Aegis
A Project Change Supervisor

Reference Manual

Peter Miller
pmiller @opensource.org.au

not, see <http://www.gnu.org/licenses/>.
NAME

aegis — project change supervisor
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

Aegis is distributed under the terms of the GNU General Public License. See the LICENSE section, below,

f details
This document describes Aegis version 4.25

and wa@gHispaTd T TahiRiGNOD4 defense.
DESCRIPTION

Aegis is a CASE tool with a difference. In the spirit of the UNIX Operating System, Aegis is a small com-
ponent designed to work with other programs.

Many CASE systems attempt to provide everything, from bubble charts to source control to compilers.
Users are trapped with the components supplied by the CASE system, and if you don’t like one of the com-

. ponents (1t may t001m1t d, for instance), then tlS ust tough.
This document descri 1ngt €gls prograim, an e 1S program 1tself are

tr a m ts e
gggznz%%%@%%g% IIQ‘ 5815% 3 f@@ﬁ Ii o ‘{;émi%l? ; lflmay substltute t%gg)qo’lng your ch01ce
ou ’11 ne tlpp 1 t e s erh gacc, J0$gr 0 name just a few. Aegis adds to this

list with software configuration management, and true to UNIX phllosophy, Aegis does not dictate the

This progriasvianiree tsobieatoply iteaghredistrinateh tihand/oicinpdity. it under the terms of the
GNU Gengral Rublicrhbdcensgaasapiblisbed by the Hregmofvwang: Fanadation:cHbss veraighediof

the LiniElSﬁfﬂ&eﬁﬁlyy%ﬁ&mi@]%QHNelﬁtﬁédI@ﬁSi&lﬂ;wer. In essence, Aegis is a project change supervisor. It
provides a framework within which a team of developers may work on many changes to a program inde-

This progedently divtritngieddordinaho pragiatite widbdbehasash bdstitiMol TE QW FEr AN WARRMTRN
without eV’ e diyn eaowqu;b%f ReERiE e ONCARTHIPTT SPUPETNGSSS Ng9R haadpahR fqany
LAR PORBOEE 8¢ Hanaag Sl BB AL AR BRSSP e tails.

It should be noted that Aegzs isa developer s tool, in the same sense as make or RCS are developer’s tools.

You shdlft"Rh&PERRTELR colb§ 5T PRERENILS PIRRIESAIBHBIE AL [RaHEs N Noftt Mis program. If
BENEFITS
So why should you use Aegis?

Aegis uses a particular model of the development of software projects. This model has a master source (or

Read Mef)ésf%ﬁlﬁ}:) of a project, and a team of developers creating changes to be made to this baRefM AR
change is complete, it is integrated with the baseline, to become the new baseline. Each change must be
atomic and self-contained, no change is allowed to cause the baseline to cease to work. "Working" is de-
fined as passing it’s own tests. The tests are considered part of the baseline. Aegis provides support for the
developer so that an entire copy of the baseline need not be taken to change a few files, only those files
which are to be changed need to be copied.

In order to ensure that changes are unable to cause the baseline to cease to work, Aegis mandates that
changes be accompanied by at least one test, and that all such tests be known to complete successfully.
These steadily accumulated tests form an ever increasing regression test suite for all later changes. There is
also a mandatory review stage for each change to the baseline. While these requirements may be relaxed
per-change or even per-project, doing so potentially compromises the "working" definition of the baseline.

The win in using Aegis is that there are O(n) interactions between developers and the baseline. Contrast
this with a master source which is being edited directly by the developers — there are O(n/) interactions be-
tween developers — this makes adding "just one more" developer a potential disaster.

Another win is that the project baseline always works. Always having a working baseline means that a ver-
sion is always available for demonstrations, or those "pre-release snapshots" we are always forced to pro-
vide.

The above advantages are all very well — for management types. Why should Joe Average Programmer use
Aegis? Recall that RCS provides file locking, but only for one file at a time. Aegis provides the file

Reference Manual Aegis 0

Read Me(Aegis) Read Me(Aegis)

locking, atomically, for the set of files in the change. Recall also that RCS locks the file the instant you
start editing it. This makes popular files a project bottleneck. Aegis allows concurrent editing, and a reso-
lution mechanism just before the change must be integrated, meaning fewer delays for J.A.Programmer.

Aegis also has strong support for geographically distributed development. It supports both push and pull
models, and many distribution topologies. Aegis’ normal development process is used to validate received
change sets before committing them.

ARCHIVE SITE

The latest version of Aegis is available by HTTP from:
URL: http://miller.emu.id.au/pmiller/

File: aegis.html # the Aegis page

File: aegis.4.25.README # Description, from tar file

File: aegis.4.25.1sm # Description, in LSM format

File: aegis.4.25.ae # the complete source, aedist format
File: aegis.4.25.spec # RedHat package specification
File: aegis.4.25. tar.gz # the complete source

This directory also contains a few other pieces of software written by me. Some are referred to in the Aegis
documentation. Please have a look if you are interested.

Mirrors
See http://miller.emu.id.au/pmiller/ for a list of mirror sites.

Aegis is also carried by metalab.unc.edu in its Linux archives. You will be able to find Aegis on any
of its mirrors.

URL: ftp://metalab.unc.edu/pub/Linux/devel/vc/

File: aegis.4.25.README # Description, from tar file

File: aegis.4.25.1sm # Description, in LSM format
File: aegis.4.25.spec # RedHat package specification
File: aegis.4.25.ae # the complete source, aedist format
File: aegis.4.25. tar.gz # the complete source
This site is extensively mirrored around the world, so look for a copy near you (you will get much better re-
sponse).
MAILING LIST

A mailing list has been created so that users of Aegis may exchange ideas about how to use Aegis. Discus-
sion may include, but is not limited to: bugs, enhancements, and applications. The list is not moderated.

The address of the mailing list is
aegis-usersfauug.org.au
Please do not attempt to subscribe by sending email to this address. It is for content only.

How To Subscribe
To subscribe to this mailing list, visit the Aegis-users mailing list page (http://www.auug.org.au/—
mailman/listinfo/aegis-users) and go through the subscribe dialogue.

Archive
The mailing list is archived at eGroups. The URL is
http://www.egroups.com/list/aegis—-users/info.html

No Files By EMail

The software which handles this mailing list cannot send you a copy of Aegis. Please use FTP or ftp-by-
email, instead.

BUILDING
Instructions on how to build and test Aegis are to be found in the BUILDING file included in this distribu-
tion.

Reference Manual Aegis 1

Read Me(Aegis) Read Me(Aegis)

SOME HISTORY
The idea for Aegis did not come full-blown into my head in the shower, as some of my programs do, but
rather from working in a software shop which used a simplistic form of something similar. That system
was held together by chewing-gum and string, it was written in a disgusting variant of Basic, and by golly
the damn thing worked (mostly). Aegis is nothing like it, owes none of its code to that system, and is far
more versatile. It turns out that the system used is nothing new, and is described in many SCM textbooks; it
is the result of systematically resolving development issues for large-ish teams.

Since that company decided to close down our section (the company was under attack by a hostile takeover
bid) we all moved on simultaneously (all 60 of us), sometimes working together, and sometimes not, but al-
ways keeping in touch. With suggestions and conversations with some of them early in 1990, the manual
entries for Aegis took shape, and formed most of the design document for Aegis.

Since getting the first glimmerings of a functional Aegis late in 1990 it is increasingly obvious that I never
want to be without it ever again. All of my sources that I modify are instantly placed under Aegis, as is
anything I distribute. All code I write for myself, and all new code I write for my employer, goes under
Aegis. Why? Because it has fewer bugs!

Example: one of the sources I carry with me from job to job is "cook", my dependency maintenance tool.
Cook had existed for 3 years before Aegis appeared on the scene, and I used it daily. When I placed cook
under Aegis, I found 6 bugs! Since then I have found a few more. Not only are there now fewer bugs, but
they never come back, because the regression test suite always grows.

Branching
In 1997 the full branching support was released (it took nearly 18 months to retro-fit. The underlying data
structures for projects and change sets need to be merged. While I noticed back in 1990 that they were very
similar, it wasn’t until branch support design was well underways that they should have been the same data
structure from the beginning.

Geographically Distributed Development
In 1999 a conversation on the aegis—users mailing list resulted in the creation of aedist, a program
which packages and unpackages Aegis changes so they can be sent by e-mail, or WWW or whatever. With
20:20 hindsight, this could have been done way back in 1991, because the basic idea builds on Aegis
change process model.

Windows NT
Aegis depends on the underlying security provided by the operating system (rather than re-invent yet an-
other security mechanism). However, in order to do this, Aegis uses the POSIX seteuid system call, which
has no direct equivalent on Windows NT. This makes porting difficult. Single-user ports are possible (e.g.
using Cygwin), but are not usually what folks want.

Compounding this is the fact that many sites want to develop their software for both Unix and Windows NT
simultaneously. This means that the security of the repository needs to be guaranteed to be handled in the
same way by both operating systems, otherwise one can act as a “back door” into the repository. Many
sites do not have the same users and permissions (sourced from the same network register of users) on both
Unix and Windows NT, making the mapping almost impossible even if the security models did actually
correspond.

Most sites using Aegis and Windows NT together do so by running Aegis on the Unix systems, but building
and testing on the NT systems. The work areas and repository are accessed via Samba or NFS.

LICENSE
Aegis is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 3 of the License, or (at your option)
any later version. In addition, as a special exception, the copyright holders give permission to link the code
of this program with the OpenSSL library, and distribute linked combinations including the two.

Aegis is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Reference Manual Aegis 2

Read Me(Aegis) Read Me(Aegis)

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the LICENSE file included in this distribution. The full test of the OpenSSL exception
should be in the LICENSE.openssl file included in this distribution.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 3

Read Me(Aegis) Read Me(Aegis)

RELEASE NOTES
For excruciating detail, and also acknowledgments of those who generously sent me feedback, please see
the etc/CHANGES.* files included in this distribution.

Upgrading
In general, all the machines on your network need to be running the same release of Aegis. While the data-
base format is backwards compatible, it is rarely forwards compatible in the face of new capabilities.

Version 4.26 (N-MMM-NNNN)
* Added OpenSSL license exception (LICENSE.openssl).

Version 4.25 (8-Mar-2008)
Version 4.24 (09-Mar-2008)
* Numerous portability improvements.

* Numerous improvements to the history reconstruction code.

* Numerous improvements and bug fixes to the distributed development code. See aedist(1), aeget(1), ae-
tar(1) and aepatch(1) for more information.

* The site specific architecture information has been split into a separate file, maked with an entire-source-
hide attribute, so that new Aegis-under-Aegis projects don’t have such bad architecture problems.

* The license has been changed to GPLv3.
* A bug has been fixed the the change::pconf_get method which sometimes caused segfaults.

* A bug has been fixed in aeclone which caused aecp -delta to segfault when: a change set whith a removed
file was cloned, and the clone change set subsequently integrated.

* The aediff command is now smarter about files which may have moved.

* A bug has been fixed in the acannotate command, it no longer segfaults for some file histories.
* A Vietnamese error mesage translation has been added.

* There is a new Portugese (Brazillian) message catalogue translation.

* It is now possible to develop begin undo and new change undo in a single command.

* The ael(1) command now understands are much wider range of ways to specify changes.

* A segfault has been fixed in the use of --delta and --delta-data options.

» This change set fix a problem in the aesvt(1) checkout command that can fail to extract from a gzip com-
pressed archive.

* A bug has been fixed in the aechown(1) command, to stop a segfault when printing some error messages.
* There is a new aebisect(1) command which helps to find project regressions not handled by the test suite.
* Many commands now cope with renames in more situations.

* A bug has been fixed in aeclone(1) which caused aecp —delta to segfault when a change set whith a re-
moved file was cloned, and the clone change set subsequently integrated.

* The aede-policy(1) manual page has been updated to document the aede-policy-line-length file attribute.
* A vietnamese translation has been added.
* The aereport(1) command now understands more ways to specify changes.

* There is a new ${path_reduce} substitution which may be used to remove redundant elements from path
lists, such as used by the $PATH environment variable.

* When the development directory style required actions to be perfomed on the development directory, the
obsolete "creating symbolic links to baseline" message was produced. This was confusing. A more generic
message is now used, which is intended to be less confusing.

* The aecp(1) -delta command now follows the whiteout preference when copying a "removed" file. * The
test suite now runs much faster.

Reference Manual Aegis 4

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in the aedbu(1) command. It no longer complains about permissions when the de-
velop_begin_undo_command has been set.

* A bug has been fixed in the aeimport(1) command. It no longer uses the Attic portion of filenames when
populating the history directory tree.

* The change details listing now prints comments in a wide column when the comments are lengthy.

* There is a new $Active_Directory substitution, used to obtain the development directory, or the integration
directory, depending on the change state. This is rather like the default behaviour of the aecd(1) command.

* There is a new ${project version} substitution.

* The commands run by aeipass are now accompanied by more file name information, so that you can know
which source file corresponds to which UUID history file, if there is a failure in the history commands.

* The aeca(1l) command now checks for and discards duplicate architecture names. This fixes a bug with
unsatifiable architecture dependencies.

* The aeb(1) command has been improved, it no longer keeps running the project_file_comand over and
over again.

* A bug has been fixed in the aenf(1) command; it now preserves existing file contents if new files already
exist in the development directory.

* A bug has been fixed in the "aet -regression" command, it no longer reports free()ing a non-existent string.

* A bug has been fixed in the aed(1) command, it no longer reports a bug when a cross branch merege is at-
tempted for a file independently created in both branches.

Version 4.23

Version 4.22.2 (18-Oct-2007)
This is an update for the 4.22 stable release, it is meant to help Aegis users while the next release cycle
ends.

