcl
This function quotes its argument string to insulate TCL special characters; these include “[]” and
non-printing characters. This is most often used to generate suitable text for TCL interface
scripts.

quote_url
This function quotes its argument string to insulate URL special characters; these include
“?+#:&=” and non-printing characters. This is most often used to generate suitable text for web
pages.

round This function is used to round a number to an integer, tow ards the closest integer.

sort This function must be given a list as argument. The values are sorted into ascending order. A
new list is returned.

split This function is used to split a string into a list of strings. The first argument is the string to split,
the second argument is the character to split around.

sprintf This function is used to build strings. It is similar to the sprintf (3) function.

strftime This function is used to format times as strings. The first argument is the format string, the sec-
ond argument is a time. See the strftime(3) man page for more the format specifiers.

subst This function is used to substitute strings by regular expression. The first argument is the pattern
to match, the second argument is the substitution pattern, the third argument is the input string to
be substituted. The option fourth argument is the number of substitutions to perform; the default
is as many as possible.

substr This function is used to extract substrings from strings. The first argument is a string, the second
argument is the starting position, starting from 0, and the third argument is the length.

terse This function may be used to determine of the −TERse command line option was used. The re-
turn type is a boolean.

title This function is used to set the title of the report. It takes at most two arguments, one for each
available title line.

trunc This function is used to round a number to an integer, tow ards zero.

typeof This function is used to determine the type of a value. The return type is a string containing the
name of the type, as described in the

Reference Manual Aegis 457

aer(5) File Formats Manual aer(5)

unquote_url
This function will remove URL quoting from the argument string. URL quoting takes the form
of a percent sign (%) followed by two hex digits. This is replaced by a single character with the
value represented by the hex digits.

upcase This functions converts its argument to upper case.

working_days
This function is used to determine the number of working days between two times.

wrap This function is used to wrap a string into a list of strings. The first argument is the wring to
wrap, the second argument is the maxmium width of the output strings.

wrap_html
This function is used to wrap a string into a list of strings. The first argument is the wring to
wrap, the second argument is the maxmium width of the output strings. This is very similar to
the wrap functions, except thatit inserts HTML paragraph breaks <p> or line breaks
 to re-
flect the newlines within the string (2 or 1, respectively). TYPES section.

VARIABLES
There are a number of built-in variables.

arg This variable is a list containing the arguments passed on the aer(1) command line.

change
There is a special type of variable created by using an expression similar to
project[project_name()].state.change[n] which contains all of the fields described in aecstate(5),

plus some extras:

change Branches have a change array, just like project below.

change_number
The number of the change.

config This gives access to all of the fields described in aepconf(5).

project_name
The name of the project containing the change.

src This gives access to the change files, and when indexed by file name, yields a value
conataining fields as described in aefstate(5), for the src field.

group This variable is an array containing all of the entries in the /etc/group file. Each entry is a struc-
ture with fields as documented in the group(5) manual entry. The gr_mem element is a list of
strings. This array may be indexed by either a string, treated as a group name, or by an integer,
treated as a GID.

passwd This variable is an array containing all of the entries in the /etc/passwd file. Each entry is a struc-
ture with fields as documented in the passwd(5) manual entry. This array may be indexed by ei-
ther a string, treated as a user name, or by an integer, treated as a uid.

project This variable is an array containing one entry for each aegis project, indexed by name. Each ar-
ray element is a structure, containing

name the project name
directory the root of the project directory tree
state the project state

The project state contains the fields documented in the aepstate(5) manual entry. Except: the
change field is not a list of change numbers, it is an array indexed by change number of change
states, as documented in the aecstate(5) manual entry. (See change, above.)

user This variable is an array containing the .aegisrc file of each user. Each entry is a structure with
fields as documented in the aeuconf(5) manual entry. This array may be indexed by either a
string, treated as a user name, or by an integer, treated as a uid. Files which are unreadable or ab-
sent will generate an error, so you need to wrap accesses in a try/catch statement. (Note:

Reference Manual Aegis 458

aer(5) File Formats Manual aer(5)

count() and keys() functions think the array is empty; if you want a list of users, consult the
passwd array.)

FILES
The reports are kept in the /usr/local/share/report directory. The reports are associated with a name by the
/usr/local/share/report.index file. Their names use the command line argument abbreviation scheme, so
that report names may be abbreviated.

SEE ALSO
aer(1) report generator

aecstate(5)
change state description

aepstate(5)
project state description

aerptidx(5)
report index file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 459

aerptidx(5) File Formats Manual aerptidx(5)

NAME
aerptidx − aegis report index file format

SYNOPSIS
/usr/local/share/report.index
/usr/local/share/report.local

DESCRIPTION
The report index file is used to store pointers to report scripts, and descriptions of the reports.

When searching for a report, the aer(1) command searches down the AEGIS_PATH looking for report.in-

dex files, and searching them for the report named.

CONTENTS
where = [{ ... }];

This field is a table relating report name to file name. The structure is as follows:

name = string;
The name of a report. The command line argument naming scheme is used, to provide
abbreviatable names.

description = string;
A brief description of the report. It should not be very long, one or two lines at most.

filename = string;
The name of the file containing the report script. If a relative path is given, it will be in-
terpreted to be relative to the directory containing the report.index file.

SEE ALSO
aer(1) report generator

aegis(5) aegis file format syntax

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 460

aesub(5) File Formats Manual aesub(5)

NAME
aesub − aegis command substitutions

DESCRIPTION
When other programs are invoked by the aegis program, it is usually via a command string in a configura-
tion file. This section describes the format of these command strings.

GENERAL FORM
The command strings are very similar to shell variables. An example will illustrate this:

build_command =
"cook project=${project} change=${change}";

In this command definition, the "${project}" part is a substitution: the name of the project will be substi-
tuted in the command at this point.

Substitutions may take sev eral forms:

$name
This is the same as saying "${name}". The name must start with an alphabetic, and be followed
by zero or more alphanumerics.

${name}
The name in this form may contain any non-blank characters, and it may be subject to substitu-
tion.

${name arg...}
The name and the arguments in this form may contain any non-blank characters, and it may be
subject to further substitution. Within the braces ({ and }) pairs of single quote characters (’blah

blah’) may be used to insulate spaces and other special characters, or you may use the back quote
(\) to escape a single character.

$$
This is replaced by a single $ character. It avoid RCS expansions, you can also use ${$}.

%%
This is replaced by a single % character. Percent (%) followed by anything else is illegal.

$#...\n This is a comment, usually found in template files read in using the ${read_file} substitution. It
consumes all characters up to and including the next newline. (See also ${comment}, below.)

As another example, the dirname substitution is replaced by the directory name of the argument, rather like
the dirname(1) command. In the command

history_query_command =
"get −t −g ${Dirname $History}/s.${Basename $History}";

the Dirname and Basename substitutions are used to construct a suitable path to the SCCS file in the his-
tory directory.

ABBREVIATIONS
The names of the various substitutions may be abbreviated. In the above examples, and in the lists which
follow, the minimum abbreviation is the uppercase letters. All substitution name are case insensitive.

The above example could be abbreviated to
history_query_command =

"get −t −g ${d $h}/s.${b $h}";

Ambiguous abbreviations will result in a fatal error message.

SUBSTITUTIONS
There are many substitutions which are always understood, and some which are specific to the command
being substituted. Specific entries will be defined in the relevant manual section.

The following lists contains those substitutions which are always understood:

Reference Manual Aegis 461

aesub(5) File Formats Manual aesub(5)

Active_Directory
The absolute path of the change’s dev elopment directory, if the change is between the being de-

veloped and awaiting integration states. The absolute path of the change’s integration directory,
if the change is in the being integrated state. Not available when the change is in the awaiting

development or completed states. This rather like the default behaviour of the aecd(1) command.

Add_Path_Suffix
This substitution may be used to add a suffix to each element of a colon-separated path list. The
first argument is the suffix to use, the second and subsequent arguments are the colon-separated
paths to work on. The result is a single colon separated path. Often used in combination with the
${search_path} substitution, below.

Administrator_List
Space separated list of the project’s administrators. Takes an optional argument in the same form
as the user substitution.

ARCHitecture
This substitution is replaced by the architecture name appropriate for the current execution envi-
ronment. Requires no arguments. See the architecture field of aepconf (5) for more information.
When used in commands, you may need to surround this substitution with the quote substitution
(see below), if any of your architecture names contain shell special characters.

BaseLine
Absolute path of the the project’s baseline.

Basename
This substitution takes one argument, a pathname. The value of the substitution will be the last
element of the pathname. This is similar to the basename(1) command.

BAse_RElative
This substitution takes at least one pathname. The value of the substitution is the base-relative
filenames, with any change-specific or project baseline specific leading path removed. The file
does not have to be a project source file. (This is almost the inverse of the $source substitution,
below.)

BINary_DIRectory
The absolute path of Aegis’ architecture-specific binary (executables) directory. This corre-
sponds to the “./configure −−bindir” option when Aegis was built. This is where most of the
Aegis executable programs are installed.

CAPitalize
This substitution takes at least one argument. The value of the substitution will be the arguments
with the first letter of each word forced to upper case and the rest forced to lower case.

Change
This substitution provides various information about the change, based on the argument it is
given.

attribute
This substitution takes an additional argument, the name of a change attribute (see
aeca(1) and aecattr(5) for more information). This returns the value listed in the change
attributes, or the empty string if the change does not have the named attribute.

cause This returns the cause of the change.

date format

This returns the completion date of the change. See DATE section for additional argu-
ments.

debian-version
This returns a Debian-esque version stamp for the change.

Reference Manual Aegis 462

aesub(5) File Formats Manual aesub(5)

rpm-version
This returns an RPM-esque version stamp for the change.

delta This returns the delta number of the change. Only valid for completed changes.

delta_uuid
This returns the delta UUID of the change, assigned on integrate pass, a globally
unique identifier for the state of the project when this change was integrated (different
for all repositories). Only valid for being_integrated and completed changes.

description
This returns the brief description of the change.

developer
This returns the name of the developer of the change.

development_directory
This returns the development directory of the change.

integrator
This returns the name of the integrator of the change.

integration_directory
This returns the integration directory of the change.

number This returns the number of the change. (This is the default if no argument is given.)

reviewer This returns the name of the reviewer of the change.

state This returns the state of the change.

uuid This returns the UUID of the change.

version This returns the version of the change.