* [1684820] Fixed a bug in aeclone that caused aecp —delta segfaults.
* The symlink farm now handle derived files registered within Aegis more like normal derived files.

* [1697199] The change_pconf_get function no longer looks for historical versions of files, if it can help
it. This makes many things go faster and solved the problem of configuration fields redefinition. While
this change does not make Aegis more time safe, it cures one of the symptoms.

* Fixed test 222 to work with recent releases of subversion.
* The aepconf(5) man page has been improved.

* [Debian 435422] The reference manual was wrongly referring to —Page-Headings instead of —Page-
Header. The documentation has been updated to match the source code.

* [1704108] The aecp(l) —delta command now follows the whiteout preference when copying a "re-
moved"file.

* [1704100] A bug has been fixed that caused aecp(1) —delta X to copy in a change also a file with the old
name of a file aemv(1)ed before delta X.

* The generated Makefile now installs aelock(1) with the correct permissions.

* [1701701] A bug has been fixed in the aefar(1) command, it no longer creates tarballs that cause BSD
and other tar to complain like this: tar: End of archive volume 1 reached tar: Unexpected EOF on archive
file

* The configure script now handle correctly the datadir substitution.

Version 4.22.1 (14-Apr-2007)
* Test t0247a-walt.sh has been fixed, it was not exporting AEGIS_TEST_DIR. This make aeintegratq(1)
leaving stuff in the home directory of the user.

» Some minor fix that prevented Aegis to build on RPM based distributions has been fixed.

Reference Manual Aegis 5

Read Me(Aegis) Read Me(Aegis)

» The t0011a.sh test script failed when lex(1) was missing, since it is not required to build Aegis the test
script has been modified to pass even when lex(1) is missing.

* aedist(1) now handle certain renamed files correctly when receiving branches or entire-source.

* The t0011a.sh test script failed when lex(1) was missing, since it is not required to build Aegis the test
script has been modified to pass even when lex(1) is missing.

* aedist(1) now handle certain renamed files correctly when receiving branches or entire-source.

e [1691122] Newer versions of the autoconf tools introduced a new @datarootdir@, and complained
loudly if it wasn’t used. Aegis configure does not trigger anymore those warnings.

* The test suite does not use anymore diff(1) —u because not all systems have gnu diff, so the use of gnu
diff’s —u option is nor portable, and will give false negatives on some systems.

* The test suite does not use anymore diff(1) —u because not all systems have gnu diff, so the use of gnu
diff’s —u option is nor portable, and will give false negatives on some systems.

* gedist(1) —rec now save the UUID as the user defined original-UUID if the UUID is already present in the
repository. This is especially useful when receiving changes in the same repository.

* aeclone(1) now preserve the the UUID of the original change as the original-UUID user defined attribute
of the new change. It also copy any other used-defined attribute.

* Test 89 has been disable on HP-UX-10 because that system has a "vendor specific” (i.e. broken) cpio(1)
archive format.

» Test 95 has been improved to be less sensitive to libmagic(3) differences.
* Test 207 has been changed to be less sensitive to sort(1) differences.
* The project_specific setenv:* variables are now exported only once.

* [1674882] The following bug as been fixed: if a file is created and renamed within a single branch, and
that branch is integrated, then the file is not included in the output of ’aedist —send —es’ from subsequent
branches.

* A bug has been fixed in the aedbu(1) command. It no longer complains about permissions when the de-
velop_begin_undo_command has been set.

* The aedist(1) —rec command now better handles file renamed (not aemved) to match the local repository
state.

* A bug has been fixed that caused the change_pconf_get function terminate aegis(1) with a fatal error if ap-
plied to a branch without a config file (e.g. if the trunk does not contain any closed branch).

* The aenpr(1) —keep command now set the administrator recursively.

* A bug has been fixed in the ${project-specific} substitution, it now works correctly with the aesub(1) —bl
command.

* aedist(1) —received has been modified to set the user defined attribute foreign-copyright to true when re-
ceiving a remote change set. This in order to avoid aede-policy(1) complain about incorrect copyright no-
tice at aede(1) time.0

* A bug has been fixed that caused an aemv(1) followed by an aenf(1) to generate two different files with
the same UUID.

* Avoid the "multiple permission set" error on quit.
* A bug has been fixed in the UUID generating code; it was running out of file descriptors.

* A bug has been fixed in the aef(1) —regression command, it no longer reports free()ing a non-existent
string.

* A bug has been fixed in the aed(1) command, it no longer reports a bug when a cross branch merge is at-
tempted for a file independently created in both branches.

Reference Manual Aegis 6

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed which caused aeipass(1) to assign UUID to files at branch integration pass time.
This can happen if the files was created and integrated with an old Aegis release, lacking support for file’s
UUID. This bug make it possible to have the history for a file split into two part, one accessible via the
file_name, the other accessible using the UUID.

* A segfault in aeannotate(1) has been fixed.

* A bug has been fixed related to the use of the unchanged._file_integrate_pass_policy=remove policy de-
scribed in aepconf(5). In this case aeipass failed to reset the locked_by field from the project fstate file, this
prevented subsequent changes to modify the removed file.

* A bug has been fixed in the handling of the symlink farm, for development directory styles which use
them for derived files. Derived files in the baseline directory which were formerly source files, but then
aerm-ed, are now included in the development directory when copy/link styles are used.

* A bug has been fixed in the aenf(1) command; it now preserves existing file contents if new files already
exist in the file development directory.

* The ./configure script has been improved to stop with a fatal error if the bzip2 library is not available.

Version 4.22 (29-Mar-2006)
* A bug has been fixed in the aeclean(1) command, it now correctly resets the change build and test times.

* A bug has been fixed in writing of tar and cpio data, in cases where there was one byte too much padding.
* A bug has been fixed in the aeintegratq(1) command, it no longer ignores change number zero.

* A bug has been fixed in the aepromptcmd(1) comand, it now understands that when the build command is
"exit 0" then no build is required.

* The aede(1) comand now runs the review_pass_notify_command (instead of the develop_end_notify_-
command) for projects configured to skip the being reviewed state.

* A bug has been fixed in the aeannotate(1) command, it no longer uses the wrong timestamp when creat-
ing histories for completed branches.

* A bug in the aed(1) command has been fixed, it no longer reports a bug when trying to merge a file that
has been renamed.

* A bug has been fixed in the aef(1) command, it now correctly handles multiple architectures being re-
ported for batch test results.

* A bug has been fixed in the aet —regression command, the batch_test_command now correctly handles
multiple architectures in the results.

* The notification scripts distributed with Aegis have been fixed, they now correctly substitute recipients’
email addresses.

* A bug has been fixed in the aediff(1) command, the —change option is now ablew to cope with degenerate
forms of the delta name in cases like aediff —change DOOI and similar.

* A bug has been fixed in the aenc(1) command, it now takes more notice of project testing default settings.

* A bug has been fixed in the aeget(1) interface, the adjective for the alternate listing link at the bottom of
the Integration Histogram pages has been inverted.

* A bug has been fixed in the aegef(1) command, is is now always possible to see the error produced by a
script when the noerror modifier is specified.

* A bug has been fixed in the aegef(1) web interface, it now provides the correct links to the more and less
detailed file history pages.

* The aeget(1) web interface no longer emits broken links to removed source files.

* A bug has been fixed in the aenbr(1) command, the protect_database project attribute is now correctly in-
herited from the parent branch.

* A bug has been fixed the the RSS feed, where HTML special characters were not rendered correctly.

Reference Manual Aegis 7

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in the aeipass(1) command, it no longer fails if the history_create_command was
not set, it uses the history_put_command instead, as it is supposed to.

* A bug has been fixed in the aedist —send command, it no longer attempts to include the source of re-
moved files.

* A bug has been fixed in the aedist(1) command, it no longer segfaults when compiled with DEBUG de-
fined.

* A bug has been fixed in the aedist —replay command, it no longer downloads change sets more than once.

* A bug has been fixed in the aedist —send command, it no longer obtains the wrong version of the project
files when building patches for files which have been renamed.

* A bug has been fixed in the aedis#(1) command, no longer attempts to include the source of removed files.
* A bug has been fixed in the aedist —pending command, it now resolves project aliases.
* A bug has been fixed in the aedist(1) command, it no longer segfaults on IRIX.

* A bug was fixed which caused the development_directory of a branch to be recorded as an absolute path
in the Aegis meta-data, rather than relative to the home of the project. This problem make it difficult to
move a project to a different location in the filesystem.

 There is a new open source project example on the web site, which allows tarballs to be unpacked and
turned into an Aegis project in less than 30 minutes.

* There is a new aefinish(1) command which may be used to read the state of a change set and then run all
of the Aegis commands necessary to to end development. See aefinish(1) for more information.

* The aexml(1) command now understands ".bz" output file suffix, in addition to the ".gz" suffix it already
understood. The man page has been updated to cover the —output opion.

* The aerevml —send command is now able to produce bzip2 compressed output.

* The restrictions on project alias names have been eased. It is now possible to have any alias name you
like, so long as it doesn’t contain any shell special characters.

* It is now possible to set change attributes from the command line, without going via an editor. See
aeca(1) for more information.

* The aetar —send command is now able to produce bzip2 compressed output.

* There is an new aetar —exclude command line option, allowing you to exclude files from the tarball being
unpacked and used to for the change set. This is typically necessary when a tarball includes derived files
(e.g. the ./configure script in most open source projects).

* There is a new aetar —exclude-auto-tools option, which can be used to exclude derived files commonly
found in open source projects using the GNU Autoconf and GNU Automake tools.

* There is a new aede-policy(1) command which may be invoked by develop_end_policy_command to en-
force additional local policies. See aede-policy(1) for more information.

* When symlinking files (source or derived) into the development directory, the last-modified time of the
link is set to the last-modified time of the file being linked to, when the underlying filesystem supports it.

* The aefa(1) command now accepts name=value attribute assignments on the command line.

* The aet(1) command now understands name=value pairs on the command line, and passes them un-
changed to the test command. The —force option implies a force=1 variable setting.

* The aepatch —send command is now able to produce bzip2 compressed output.

* The aesvt(1) command now uses the bzip2(1) algorithm by default. There is a aesvt —compression-algo-
rithm=gzip option for forwards compatibility.

* There is a new ae-repo-ci(1) command which may be used in an integrate_pass_notify_command to do a
parallel check-in of a change set into a second parallel repository. It understands CVS and SVN at the mo-
ment; it is easy to extend to understand more repository types. The old ae-cvs-ci(1) script now invokes the

Reference Manual Aegis 8

Read Me(Aegis) Read Me(Aegis)

ae-repo-ci(1) command.

* The build step of the development process can now be made optional. Configuring a build_command of
"exit 0" will tell Aegis your project does not need to be built.

* The aedist —replay command now adds a compatibility modifier to all of the downloads URLS, so that the
change set received will be compatible with the version of aedist at the receiving end.

* The aedist —send command now accepts a —no-mime-header option, to make it easier to validate the
aedist(1) output against the real cpio(1) command.

* The aedist —send command is now able to produce bzip2 compressed output.

* There is a new entire-source-hide file attribute which may be used to omit site-specific files from aedist
—send change sets.

* The aetar —remove-path-prefix option now also accepts a numeric argument.
* The aeannotate(1) command now understands the —change and —delta options.

* The aedb(1) command has been enhanced to check that directory permissions above the development di-
rectory will be traversable by the integrator and the reviewers.

* The aecpu(1) comand now understands the —read-only option to mean uncopy all of the insulation files.

* There is a new aelock(1l) command, which may be used to take read-only locks. This can be useful for
backups, and other activities outside Aegis’ scope which require a constant project state to operate cor-
rectly.

* The aedist command can now perform file merges with better results.

* The aedist —receive command now looks to see if the executing user has project admin priviledges, and if
so does not cancel testing exemptions.

* The aedist —receive command now applies patches using the patch(1) command, rather than doing it less
well itself.

* The aedist —replay command now attempts to use the same change number as on the remote system. A
bug has been fixed in the way it looked for change numbers.

» There is a new unchanged_file_integrate_pass_policy field in the project configuration file, which con-
trols what to do when a change set contains an unchanged file at integrate pass time.

* It is now possible for developers to edit a change description when a change is in the awaiting develop-
ment state, if the project has developers_may_create_changes enabled.

* The aed(1) command is now optional. Configuring a diff command of "exit 0" will tell Aegis your
project does not need to be differenced.

* The aeget(1) interface now places HTML anchors in description text where it recognizes them.

* There is a new aeget:inventory:hide change attribute, which may be used to prevent strictly local change
sets from being advertised in the aeget(1) change set inventory.

* The aeget(1) web interface file listings pages now link the edit numbers to file versions. When history is
available there are also links to the previous verion, and the arrow is linked to a diff page.

* The aeget(1) presentation of file history has been improved to highlight renaming of files.
* The aeget(1) web interface now has a recursive option on its project integration history pages.

* The aebuffy(1) command is now able to run the tkaer(1) command from more states, and it now accepts
’q’ to quit. The display of changes with double quotes (") in their brief description has been improved.

* A build problem with libcurl not being present has been fixed.
* A bug has been fixed which caused errors when Aegis was compiled with g++ 4.1
* A build problem has been fixed on Solaris.

* A build problem related to bison(1) using libintl(3) has been fixed.

Reference Manual Aegis 9

Read Me(Aegis) Read Me(Aegis)

* The . /configure script has been improved to correctly detect installation of the OSSP UUID library.
* A build problem on HP/UX has been fixed.
* A build problem on MacOS X has been fixed.

* A build problem has been fixed where libraries required by the . /configure script are located under
/usr/local/lib or some other non-standard place.

Version 4.21 (10-Nov-2005)
You must have the Gnome libxml2 library (http://xmlsoft.org/) installed in order to build Aegis.
Please install the xml2 library version 1.8.17 or later. You do not have to install the rest of Gnome, the li-
brary can be used on its own. If you are using a package based install, you will need the libxml2-devel or
libxml2-dev package in addition to the libxml2 package.

Ideally, you would also install the libmagic package, used to determine file types, just as file(1) does. (This
is not to be confused with the 1ibmagic6 image manipluation library. If you are using a package based
install, you will need the libmagic-devel or libmagic-dev package in addition to the libmagic package.

* A bug has been fixed in the aecp —independent —output option, which resulted in an error when Aegis
tried to chmod nothing.

* The auto file promote feature previously available in aed(1) has been added to the aeb(l), aecp(l),
aerm(1) and aenf(1) commands.

* The aedist —pending and aedist —missing commands now print the number of changes in the remote in-
ventory.

* A bug was fixed in the aecp command which caused a segfault sometimes when the user tries to copy a
removed file.

* The aedist —replay command now accepts a —maximum option, which includes change sets not yet com-
pleted in the local change set inventory when considering what to download.

* There is a new develop_end_policy_command field in the project configuration file. It can be used to add
addition constrains to change sets before they can complete aede(1) successfully.

* The aedist —receive command now annotates remote change sets (typically, change sets downloaded via
the aedist —replay command) with their origin URL.

* A bug has been fixed in the aebuffy command where it would display incorrectly when the brief_descrip-
tion of a change contained double quotes.

* [t is now possible to attach a comment to all commands which involve a change state transition, e.g. aenc,
aede, etc. This is done using the —reason command line option, just as you are able to do for review fail,
etc.

* A bug has been fixed in aenc, where it did not correctly copy user defined attributes.

* There is a new aelcf(1) command to efficiently generate lists of change source files for use by your build
tool.

* There is a new aelpf(1) command to efficiently generate lists of project source files for use by your build
tool.

 There is a new cache of state information attached to each delta, the project file state at the time of the
delta. This has the potential to accelerate aecp —delta, and all other project_file_roll_forward-based opera-
tions. Large projects may want to turn this off, because each delta will produce another large project file
state cache.

* There is support for generating RSS feeds from Aegis. See the Aegis project pages on the Aegis web in-
terface for an example. See aepconf(5) and aeget(1) for more information.

* The ${change delta_uuid} substitution now allows access to the delta_uuid in the being integrated state.
* The "wrong file" error message from aedist has been improved, to say what was expected.

* There is a new optional $filename substitution for the history_put_command, so that you can attach the

Reference Manual Aegis 10

Read Me(Aegis) Read Me(Aegis)

current name of the check-in to the history file meta-data. There is a new optional $uuid substitution for
history_put_command, so you can attach that as mete-data, too.

* There is a new history tool bundled with Aegis. See aesv#(1) for more information.
* There is a new default_regression_test_exempt project attribute.

* The aedist —receive delta selection mechanism has been improved: previously the edit-origin-UUID at-
tribute was considered in favour of the original-UUID attribute, with this change it is used the change set,
bounded to the edit-origin-UUID or to original-UUID, more recently integrated. This should reduce the
frequency of logical conflicts.

* There is a new aerevml(1) command, which can be used to send change sets in the RevML format. See
aerevml(1) for more information. The aeget(1) web interface is also able to serve change sets in this for-
mat.

* A problem has been fixed which caused Aegis to fail on the hppa port of Debian.
* The aetar —receive program now uses the archive name as the brief description.
* A bug was fixed in aedist —send which caused segfaults when processing some files.

* A bug was fixed which caused aedist —send to produce an archive that can not be aedist —receive because
of an operation impossible to replicate in a change set.

* There is an implementation of Robert Collins’ subunit testing framework available. See aesubunit(1) for
more information.

* A bug was fixed in aedist that caused an error when receiving a branch’s archive generated with the aedist
—send —entire-source option.

* A bug has been fixed in aedist —receive that caused a segfault in the rename handling code.

* The aedist —missing listing (and the aedist —replay behaviour) now check for branch UUIDs as well, just
in case someone fetched a branch as a change set and applied it. However, aeget does not report these
UUIDs, because that would be too confusing.

* It is now possible to specify any sufficiently unique leading prefix of a UUID rather than the full 36 char-
acters.

* There is a new ${History_Path} substitution available. It gives you the path name of the history file corre-
sponding to the given filenames.

* A bug in aedist —receive which caused incorrect delta selection has been fixed.

* There is a new aedist —pending option which can print the list of local change sets missing from a remote
repository.

* The aedist —receive command is now able to use the edit-origin-UUID attribute to copy modified files
from the right origin.

* A bug has been fixed in aedist —send where some types of incomplete changes would fail an assert.

* There is a new aexver(l) command which can be used to view historical versions of files in an Aegis
repository. See aexver(1l) for more information.

* A bug as been fixed which caused aemv(1) to incorrectly rename a file to an existing directory
* It is now possible to specify user-defined user attributes in the “/ . aegisrc file.

* The aenf(1) command now gives a warning if you specify the "config" file without the "—config" option.
This is the old name for the project configuration file, the new name is "aegis.conf™.

* The aefind(1) command now understands {+} to mean the resolved file name, and {-} as the unresolved
file name.

» There was a bug where Aegis would exit with a fatal error if one of the directories on the AEGIS_PATH
was read-only. Such directories are now ignored.

Reference Manual Aegis 11

Read Me(Aegis) Read Me(Aegis)

* The aetar(1) command has been improved to process modified and created files in a batched way; this im-
proves the speed.

* Additional explanatory text has been added to the message printed when error message translation files
can’t be found.

* The aenf(1) command now understands the —keep and —no-keep options, to explicitly control the creation
of new files in the development directory.

* A bug has been fixed in aemv(1) which failed to check the new name against the filename charset, etc.

Version 4.20 (28-Jan-2005)
Please Note: Users are advised to check the history command settings in their project configuration files.
With the advent of file UUIDs, the history mechanism now decouples source file names from history file
names. In particular, the assumption that the history file basename is the same as the source file basename
is no longer true. Correct settings may be found in the lib/config.example/ directory of the source distribu-
tion.

* The defaulting rules for the change number (if none was specified on the command line) have been al-
tered. the current directory now takes precedence over the "only one" rule. This seems to meet user expec-
tations better.

* A bug has been fixed in the aecvsserver(l) command which caused to to fail when accessed by some
clients.

* A bug has been fixed which caused many of the programs to leave temporary files behind.

* A bug has been fixed in the aedist —send —entire-source command where it would hang for some cases.
(Actually, it would dump core after using up all available swap space on an infinite recursion).

* A bug has been fixed in the aedist command (and other places) where the open of the project configura-
tion file could fail, due to not properly reconstructing in historical circumstances.

* A bug has been fixed in the integration build which was removing files it should not, for dur-
ing_build_only = true work area styles.

* The aeb command now complains much less about "directory not empty" when using the link farm.

* A bug has been fixed in the aetar —send —entire-source command where some files were missing when
asking for a complete set of historical sources.

* A bug has been fixed in the aedist —send —entire-source where some files were zero length when asking
for a complete set of historical sources.

* A bug in aedist(1) has been fixed, it was forcing regression test on the receiving side even if the change
set does not require it and default _test_exemption was set to true. It was annoying especially if the test
suite take a long time to run completely.

* Some bugs have been fixed in aediff(1) which caused it to mis-parse the command line in some cases, and
it was also barfing on the expected exit status 1 when an actual difference was found.

* A bug has been fixed in the aecpu(l), aemtu(l), aemvu(l), aenfu(l), aentu(1) and aermu(l) commands.
They were not repairing the symlinks (efc) required by the development_directory_style settings.

* A bug has been fixed in the Change_Files listing; it was not showing the locked-by information.

* A bug has been fixed in the code which updates the development directory symlinks. It was failing to
make all the directories required.

* A bug has been fixed in the aedist —send —entrie-source command, where it would segfault in some
cases.

* A bug has been fixed in reading plain diff(1) format patches. This was particularly obvious because aean-
notate(1) uses this form of diff by default.

* A bug has been fixed in aege?(1) where it was showing removed source files as available for download.

* A bug has been fixed in aege#(1) where it produced invalid output if the SCRIPT_NAME environment

Reference Manual Aegis 12

Read Me(Aegis) Read Me(Aegis)

was not set.

* A bug has been fixed in aege#(1) where it would sometimes ignore modifiers. This was particularly noti-
cable in the download pages.

* A bug has been fixed in the aeimport(1) command. It was using the old work area style configuration file
parameters, instead of the new development_directory_style settings.

* A memory leak has been fixed in the symbol table code.

* A bug has been fixed in the project_file_find_by_uuid function. In some cases it would SEGFAULT, par-
ticularly once the memory leak in the symbol table code was fixed.

» Several build problems have been fixed.

* The aeintegratq(l) command has a new —loop options, which causes it to keep processing changes that
become available while it is running.

* The aet(1) command has a new —sugest-limit option which runs as many regression tests as possible
(from most relevant to least relevant) but stops after the given number of minutes. This is a way for running
the most relevant tests in a limited time. For example, this option could be used if a project has so many in-
tegrations in a day that it can only afford 20 minutes of integration testing for each one.

* The aed(1) man page has been updated to better describe the behaviour around the merge command.

* The aetar —send command now accepts an —include-build option that also add build files, registered with
aegis —new-file —build, to the ouput archive. A —not-include-build option is also accepted.

* The aetar —receive command now avoids copying build files from the baseline because this operation is
forbidden and the error stops the processing.

* There is a new ${Change_Attribute} substitution, which is replaced by the values of the change attributes
named.

* The history recapitulation code (project_file_roll_forward) now indexes by UUID rather than by file name
(with backwards compatibility for UUID-less repositories). The user visable result is that file history re-
ports and listings now accurately track renames.

* The aet —nopersevere option now also stops for no result as well as fail.

* The aedist —receive command now understands file UUIDs. This means that it will operate on the correct
file even when one or the other repository has renamed the file.

* The aedist —receive command has been enhanced to perform file merges if necessary.

* There is a new aedist —replay option. When used in with an aeget(1) server, it can be used to synchronize
two repositories. The aedist —missing option may be used to show what would be downloaded.

* The aefa(1) command, with the —edit option, now shows you the content type, rather than adding it
silently.

* There is a new aediff —command option, allowing you to specify the command you want to use to display
the difference. For example, you could use tkdiff(1) or mgdiff(1) to display the change graphically.

* The aediff(1) command now adds labels when it is producing a context or unified diff output.

* There is a new optional review_policy_command field in the project confioguration file. This allows for
customised review policies for each project, including multiple reviewers and specific reviewers for por-
tions of the sources.

* There is a new ${Change_Reviewer_List} substitution, which is replaced by a space separated list of re-
viewers of the current change, since the last develop end. This is of particular use to the review_policy_-
command field of the project configuartion file.

* There is a new ${Change_Developer_List} substitution, which is replaced by a space separated list of all
the developers of the current change.

* There is a new ${quoted_email_address} substitution, which replaces it arguments with the email

Reference Manual Aegis 13

Read Me(Aegis) Read Me(Aegis)

addresses of the names users. See aesub(5) for more information.
* The notification scripts have been updated to use the new ${quoted-email-address} substitution.

* The remaining aegis.cgi(1) functions have been reproduced in aeget(1). The aegis.cgi(1) script is now
deprecated.

* When the UUID of a change is cleared it (because some operation on the change set invalidates it) is
saved in a change attribute named original-UUID.

* The aedist —receive command is now able to use the original-UUID attribute of the incoming change set
to select the delta to merge with.

* The "path unrelated" error message has been updated to make it more informative.
* All attribute names (project, change and file) are now case-insensitive.

* The aedist —receive command has been enhanced to allow you to select the branch of the delta to merge
with.

e Several classes within the source have been refactored.

Version 4.19 (30-Sep-2004)
Please Note: Users are advised to check the history command settings in their project configuration files.
With the advent of file UUIDs, the history mechanism now decouples source file names from history file
names. In particular, the assumption that the history file basename is the same as the source file basename
is no longer true. Correct settings may be found in the lib/config.example/ directory of the source distribu-
tion.

* There is a new development_directory_style field of the project configuration file. This allows CVS-style
and Arch-style work areas, in addition to the BCS-style and viewpath work areas already supported. These
new work area styles permit many existing projects to use Aegis with no change to their build systems. The
libsndfile and OpenLDAP projects, for example, have been imported and built without modification.
See aepconf(S) and the Dependency Maintenance Tool chapter of the User Guide for more information.

* There is a new aediff(1) command, which may be used to obtain a diff(1) listing of a file for different
deltas.

* There is a new aepromptcmd(1) command, used with bash’s PROMPT_COMMAND environment vari-
able. It can be used to obtain a colored prompt, simulating the process described in Kent Beck’s book Test
Driven Development.

* There is a new signed_off_by field of the project configuration file. Set it to true if you want "Signed-
off-by" lines appended to change set descriptions as the changes pass through the Aegis process. The
aede(1) and aerpass(1) commands now understand two new —signed-off-by and —no-signed-off-by op-
tions, to override the project setting. The aedist —send and aepatch —send commands also understand the
new —signed-off-by option, to add the "Signed-off-by" line to the outgoing change set description.
Conforming to: http://www.ussg.iu.edu/hypermail/linux/kernel/0405.2/1301.html and http://www.osdl.org/-
newsroom/press_releases/2004/2004_05_24_dco.html

* The aet(1) command has been enhanced to allow integrators to run specific tests.
* The aesub(1) command can now read the text to be substituted from a file or standard input.

« It is now possible to use the project-specific attributes to specify environment variables to be set for com-
mands executed by Aegis. This can be used to set a predictable PATH, for example.

* It is now possible to customize the aeget(1) web interface using project specific attributes.