Change_Attribute
This substitution takes exactly one argument. This argument is a name of a change attribute (see
aeca(1) and aecattr(5) for more information). This returns the value listed in the change attrib-
utes, or the empty string if the change does not have the named attribute.

Change_Files
This is replaced by a space separated list of change file names. There are several qualifying argu-
ments you can give to this substitution:

action You may give one or more file actions (e.g. modify). Only files with one of the actions
will be returned. By default, all file actions are returned.

type You may give one or more file types (e.g. source). Only files with one of the types will
be returned. By default, all file types are returned.

not Inverts the sense of operations. For example ${change_files not remove} will return the
names of all change files not being removed.

quote This does not affect which file are selected, but it causes the file names to be quoted if
they contain shell meta-characters.

If you specify both actions and types, only files both qualifiers will be returned. For example
${change_files modify test} will return only the names of automatic test files which are being
modified.

Change_Developer_List
Space separated list of all the change’s dev elopers. Note that this is different than the
Developer_List substitution.

Change_Reviewer_List
Space separated list of the change’s reviewers since the last develop end. Note that this is differ-
ent than the Reviewer_List substitution. Bt using the re view_policy_command field of the

Reference Manual Aegis 463

aesub(5) File Formats Manual aesub(5)

project configuration file this value can have more than one reviewer, because this allows a
project to require a change to need to be reviewed more than once before it can be integrated.

COMment
Inserts exactly nothing; any and all arguments are ignored. Another form of comment is “$#”
which extends to the end of the current line.

Copyright_Years
Inserts a comma separated list of copyright years from the project attributes. This list of years is
maintained by aegis at integrate begin, and so is only guaranteed to be up-to-date in the’being in-

tegrated’ state. Do not use this substitution in new file templates, it is not guaranteed to be up-to-
date in the ’being developed’ state; use the ${date %Y} substitution in new file templates.

This list contains spaces, so if you use it to build commands, you will probably need to quote, it
as well.

DATa_DIRectory
The absolute path of Aegis’ architecture-neutral library directory. This corresponds to the “./con-

figure −−datadir” option when Aegis was built. This is where most of the scripts included with
Aegis are installed.

DAte
With no arguments, the output is the current date. If there are arguments, they form a format
string. This is similar to the date(1) command on many UNIX systems. For a description of the
date formats, see the DATE section, below.

DELta
The delta number of the change. This is only available when the change is in the being inte-

grated state or the completed state.

DEVeloper
The name of the developer. Takes an optional argument in the same form as the user substitution.

DEVeloper_List
Space separated list of the project’s dev elopers. Takes an optional argument in the same form as
the user substitution. Note that this is different than the Change_DeveloperList substitu-
tion.

Development_Directory
The absolute path of the change’s dev elopment directory. Only available when the change is be-
tween the being developed state and the being integrated state.

DIFF
The absolute path of the diff command, as discovered when Aegis was built. It tries to locate
GNU Diff at build time to provide maximum functionality.

Dirname
This substitution takes at least one argument, a pathname. The value of the substitution will be
ev erything but the last element of the pathname. This is similar to the dirname(1) command.

Dirname_RELative
This substitution takes at least one argument, a pathname. The value of the substitution will be
ev erything but the last element of the pathname. This is similar to the dirname substitution, ex-
cept that if there are no directory components, it returns dot (“.”).

DownCase
This substitution takes at least one argument. The value of the substitution will be the argument
with any upper case letters mapped to lower case.

EMail_Address
This substitution takes one or more user names as arguments. It replaces them with email ad-
dresses. (It is an error if any user name is unknown.)

Reference Manual Aegis 464

aesub(5) File Formats Manual aesub(5)

This substitution takes options. You may specify one or more of them immediately after the sub-
stitution name.

−Comma
This option may be used to specify that the email addresses are to be separated by com-
mas.

−Quote This option may be used to specify that the email addresses are to be quoted to insulate
shell special characters.

See aeuconf(5) for where this is set.

ENVironment
This substitution takes at least one argument. The value of the substitution is the value of the cor-
responding environment variable, or empty of undefined.

ERrno
This substitution takes no arguments. The value of the substitution will be the value if the errno

variable provided by the system, as mapped through the strerror function. Thus you may give the
users informative system error messages.

EXpression
This substitution evaluates simple arithmetic expressions. Addition, subtraction, division, multi-
plication, modulo and negation are understood. The 6 basic comparison operators are available.
The usual C syntax and precedence are used. The arguments must constitute a valid expression,
white space and word boundaries are ignored.

History_Directory
This substitution takes zero arguments. It is replaced by the absolute path of the history directory
of the project.

History_Path
This substitution takes one argument, the name of a source file. It is replaced by the absolute
path of the history file for that source file. Note that you may beed to massage the file name a lit-
tle for you proticular history tool, just as the history commands in the aegis.conf file do.
This substitution takes zero arguments. It is replaced by the absolute path of the history directory
of the project.

IDentifier
This substitution takes at least one argument. The value of the substitution will be the argument
with all characters but alpha numerics mapped into an underscore (_), so as to form a legal C
identifier.

INTegration_Directory
The absolute path of the change’s integration directory. Only available when the change is in the
being integrated state.

INTegrator
The name of the change’s integrator. Only available when the change is in the being integrated

state or the completed state. Takes an optional argument in the same form as the user substitu-
tion.

INTegrator_List
Space separated list of the project’s integrators. Takes an optional argument in the same form as
the user substitution.

LEFt This substitution extracts the left hand side of strings. It takes two arguments: the first is the
string, the second is the number of characters.

LENgth This substitution determines the length of strings, the result is a number. It takes one argument:
the string to be measured.

Reference Manual Aegis 465

aesub(5) File Formats Manual aesub(5)

LIBrary
The absolute path of Aegis’ library directory. This corresponds to the “./configure −−datadir”
option when Aegis was built. This substitution is deprecated − please use ${datadir} instead.

LIBrary_DIRectory
The absolute path of Aegis’ architecture-specific library directory. This corresponds to the
“./configure −−libdir” option when Aegis was built.

Name_Maximum
This substitution is used to get the maximum file name length within a file system. It takes at
least one argument: the name of a directory within the file system. Frequently used with ${left}
to crop filenames to the file system maximum.

PAth_Reduce
This function requires at least one argument. It is used to remove duplicates from a command
search path, such as may be found in the PATH environment variable. If more than one argument
is given, all are included in the results, as if they were separated by colons.

PERL This function requires zero arguments. It is replaced by the absolute path of a Perl interpreter.

PLural
This function requires 2 or 3 arguments. The first argument is evaluated as a number, if it is
plural (not equal to 1) the second argument is the result, otherwise the third argument is the result
(or empty if not given). This is mostly used to pluralize sentences in Germainic error messages.

PLural_Forms
The plural_forms substitution is similar to the ${plural} substitution, except that it reads and un-
derstands the Plural-Forms: header in the message catalogue. This means that it under-
stands a greater range of pluralization mechanisms than the simple ${plural} substitution. (For a
description of the Plural-Forms: header, see the GNU Gettext manual.)

The first argument is the number. Second is the singular form (corresponding to the Plural-
Forms: expression evaluating to zero), the third and subsequent arguments are the various plural
forms (corresponding to the Plural-Forms: expression evaluating to 1, 2, 3, etc.

The Plural-Forms: expression is required evaluate to less than nplurals. If it does not,
the second argument (the singular form) is used. If there are too few arguments to this substitu-
tion, the second argument (the singular form) is again used.

Note that in the default case (used for English and other Germanic languages), the arguments are
the re verse of those expected by the ${plural} substitution.

Project
This substitution provides various information about the project, based on the argument it is
given.

name This returns the name of the project. (This is the default if no argument is given.)

description
This returns the description of the project (the one which appears in the project listing).

trunk_name
This returns the name of the trunk of the project (i.e. no branch numbers included).

trunk_description
This returns the description of the trunk of the project.

version This returns the version of the project.

version_long
This returns the version of the project, including the delta number.

Project_Specific
This substitution takes exactly one argument. This argument is a name to be found in the project
configuration file’s project_specific field (see aepconf(5) for more information). This returns the

Reference Manual Aegis 466

aesub(5) File Formats Manual aesub(5)

value listed in the project configuration file. Unknown attributes will be replaced with the empty
string.

QUote
This substitution may be used to quote shell special characters. If no quoting is required, not
quotes will be inserted. This is used to insulate shell special characters in filenames when form-
ing commands.

Read_File
Read a file and substitute the contents of the file. Requires exactly one argument, the pathname
of the file to be read. If the pathname is a project source file, you will need to use the source sub-
stitution to resolve the path. It is a fatal error if the file does not exist, or is not readable. It is a
fatal error if the pathname is not absolute (because the current directory is undefined).

Read_File_Simple
Read a file and without substituting the contents of the file. Requires exactly one argument, the
pathname of the file to be read. If the pathname is a project source file, you will need to use the
source substitution to resolve the path. It is a fatal error if the file does not exist, or is not read-
able. It is a fatal error if the pathname is not absolute (because the current directory is unde-
fined).

Reviewer
The name of the change’s reviewer. Only available when the change is between the awaiting in-

tegration state and the completed state. Takes an optional argument in the same form as the user

substitution.

Reviewer_List
Space separated list of the project’s reviewers. Takes an optional argument in the same form as
the user substitution. Note that this is different than the Change_Reviewer_List substitu-
tion.

RIght This substitution extracts the right hand side of strings. It takes two arguments: the first is the
string, the second is the number of characters.

Search_Path
The Search_Path substitution is replaced by a colon separated list of absolute paths to search
when building a change, it will point from a change to its branch and so on up to the project
trunk.

Search_Path_Executable
The Search_Path_Executable substitution is usually the same as the Search_Path substitution.
However, during an “aegis −Test −BaseLine” command, it contains the baseline as the first ele-
ment, rather then the development directory or the integration directory. This is of most use when
looking for executables and executable support files while running tests.