* The ael(1) command and the aeget(1) web interface now have file inventory pages, for the project file in-
ventory and the change file inventory.

* There is a new "change set inventory" listing available via the ael(1) command and the aeger(1) web inter-
face, which lists changes and their corresponding UUIDs, and links to an aedist download for each change.
The idea is that the aeget(1) pages may be used to automate downloading change set your repository does
not yet have.

Reference Manual Aegis 14

Read Me(Aegis) Read Me(Aegis)

* There are two new history commands in the project configuration file, the history_transaction_begin and
history_transaction_end fields. It is not an error if these fields are absent. If you need a transaction key,
use the $version substitution.

* The aedist(1) command now runs all tests required for the change set, and honors test exemptions.

* The aedist(1) command now sleeps for a second to ensure that the last-time-modified of derived files will
be strictly later than source files, and that the aeb(1) timestamp will also be strictly later then the last-time-
modified for the source files.

* The tkdiff(1) man page has been updated to say how to use mgdiff(1) instead of tkdiff(1).

* All commands which accept the —change option may now be given a change set UUID. You can discover
a change’s UUID using the ael cd (list change details) or ael inventory listings.

* The aed(1) command now restores source file from backups (,B) when a merge fails. Previously this was
not the case and subsquent aed invocations failed because the source file was missing.

* The aetar —send command now has an —add-path-prefix option, so that you can add a path prefix to all
of the files in a tarball. The aeget(1) CGI interface now adds a path prefix to generated tarballs by default.

* Whenever you edit file attributes, there is a Content—-Type attribute added automagically if none was
there already. The idea is that this could be used by scripts to differentiate file types.

* The aepatch(1) command now uses diff —u by default.

* A number of build problems on different systems have been fixed.

* A number of minor problems with tests on different systems have been fixed.

* A bug has been fixed in the aepatch command; it was not parsing simple diff patches correctly.

* The example history commands have been updated to work better with the new UUID code.

* A bug has been fixed in aecp —delta, where it would fetch the wrong version of a file in some cases.
* A bug has been fixed in the handling of the executable bit.

* A bug has been fixed in aede(1), where is did not permit branches to end when they had a removed file
(without a UUID) which has been subsequently recreated (with a UUID).

* A bug has been fixed in the aeget(1) command for file contents. It was giving a "multiple permissions set
(bug)" error message.

* A bug in the aedist —receive command, where it was not accurately manipulating the incoming change set
UUID.

* A bug has been fixed in aed(1) which caused it to SEGFAULT.

* A bug has been fixed in the aede(1) command, where it failed to copy the UUID when it promoted a file
from "create" to "modify" automatically.

* A bug has been fixed in the $date substitution, it was not advancing properly when used in progress
messages.

* A bug has been fixed in the command line processing of the aefa(1) command.

* A bug has been fixed in the aegis —review-begin command; it was not operating correctly when the
change was in awaiting_review but the project was in goto_being_reviewed.

* A bug has been fixed in the $basename substitution; it now functions exactly like basename(1) com-
mand.

* A bug has been fixed in the aet —bl command; it erroneously stated that the $Search_Path_Exe-
cutable substitution was mandatory, when it actually optional.

Version 4.18 (10-Jun-2004)

Reference Manual Aegis 15

Read Me(Aegis) Read Me(Aegis)

* A number of build problems have been fixed, particularly concerning GCC 3.3 and later.

* The aemv(1) command has been enhanced to accept more than two file names. You are now able to move
serveral files in the one command.

* The aedist —receive command has been enhanced to process move operations in a batched way. This im-
proved performance when receiving a change that renames many files.

* The . /configure script has been changed to take note of the ——sysconfdir option, used to specify
the location of the /etc directory.

* A bug has been fixed in the aepatch(l) command. It would SEGFAULT when a non-source file was
patched.

* A bug has been fixed in the aemeasure(1) command. It would SEGFAULT when no files were named on
the command line.

* The Russian error message catalogue has been updated.

* A subtle bug in the change file out-of-date tests have been fixed. It did not adequately address the transi-
tion case for projects containing files with and without UUIDs.

* The . /configure --sysconfdir option is now honored. It is very important to set it to /etc when
you configure Aegis.

Version 4.17 (3-Jun-2004)
* Each new change set is now assigned a Universally Unique Identifier (UUID) to allow it to be tracked
across geographically distributed development. The aedist(1) and aepatch(l) commands now send the
change set UUIDs, and preserve them on receipt.

* Each file now has a Universally Unique Identifier (UUID) which allows tracking files across renames,
even on geographically separate sites. (The aedist(1) and aepatch(1l) commands send the file UUIDs, the
next release will take advantage of them on receipt.)

* The history filename used to remember file history is now based in the file UUID, if the file has a UUID.
This simplifies continuity of history across renames (this fucntion always been present in Aegis, but harder
to access).

* As a consequence of the UUID being used to generate history file names, there is no longer the restriction
that new files may not be named after the directory portion of a deleted file (or vice versa).

* There is a new aecvsserver(l) command, which presents Aegis projects and change sets as CVS modules.
All of the core CVS functions are supported. This code needs to be exersized and tested by users.

* It is now possible to specify arbitrary attribute names and value for each source file. The aefa(l) com-
mand may be used to edit file attributes. The aedist(1) and aepatch(1) send these attributes; a future release
will take advantage of the information on receipt.

* It is now possible to attach arbitrary attribute names and values to change sets. For example, you can use
this to remember the bugzilla tracking number for a change.

* The aepatch(1) command now includes change set meta-data as a compressed BASE64 encoded block at
the top of the patch, after the human-readable text but before the files. This means that aepatch(1) can be
as effective as aedist(1) is transmitting chaneg sets. Patches without meta-data still work as before.

* There is a new report script which writes change logs in Debian format.

* The aeget(1) web interface has been improved. The aepatch(1) download now accepts compat=N modi-
fier, and there is a new Project Staff page.

* There is a new ae-cvs-ci(1) support script which may be used as an integrate_pass_notify_command to
commit change sets to CVS in parallel.

* There is more documentation in the User Guide about using GNU Diff, particularly using diff —U to pro-
vide whole-file listings with "change bars" on the left hand side.

» The files view of the aeget(1) web interface now accepts options to control the page contents. The

Reference Manual Aegis 16

Read Me(Aegis) Read Me(Aegis)

simplest view allows recursive fetch of project sources using wget or similar, with no extraneous links to
confuse the results. Previous behavior is preserved by the aeget-generated links.

* You now receive a warning when you are seeing the short version of the error messages. These are terse
and often quite cryptic. the long form of the error messages is to be preferred.

* The behaviour of the aedeu(1) command has changed slightly. When changes are in the being reviewed
state, and Aegis has been configured to use the awaiting review state, the aedeu(1) command will now re-
port an error. This is so that reviewers don’t waste their time reviewing changes which have already been
returned to the being developed state. Think of the change as "belonging" to the reviewer while in the be-
ing reviewed state.

* The aedist —send command has a new —compatibility option, use to indicate the version of the receiving
aedist program. This, in turn, selects the features which may be added to or omitted form the generated
. ae file.

* There is a new config file usage, and a corresponding aenf —configure command line option. It is now
possible to move project configuration files. It is now possible to remove project configuration files, pro-
vided there is at least one left. The aeimport(1) command now avoids files which have the same name as
the default project configuration file ("aegis.conf" or "config") and will use something else.

* The aeipass(1) command now adds a symlink from the delta directory to the baseline once it has been in-
tegrated. This helps lots of (idiotic) compilers which insist on burying absolute paths into executables.

* It is now possible to assign to some project configuration file array fields more than once. This can be
useful where the configuration file is split into several pieces on several branches.

* The source language has been changed from C to C++. Future releases will take advantage of this.

* Several bugs have been fixed in the aege?(1) web interface where it would display "—42" instead of "0" for
changes and branches numbered zero.

* A bug has been fixed in the aed(1) command when merging files which have been renamed. It now
recognises they need merging.

* A bug has been fixed in the aenf(1) command. It now correctly ignores difference files when given a di-
rectory name.

* A bug has been fixed in aedist(1) where one of the aegis —new-file commands was missing a —no-tem-
plate argument. Under some circumstances, this resulted in change sets which could not be aedist —re-
ceived.

* A bug has been fixed in the way invalid sequences of multi-byte characters are handled by the internation-
alization code. This potentially affected all reports, listings and error messages. The symptom was that
aeannotate listings could sometimes have a blank source code column.

* A bug has been fixed in the aepatch(1) command. It was creating empty patches for some changes in
completed project branches. This also affected aedist —send and aecp —delta and aecp —rescind in some
cases. It was caused by a subtle flaw in the non-detailed case for the project_file_roll_forward function.

* A bug has been fixed in the handling of the MANPATH enviromnet variable by the profile and cshrc
scripts.

* A bug has been fixed in the aedist —receive and aepatch —receive commands has been fixed. There were
cases where these commands could access off the end of an array and SEGFAULT.

* A bug has been fixed in the aede(1) command when it received pre-config-usage change sets. It used to
try to remove the last project configuration file, which is a fatal error, and made it impossible to receive the
change set.

* A bug has been fixed which caused the aetar(1) command to hang (actually, any thing which consulted
LDAP or NIS) because the reserved symbol "send" was being overloaded. The reserved symbol "clone"
was also being overloaded. Both have been fixed.

* A bug has been fixed which caused the aedis#(1) command to reprt the wrong error when the input file did

Reference Manual Aegis 17

Read Me(Aegis) Read Me(Aegis)

not exist.
* A bug has been fixed in the aenbru(1) command which made project aliases disappear.
* A bug has been fixed in the aede command. It would fail with new build files already in the baseline.

Version 4.16 (14-Jan-2004)
* There is a new aecp —keep option, causing aecp(1) not to overwrite file contents in the development di-
rectory.

* The aedist —receive option now understands changing the type of a file.

* It is now possible to specify a URL to the —file option on the command line of aedis#(1), aepatch(1) and
aetar(1). The data will be downloaded and applied.

* More work has been done towards making the code compilable by a C++ compiler.

* The project list (see ael(1), aeget(1), etc) is now sorted in a slightly more natural way, as are the version
statistics at the end of an aeannotate(1) listing.

* A bug has been fixed in aede(1) for branches, where Aegis would complain about build source files (cre-
ated by the aenf —build command) being out-of-date. This, of course, was difficult or impossible to fix, and
unnecessary because the next build would fix them.

* A bug has been fixed in the aecp —independent command, where it did not preserve the execute bit, nor
honour the user’s umask.

* The missing aemt and aemtu alias ve been added to the profile.

* More detail has been added to aepconf(5) detailing how to create the project configuration file for the first
time.

* A bug has been fixed in aedist(1) and aepatch(1) which would cause an assertion failure (or segfault)
when you tried to aedist —send —delta —es files which did not exist at that delta.

* A bug has been fixed in aedist(1) and aepatch(1) which caused an assert failure (or segfault) when you
tried to send a file which had been created and removed in a branch, and after the branch was integrated
only a remove record exists in the parent branch.

* The problem with test 134 failing has been fixed.

* A bug has been fixed in aeipass(1) which prevented changing a file’s usage from being as straight-forward
as it should have been.

* The source RPM (and the spec file) now has Build Prequisites specified.

» The —Change option now accepts more than just a change number. It now accepts many forms similar to
those used by the ${version} substitution, allowing its output to be used directly as command line input;
forms suchas —c¢ 1.2.C34 and —c=5.6.D78 are now understood to imply a —branch option as well as
either —change or —change-from-delta, respectively. In addition, you may prepend a project name, to im-
ply the —project option as well; form such as —~¢c aegis.4.15.C28 are understood.

* The aemeasure(1) program now also generates Halstead metrics.

* A bug has been fixed in the symbolic link handling code. In some cases it would report "multiple user
permissions (bug)" and not complete correctly.

* A bug has been fixed in the test of aedist(1) for moved files. There was nothing wrong with aedist(1), the
test itself was broken.

Version 4.15 (17-Nov-2003)

Reference Manual Aegis 18

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in “ael cf”. It used to fail an assertion when there were no files in the change.

* A bug has been fixed which caused aeipass to segfault when adjusting file modification time stamps in
some circumstances.

* A bug has been fixed in the cross branch merging code. It would sometime erroneously complain about
files no longer being in the baseline.

* A bug has been fixed which caused aedist(1) and aeannotate(1) to segfault. It was caused by the roll for-
ward history mechanism ignoring some branches in some cases.

* A bugs has been fixed in the aenrv —Descend_Project_Tree option, which was free()ing a project twice,
sometimes causing segfaults.

* The aeget CGI interface is now able to retrieve historical versions of files.
* The aeget CGI interface now has support for file metrics.

* The aeget CGI interface has been enhanced to provide more information about project files and change
files: activity, conflicts, history.

* The aeipass(1) command now sets the AEGIS_INTEGRATION_DIRECTORY environment variable be-
fore running the integrate_pass_notify_command, so that you can add a symlink for compilers which insist
on placing absolute paths into debugging information in object files.

* The aeget CGI interface has been enhanced to provide more information about project files and change
files — activity, conflicts, history.

* The aeget CGI interface now reports more project information.

* The aeget CGI interface now has download links in many of its menus, allowing more and better down-
loads than the old aegis.cgi(1) script.

* The way aenf(1) and aent(1) work have been made more generous. It is now possible to aerm(1) a file
and then aenf(1) or aent(1) the same file in the same change. This is useful for changing the type of a file.
Previously this has to be done as two consecutive changes.

* The aecp —independent command has been enhanced to allow you to extract versions of built files (cre-
ated with aenf —build and maintained at aeipass(1) time).

* Documentation has been added to aer(5) for the try/catch mechanism.

* There was a disagreement between the aereport(l), aeannotate(l), aedist(l), aefind(1), aeimport(1l),
aels(1), aepatch(1), aerect(1), aetar(1) and aexml(1) man pages and the commands themselves about the
existence of the —version option. The commands now behave as documented.

* There is a new Project_Branch_Dates report, which may be used to see when branches of a project were
begun and completed.

Version 4.12 (29-Sep-2003)

Reference Manual Aegis 19

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in aedist(1) where it handled moved files incorrectly.

* There is a new experimental aeget(1) program. It is a potentially faster, potentially more capable replace-
ment for the aegis.cgi(1) script. At the moment it isn’t, it’s experimental.

* A bug has been fixed in aedist(1) where it would sometimes segfault when sending transparent files.
* Command completion now works for the aem#(1) and aemtu(1) commands.

* A bug has been fixed where the symbolic link farm could point to the wrong place when change files are
transparent.

* Change file notification commands have been added for the aemt(1) and aemtu(1) commands. See aep-
conf(S) for more information.

* A bug has been fixed in aefind(1) command where it could report files which had been removed.
* A bug has been fixed in the aecp(1) command where it would scramble the aet —reg exemption.

* A bug has been fixed in the aede(1) command. The problem manifested as an aet —reg command which
terminated early.

* There is a new aexml(1) command. You can now obtain various pieces of the Aegis database as XML.
See aexml(1) for more information.

* The the new_file_command, copy_file_command and remove_file_command fields of the project config
file are now defaulted correctly.

* Theer is a new $change_files substitution. See aesub(5) for more information.

* The project config file has a new architecture_discriminator_command field. Now you can use an arbi-
trary command (rather than uname(2) information) to determine the architecture. See aepconf(5) for more
information.

* The Russian message translation has been updated.
* The German message translation has been updated.

* The ael(1) command now has a new incomplete listing. It lists changes between awaiting review and be-
ing integrated. inclusive.

* The ael(1) command now accepts arguments for the listings. The default-change, default-project, out-
standing-changes and user-changes lists now accept a user name argument.

* The aemt(1) command now understand the —UNCHanged option, so that files which are in the branch,
but unchanged from the deeper branch, may be made transparent.

* A bug has been fixed in the wecp(1) command where the —OverWrite option did not honor the pres-
ence/absence of the —ReadOnly flag.

* There is a new aeedit script. See aeedit(1) for more information.

* A bug has been fixed in the file history mechanism (as used by the —delta options, aeannotate(1l),
aedist(1), aepatch(1), etc) which did not correctly understand transparent files.

* The aeclean(1) command now touches all of the source sfiles. It also accepts a —-NoTouch option.
* There is a new $change_files substitution. See aesub(5) for more information.

*» The aeclean command now touches the source files as well. Use the now —no-touch option if you don’t
want this.

* There have been several improvements to the output of the aegis.cgi script and the web site.

* For Aegis developers: all of the K&R insulation has been removed; you now need an ANSI C compiler to
build Aegis. Some preparation has also been done to get the source ready for a C++ compiler.

Version 4.11 (29-Jan-2003)

Reference Manual Aegis 20

Read Me(Aegis) Read Me(Aegis)

* For Aegis developers: the developer build now uses sudo(8) to simplify and automate the tricky bit. The
regular distribution build is unchanged.

* A bug has been fixed where the ’aet —reg’ command could not find any tests to run, cause by inconsisten-
cies in the view path handling for project file searches.

* A partial Romainian translation has been added.

* A Spanish localization has been added. It needs work by a human.
* The French localization has been improved.

* The aedist(1) command now preserves the executable bit on files.

* There is a new —descend-project-tree option for the aena(l), aera(1), aend(1), aerd(1), aeni(1), aeri(1),
aenrv(1), aerrv(1) and aepa(1) commands, to apply the action to all descendant branches of the project.

* A bug has been fixed in tkaer(1) which stopped it working on some systems.
* The aeintegratq(1) command now copes better with changes leaving the awaiting integration state.
* A bug has been fixed in the aeimport(1) command which misunderstood RCS branches.

* A bug has been fixed where there aenf(1) command would use the new config file about to be created,
which was almost always wrong.

* There is a new ${substr} substitution. See aesub(5) for more information.

* The aeclone(1) command now understands transparent files.

* The aecpu(1) command now restores test exemptions in some cases.

* There is a new aemeasure(1) command, which procudes simple file metrics for use with Aegis.
* There is a new project ancestors report.

* Trunk version number no longer have a leading dot.

* Command line completion now works for zsh(1).

* The aetar(1) command now preserves the executable bit on files.

* A bug has been fixed which caused aetar(1) to hang.

* The aereport(1) and aesub(1) commands now gave the same email address for users.

* The aeannotate(1) command now olny prints caption columns if their value changes. This highlights the
differences, and is less distracting.

Version 4.10 (24-Dec-2002)

Reference Manual Aegis 21

Read Me(Aegis) Read Me(Aegis)

* There is a new aemt(1) command, used to make branch files "transparent". This is like an aecpu(1) com-
mand for branches, but done through the agency of a change set.

Note: The behaviour of the view path in the presence of transparent files is complete, however full support
for aecp —delta and reports is not. Support will be present in the next release. File transparency informa-
tion stored by this release will be able to be used by aecp —delta and reports in the next release.

e There is a new aemtu(1) command, to undo the effects of the aem#(1) command.

* It is now possible to use the aeclone(1) command on changes in the awaiting development state.

* The problematics directory permissions check has been removed from the aeintegratq(1) command.
* A bug has been fixed in aecp(1) when retrieving deltas before files were removed.

* There are new ${split} and ${unsplit} substitutions for manipulating search paths (efc). See aesub(5) for
more information.

* A bug has been fixed where test time stamps were not updated for batch tests which covered multiple ar-
chitectures.

* The aedist(1) program now includes a change number, which will be used on receipt if possible. Note
that this produces .ae files which are not backwards compatible; the —nopatch option will suppress inclu-
sion of the change number in the archive.

* A German translation of Recursive Make Considered Harmful has been added, courtesy of CM Magazin.
* A bug with aeimport(1) and removed files has been fixed.

* A problem has been fixed with the transition case when a project changed from develop_end_ac-
tion = goto_being reviewedto goto_awaiting_ review while having changes in the being
reviewed state.

* A problem with long command lines has been fixed in the aedist —receive, aepatch —receive and aetar
—receive commands.

* A problem with aeimport(1) and binary files has been fixed.

Version 4.9 (23-Oct-2002)
* The aepatch(1l) and aetar(1) commands now accept —add-path-prefix and —remove-path-prefix options,
for manipulating the filenames when unpacking an creating a change set. The aepatch(1) documentation
has been significantly improved.

* There is a new aecp —rescind option, which may be used to rescind (roll back) a completed change. See
aecp(1) for more information.

* The Debian /etc/mailname file is now understood by the ${user email} substitution.

* There is a new project_gantt report, which produces comma-separated-value (CSV) output, for extracting
data to import into Ms. Project. Unfortunately, Mr. Project does not yet know how to import CSV files.

* It is now possible to provide a comment to the aerpass(1) command, just as you always could to the aer-
fail(1) command.

* The aet(1) program now has a —progress option, to tell you where it is up to. See ae#(1) for more infor-
mation.

* The Russian error messages have been updated.
* The aeimport(1) program now understands the CVS Attic directory.

» There are new perl, PLural_Forms, capitalize, downcase and upcase substitutions. See aer(5) for more
information.

* A work-around for the aeimport/delta bug has been added, for projects which were imported with the
buggy aeimport.

* Aegis developers will need to upgrade to GNU Autoconf 2.53 or later, as the GNU Autoconf files have
been updated to work with that version. This does not affect normal users.

Reference Manual Aegis 22

Read Me(Aegis) Read Me(Aegis)

* Many typos have been fixed in the documentation, and some improvements have been made.
* Some build problems have been fixed.
* Numerous improvements have been made to the web interface.

Version 4.8 (19-Aug-2002)
* A bugs has been fixed in the aetar —receive command, where it incorrectly complained about shorty input
files.

* Numerous changes have been made to the web interface. They now use cascading style sheets, have more
navigation links, and inclde tarball downloads.

 Several build issues have been resolved.

* A bug has been fixed in the aeimport(1) command. The symptom was that the aecp —delta command
misbehaved. The probelm was that the first delta needed a timestamp prior to the first change set taken
from the import sets.

* A bug has been fixed in the aepatch —send command, where it would add Index lines for files with no
differences.

* A bug has been fixed in the protect_development_directory = true; handling, where it
would cause a "multiple user permissions setting" error message.

Version 4.7 (6-Aug-2002)
* The aefind(1) command now has —resolve as the default. To get the previous behaviour, use the —NoRe-
solve option.

* In the aeca —e and aepa —e commands, it is now possible to quote strings with at-signs (@) instead of
double quotes. This type of string allows newlines within the string. See aegis(5) for more information.

* For the benefit of Aegis developers, there is now HTML documentation genaretd by Doxygen (if you have
Doxygen installed). When developing an Aegis change, in your development directory, point your browser
at doxygen-html/index.html. The common/str.h file is an example of the style desired, should
you wish to contribute to the effort to get all of the header files suitably annotated. Also, the removal of the
K&R C support has started, see the files in common/*. [ch] for examples. Also <varargs.h> is not
longer used anywhere.

* The aedist(1) command has two new options, —patch and —nopatch, which may be used to control how
and when aedist uses patches. See aepatch(1) for more information.

* A bug has been fixed inthe strncasecmp function. This only affected you if your system did not have a
native version of this function.

* The aeca(l) command now accepts a —fix-architecture option. This option may be used to correct the ar-
chitecture list of a change automatically.

* The aedist —receive command now runs the aeca —fixarch command when a change set arrives which
modified the project config file. This should fix many of the "architecture not in project configuration file"
problems when seeding new projects.

» Some deficiencies on the “How to Become a Developer ” instructions have been addressed. The native
Aegis build (but not the Makefile.in) now builds the "tags" and "TAGS" files so that it easier to navigate the
sources.

* There is a new aetar(1) command. It may be used to send and receive tarballs as Aegis change sets. See
aetar(1) for more information.

* Missing documentation on the aepconf(5) man page about the fine grained file change notification com-
mands has been added.

* Some changes have been made to the Aegis web interface, with more back links. Also uses htmi2diff(1) if
available.

* It is now possible for reviewers to use the aet(1) command to run tests against the changes they are

Reference Manual Aegis 23

Read Me(Aegis) Read Me(Aegis)

reviewing.

* The command completion for the aet(1) command now works better; it now completes project test names
as well as change test names.

* The aepatch(1) and aedist(1) commands now cope with a wider range of input vagueries, including some
weird things done by MTAs and more content transfer encoding synonyms.

Version 4.6 (11-Jul-2002)
/* vim: set ts=8 sw=4 et : */

* The aeipass(1) command now sleeps, rather than issue the rather alarming “warning: file modification
times extend into the future” message. There is a new project config file field, build_time_adjust, which
controls this behaviour, but it is strongly recommended that you leave it on the default setting.

* There is a new ${base_relative} substitiontion, almost the inverse of ${source}. See aesub(5) for more in-
formation.

* A bug has been fixed with the aeca and aepa —edit option. It was caused by the change in the previous
release which added editor user preferences.

* A few build problems have been fixed.
* A bugs has been fixed in the tkaepa script. It would sometimes fail the "OK" button.

* A bug has been fixed in the "user changes" list. It was not explicitly passing the project name when it ac-
cessed the list of user owned changes.

Version 4.5 (26-Jun-2002)
* It is now possible to set pager and editor preferences in your .aegisrc file. See aeuconf(5) for more infor-
mation.

* A bug in aepatch —receive has been fixed, where it would sometimes misapply a patch. The search used
to determine the patch position (when it needs to be offset) has been improved.

* The aedist(1) and aepatch(1) commands now accept —delta and —delta-date options.

* The integrate_q.sh shell script has been replaced by the aeintegratq(1l) Perl script. It can now lots more
useful things. See aeintegratq(l) for more information.

* A bug has been fixed in the date parsing code (used by the —delta-date option). There was the potential to
mis-calculate dates after February 2000.

* A bug has been fixed in aepatch —receive, where it sometimes complain of "no uudecode data in file", for
files which did not require uudecoding.

* There are more change-specific substitutions available. See ${change ...} within aesub(5) for more infor-
mation.

* The aepatch(1) command now understands ordinary diff listings, in addition to the context and unified
differences it already understood.

* There is a new aeannotate(1) command, used to produce annotated source file listings. See aeannotate(1)
for more information.

Version 4.4 (12-May-2002)

Reference Manual Aegis 24

Read Me(Aegis) Read Me(Aegis)

* It is now possible to specify system wide user preferences. See aeuconf(5) for more information.
* The aepatch(1) command now understands the quoted-printable content transfer encoding.

* The aepatch(1) is more robust when receiving patches that want to use a change number that has already
been used.

* The Dutch error message translations have been updated.

* There was a problem with the way the install directory for aegis.cgi was being determined. The aegis.cgi
script is now installed into $bindir by default. There is a aegis.cgi.i helper script to find your web
server’s cgi-bin directory and copy aegis.cgi there, but this is not done automatically. See aegis.cgi(1) for
more information.

* Another change has been made to cope with still more Bison changes.
* A French error message translation has been contributed.

* A problem with aedist —receive has been fixed, where the new configuration_directory could interact with
the order of file creation.

* A big has been fixed in the uuencode output, which could occasionally miss the "begin" line.

* A bug has been fiexed in the context diff parsing, where it would get the last hunk wrong if it was a hunk
which deleted lines, due to incorrect end-of-file handling. This affected both aepatch —receive and aedist
—receive, because aedist(1) now includes patches for better merge behaviour.