SHell
The absolute path of a Bourne shell which understands functions. Requires exactly zero argu-
ments.

Source
Resolve the argument filename into a pathname. It is an error if the file is not a source file. An
optional second argument may be "Absolute" or "Relative", and may be abbreviated. Relative
will attempt to provide a development-directory-relative pathname whenever possible, absolute
will always result in an absolute path. The default is "Relative". (For the inverse mapping, see
${BAse_RElative}, above.)

SPLit This substitution may be used to split strings are specified separators. The first argument is the
separator character to be used, subsequent arguments are strings to be split. The result is the col-
lection is split strings of the second a follwoing arguments, separated by spaces.

Reference Manual Aegis 467

aesub(5) File Formats Manual aesub(5)

STate
The state the current change is in. It is an error if the substitution does not refer to a change.

SUBSTitute
Regular expression substitution. The first argument is the pattern to match, the second argument
is the replacement string. The third and subsequent arguments are modified as specified by the
first two arguments. The search is not anchored, and the replacement will happen as many times
as possible. Use “ˆ” to match the beginning, and “$” to match the end.

SUBSTRing
This substitution extracts a substring from the middle of strings. It takes three arguments: the
first is the string, the second is the star character (counting from zero), the third is the number of
characters.

SWitch
Select amongst a set of values. The first argument is expected to be a number. If the number is
zero, the second argument is used; if the number is one, the third argument is used; etc. If the
number is negative, or exceeds the available arguments, the last argument is used.

Trim_DIRectory
This substitution takes one or two arguments. If given one argument, one directory component (if
present) is removed from the argument, which is assumed to be a file name. If two arguments are
present, the first is a directory count; at most this many directory components (if present) will be
removed. The base file name is always left.

Trim_EXTension
This substitution takes one argument. Any file name extension (a dot characters and the charac-
ters following) will be removed from the final filename section of the argument.

UNSplit This substitution may be used to reverse the effects of the split substitution. The first arguments
is a seaparator character, the second and following arguments are strings to be joined together us-
ing the separator character. The result is a single string.

UpCase
This substitution takes at least one argument. The value of the substitution will be the argument
with any lower case letters mapped to upper case.

USer
This substitution provides various information about the user who executed the command, based
on the argument it is given.

login The login name of the user. (This is the default if no argument is given.)

name The full name of the user.

email The email address of the user.

quoted_email
The email address of the user, quoted to avoid shell special characters.

home The home directory of the user.

Version
The version of the change. If the change is in the being integrated state or the completed state,
the version will be of the form "a.b.Dddd", where "a" is the project’s major version number, "b"
is the project’s minor version number, and "ddd" is the change’s delta number. If the change is in
any other state, the version will be of the form "a.b.Cccc", where "ccc" is the change number.

delta_uuid
This variant gives the change’s delta-UUID assigned at integrate pass. Only valid for
being_integrated and completed changes.

Reference Manual Aegis 468

aesub(5) File Formats Manual aesub(5)

Zero_Pad
This substitution is used to zero pad a string on the left. It takes two arguments: the first is the
string to be padded, the second is the minimum string width.

DATE
This section describes the format specifiers accepted by the date substitution. These are the same specifiers
as defined by the ANSI C standard for the strftime function.

%% The percent character (%)

%a the abbreviated weekday name

%A the full weekday name

%b the abbreviated month name

%B the full month name

%c the date and time

%d the day of the month, zero padded

%H the hour of the 24-hour day

%I the hour of the 12-hour day

%j the day number of year, zero padded, one based

%m the month of the year, zero padded, one based

%M the minute of the hour, zero padded

%p meridian indicator, AM or PM as appropriate

%S the second of the minute

%U the Sunday week of the year

%w the day of the week, Sunday is 0

%W the Monday week of the year

%x the date, as mmm dd yyyy

%X the time, as hh:mm:ss

%y the year of the century

%Y the year including the century

%Z time zone abbreviation

Using an undefined format specifier will produce random results, depending on the version of UNIX you
are on.

SEE ALSO
aesub(1)

Substitute and print strings.

Reference Manual Aegis 469

aesub(5) File Formats Manual aesub(5)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 470

aetest(5) aetest(5)

NAME
aetest − aegis test results file format

DESCRIPTION
The default configuration of the test_command and development_test_command commands of the project
config file (see aepconf(5) for more information) is for the test commands to test a single test file and a sin-
gle architecture at a time. On some systems, this is not efficient.

When configured to run multiple simultaneous tests, or multiple simultaneous architectures, a file of the
format described here is used to communicate the test results back to Aegis.

CONTENTS
Use a separate row for each unique filename and architecture combination.

test_result = [{ ... }];
All the fields are mandatory.

file_name = string;
This is the name of the file being tested. Use the same filename as was given to the test
command.

exit_status = integer;
This is the exit status returned by the test.

architecture = string;
This is the architecture which the test was run on. Defaults to the architecture of the
current system if not set. (Try to avoid setting this field unless you have a very clever
multi-architecture test system.)

SEE ALSO
aet(1) run tests

aegis(5) aegis file format syntax

aepconf(5)
Project configuration file format.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 471

aeuconf (5) File Formats Manual aeuconf (5)

NAME
aeuconf − user configuration file

SYNOPSIS
$AEGIS_FLAGS

$HOME/.aegisrc
/usr/local/share/aegisrc

/usr/local/lib/aegisrc

DESCRIPTION
A user configuration file is used to hold user defaults. This file is created and edited by the user. This file
is only ever read by aegis, it is never written.

The sources of user preferences are scanned in the order given above. Earlier sources have higher priority.

AEGIS_FLAGS
This environment variable has the same format. It is read first, and over-rides the .aegisrc file contents.
This is intended to be used within the tests distributed with aegis, but can also be of use within some shell
scripts. It contains session specific preferences.

$HOME/.aegisrc
This file contains user specific preferences.

/usr/local/share/aegisrc

This file contains architecture-neutral preferences.

/usr/local/lib/aegisrc

This file contains architecture-specific preferences.

CONTENTS
The file contains the following fields:

default_development_directory = string;
The pathname of where to place new dev elopment directories. The pathname may be relative, in
which case it is relative to $HOME. The default is the field of the same name in the project at-
tributes, or $HOME neither is set.

default_project_directory = string;
The pathname of where to place new project directories. The pathname may be relative. If this
path is relative, it is relative to $HOME. The default is $HOME.

delete_file_preference = (no_keep, interactive, keep);
All of the commands which delete files will consult this field to determine if the file should be
deleted. Defaults to no_keep if not set.

default_project_name = string;
The name of a project.

default_change_number = integer;
The number of a change.

Please note that the default_project_name field and the default_change_number field are unrelated. Speci-
fying both does not mean that single change within that single project, they hav e nothing to do with each
other.

diff_preference = (automatic_merge, no_merge, only_merge);
The aed(1) command will consult this field to determine what to do:

no_merge
means only diff the files, even if some have out of date versions.

only_merge
means merge those files with out of date versions, and do not do anything else, even if
they need to be diffed.

Reference Manual Aegis 472

aeuconf (5) File Formats Manual aeuconf (5)

automatic_merge
means to do only_merge if any source files require merging, otherwise do no_merge. It
never combines merges and differences in the same pass.

The corresponding command line options to the aed(1) command take precedence, this field is
only consulted if you do not give a corresponding command line argument. Defaults to auto-

matic_merge if not set.

pager_preference = (foreground, never);
This field is consulted for listings and help. The standard output is only piped to a pager if the
command is run in the foreground and the standard output is directed at a terminal.

foreground
The standard output will be piped through the command given in the PAGER environ-
ment variable (or more if not set).

never The standard output will not be redirected.

This field defaults to foreground if not set.

persevere_preference = (all, stop);
This field is consulted by the aet(1) command, to determine if it should run all tests, or stop after
the first failure. This field defaults to all if not set.

log_file_preference = (snuggle, append, replace, never);
This field controls the behavior of the log file. It usually defaults to snuggle if not set, although
some commands may default it to append. When the log file is in use, the output continues to be
sent to the screen if the process is in the foreground and the standard output is a terminal.

never Do not redirect the output to a log file.

replace Replace any log file that is present, create a new one if none already exists.

append Append the log to the end of any existing log file, create a new one if none already ex-
ists.

snuggle Append the log to the end of any existing log file if that log file was last modified less
than 30 seconds ago, otherwise replace any existing log file; create a new one if none
already exists. This option allows runs of aegis commands to produce a meaningful log
file.

lock_wait_preference = (always, background, never);
This field is consulted by all commands which wait for locks.

always The “always” setting says that all commands should always wait for locks. This is the
default.

background
The “background” setting says that background commands should always wait for
locks, and foreground commands will not.

never The “never” setting says that no command should ever wait for locks. If the command
would wait, it will exit with status 1.

This user preference can be over-ridden by the −wait and −nowait command line options.

symbolic_link_preference = (verify, assume);
This field is consulted by aeb(1) when the project configuration file specifies create_sym-

bolic_links_before_build as true. The verification of the links can be quite time consuming; if
you are confident that they are already correct (say, from a recent build run) you may wish to as-
sume they are correct and not verify them repeatedly.

verify This setting says to always verify the symbolic links to the baseline. This is the default.

Reference Manual Aegis 473

aeuconf (5) File Formats Manual aeuconf (5)

assume This setting says to always assume the links are correct, unless there has been a recent
integration.

This user preference can be over-ridden by the −Verify_Symbolic_Links and −Assume_Sym-
bolic_Links command line options.

relative_filename_preference = (current, base);
This field is consulted by most commands which accept filenames on the command line. It con-
trols whether relative filenames are relative to the current directory (this is the default), or relative
to the base of the project source tree.

current This setting says to interpret relative filenames against the current directory.

base This setting says to interpret relative filenames against the base of the source tree.