* Numerous issues concenting the new GNU Gettext versions have been addressed.

* A number of Solaris build problems have been fixed, and one genuine bug buried in the warning messages
(change completion time was wrong for changes not yet completed).

* More information about the "mod times extend into the future" warning issued by aeipass(1) has been
added to the man page.

» Some improvements have been made to the web pages.

Version 4.3 (16-Apr-2002)
* The notification shell scripts all now use sendmail consistently. Autoconf support for locating sendmail is
not yet present.

* A problem which caused a core dump on Cygwin has been fixed.

* The aede(1) command now gives a more informative error message when files in a branch require merg-
ing.

* There is now an interconnection between the aeib(1) and the aeb(1) command. When you specify a mini-
mum integrate begin, you also get a minimum integrate build.

* A bug has been fixed which caused aenf(1) to dump core if you used the file name accept pattern.

* The executability or otherwise of each source file is now remembered. If any of the execute bits are set at
aede(1) time, the file is remembed as executable. When an executable file is copied into an integration di-
rectory or development directory, all of the execute bits (minus the project umask) are set.

* A bug has been fixed in the “aecp —ind” command, where it would give a “there is no development direc-
tory” error when you tried to extract a file version from history of a completed branch.

* Many of the web pages have been updated to provide a more consistent and intuitive interface. It is also
possible to get patches, via the aepatch command.

* Interrupts are now ignored during database writes. This should alleviate some of the problems induced by
Ctrl-C. (It would be nice to find the actual cause.)

* The aedist(1) command has been enhanved to include a patch fragment for modified files, as well as the
whole source files. On receipt, if the patch applies cleanly the whole source is ignored. If the file does not
exist at the receiving end, or the patch does not apply cleanly, the whole source file is included. The incri-
mental cost is very low, because all of the patch pieces appear in the source file, and thus compress

Reference Manual Aegis 25

Read Me(Aegis) Read Me(Aegis)

exceptionally well. The net result is to greatly reduce merge costs on recipt of . ae files. However, this
change to aedist(1) is only backwards compatiple. Previous versions of aedist(1) will give a fatal error if
they see a . ae file generated by this version of aedis#(1).

* File name resolution is now more robust in the face of permission problems.
» Some error message translations have been improved.
* A small bug has been fixed in the history labeling.

* You can now use shell (#) and C++ (//) comments in your project config file, if you prefer them to C com-
ments.

* A bug has been fixed in the maintenance of the symlink farm. It would often fail to make all of the neces-
sary symlinks.

* There is a new project attribute, protect_development_directory, which when true causes the development
directory to be read-only in states between awaiting_review and being_integrated.

* A problem has been fixed where some reports would fail is users had made their .aegisrc files unreadable.
* A number of small build problems have been fixed.

* Command completion has been added for the aeb(1), ae_c(1), aeca(l), aecd(1l), aechown(l), aeclean(1),
aecp(l), aecpu(l), aedb(1), aedbu(l), aede(1), aedeu(1), aedn(1), aeib(1), aeibu(l), aeipass(1), aeifail(1),
aena(l), aencu(l), aend(l), aenf(1), aenfu(l), aeni(l), aenrv(l), aentu(l), ae_p(l), aepa(l), aera(l),
aerb(1), aerbu(1), aerd(1), aerfail(1), aeri(1), aerm(1), aermu(1), aerpass(1), aerpu(1), aerrv(1) and aet(1)
commands. More will be added in the future.

* [t is now possible to specify a directory to contain project config file fragments. These fragments are then
read in as if catenated as a single project config file. See aepfonf(5) for more information.

Version 4.2 (26-Feb-2002)
// vim: set ts=8 sw=4 et :

* There is a new “—No-Page-Headers” option which may be used to suppress page and column headers in
listings and reports.

* There is a new “aecp —delta-from-change” option, allowing the specification of a delta number by specify-
ing the number of a completed change.

* The “aecp —ind —delta” command now omiits files which did not exist at the given delta.

* There is a new history_label_command which may be used to label your history files at each integration.
See aepconf(S) for more information.

* The code which guesses which change you are working on, based on your current directory, has been en-
hanced to cover far more cases. It can recognize the integration directory, too.

* There is a new Change_Log report, which generates reports in the style of common Internet change logs.
* The web interface is now able to show you file differences between deltas.

* A bug has been fixed in the “aecp —delta” command (for all delta variants). The problem occurred when
you wanted to copy a version of the file before the file has been modified by the branch (but it wasonly a
problem for files modified later in the branch, files never modified by the branch were OK). As a side-ef-
fect of the bug fix, “aecp —delta” now goes significantly faster (N times faster, where N is the number of
files you are copying).

* Build problems caused by new Bison releases have been fixed.
* A number of oversights in handling the new awaiting review state have been corrected.

* The ${expr} substitution has been enhanced to include modulo, logical not and the six relative operators.
All using the usual C syntax and precedences. See aesub(5) for more information.

* There is a new ${switch} substitution, see aesub(5) for more information.

* A Russian localization of the error messages has been contributed.

Reference Manual Aegis 26

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in the “aecp —output” code, which sometimes incorrectly created directories.

* A bug has been fixed in the symbolic link maintenance code. It now repairs links which point to a file
which is too deep in the ancestor tree, and has been subsequently replaced. It now uses a single pass, rather
than two passes.

*» The change_file_command field of the project config file is now available at a finer granularity. There are
8 new commands (the copy_file_command, copy_file_undo_command, new_file_command, new_file_-
undo_command, new_test_command, new_test_undo_command, remove_file_command and remove_file_-
undo_command fields) which may be individually configured. They default to the previous behaviour, for
backwards compatibility. See aepconf(S) for more information.

* A bug has been fixed in the aepatch(l) command, which prevented it form constructing patches for
changes on completed branches.

* The aeipass(1) command now issues an error message if the build changes a source file. (Previously it er-
roneously reported that the history tool had done the damage.)

* A bug has been fixed in “aecpu —unchanged” in the case where the change had no files. (It tried to un-
copy a file called the empty thring.)

* The missing aemvu(1) man page has been added.

Version 4.1 (6-Dec-2001)
Note: You will need to upgrade all of your Aegis machines simultaneously for this release. It introduces
database changes which older Aegis release will not be able to cope with.

* A bug has been fixed in aed(1), which tried to access a nonexistent files under some circumstances.

* A bug has been fixed in aede. When two changes created the same file, the second change received a mis-
leading message from aede.

* There is a new German message translation.
* There is a new tkaepa(1) command, giving GUI access to the aepa(1) command.

* The aeclone(1) command now runs the change_file_command and project_file_command from the project
config file. This is in order to be more consistent withthe aecp(1) command.

» The "time safe" property described by Damon Poole mostly applies to Aegis’ operation. One last area re-
lated to future times and the —delta options. There is now a warning in the instance where non-time-safe
behavior may occur.

* The history_put_command and history_create_command field of the project config file are strongly rec-
ommended to be identical. It is now possible to only specify the first one, and the second will default to it.

* A bug has been fixed in the aeib(1) command, when the link_integration_directory field in the project
config file is false.

* There is a new awaiting review state, and new aerb(1) and aerbu(1) commands to go with it. It is now
possible to configure your project to have changes enter the awaiting review state after aede(1), rather than
the being reviewed state. It is also possible to skip the review states altogether and immediatelt enter the
awaiting integration state.

* There is a new modeP field for the specification of architectures in the project config file. The means that
you can designate some architectures as mandatory and some as optional. See aepconf(5) for more infor-
mation.

* The aenbr(1) command now populates the new branch’s baseline with symlinks if the project config file is
set so that they would remain after an integration build. This is more consistent with the aedb(1) behaviour
in the same situation.

» There have been a number of changes to the web pages, accompanying the move to SourceForge, along
with some corrections.

* There is a new aels(1) command, which may be used to list directories, annotated with Aegis’ file

Reference Manual Aegis 27

Read Me(Aegis) Read Me(Aegis)

attribute information.

* The aeclean(1) command now accepts the —Keep option, so that it reports what it would do, rather than
actually do anything.

* A problem with the CGI interface, which reported a bug to the user, has been fixed.

Version 3.29 (31-Oct-2001)
* The aeimport(1) command can now import CVS repositories which contain binary files.

* There is a new ${Read_File_Simple} substritution. It is like ${Read_File}, but is does not substitute into
the file contents.

* The aecp —independent command now accepts a —output option.

* There is a new ${environment} substitution, allowing you to access environment variables within substitu-
tions. See aesub(5) for more information.

* There is a new ${project-specific} substitution, allowing you to define project specific value to be inserted
into various commands. See aesub(5) and aepconf(S) for more information.

* The aefind(1) command now works with completed change. It searches the baseline.

* A problem with using the ${source} substitution within the integrate_pass_notify_command has been
fixed. It was getting the path wrong.

* The batch test command is only ever invoked of there are tests to run. (This fixes a problem where it
would simethimes run with no arguments.)

* The web reports now bahave themselves when the names of non-longer-here user appear.
* A number of errors and typos have been fixed in the documentation.

Version 3.28 (21-Aug-2001)
* There is a new aepatch(1) program, which may be used to send an receive changes using the classic open
source patch format. See aepatch(1) for more information.

* The general output mechanism (for listings and reports) has been rewritten to be significantly faster.
* Numerous small things have been improved in and around the . /configure script and the Makefile.

» The web interface has been improved. It should result in better save file locations being suggested for
. ae files. cgi vs downloads

* Aegis now takes a baseline read lock during tests, so that the baseline doesn’t move out from under your
tests, causing mysterious failures.

* A bug has been fixed in the subst function of the report generator. It was free()in a string twice.

* There is a new ${developer email} substitution, for inserting users’ preferred email addresses into com-
mands. Useful for the state transition notification commands.

* There is now more text in the aepconf(5) man page, explaining how each of the pattern fields are applied
to file names. It is now explicit when patterns applied to whole file names, and when they only applied to
path name elements.

* A segfault has been fixed in the removed file whiteout code.
* The aesub $source substitution now works in combination with the —BaseLine option.
* The aegis.spec file now mentions the executables again.

Version 3.27 (26-Jun-2001)

Reference Manual Aegis 28

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in the aesub(l) $delta substitution. It now works correctly for completed
changes.

* A bug has been fixed in aermu(1), when used in combination with the symlink farm. It no longer com-
plains about "multiple user permissions set".

* A serious bug has been fixed in the locking code. The bug meant that only one build per project could
happen at a time. (There was never any risk of repository or Aegis database damage.)

* A bug has been fixed in the aedist(1) command. It failed to correctly recognise files produced using the
aedist —send —no-ascii-armour option.

* The aecpu —unch command now deals more gracefully with files which have been removed from the
project in the mean time.

* There is a new change file history listing, similar to the file history report. It is much faster, much more
informatuve, and less selective.

Version 3.26 (21-Jun-2001)
* Some optimizations have been done to the input parsing. Depending on your architecture, this will or
won’t be noticable.

* The locking has been changed so that aeipass(1) takes precedence over new development builds, so that
there is a guarantee that aeipass(1) will succeed in finite time. Current development builds will run to com-
pletion, but new development builds will block until the aeipass(1) gets the basline lock and subsequently
completes.

* The "file format error" bug in aedist(1) has been fixed.

*» There is a new project activity report, which is useful to project leaders to see what has been happing in
the project, sorted by time and then by user name.

* Aegis can now transparently cope with binary files, even if the history tool cannot. It does this by using a
MIME encoding for binary files. (This can be configured away, if your history tool correctly handles bi-
nary files.) See aepconf(5) and the User Guide for more information.

* There is a fix for the "file unrelated" error commonly seen on Solaris and BSD when combined with an
automounter, in come cases. It relies on the bash(1) behaviour which sets the $PWD environment variable.
(GNU libc does this internally to the getcwd(3) function, not all libcs do.)

* The aer(1) report generator now has access to the project config file fields, through a new config field
in the report generator’s concept of the project state.

* There is a new aer(1) $comdir substitution, which gives access to the shared state directory, configured
at build time.

* The aebuffy(1) now accepts a project name on the command line.

» There is a new build_covers_all_architectures field in the project config file, so that you can tell Aegis
that the build tool builds all architectures wimultaneouasly. See aepconf(5) for more information.

* The tkaer(1) command now has a comment editor, so that you can edit your review fail comments from
within the GUL

* A bug has been fixed which was caused aenbru(1) to delete one directory level too deep when the branch
was removed.

* There is a new getuid () function in the report generator.

* This change fixed a bug in aede(1) where it would not allow a branch, created with aeimport(1), with new
files which had subsequently been modified to end development, when those files had never existed in the
baseline.

* It is now possible for project administrators to nominate the developer in the tkaenc(1) dialog. You are
presented with a pick list.

* There is a new aesub(l) $history_directory substitution. This may be used in scripts which

Reference Manual Aegis 29

Read Me(Aegis) Read Me(Aegis)

access the history tool’s files directly.

* There is a new change_file_undo_command field of the project config file. It is similar to the change_-
file_command field (it defaults to it if unset), but is executed by all of the “undo” file commands.

* The aede(1) command no longer cancels your build and test time stamps. This means that you don’t need
to re-build if you don’t change anything, after aedeu(1) or aerfail(1).

Version 3.25 (3-Apr-2001)
* It is now possible to remove users who’s accounts have been removed (the affects the aera(1), aerd(1),
aeri(1) and aerrv(1) commands).

* There is a new —description-only option to the aeca(l) command. This is useful for editing only the de-
scrioption, and also for use within scripts.

T3}

* The —file option has now been generalized to accept
scripts.

to mean the standard input. This is useful in

* There is a new aebuffy(1) command, which may be used to see what changes a user has outstanding. It
needs X11 (Tk/Tcl) to work. Named after the xbuffy(1) command.