This user preference can be over-ridden by the −BAse_RElative and −CUrrent_RElative com-
mand line options.

email_address = string;
This field may be used to set the preferred email address. If not set, defaults to
‘whoami‘@‘cat /etc/mailname‘ if not set, and if /etc/mailname exists. Otherwise, de-
faults to ‘whoami‘@‘hostname‘ if not set, which is usually not what is required, particularly
if you are behind a firewall.

whiteout_preference = (always, never);
All of the commands which cause a change to remove files will consult this field to determine if
the file should be have a dummy “whiteout” file put in the development directory. Defaults to
“always” if not set.

editor_command = string;
This command is used to edit a file, if the editing is being done in the background. Defaults to
the EDITOR environment variable if not set, or “ed” if not set.

visual_command = string;
This command is used to edit a file, if the editing is being done in the foreground. Defaults to the
VISUAL environment variable if not set, or to the EDITOR environment variable if not set, or
“vi” if not set.

pager_command = string;
This is the command used to paginate report and listing output. Defaults to the PAGER environ-
ment variable if not set, or to “more” if not set.

attribute = [{ ... }];
This is a list of (name,value) pairs, defining user specified attributes.

name = string;
The name of the attribute. By convention, names which start with an upper-case letter
will appear in listings, and lower-case will not. Attribute names are case-insensitive.

Arguably, most user attributes which may be altered by the user (and some that can’t)
should be of this form. Due to an accident of history, this is not the case.

The attributes known to Aegis are:

progress-preference
boolean; true if aet(1) should emit progress messages, false if not. Can be
overridden with the −progress and −no-progress command line options.

FIXME: there needs to be a aesub(5) way to get at these values.

value = string;
The value of the attribute.

Reference Manual Aegis 474

aeuconf (5) File Formats Manual aeuconf (5)

SEE ALSO
aegis(5) aegis file format syntax

aed(1) difference and merge files

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 475

aeustate(5) File Formats Manual aeustate(5)

NAME
aeustate − aegis user state file

SYNOPSIS
/usr/local/com/user/user-name

DESCRIPTION
A user state file is used to store information about a user. These file are created and maintained by aegis.
These file should not be edited by humans.

CONTENTS
own = [{ ... }];

This field is a list of change the user is currently working on, within project. The changes are in
either the being_developed or being_integrated state. The structure of this field is as follows:

project = string;
The name of a project.

change = [integer];
The changes this user is working on in the project.

SEE ALSO
aegis(5) aegis file format syntax

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the ’aegis −VERSion Li-

cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis −VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 1000

Table of Contents(Aegis) Table of Contents(Aegis)

The README File . 0
Windows NT . 2

Release Notes . 4
How to Build the Sources . 45

Windows NT . 56
aegis(1) project change supervisor . 59
ae-cvs-ci(1) checkin a change set to CVS . 67
ae-repo-ci(1) redundant repository checkin . 68
ae-sccs-put(1) put file version into SCCS . 71
ae_c(1) set change number . 72
ae_diff2htm(1) wraps the diff2html command . 73
ae_p(1) set project name . 74
aeannotate(1) annotated source file listing . 75
aeb(1) build a change . 77
aebisect(1) search for a delta which changed project behaviour 83
aebuffy(1) watch for changes . 85
aeca(1) modify the attributes of a change 86
aecd(1) change directory . 91
aechown(1) set change owner . 94
aeclean(1) clean files from development directory 97
aeclone(1) make an exact copy of a change . 101
aecomp(1) compare two changes . 106
aecomplete(1) command completion . 107
aecp(1) copy a file into a change . 108
aecpu(1) reverse action of aecp . 114
aecvsserver(1) serve CVS client protocol against Aegis projects 118
aed(1) difference a change . 120
aedb(1) begin development of a change . 125
aedbu(1) undo the effects of aedb . 130
aede-policy(1) check change set is ready for aede 133
aede(1) complete development of a change 137
aedeu(1) recall a change for further development 142
aediff(1) file differences between deltas . 145
aedist(1) remotely distribute a change . 148
aedn(1) assign a symbolic name to a project delta 158
aeedit(1) edit a change’s files . 160
aefa(1) modify the attributes of a file . 161
aefind(1) search for files in directory hierarchy 164
aefinish(1) finish a change . 170
aefp(1) calculate file fingerprint . 172
aeget(1) Aegis CGI file access . 174
aegis.cgi(1) Aegis web interface script . 176
aegrep(1) print lines matching a pattern . 177
aeib(1) begin integrating a change . 180
aeibu(1) reverse the aeib command . 184
aeifail(1) fail a change integration . 187
aeimport(1) import foreign repository into Aegis 191
aeintegratq(1) integrate changes into projects . 196
aeipass(1) pass a change integration . 201
ael(1) list interesting things . 206
aelcf(1) list change files . 210
aelic(1) GNU General Public License . 212
aelock(1) take a lock while a command runs 221
aelpf(1) list project files . 223

Reference Manual Aegis 1001

Table of Contents(Aegis) Table of Contents(Aegis)

aels(1) annotated directory listing . 225
aelsf(1) list source files . 227
aemakegen(1) generate a Makefile.in from file manifest 229
aemeasure(1) simple file metrics . 233
aemt(1) make branch file transparent . 235
aemtu(1) no longer make branch file transparent 238
aemv(1) rename one or more files as part of a change 241
aemvu(1) undo the rename a file as part of a change 246
aena(1) add a new administrator to a project 251
aenbr(1) create a new branch . 253
aenbru(1) remove a branch . 255
aenc(1) add a new change to a project . 257
aencu(1) remove a change . 260
aend(1) add new dev elopers to a project . 263
aenf(1) add new files to be created by a change 265
aenfu(1) remove new files from a change . 272
aeni(1) add new integrators to a project . 275
aenpa(1) create a new project alias . 277
aenpr(1) create a new project . 279
aenrls(1) create a new project from an old-style project 283
aenrv(1) add new reviewers to a project . 287
aent(1) add a new test to a change . 289
aentu(1) remove new tests from a change 296
aepa(1) modify the attributes of a project 299
aepatch(1) send and receive changes as patches 302
aepromptcmd(1) change prompt color by change state 307
aer(1) report generator . 309
aera(1) remove administrators from a project 312
aerb(1) begin a change review . 314
aerbu(1) stop reviewing a change . 317
aerd(1) remove dev elopers from a project 320
aerect draw a rectangle . 322
aerevml(1) send and receive RevML change sets 324
aerfail(1) fail a change review . 330
aeri(1) remove integrators from a project 333
aerm(1) add files to be deleted to a change 335
aermpr(1) remove project . 340
aermu(1) remove files to be deleted from a change 343
aerpa(1) remove a project alias . 346
aerpass(1) pass a change review . 348
aerpu(1) rescind a change review pass . 352
aerrv(1) remove reviewers from a project 355
aesub(1) substitute and echo strings . 357
aesubunit(1) run SubUnit tests . 359
aesvt(1) simple vertion tool . 361
aet(1) run tests . 364
aetar(1) remotely distribute a change via tar 370
aev(1) version information . 375
aexml(1) Aegis database to XML . 377
aexver(1) graphical file history . 379
tkaeca(1) GUI interface for aeca, using TCL/TK 380
tkaegis(1) GUI interface for Aegis, using TCL/TK 381
tkaenc(1) GUI interface for aenc, using TCL/TK 386
tkaeca(1) GUI interface for aeca, using TCL/TK 388

Reference Manual Aegis 1002

Table of Contents(Aegis) Table of Contents(Aegis)

tkaer(1) GUI tool for reviewing Aegis change sets, using TCL/TK 389
aecattr(5) change attributes file format . 391
aecstate(5) change state file format . 393
aedir(5) directory structures . 403
aefattr(5) file attribute file format . 405
aefstate(5) file state file format . 406
aegis(5) file format . 410
aegstate(5) global state file format . 412
aelock(5) how locking works, and which commands use them 413
aemetrics(5) metrics values file format . 415
aepattr(5) project attribute file format . 416
aepconf(5) project configuration file format 420
aepstate(5) project state file format . 446
aer(5) report script language definition . 451
aerptidx(5) report index file format . 460
aesub(5) aegis command substitutions . 461
aetest(5) test results file format . 471
aeuconf(5) user configuration file format . 472
aeustate(5) user state file . 476

Reference Manual Aegis 1003

Permuted Index(Aegis) Permuted Index(Aegis)

aeget(1) 174 aeget - Aegis CGI file access
aecpu(1) 114 aegis copy file undo - reverse action of aecp
aena(1) 251 aegis new administrator - add a new administrator to a project
aenc(1) 257 aegis new change - add a new change to a project
aent(1) 289 aegis new test - add a new test to a change
aerm(1) 335 aegis remove file - add files to be deleted to a change
aend(1) 263 aegis new dev eloper - add new dev elopers to a project
aenf(1) 265 aegis new file - add new files to be created by a change
aeni(1) 275 aegis new integrator - add new integrators to a project
aenrv(1) 287 aegis new reviewer - add new reviewers to a project
aena(1) 251 aegis new administrator - add a new administrator to a

project
aera(1) 312 aegis remove administrator - remove administrators from a

project
aera(1) 312 aegis remove administrator - remove administrators from a project
aena(1) 251 aegis new administrator - add a new administrator to a project
aeannotate(1) 75 aeannotate - annotated source file listing
aebuffy(1) 85 aebuffy - watch for changes
aecattr(5) 391 aecattr - aegis change attributes file
tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/TK
aecomp(1) 106 aecomp - compare two changes
aecomplete(1) 107 aecomplete - command completion
aecpu(1) 114 aegis copy file undo - reverse action of aecp
ae_c(1) 72 ae c - set change number
aecstate(5) 393 aecstate - aegis change state file
aecvsserver(1) 118 aecvsserver - serve CVS client protocol

against Aegis projects
aedbu(1) 130 aegis develop begin undo - undo the effects

of
aedb

aede-policy(1) 133 aede[hy]policy - check change set is ready
for

aede

aede-policy(1) 133 aede[hy]policy - check change set is ready
for aede

ae_diff2htm(1) 73 ae diff2htm - wraps the diff2html command
aediff(1) 145 aediff - file differences between deltas
aedir(5) 403 aedir - aegis directory structures
aedist(1) 148 aedist - remotely distribute a change
aeedit(1) 160 aeedit - edit a change’s files
aefattr(5) 405 aefattr - aegis file attribute file format
aefind(1) 164 aefind - search for files in directory

hierarchy
aefinish(1) 170 aefinish - finish a change
aefp(1) 172 aefp - calculate file fingerprint
aefstate(5) 406 aefstate - aegis file state file
aeget(1) 174 aeget - Aegis CGI file access
aeimport(1) 191 aeimport - import foreign repository into Aegis
aeget(1) 174 aeget - Aegis CGI file access
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets, using TCL/TK
aexml(1) 377 aexml - Aegis database to XML
aecvsserver(1) 118 aecvsserver - serve CVS client protocol

against
Aegis projects

tkaegis(1) 381 tkaegis - GUI interface for Aegis, using TCL/TK

Reference Manual Aegis 1004

Permuted Index(Aegis) Permuted Index(Aegis)

aegis.cgi(1) 176 aegis.cgi - Aegis web interface script
aegrep(1) 177 aegrep - print lines matching a pattern
aegstate(5) 412 aegstate - aegis global state file
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to