* The tkaer(1) command now presents you with a “detail” button, so that you may see the change details
when pwerforming a review.

* The restriction that placed the function name at the start of the command line (e.g. the “—cp” of aecp) has
been relaxed. This may now appear anywhere on the command line.

» The Bourne / BASH shell aliases have been improved, so that they now preserve quoting of special char-
acters and white space. This dates from the earliest days of Aegis. It’s wonderful to have it fixed at last.

* There is a new aemvu(1) command, which may be used to undo the effects of an aemv(1) command. This
should prove less confusing than the previous method.

* A big has been fixed in the aemv(1) command. It failed to accept the —base-relative option, even though it
was documented to do so.

* A bug has been fixed in the quote_tcl() report function. Is fixes the problem with getting the dollars sign
into descriptions when using the tkaenc(1) command.

* The SCCS section of the User Guide and example configurations have been updated and confirmed to
work correctly, however I've only tested this with GNU CSSC.

* A bug in the file name handling has been fixed. This was most obvious around the aecpu(1l) command
when you had create_symlinks_before_build turned on and you were using an automounter, but it occured
at other times as well.

* The aeimport(1) command now understands the SCCS format. If the comments in GNU CSSC are accu-
rate, this also means you can import BitKeeper repositories, however I am unable to confirm this.

Version 3.24 (10-Mar-2001)

Reference Manual Aegis 30

Read Me(Aegis) Read Me(Aegis)

* There is a new aeimport(1) command, which may be used to import CVS archives into Aegis.

* The cross branch merge has been improved so that it uses an earlier version number than it was using, re-
sulting in a more sensable merge.

* A bug has been fixed in the ${quote} substitution which incorrectly quoted the exclamation mark (!). Un-
fortunately, quoting isn’t at all simple, because you can’t exclusively use single quotes or double quotes or
backslash.

* There is now a ${change description} substitution, allowing you access to the brief description of a
change in a substitution. (The suggested RCS history command have been changed to use it.)

* A Dutch localization of the error messages has been contributed.

* Project administrators can also use the aeibu(1) command. Handy for abandoned integrations which in-
convenience everyone else.

» There is a new project config file field, called build_covers_all_architectures, which allows
you to tell Aegis that your build process can cover all architectures simultaneously.

» The ${quote} substitution has been fixed to correctly quote more characters. It now prefers the single
quote (but is is npt possible to use this exclusively).

» The web site now uses PDF files for documentation, rather than gzipped PostScript. This was for lots of
reasons, including the fact theat many folks couldn’t work out how to print them, and also IE decompressed
them “for free” but left the .gz suffix.

* The report generator, aereport(1), can now access fields of the .aegisrc file. This is important for access-
ing the preferred email address in various reports. ® The “aecp —delta” command now adds removed files
to the change as removed files instead of adding them as copied-but-empty files. This should make repro-
ducing projects more accurate, but you need to use aermu(1) to get rid of them ,rather than aecpu(1).

* The aedist program now adds a “Content-Disposition” header to the files it generates. This means MIME
programs will unpack it into a correctly named file more often.

Numerous build problems have been fixed, both for Unix and for Cygwin (Windows). There have benn
some test script improvements, too.

Contributions have started to roll in using the “aedist” format. This is very encouraging. The instructions
for how to do this are contained in the “Howto”, in the Developer section.

Version 3.23 (29-Oct-2000)
* A bug has been fixed which caused the report generator change_number function to give garbage answers
for change number zero (fortunalely, not very common).

* There is a new mtime function in the report generator.
* There is a new aecomp utility, which may be used to compare two active changes, using tkdiff.
* A bug in “aesub ${dd}” which reported the wrong directory when applied to branches, has been fixed.

» The project config file now contains two new fields, create_symlinks_before_integration_build and
remove_symlinks_after_integration_build, which may be used to better control the behavior of the symlink
farm at integration time. (Default behavior is backwards compatible.)

* A new utility called tkaer has been contributed. It is for reviewing, and shows you lists of files. When
you click on one, it launches tkdiff(1) to examine it. You’re going to like this one, folks!

* The aedist —receive command now preserves the testing exemptions, if possible.
* A problem with very very large test runs and the —no-persevere option has been fixed.

* The aenf(1) and aent(1) commands now accept —template and —no-template options, to control the use
of new file templates.

* A nasty Catch-22 in the aedist(1) command has been fixed, involving the (unnecessary) use of new file
templates, when the actual template files don’t yet exist in the —receive development directory.

Reference Manual Aegis 31

Read Me(Aegis) Read Me(Aegis)

Version 3.22 (13-May-2000)
* Please Note: Some code has been added to Aegis to assist in diagnosing problems when restoring projects
from backups. If you see a message “aegis: project-path: has been tampered with (fatal)”” this means there
are problems with the project file ownerships. The project owner needs to be >= AEGIS_UID (defaults to
100), and the project group needs to be >= AEGIS_GID (defaults to 10). Use chown —R and/or chgrp —-R
to fix these problems.

* The aesub(1) command now accepts the ${arch} substitution in combination with the —baseline option.
* A bugs has been fixed in the aedist —receive command, when one of the files was also locked for review.
* A bug in aeclone(1) has been fixed, where it dropped file move information.

* The aeib(1) command now correctly validates that youare actually allowed to do this integration. This
may win the prize for the oldest Aegis bug.

* There is a new ${search_path_executable} substitution. See aesub(5) and aet(1) for more information.

* Line wrapping in reports works properly again for lines with no white space. The previous release broke
it when the wide output generalization was added.

* The aet —nopersever option works again. The previous release broke it when the batch test support has
implemented.

* A problem with the aeb(1) command which made it difficult to use with th symbolic link farm (in some
cases) has been fixed.

* A new report is available from the web interface, showing a change-of-state histogram over time for all
state transitions (not just the integrate pass transitions).

* A problem with the aenf(1) command which made it difficult to use with th symbolic link farm (in some
cases) has been fixed.

* The aeipass(1) command now preserve file mod times across history updates, if the history tool gratu-
itously changes them.

* The Solaris and IRIX build problems (wputc, et al) has been fixed.
* Numerous documentation patches were received and have been applied.

Version 3.21 (12-Mar-2000)
* A couple of minor bugs have been fixed in aedist, especially the problem with sending an baseline image
while a change is being reviewed.

* A couple of bugs have been fixed in the tkae* commands, in partucular they no longer leave temporary
files lying around.

* Lots of stuff has been added to the HOWTO: a cheat sheet, how to change a project’s owner, how to use
distributed development, how to become a developer.

* The problem which caused ‘aesub ${copyright_years}’ to contain duplicates has been fixed.

* There have been Y2K fixes: the date parsing for the —delta-date option has been fixed, and the web page
data has also been fixed.

* The aet(1) command can now run more than one test at once, if configured appropriately. This is of most
use on systems with more than one CPU.

* The —UNFormatted option no longer truncates column values.

* The aesub(1) command now accepts the —baseline option, so that you can get project-specific substitution
in shell scripts.

* A bug has been fixed in tkaenc(1) which gave incorrect testing ssttings. It now also tracks the project test-
ing exemptions.

* A bug in aenf(1) has been fixed which allowed multiple instances of the same file to be created.

* A bug has been fixed which caused ‘aesub ${search_path}’ to fail in some cases.

Reference Manual Aegis 32

Read Me(Aegis) Read Me(Aegis)

* A bug has been fixed in aenf(1) which allowed you to create the same file multiple times, corrupting
Aegis’ database and causing aede(1) to report mysterious errors. Use aenfu(1) multiple times to untangle
things.

* Information has been added to the section 5 manual pages, detailing how to access state information from
within the report generator. This should make writing report scripts a little easier.

* A bug has been fixed which caused Aegis to misbehave when launched by some versions of cron(8) or
at(1).

Version 3.20 (19-Oct-1999)
* The aeib command is now more robust about “foreign” files in the baseline (e.g. root-owned core files).

* A bug has been fixed in the ${administrator_list} substitution.
* A bug has been fixed in the aedist —delta option, which caused it to dump core.

* There is now a section in the History Tool chapter of the User Guide describing how to add checksums to
your history files, in order to detect file corruptions. It is a general technique which applies to most history
tools (including RCS).

* A bug has been fixed which caused aeclone to misbehave badly when dealing with removed files.

* There is now an embryonic “How To” document for Aegis. Please feel free to contribute subjects.

* You can now say “—~BRanch -” as a synonym for the “~TRunk option, for those commands which accept
it.

* The report generator now copes with more types of empty lists.

* A bug has been fixed which caused a core dump instead of a useful error message if you tried to create an
alias with an illegal name.

* A bug has been removed which left undeletable branch aliases if a branch was removed.
* A bug has been fixed in aenbru which failed to remove the branch development directory .

* The aenf(1) command now behaves better when you do horrible things like turn the files you created into
directories without telling Aegis first.

* A couple of small bugs have been fixed in the aenpa(1l) command, both in error situations.
* A bug with the —interactive option has been fixed. It will actually ask you, now.

Version 3.19 (4-Aug-1999)
* You can now run a command to generate new file templates if you want, rather than using a simple string
substitution. See aenf(1), aent(1) and aepconf(5) for more information. The existing functionality is still
there.

* There is a new ${SUBSTitute} substitution, which provides regular expression substitutions. This is use-
ful in new file templates.

* A bug has been fixed which allowed aede of a branch when there were some kinds of outstanding
changes.

* The automatic change number guessing has been improved slightly, and will cope with some more varia-
tion in the development_directory_template field.

* There are two new commands, aenpa(l) and aerpa(l) for creating and removing project aliases. This
means that you can give project branches more meaningful names.

e There is a new aesub(1) command. It substitutes its arguments and prints them, rather like the echo(1)
command. This is useful when you need access to the Aegis substitutions in a script.

* The command line option “~-""1is now understood. It means “the rest of the arguments on the command
line are filenames or strings”. Because this makes the options on the command line more "order sensitive"
than usual, use with care.

* There is a new tkaenc(l) command, allowing you to create new change via a Tcl/Tk GUIL. (And a

Reference Manual Aegis 33

Read Me(Aegis) Read Me(Aegis)

problem with TCL special characters in description text has been fixed.)

* The aenf(1) command now does the right thing with directories named on the command line. In particu-
lar, you can now use “aenf .” to import whole directory trees.

* There is a new State-File-Name list type, useful when writing cookbooks or makefiles to keep a web page
in sync with a change.

* There is a new ${capitalize} substitution, useful for putting in new file templates.

* A bug has been fixed which caused aeclean to delete the development directory of changes with no files.

Version 3.18 (8-Jul-1999)
* A bug has been fixed which caused aecp —delta to dump core in some cases.

* A bug has been fixed which caused the create-symlinks-before-build functionality to create symlinks to
deleted files.

» Still more typos and minor errors have been corrected in the documentation.

* The aerp(1) man page has been moved to aerpass(1). Similarly for aerfail(1), aeipass(1) and aeifail(1).
This should make things easier for users to find the man pages.

Version 3.17 (22-Jun-1999)
* Another aedist bug has been fixed — unfortunately it was introduced while trying to fix the last one.

* A Cygwin 20.1 portability bug has been fixed.

* There is a new ${dirname_relative} substitution. This is useful in new file templates, and also some con-
figured commands.

Version 3.16 (15-Jun-1999)
* There is a new tkaeca command. It is a GUI interface to the aeca(l) command, using Tcl/Tk.

* There are two new reports available: the Project-Branches and Project-Active-Branches reports may be
used to query about branches within a project.

* A bug has been fixed in the aedist —receive duplicate suppression code. It was complaining about user
permissions.

* A bug has been fixed in aeb(1), which did strange things if you tried to build an unbuildable change.

* There is a new —No-WhiteOut option for the aerm(1) and aemv(1) commands, letting you suppress the
“whiteout” files, along with some explanation in the man page about why they are there. See aerm(1) for
more information.

* The default value of the “maximum_filename_length” field of the project config file has been raised from
14 to 255. If your project depends on the old default value, you will need to set it explicitly.

* The aedist —receive command now accepts a —directory option, so you can specifiy the location of the de-
velopment directory.

Version 3.15 (2-May-1999)

Reference Manual Aegis 34

Read Me(Aegis) Read Me(Aegis)

» The “aedist —receive” command now accepts a —delta option, allowing a received change set to be ap-
plied to an historical version.

* There is now some information about managing super-projects and sub-projects in the Branching chapter
of the User Guide.

* The aenpr(1) command now accepts a —keep option, so that you can re-attach projects moved after using
the aermpr —keep command. See aenpr(1) for more information.

* The aenpr(1) command now accepts —edit and —file options, allowing you to specify project attributes
when creating the project. See aenpr(1l) for more information.

» If the project developers_may_create_changes attribute is true, the aencu(1) command now allows devel-
opers to destroy changes they created.

* There is a new add_path_suffix substitution, for manipulating search paths. See aesub(5) for more infor-
mation.

* There are 3 new substitutions: ${bindir}, ${datadir} and ${libdir}. These are replaced by the ./configure
options of the same name (or the values calculated, if none were given to ./configure). The old ${lib} sub-
stitution is deprecated in favour of the new ${datadir} substitution. See aesub(5) for more information.

* Some changes have been made which increases portability, particularly the Linux libc5 vs libc6 differ-
ences.

» Some changes have been made which increases portability, particularly for Windows NT. This isn’t to say
Aegis works under Windows NT yet, but it helps the porting efforts. Don’t forget to run the mkpasswd and
mkgroup utilities included in the Cygwin system.

Version 3.12 (26-Mar-1999)
* The way the Apache configuration files are scanned for and read has been changed, to adapt to recent
Apache changes. The ./configure script will now find it more often.