CVS
ae-repo-ci(1) 68 ae[hy]repo[hy]ci - redundant repository

checkin
ae-sccs-put(1) 71 ae[hy]sccs[hy]put - put sccs version
aeibu(1) 184 aegis integrate begin undo - reverse the aeib command
aeimport(1) 191 aeimport - import foreign repository into

Aegis
aeintegratq(1) 196 aeintegratq - integrate changes into projects
aelcf(1) 210 aelcf - list change files
aelock(1) 221 aelock - take a lock while a command runs
aelpf(1) 223 aelpf - list project files
aels(1) 225 aels - annotated directory listing
aelsf(1) 227 aelsf - list source files
aemakegen(1) 229 aemakegen - generate a Makefile.in from

file manifest
aemeasure(1) 233 aemeasure - simple file metrics
aemetrics(5) 415 aemetrics - metrics values file format
tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/TK
aepatch(1) 302 aepatch - send and receive changes as

patches
aepattr(5) 416 aepattr - aegis project attribute file
aepconf(5) 420 aepconf - aegis project configuration file
aepromptcmd(1) 307 aepromptcmd - change prompt color by

change state
ae_p(1) 74 ae p - set project name
aepstate(5) 446 aepstate - aegis project state file
aer(5) 451 aer - aegis report script language definition
aerect(1) aerect - draw a rectangle
aerevml(1) 324 aerevml - send and receive RevML change

sets
aerptidx(5) 460 aerptidx - aegis report index file format
aesub(5) 461 aesub - aegis command substitutions
aesub(1) 357 aesub - substitute and echo strings
aesubunit(1) 359 aesubunit - run SubUnit tests
aesvt(1) 361 aesvt - simple version tool
aetar(1) 370 aetar - remotely distribute a change via tar
aetest(5) 471 aetest - aegis test results file format
aeuconf(5) 472 aeuconf - user configuration file
aeustate(5) 476 aeustate - aegis user state file
aexml(1) 377 aexml - Aegis database to XML
aexver(1) 379 aexver - graphical file history
aecvsserver(1) 118 aecvsserver - serve CVS client protocol against Aegis projects
aenpa(1) 277 aegis new project alias - create a new project alias
aerpa(1) 346 aegis remove project alias - remove a project alias
aenpa(1) 277 aegis new project alias - create a new project alias
aerpa(1) 346 aegis remove project alias - remove a project alias
aeclone(1) 101 aegis clone - make an exact copy of a change
aels(1) 225 aels - annotated directory listing
aeannotate(1) 75 aeannotate - annotated source file listing

Reference Manual Aegis 1005

Permuted Index(Aegis) Permuted Index(Aegis)

aenrls(1) 283 aegis new release - create a new project from an old[hy]style project.
aedn(1) 158 aegis delta name - assign a symbolic name to a project delta
aepattr(5) 416 aepattr - aegis project attribute file
aefattr(5) 405 aefattr - aegis file attribute file format
aecattr(5) 391 aecattr - aegis change attributes file
aeca(1) 86 aegis change attributes - modify the attributes of a change
aefa(1) 161 aegis file attributes - modify the attributes of a file
aepa(1) 299 aegis project attributes - modify the attributes of a project
aeca(1) 86 aegis change attributes - modify the attributes of a change
aefa(1) 161 aegis file attributes - modify the attributes of a file
aepa(1) 299 aegis project attributes - modify the attributes of a project
aed(1) 120 aegis difference - find differences between a

change and the
baseline

aerb(1) 314 aegis review begin - begin a change review
aerb(1) 314 aegis review begin - begin a change review
aedb(1) 125 aegis develop begin - begin development of a change
aeib(1) 180 aegis integrate begin - begin integrating a change
aedb(1) 125 aegis develop begin - begin development of a change
aeib(1) 180 aegis integrate begin - begin integrating a change
aeibu(1) 184 aegis integrate begin undo - reverse the aeib command
aerbu(1) 317 aegis review begin undo - stop reviewing a change
aedbu(1) 130 aegis develop begin undo - undo the effects of aedb
aed(1) 120 aegis difference - find differences between a change and the baseline
aediff(1) 145 aediff - file differences between deltas
aenbr(1) 253 aegis new branch - create a new branch
aenbru(1) 255 aegis new branch undo - remove a branch
aenbr(1) 253 aegis new branch - create a new branch
aemt(1) 235 aegis make transparent - make branch file transparent
aemtu(1) 238 aegis make transparent undo - no longer

make
branch file transparent

aenbru(1) 255 aegis new branch undo - remove a branch
aeb(1) 77 aegis build - build a change
aeb(1) 77 aegis build - build a change
aefp(1) 172 aefp - calculate file fingerprint
aegis.cgi(1) 176 aegis. cgi - Aegis web interface script
aeget(1) 174 aeget - Aegis CGI file access
aedist(1) 148 aedist - remotely distribute a change
aefinish(1) 170 aefinish - finish a change
aeb(1) 77 aegis build - build a change
aeca(1) 86 aegis change attributes - modify the

attributes of a
change

aeclone(1) 101 aegis clone - make an exact copy of a change
aecp(1) 108 aegis copy file - copy a file into a change
aedb(1) 125 aegis develop begin - begin development of

a
change

aede(1) 137 aegis develop end - complete development
of a

change

aeib(1) 180 aegis integrate begin - begin integrating a change
aemv(1) 241 aegis move file - rename one or more files as

part of a
change

aemvu(1) 246 aegis move file undo - undo the rename a
file as part of a

change

Reference Manual Aegis 1006

Permuted Index(Aegis) Permuted Index(Aegis)

aenf(1) 265 aegis new file - add new files to be created
by a

change

aenfu(1) 272 aegis new file undo - remove new files from
a

change

aent(1) 289 aegis new test - add a new test to a change
aentu(1) 296 aegis new test undo - remove new tests from

a
change

aerm(1) 335 aegis remove file - add files to be deleted to
a

change

aermu(1) 343 aegis remove file undo - remove files to be
deleted from a

change

aerbu(1) 317 aegis review begin undo - stop reviewing a change
aenc(1) 257 aegis new change - add a new change to a project
aed(1) 120 aegis difference - find differences between a change and the baseline
aecattr(5) 391 aecattr - aegis change attributes file
aeca(1) 86 aegis change attributes - modify the attributes of a

change
aecd(1) 91 aegis change directory - change directory
aecd(1) 91 aegis change directory - change directory
aelcf(1) 210 aelcf - list change files
aedeu(1) 142 aegis develop end undo - recall a change for further development
aencu(1) 260 aegis new change undo - remove a new change from a project
aeifail(1) 187 aegis integrate fail - fail a change integration
aeipass(1) 201 aegis integrate pass - pass a change integration
ae_c(1) 72 ae c - set change number
aechown(1) 94 aegis change owner - set change owner
aechown(1) 94 aegis change owner - set change owner
aepromptcmd(1) 307 aepromptcmd - change prompt color by change state
aerb(1) 314 aegis review begin - begin a change review
aerfail(1) 330 aegis review fail - fail a change review
aerpass(1) 348 aegis review pass - pass a change review
aerpu(1) 352 aegis review pass undo - rescind a change review pass
aebuffy(1) 85 aebuffy - watch for changes
aecomp(1) 106 aecomp - compare two changes
aepatch(1) 302 aepatch - send and receive changes as patches
aede-policy(1) 133 aede[hy]policy - check change set is ready for aede
aerevml(1) 324 aerevml - send and receive RevML change sets
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets, using TCL/TK
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to CVS
aeedit(1) 160 aeedit - edit a change’s files
aeintegratq(1) 196 aeintegratq - integrate changes into projects
aepromptcmd(1) 307 aepromptcmd - change prompt color by change state
aecstate(5) 393 aecstate - aegis change state file
aegis(1) 59 aegis - project change supervisor
aenc(1) 257 aegis new change - add a new change to a project
aencu(1) 260 aegis new change undo - remove a new change from a

project
aetar(1) 370 aetar - remotely distribute a change via tar
aede-policy(1) 133 aede[hy]policy - check change set is ready for aede
ae-repo-ci(1) 68 ae[hy]repo[hy]ci - redundant repository checkin
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to CVS
ae-cvs-ci(1) 67 ae[hy]cvs[hy] ci - checkin a change set to CVS
ae-repo-ci(1) 68 ae[hy]repo[hy] ci - redundant repository checkin

Reference Manual Aegis 1007

Permuted Index(Aegis) Permuted Index(Aegis)

aeclean(1) 97 aegis clEan - clean files from development
directory

aeclean(1) 97 aegis clEan - clean files from development directory
aecvsserver(1) 118 aecvsserver - serve CVS client protocol against Aegis projects
aeclone(1) 101 aegis clone - make an exact copy of a change
aepromptcmd(1) 307 aepromptcmd - change prompt color by change state
ae_diff2htm(1) 73 ae diff2htm - wraps the diff2html command
aeibu(1) 184 aegis integrate begin undo - reverse the aeib command
aecomplete(1) 107 aecomplete - command completion
aelock(1) 221 aelock - take a lock while a command runs
aesub(5) 461 aesub - aegis command substitutions
aelock(5) 413 aegis locks - how locking works, and which commands use them
aecomp(1) 106 aecomp - compare two changes
aede(1) 137 aegis develop end - complete development of a change
aecomplete(1) 107 aecomplete - command completion
aepconf(5) 420 aepconf - aegis project configuration file
aeuconf(5) 472 aeuconf - user configuration file
aecp(1) 108 aegis copy file - copy a file into a change
aecp(1) 108 aegis copy file - copy a file into a change
aecpu(1) 114 aegis copy file undo - reverse action of aecp
aeclone(1) 101 aegis clone - make an exact copy of a change
aenbr(1) 253 aegis new branch - create a new branch
aenpr(1) 279 aegis new project - create a new project
aenpa(1) 277 aegis new project alias - create a new project alias
aenrls(1) 283 aegis new release - create a new project from an old[hy]style

project.
aenf(1) 265 aegis new file - add new files to be created by a change
ae_c(1) 72 ae c - set change number
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to CVS
aecvsserver(1) 118 aecvsserver - serve CVS client protocol against Aegis projects
ae-cvs-ci(1) 67 ae[hy] cvs[hy]ci - checkin a change set to CVS
aexml(1) 377 aexml - Aegis database to XML
aegis(5) 410 aegis - meta[hy] data file format
aer(5) 451 aer - aegis report script language definition
aermu(1) 343 aegis remove file undo - remove files to be deleted from a change
aerm(1) 335 aegis remove file - add files to be deleted to a change
aedn(1) 158 aegis delta name - assign a symbolic name

to a project
delta

aedn(1) 158 aegis delta name - assign a symbolic name to a
project delta

aediff(1) 145 aediff - file differences between deltas
aedb(1) 125 aegis develop begin - begin development of a

change
aedbu(1) 130 aegis develop begin undo - undo the effects of

aedb
aede(1) 137 aegis develop end - complete development of a

change
aedeu(1) 142 aegis develop end undo - recall a change for

further development
aend(1) 263 aegis new developer - add new dev elopers to a project
aerd(1) 320 aegis remove developer - remove dev elopers from a

project
aerd(1) 320 aegis remove dev eloper - remove developers from a project

Reference Manual Aegis 1008

Permuted Index(Aegis) Permuted Index(Aegis)

aend(1) 263 aegis new dev eloper - add new developers to a project
aedeu(1) 142 aegis develop end undo - recall a change for

further
development

aeclean(1) 97 aegis clEan - clean files from development directory
aedb(1) 125 aegis develop begin - begin development of a change
aede(1) 137 aegis develop end - complete development of a change
ae_diff2htm(1) 73 ae diff2htm - wraps the diff2html command
ae_diff2htm(1) 73 ae diff2htm - wraps the diff2html command
aed(1) 120 aegis difference - find differences between a

change and the baseline
aed(1) 120 aegis difference - find differences between a change and the

baseline
aediff(1) 145 aediff - file differences between deltas
aecd(1) 91 aegis change directory - change directory
aeclean(1) 97 aegis clEan - clean files from development directory
aecd(1) 91 aegis change directory - change directory
aefind(1) 164 aefind - search for files in directory hierarchy
aels(1) 225 aels - annotated directory listing
aedir(5) 403 aedir - aegis directory structures
aedist(1) 148 aedist - remotely distribute a change
aetar(1) 370 aetar - remotely distribute a change via tar
aerect(1) aerect - draw a rectangle
aesub(1) 357 aesub - substitute and echo strings
aeedit(1) 160 aeedit - edit a change’s files
aedbu(1) 130 aegis develop begin undo - undo the effects of aedb
aede(1) 137 aegis develop end - complete development of a change
aedeu(1) 142 aegis develop end undo - recall a change for further

development
aeclone(1) 101 aegis clone - make an exact copy of a change
aeifail(1) 187 aegis integrate fail - fail a change integration
aerfail(1) 330 aegis review fail - fail a change review
aeifail(1) 187 aegis integrate fail - fail a change integration
aerfail(1) 330 aegis review fail - fail a change review
aecattr(5) 391 aecattr - aegis change attributes file
aecstate(5) 393 aecstate - aegis change state file
aefstate(5) 406 aefstate - aegis file state file
aefa(1) 161 aegis file attributes - modify the attributes of

a
file

aegstate(5) 412 aegstate - aegis global state file
aepattr(5) 416 aepattr - aegis project attribute file
aepconf(5) 420 aepconf - aegis project configuration file
aepstate(5) 446 aepstate - aegis project state file
aeuconf(5) 472 aeuconf - user configuration file
aeustate(5) 476 aeustate - aegis user state file
aeget(1) 174 aeget - Aegis CGI file access
aerm(1) 335 aegis remove file - add files to be deleted to a change
aenf(1) 265 aegis new file - add new files to be created by a change
aemvu(1) 246 aegis move file undo - undo the rename a file as part of a change
aefattr(5) 405 aefattr - aegis file attribute file format
aefa(1) 161 aegis file attributes - modify the attributes of a file
aecp(1) 108 aegis copy file - copy a file into a change
aediff(1) 145 aediff - file differences between deltas
aefp(1) 172 aefp - calculate file fingerprint

Reference Manual Aegis 1009

Permuted Index(Aegis) Permuted Index(Aegis)

aefattr(5) 405 aefattr - aegis file attribute file format
aegis(5) 410 aegis - meta[hy]data file format
aemetrics(5) 415 aemetrics - metrics values file format
aerptidx(5) 460 aerptidx - aegis report index file format
aetest(5) 471 aetest - aegis test results file format
aexver(1) 379 aexver - graphical file history
aecp(1) 108 aegis copy file - copy a file into a change
aeannotate(1) 75 aeannotate - annotated source file listing
aemakegen(1) 229 aemakegen - generate a Makefile.in from file manifest
aemeasure(1) 233 aemeasure - simple file metrics
aemv(1) 241 aegis move file - rename one or more files as part of a

change
aeedit(1) 160 aeedit - edit a change’s files
aelcf(1) 210 aelcf - list change files
aelpf(1) 223 aelpf - list project files
aelsf(1) 227 aelsf - list source files
aemv(1) 241 aegis move file - rename one or more files as part of a change
aenfu(1) 272 aegis new file undo - remove new files from a change
aeclean(1) 97 aegis clEan - clean files from development directory
aefind(1) 164 aefind - search for files in directory hierarchy
aefstate(5) 406 aefstate - aegis file state file
aenf(1) 265 aegis new file - add new files to be created by a change
aermu(1) 343 aegis remove file undo - remove files to be deleted from a change
aerm(1) 335 aegis remove file - add files to be deleted to a change
aemt(1) 235 aegis make transparent - make branch file transparent
aemtu(1) 238 aegis make transparent undo - no longer

make branch
file transparent

aermu(1) 343 aegis remove file undo - remove files to be deleted from a
change

aenfu(1) 272 aegis new file undo - remove new files from a change
aecpu(1) 114 aegis copy file undo - reverse action of aecp
aemvu(1) 246 aegis move file undo - undo the rename a file as part of a

change
aed(1) 120 aegis difference - find differences between a change and the

baseline
aefp(1) 172 aefp - calculate file fingerprint
aefinish(1) 170 aefinish - finish a change
tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/TK
aede-policy(1) 133 aede[hy]policy - check change set is ready for aede
tkaegis(1) 381 tkaegis - GUI interface for Aegis, using TCL/TK
tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/TK
aebuffy(1) 85 aebuffy - watch for changes
aeimport(1) 191 aeimport - import foreign repository into Aegis
aefind(1) 164 aefind - search for files in directory hierarchy
aedeu(1) 142 aegis develop end undo - recall a change for further development
aefattr(5) 405 aefattr - aegis file attribute file format
aegis(5) 410 aegis - meta[hy]data file format
aemetrics(5) 415 aemetrics - metrics values file format
aerptidx(5) 460 aerptidx - aegis report index file format
aetest(5) 471 aetest - aegis test results file format
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets, using

TCL/TK

Reference Manual Aegis 1010

Permuted Index(Aegis) Permuted Index(Aegis)

aenfu(1) 272 aegis new file undo - remove new files from a change
aentu(1) 296 aegis new test undo - remove new tests from a change
aermu(1) 343 aegis remove file undo - remove files to be

deleted
from a change

aenrls(1) 283 aegis new release - create a new project from an old[hy]style project.
aencu(1) 260 aegis new change undo - remove a new

change
from a project

aera(1) 312 aegis remove administrator - remove
administrators

from a project

aerd(1) 320 aegis remove dev eloper - remove dev elopers from a project
aeri(1) 333 aegis remove integrator - remove integrators from a project
aerrv(1) 355 aegis remove reviewer - remove reviewers from a project
aeclean(1) 97 aegis clEan - clean files from development directory
aemakegen(1) 229 aemakegen - generate a Makefile.in from file manifest
aedeu(1) 142 aegis develop end undo - recall a change for further development
aemakegen(1) 229 aemakegen - generate a Makefile.in from file manifest
aer(1) 309 aegis report - report generator
aev(1) 375 aegis version - give version information
aegstate(5) 412 aegstate - aegis global state file
aexver(1) 379 aexver - graphical file history
tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/TK
tkaegis(1) 381 tkaegis - GUI interface for Aegis, using TCL/TK
tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/TK
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets,

using TCL/TK
aefind(1) 164 aefind - search for files in directory hierarchy
aexver(1) 379 aexver - graphical file history
aelock(5) 413 aegis locks - how locking works, and which commands

use them
ae_diff2htm(1) 73 ae diff2htm - wraps the diff2 html command
ae_diff2htm(1) 73 ae diff2 htm - wraps the diff2html command
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to CVS
ae-repo-ci(1) 68 ae[hy]repo[hy]ci - redundant repository checkin
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to CVS
aegis(5) 410 aegis - meta[hy]data file format
aede-policy(1) 133 aede[hy]policy - check change set is ready for

aede
ae-sccs-put(1) 71 ae[hy]sccs[hy]put - put sccs version
ae-repo-ci(1) 68 ae[hy]repo[hy]ci - redundant repository checkin
ae-sccs-put(1) 71 ae[hy]sccs[hy]put - put sccs version
aenrls(1) 283 aegis new release - create a new project from

an old[
hy]style project.

aeimport(1) 191 aeimport - import foreign repository into Aegis
aerptidx(5) 460 aerptidx - aegis report index file format
aefind(1) 164 aefind - search for files in directory hierarchy
aev(1) 375 aegis version - give version information
aemakegen(1) 229 aemakegen - generate a Makefile. in from file manifest
aeib(1) 180 aegis integrate begin - begin integrating a change
aeibu(1) 184 aegis integrate begin undo - reverse the aeib

command
aeintegratq(1) 196 aeintegratq - integrate changes into projects
aeifail(1) 187 aegis integrate fail - fail a change integration

Reference Manual Aegis 1011

Permuted Index(Aegis) Permuted Index(Aegis)

aeipass(1) 201 aegis integrate pass - pass a change integration
aeib(1) 180 aegis integrate begin - begin integrating a change
aeifail(1) 187 aegis integrate fail - fail a change integration
aeipass(1) 201 aegis integrate pass - pass a change integration
aeni(1) 275 aegis new integrator - add new integrators to a project
aeri(1) 333 aegis remove integrator - remove integrators from a

project
aeri(1) 333 aegis remove integrator - remove integrators from a project
aeni(1) 275 aegis new integrator - add new integrators to a project
ael(1) 206 aegis list - list (possibly) interesting things
tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/TK
tkaegis(1) 381 tkaegis - GUI interface for Aegis, using TCL/TK
tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/TK
aegis.cgi(1) 176 aegis.cgi - Aegis web interface script
aecp(1) 108 aegis copy file - copy a file into a change
aeimport(1) 191 aeimport - import foreign repository into Aegis
aeintegratq(1) 196 aeintegratq - integrate changes into projects
aede-policy(1) 133 aede[hy]policy - check change set is ready for aede
aer(5) 451 aer - aegis report script language definition
aegrep(1) 177 aegrep - print lines matching a pattern
aelcf(1) 210 aelcf - list change files
aeannotate(1) 75 aeannotate - annotated source file listing
aels(1) 225 aels - annotated directory listing
ael(1) 206 aegis list - list (possibly) interesting things
ael(1) 206 aegis list - list (possibly) interesting things
aelpf(1) 223 aelpf - list project files
aelsf(1) 227 aelsf - list source files
aelock(5) 413 aegis locks - how locking works, and which commands use

them
aelock(5) 413 aegis locks - how locking works, and which

commands use them
aelock(1) 221 aelock - take a lock while a command runs
aemtu(1) 238 aegis make transparent undo - no longer make branch file transparent
aeclone(1) 101 aegis clone - make an exact copy of a change
aemt(1) 235 aegis make transparent - make branch file transparent
aemtu(1) 238 aegis make transparent undo - no longer make branch file transparent
aemakegen(1) 229 aemakegen - generate a Makefile.in from file manifest
aemt(1) 235 aegis make transparent - make branch file

transparent
aemtu(1) 238 aegis make transparent undo - no longer make

branch file transparent
aemakegen(1) 229 aemakegen - generate a Makefile.in from

file
manifest

aegrep(1) 177 aegrep - print lines matching a pattern
aegis(5) 410 aegis - meta[hy]data file format
aemeasure(1) 233 aemeasure - simple file metrics
aemetrics(5) 415 aemetrics - metrics values file format
aeca(1) 86 aegis change attributes - modify the attributes of a change
aefa(1) 161 aegis file attributes - modify the attributes of a file
aepa(1) 299 aegis project attributes - modify the attributes of a project
aemv(1) 241 aegis move file - rename one or more files as part of a change

Reference Manual Aegis 1012

Permuted Index(Aegis) Permuted Index(Aegis)

aemv(1) 241 aegis move file - rename one or more files as part
of a change

aemvu(1) 246 aegis move file undo - undo the rename a file as
part of a change

ae_p(1) 74 ae p - set project name
aedn(1) 158 aegis delta name - assign a symbolic name to a project

delta
aedn(1) 158 aegis delta name - assign a symbolic name to a project delta
aena(1) 251 aegis new administrator - add a new administrator

to a project
aena(1) 251 aegis new administrator - add a new administrator to a project
aenbr(1) 253 aegis new branch - create a new branch
aenbr(1) 253 aegis new branch - create a new branch
aenbru(1) 255 aegis new branch undo - remove a branch
aenc(1) 257 aegis new change - add a new change to a project
aencu(1) 260 aegis new change undo - remove a new change from a project
aenc(1) 257 aegis new change - add a new change to a project
aencu(1) 260 aegis new change undo - remove a new change

from a project
aend(1) 263 aegis new dev eloper - add new dev elopers to a

project
aend(1) 263 aegis new dev eloper - add new dev elopers to a project
aenf(1) 265 aegis new file - add new files to be created by a

change
aenfu(1) 272 aegis new file undo - remove new files from a change
aenf(1) 265 aegis new file - add new files to be created by a change
aenfu(1) 272 aegis new file undo - remove new files from a

change
aeni(1) 275 aegis new integrator - add new integrators to a

project
aeni(1) 275 aegis new integrator - add new integrators to a project
aenpr(1) 279 aegis new project - create a new project
aenpa(1) 277 aegis new project alias - create a new project alias
aenpa(1) 277 aegis new project alias - create a new project alias
aenpr(1) 279 aegis new project - create a new project
aenrls(1) 283 aegis new release - create a new project from an old[hy]style project.
aenrls(1) 283 aegis new release - create a new project from an

old[hy]style project.
aenrv(1) 287 aegis new reviewer - add new reviewers to a

project
aenrv(1) 287 aegis new reviewer - add new reviewers to a project
aent(1) 289 aegis new test - add a new test to a change
aentu(1) 296 aegis new test undo - remove new tests from a change
aent(1) 289 aegis new test - add a new test to a change
aentu(1) 296 aegis new test undo - remove new tests from a

change
aemtu(1) 238 aegis make transparent undo - no longer make branch file transparent
ae_c(1) 72 ae c - set change number
aenrls(1) 283 aegis new release - create a new project from

an
old[hy]style project.

aemv(1) 241 aegis move file - rename one or more files as part of a change
aemv(1) 241 aegis move file - rename one or more files as part of a change
aechown(1) 94 aegis change owner - set change owner

Reference Manual Aegis 1013

Permuted Index(Aegis) Permuted Index(Aegis)

aechown(1) 94 aegis change owner - set change owner
aemv(1) 241 aegis move file - rename one or more files as part of a change
aemvu(1) 246 aegis move file undo - undo the rename a

file as
part of a change

aerpu(1) 352 aegis review pass undo - rescind a change
review

pass

aeipass(1) 201 aegis integrate pass - pass a change integration
aerpass(1) 348 aegis review pass - pass a change review
aeipass(1) 201 aegis integrate pass - pass a change integration
aerpass(1) 348 aegis review pass - pass a change review
aerpu(1) 352 aegis review pass undo - rescind a change review pass
aepatch(1) 302 aepatch - send and receive changes as patches
aegrep(1) 177 aegrep - print lines matching a pattern
aede-policy(1) 133 aede[hy] policy - check change set is ready for aede
ael(1) 206 aegis list - list (possibly) interesting things
aegrep(1) 177 aegrep - print lines matching a pattern
aena(1) 251 aegis new administrator - add a new

administrator to a
project

aenc(1) 257 aegis new change - add a new change to a project
aencu(1) 260 aegis new change undo - remove a new

change from a
project

aend(1) 263 aegis new dev eloper - add new dev elopers to
a

project

aeni(1) 275 aegis new integrator - add new integrators to
a

project

aenpr(1) 279 aegis new project - create a new project
aenrls(1) 283 aegis new release - create a new project from

an old[hy]style
project.

aenrv(1) 287 aegis new reviewer - add new reviewers to a project
aepa(1) 299 aegis project attributes - modify the

attributes of a
project

aera(1) 312 aegis remove administrator - remove
administrators from a

project

aerd(1) 320 aegis remove dev eloper - remove dev elopers
from a

project

aeri(1) 333 aegis remove integrator - remove integrators
from a

project

aermpr(1) 340 aegis remove project - remove project
aerrv(1) 355 aegis remove reviewer - remove reviewers

from a
project

aenpa(1) 277 aegis new project alias - create a new project alias
aerpa(1) 346 aegis remove project alias - remove a project alias
aenpa(1) 277 aegis new project alias - create a new project alias
aerpa(1) 346 aegis remove project alias - remove a project alias
aepattr(5) 416 aepattr - aegis project attribute file
aepa(1) 299 aegis project attributes - modify the attributes of a

project
aegis(1) 59 aegis - project change supervisor
aepconf(5) 420 aepconf - aegis project configuration file
aenpr(1) 279 aegis new project - create a new project
aedn(1) 158 aegis delta name - assign a symbolic name

to a
project delta

aelpf(1) 223 aelpf - list project files

Reference Manual Aegis 1014

Permuted Index(Aegis) Permuted Index(Aegis)

aenrls(1) 283 aegis new release - create a new project from an old[hy]style project.
ae_p(1) 74 ae p - set project name
aermpr(1) 340 aegis remove project - remove project
aecvsserver(1) 118 aecvsserver - serve CVS client protocol

against Aegis
projects

aeintegratq(1) 196 aeintegratq - integrate changes into projects
aepstate(5) 446 aepstate - aegis project state file
aepromptcmd(1) 307 aepromptcmd - change prompt color by change state
aecvsserver(1) 118 aecvsserver - serve CVS client protocol against Aegis projects
ae_p(1) 74 ae p - set project name
ae-sccs-put(1) 71 ae[hy]sccs[hy] put - put sccs version
ae-sccs-put(1) 71 ae[hy]sccs[hy]put - put sccs version
aede-policy(1) 133 aede[hy]policy - check change set is ready for aede
aedeu(1) 142 aegis develop end undo - recall a change for further development
aepatch(1) 302 aepatch - send and receive changes as patches
aerevml(1) 324 aerevml - send and receive RevML change sets
aerect(1) aerect - draw a rectangle
ae-repo-ci(1) 68 ae[hy]repo[hy]ci - redundant repository checkin
aenrls(1) 283 aegis new release - create a new project from an

old[hy]style project.
aedist(1) 148 aedist - remotely distribute a change
aetar(1) 370 aetar - remotely distribute a change via tar
aenbru(1) 255 aegis new branch undo - remove a branch
aera(1) 312 aegis remove administrator - remove

administrators from a project
aera(1) 312 aegis remove administrator - remove administrators from a project
aencu(1) 260 aegis new change undo - remove a new change from a project
aerpa(1) 346 aegis remove project alias - remove a project alias
aerd(1) 320 aegis remove dev eloper - remove dev elopers from

a project
aerd(1) 320 aegis remove dev eloper - remove dev elopers from a project
aerm(1) 335 aegis remove file - add files to be deleted to a

change
aermu(1) 343 aegis remove file undo - remove files to be deleted from a change
aermu(1) 343 aegis remove file undo - remove files to be deleted

from a change
aeri(1) 333 aegis remove integrator - remove integrators from

a project
aeri(1) 333 aegis remove integrator - remove integrators from a project
aenfu(1) 272 aegis new file undo - remove new files from a change
aentu(1) 296 aegis new test undo - remove new tests from a change
aermpr(1) 340 aegis remove project - remove project
aerpa(1) 346 aegis remove project alias - remove a project alias
aermpr(1) 340 aegis remove project - remove project
aerrv(1) 355 aegis remove reviewer - remove reviewers from a

project
aerrv(1) 355 aegis remove reviewer - remove reviewers from a project
aemvu(1) 246 aegis move file undo - undo the rename a file as part of a change
aemv(1) 241 aegis move file - rename one or more files as part of a change
ae-repo-ci(1) 68 ae[hy] repo[hy]ci - redundant repository checkin
aer(1) 309 aegis report - report generator
aerptidx(5) 460 aerptidx - aegis report index file format
aer(1) 309 aegis report - report generator

Reference Manual Aegis 1015

Permuted Index(Aegis) Permuted Index(Aegis)

aer(5) 451 aer - aegis report script language definition
ae-repo-ci(1) 68 ae[hy]repo[hy]ci - redundant repository checkin
aeimport(1) 191 aeimport - import foreign repository into Aegis
aerpu(1) 352 aegis review pass undo - rescind a change review pass
aetest(5) 471 aetest - aegis test results file format
aecpu(1) 114 aegis copy file undo - reverse action of aecp
aeibu(1) 184 aegis integrate begin undo - reverse the aeib command
aerb(1) 314 aegis review begin - begin a change review
aerfail(1) 330 aegis review fail - fail a change review
aerpass(1) 348 aegis review pass - pass a change review
aerb(1) 314 aegis review begin - begin a change review
aerbu(1) 317 aegis review begin undo - stop reviewing a change
aenrv(1) 287 aegis new reviewer - add new reviewers to a project
aerrv(1) 355 aegis remove reviewer - remove reviewers from a project
aerrv(1) 355 aegis remove reviewer - remove reviewers from a project
aenrv(1) 287 aegis new reviewer - add new reviewers to a project
aerfail(1) 330 aegis review fail - fail a change review
aerbu(1) 317 aegis review begin undo - stop reviewing a change
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets, using TCL/TK
aerpu(1) 352 aegis review pass undo - rescind a change review pass
aerpass(1) 348 aegis review pass - pass a change review
aerpu(1) 352 aegis review pass undo - rescind a change review

pass
aerevml(1) 324 aerevml - send and receive RevML change sets
aelock(1) 221 aelock - take a lock while a command runs
aesubunit(1) 359 aesubunit - run SubUnit tests
aet(1) 364 aegis test - run tests
ae-sccs-put(1) 71 ae[hy] sccs[hy]put - put sccs version
ae-sccs-put(1) 71 ae[hy]sccs[hy]put - put sccs version
aegis.cgi(1) 176 aegis.cgi - Aegis web interface script
aer(5) 451 aer - aegis report script language definition
aefind(1) 164 aefind - search for files in directory hierarchy
aepatch(1) 302 aepatch - send and receive changes as patches
aerevml(1) 324 aerevml - send and receive RevML change sets
aecvsserver(1) 118 aecvsserver - serve CVS client protocol against Aegis

projects
ae_c(1) 72 ae c - set change number
aechown(1) 94 aegis change owner - set change owner
aede-policy(1) 133 aede[hy]policy - check change set is ready for aede
ae_p(1) 74 ae p - set project name
aerevml(1) 324 aerevml - send and receive RevML change sets
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets, using TCL/TK
ae-cvs-ci(1) 67 ae[hy]cvs[hy]ci - checkin a change set to CVS
aeedit(1) 160 aeedit - edit a change’ s files
aemeasure(1) 233 aemeasure - simple file metrics
aesvt(1) 361 aesvt - simple version tool
aeannotate(1) 75 aeannotate - annotated source file listing
aelsf(1) 227 aelsf - list source files
aepromptcmd(1) 307 aepromptcmd - change prompt color by

change
state

aecstate(5) 393 aecstate - aegis change state file
aefstate(5) 406 aefstate - aegis file state file
aegstate(5) 412 aegstate - aegis global state file

Reference Manual Aegis 1016

Permuted Index(Aegis) Permuted Index(Aegis)

aepstate(5) 446 aepstate - aegis project state file
aeustate(5) 476 aeustate - aegis user state file
aerbu(1) 317 aegis review begin undo - stop reviewing a change
aesub(1) 357 aesub - substitute and echo strings
aedir(5) 403 aedir - aegis directory structures
aenrls(1) 283 aegis new release - create a new project from

an old[hy]
style project.

aesub(1) 357 aesub - substitute and echo strings
aesub(5) 461 aesub - aegis command substitutions
aesubunit(1) 359 aesubunit - run SubUnit tests
aegis(1) 59 aegis - project change supervisor
aedn(1) 158 aegis delta name - assign a symbolic name to a project delta
aelock(1) 221 aelock - take a lock while a command runs
aetar(1) 370 aetar - remotely distribute a change via tar
tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/TK
tkaegis(1) 381 tkaegis - GUI interface for Aegis, using TCL/TK
tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/TK
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change

sets, using
TCL/TK

aent(1) 289 aegis new test - add a new test to a change
aetest(5) 471 aetest - aegis test results file format
aet(1) 364 aegis test - run tests
aet(1) 364 aegis test - run tests
aesubunit(1) 359 aesubunit - run SubUnit tests
aentu(1) 296 aegis new test undo - remove new tests from a change
aent(1) 289 aegis new test - add a new test to a change
aentu(1) 296 aegis new test undo - remove new tests from a change
aelock(5) 413 aegis locks - how locking works, and which

commands use
them

ael(1) 206 aegis list - list (possibly) interesting things
tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/ TK
tkaegis(1) 381 tkaegis - GUI interface for Aegis, using

TCL/
TK

tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/ TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/ TK
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change

sets, using TCL/
TK

tkaeca(1) 388 tkaeca - GUI interface for aeca, using
TCL/TK

tkaegis(1) 381 tkaegis - GUI interface for Aegis, using
TCL/TK

tkaenc(1) 386 tkaenc - GUI interface for aenc, using
TCL/TK

tkaepa(1) tkaepa - GUI interface for aeca, using
TCL/TK

tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change
sets, using TCL/TK

aesvt(1) 361 aesvt - simple version tool
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change sets, using

TCL/TK
aemt(1) 235 aegis make transparent - make branch file transparent

Reference Manual Aegis 1017

Permuted Index(Aegis) Permuted Index(Aegis)

aemtu(1) 238 aegis make transparent undo - no longer
make branch file

transparent

aemt(1) 235 aegis make transparent - make branch file transparent
aemtu(1) 238 aegis make transparent undo - no longer make branch

file transparent
aecomp(1) 106 aecomp - compare two changes
aemtu(1) 238 aegis make transparent undo - no longer make branch file

transparent
aedeu(1) 142 aegis develop end undo - recall a change for further

development
aenbru(1) 255 aegis new branch undo - remove a branch
aencu(1) 260 aegis new change undo - remove a new change from a project
aermu(1) 343 aegis remove file undo - remove files to be deleted from a

change
aenfu(1) 272 aegis new file undo - remove new files from a change
aentu(1) 296 aegis new test undo - remove new tests from a change
aerpu(1) 352 aegis review pass undo - rescind a change review pass
aecpu(1) 114 aegis copy file undo - reverse action of aecp
aeibu(1) 184 aegis integrate begin undo - reverse the aeib command
aerbu(1) 317 aegis review begin undo - stop reviewing a change
aedbu(1) 130 aegis develop begin undo - undo the effects of aedb
aemvu(1) 246 aegis move file undo - undo the rename a file as part of a change
aedbu(1) 130 aegis develop begin undo - undo the effects of aedb
aemvu(1) 246 aegis move file undo - undo the rename a file as part of a

change
aeuconf(5) 472 aeuconf - user configuration file
aeustate(5) 476 aeustate - aegis user state file
aelock(5) 413 aegis locks - how locking works, and which

commands
use them

tkaeca(1) 388 tkaeca - GUI interface for aeca, using TCL/TK
tkaegis(1) 381 tkaegis - GUI interface for Aegis, using TCL/TK
tkaenc(1) 386 tkaenc - GUI interface for aenc, using TCL/TK
tkaepa(1) tkaepa - GUI interface for aeca, using TCL/TK
tkaer(1) 389 tkaer - GUI tool for reviewing Aegis change

sets,
using TCL/TK

aemetrics(5) 415 aemetrics - metrics values file format
ae-sccs-put(1) 71 ae[hy]sccs[hy]put - put sccs version
aev(1) 375 aegis version - give version information
aev(1) 375 aegis version - give version information
aesvt(1) 361 aesvt - simple version tool
aetar(1) 370 aetar - remotely distribute a change via tar
aebuffy(1) 85 aebuffy - watch for changes
aegis.cgi(1) 176 aegis.cgi - Aegis web interface script
aelock(5) 413 aegis locks - how locking works, and which commands use them
aelock(1) 221 aelock - take a lock while a command runs
aelock(5) 413 aegis locks - how locking works, and which commands use them
ae_diff2htm(1) 73 ae diff2htm - wraps the diff2html command
aexml(1) 377 aexml - Aegis database to XML

Reference Manual Aegis 1018