* The “aedist —receive” command has been enhanced to be more robust about change sets without headers
(some browsers generously strip them all off.

* A bug has been fixed in the “aedist —receive” command which sometimes caused decompression failures.
An unfortunate interaction with the Windows NT support caused CRLF sequences in the compressed data
to be mangled in some cases.

* The wrong include file was being used for zlib. This has been fixed, so it should build more easily now.

* The way MANPATH is handled on Linux has been improved in the chsrc and profile commands. It will
not over-ride /etc/man.config now.

* The aegis.cgi script has been made more robust in coping with aedist errors.

» The symlink_exception field of the project config file now accepts filename patterns, not simply literal
filenames.

* There was a problem compiling with gcc 2.8, involving the <stdarg.h> header. This has been fixed.
Version 3.11 (17-Mar-1999)

Reference Manual Aegis 35

Read Me(Aegis) Read Me(Aegis)

* The aef(1) command now accepts a —force option, forcing tests to be run, even if Aegis doesn’t think
they need to.

* The Aegis CGI interface has been enhanced so that you can download changes from the generated web
pages listing the changes, using the aedist command.

* The aedist —send command now accepts a —no-ascii-armor option, which leaves off the MIME base
64 encoding. Useful for binary distributions and web servers.

*» There is a new trojan_horse_suspect field in the project config file. This is used by aedist —receive to
check for files which could be abused to carry Trojan horse attacks.

* The aedist —receive command now accepts a —trojan option which treats the incoming change set as
suspect, and a —no—-trojan option which treats the incoming change set as benign.

* The aedist —receive command now quotes filenames (if necessary) when executing commands, thus de-
fending against filenames which contain semicolons.

* The aenbru(1) command has been implemented at last. At last! You no longer need to use the aedbu
work-around.

* The aedbu(1) command now gives an error if you attempt to apply it to a branch.

* The aermpr(1) command may now be applied to a project with active branches, and will remove the
branches as well (provided there are no active changes on any of the branches).

* The dos_filename_required and windows_filename_required fields of the project config
file have been enhanced to reject the brain-dead Windows special filenames such as “aux” et al.

* The ${user} and ${project} substitutions have been enhanced to provide additional information
when given an additional argument. Useful for file templates. See aesub(5) for more information.

* Several portability enhacements, notably the Windows filename incompatibility has been fixed, and also
the Linux stdlib.h problem.

Version 3.10 (6-Mar-1999)
* As of this release you must have zlib installed before you can build Aegis.

* There is a new reuse_change_numbers project attribute, letting you control whether aenc fills in holes in
the change number sequence. Defaults to true if not set. See aepattr(5) for more information.

* There is a new integrate_begin_exceptions field in the project config file. This permits the user to specify
file to be omitted when the integration directory copy/link is performed.

* The aet(1) command has been changed so that it does not exit with an error if you have a test exemption
but no tests. This is no longer an error.

* There is a new aedist(1) command, which may be used to send and receive Aegis change sets via e-mail
and the web.

* The aeclone(1), aenbr(1), aenc(l) commands now accept a —output option, a file to contain the auto-
matically generated change number. This greatly assists in writing scripts. See the man pages for more in-
formation.

* The aent(1) command now accepts a —output option, a file to contain the automatically generated file
name. See the man pages for more information.

* There is a new compres_database field in the project attributes, allowing the Aegis database to be stored
in a compressed form (using the GNU Zip algorthm). Unless you have an exceptionally large project, cou-
pled with fast CPUs and high network latency, there is probably very little benefit in using this feature.
(The database is usually less than 5% of the size of the repository.) On slow networks, however, this can
sometimes improve the preformance of file-related commands.

Version 3.9 (7-Feb-1999)

Reference Manual Aegis 36

Read Me(Aegis) Read Me(Aegis)

* A bug in the merge command has been fixed. It no longer deletes all of your change source files if one of
the merge commands fails.

* There is a new tkaegis command, using Tk/Tcl to give Aegis a GUIL. Contributed by Graham Wheeler
<gram@cdsec.com>. Please report tkaegis bugs and suggestions to Graham.

» The integrate pass command has been enhanced to cope with RCS and SCCS expanding keywords in
source files (modifying the repository) on check-in. This can be ignored, or a warning can be issued, or it
can be a fatal error (this is the default). See aeipass(1) for more information.

* The worked example in the User Guide has (finally!) been updated to use the new branch numbering.
Numerous spelling errors have been corrected.

* The developer section of the worked example chapter now also includes discussion of some common
questions raised by folks evaluating Aegis. It covers insulating development directories from the baseline,
partial check-in and collaboration.

* The aesub(5) man page now brings attention to the fact that the ${Copyright_Years} substitution contains
spaces. You often need to quote it.

* The man pages which mention filename limitations, now also note that where underlying file-system has
stricter filename length limitations than the filename_maximum_length field in the project config file, the
file-system wins. Mention of this is now also present in aedb(1), etc; Linux UMSDOS is highlighted as
problematic.

* Aegis can now collect code metrics. See aeb(1) and aeipass(1) for more information.

* There are three new report functions available: quote_url, quote_html and unquote_url. These are all for
use when creating Aegis reports for the CGI interface. See aer(5) for more information.

e There are several new substitutions available. These include subst, trim_extension, trim_di-
rectory, and trim_filename. See aesub(5) for more information.

* The integrate_q.sh script now works correctly for branches.
* Numerous configure, make and install problems have been fixed for a variety of portability targets.
» The RPM spec file has been corrected to use appropriate file attributes.

Version 3.8 (1-Oct-1998)
» Some users were unable to build the previous release, due to inconsistent wide character support by the
various UNIX vendors. This has now been fixed.

* There are two new substitutions, trim_directory and trim_extension, which are useful for constructing file
templates. These can be very useful in constructing skeletons of C++ classes.

* Some changes have been made to pathname handling to better cope with automounters. See aegis(1) for
more information (see discussion of the AEGIS_AUTOMOUNT_POINTS environment variable). This as-
sumes that paths below the automounter’s mount directory are echoes of paths without it (e.g. /home is the
trigger, and /tmp_mnt /home is where the NFS mount is performed, with /home appearing to be a sym-
link).

Version 3.7 (22-Sep-1998)

Reference Manual Aegis 37

Read Me(Aegis) Read Me(Aegis)

* The aeifail(1) and aerfail(1) commands now have a new —reason option, to specify the failure reason on
the command line, rather than in a file.

» Some file operations are now faster. Mostly, this applies to operations which mention many files, and to
projects with large numbers of files. Smaller projects may not notice any improvement.

* There is a new —delta-date option to the aecp(1) command, allowing deltas to be extracted by date. This
change also had the side-effect of making extraction by delta number more accurate on branches.

* There is a new —base-relative option to most of the file manipulation commands, aecp(1), aenf(1), etc.
This option may be used to specify that relative filenames are relative to the base of the source tree, rather
than the current directory. There is also a related user preference, see aeuconf(5) for more information.

* There is a new “aeclean” command. It can be used to clean your development directories of non-source
files. See aeclean(1) for more information.

* The aeb(1) command now passes through arguments of the form name=value, on the assumption that
these are variable assignments for th ebuild tool. Previously, they were “resolved” as if they were file
names.

* A serious bug in the error and interrupt handling has been fixed. This bug would sometimes case Aegis to
hang, and eventually run out of stack, when the user attempted to interrupt Aegis using “C.

Version 3.6 (5-Jul-1998)
* The diff3_command field of the project config file has been replaced by a merge_command field. It works
exactly the same way, but Aegis moves the files around first, so that the output replaces the change source
file. This results in fewer “lost” merges. Those of you who have been hacking the diff3_command to move
the files around will need to take the moves out when you rename the diff3_command field to be the new
merge_command field.

* The columnizing functions used by the report generator and the listings has been enhanced to understand
international character sets. This allows native character sets to be used in comments and descriptions,
without getting gibberish (C escapes) in the output.

* There is a new shell_safe_filenames field in the project config file. This field controls whether filenames
are required to be free of shell special characters. This field defaults to true if not set, so if you are using
any “interesting” filenames, you may need to explicitly set this field to false. (You still can’t use spaces or
international characters in filenames.)

* There is a new ${quote} substitution for insulating shell special characters in filenames in the commands
in the project config file.

* A number of bugs relating to environment variables have been corrected; this will make the aereport and
aefind commands behave more consistently, with respect to the aegis command.

* A bug has been fixed which caused the final newline of new test files to be omitted.
* A bug which prevented the “aeb —minimum” option from working in any non-trivial case has been fixed.

Version 3.5 (28-May-1998)

Reference Manual Aegis 38

Read Me(Aegis) Read Me(Aegis)

* A bug was fixed in the lock waiting code. Aegis will now correctly wait for locks when there are several
users blocking on the same lock.

Version 3.4 (22-May-1998)
* There is a new “aegis —clone” command, used to replicate changes across branches. See aeclone(1) for
more information.

* There is a new “—No-Wait” command line option, which asks for a fatal error if a lock cannot be obtained
immediately; this applies to all commands which takes locks. See aeuconf{5) for more information.

Version 3.3 (4-Apr-1998)
This release is a bug fix release, and mostly install and portability bug, at that.

* The problem with errno defines messing up glue.c has been fixed.

* Numerous fixes to the wide character support, to cope with the vagueries of wide character support on
many platforms.

* The problem with the LINES and COLS environment variables messing up testing have been fixed. Some
tests gave false negatives because of this.

* There is a new aeb —minimum option, for use with symbolic links, only, which has a minimal set of
source file links, rather than everything in the baseline.

Version 3.2 (22-Mar-1998)
* There are some additional reports available via the web interface. They are mainly to extract error causes
and trends from the project history statistics.

* There have been a number of minor bug fixes concerning the handling of old 2.3 projects. This should
ease transition for users with existing 2.3 projects.

* A bug in aecp —delta has been fixed, where Aegis was trying to find change state files one branch level too
high.
* There is now a re-try performed when a stale NFS file handle error is detected. This should make it easier

for some sites which are heavily networked.

* There have been some improvements to the way Control-C is handled. It should be more responsive
when waiting for locks.

* Project administrators may now end development of a branch. Since branches can endure for months or
years, the orginal branch creator may have moved on. This copes with this situation.

Version 3.1 (15-Jan-1998)
Version 3.0 was not used by many sites. It was available as beta software for about a year, in numerous in-
carnations. Version 3.1 is the first completely stable version since adding full branching support.

Reference Manual Aegis 39

Read Me(Aegis) Read Me(Aegis)

Version 3.0
Version 3.0 is fully backwards compatible with earlier versions, however once a project has been used un-
der 3.0, it will not be possible to revert, e.g. to version 2.3, without restoring the project’s “info” directory
from backup. While this was generally true of previous releases, any additional state information was usu-
ally undo-able with vi(1). This time the process is much more involved because the project state files and
the change state files have been combined as a necessary step in implementing branches.

Version 3.0 Major New Features
* Aegis now has a feature known in the literature as long transactions, also known as branches. This allows
appropriately created changes to be treated as if they were projects, and thus to have changes made to them.
This allows a hierachy of changes within changes, to any desired depth. See the Branching chapter of the
Aegis User Guide for more information.

* The project state files have been merged with the change state files. This is part of the implementation of
branching. If you have written your own reports, you may need to alter them slightly. For example, in ver-
sion 2.3 and earlier, reports accessed the project state file using

auto p, ps;

p = project[project_name()]1;

ps = p.state;
Because the project state has been moved into a change state, the state field above now points at a change
state description, and most of the old project information is contained in the branch field within it. Reports
access this information as

auto p, ps;

p = project[project_name()];

ps = p.state.branch;
Except for files, which were already present in the cstate, so access to the project file list need not change.
See the new aecstate(5) for more information.

* The new project command now creates branches to match the version number specified. See aenpr(1) for
more information.

* The error messages of Aegis have been internationalized. This affects how you build Aegis, and the envi-
ronment Aegis runs in. See the BUILDING file for more information. The cshrc and profile shipped with
this release set the LANG environment variable to “en” (for English) if you have not set it; otherwise ther
error messages would be terse and uninformative.

* The aet (1) command can now suggest tests to be run. This is done by correlating the source files and test
files from each change. See aet(1) for more information.

* There is now an aereport(1) command. The separates out the report functionality from the main body of
the Aegis code, allowing the report generator to be used in places where more trust is required.

* There is an intranet Web interface, which is installed automaticly when the install script discovers a web
server. This interface allows browsing of much of the Aegis meta-data, of all publicly accessible projects.

* There is now an aefind(1) command. This is very similar to the UNIX find(1) command, except that it
finds in the unified directory stack of a change and its project. The introduction of full branch support can
sometimes mean that finding a file may require looking in more than two directories; the aefind(1) com-
mand makes this simple again.

Version 3.0 Minor New Features
* There is now a —No_Pager option, to prevent listings and help from being redirected to a pager. There is
also a user preference to more thoroughly disable paging, and a —PAGer option to override it. See aegis(1)
and aeuconf (5) for more information.

* There is now a —No_PErsevere option to aet(1), allowing you to request that aet(1) stop after the first test
failure. There is also a user preference to set this permanently if desired, and a —PErsever option to over-
ride it. See aet(1) and aeuconf (5) for more information.

* The copyright years attribute has been moved from being a project attribute to a change attribute. This is
consistent with a number of other fields which have transparently moved from the project state files into the

Reference Manual Aegis 40

Read Me(Aegis) Read Me(Aegis)

change state files, as a result of branching support. See aeca(1) and aecattr(5) for more information.

* There is a new Search_Path substitution, to support builds on branches. See aesub(5) for more informa-
tion. As a side effect, you can also use it in the test_command field of the project config file, and thus have
a search path to look down for data files for your tests.

e Test times are now remembered, so that tests are only run if they need to be. This allows you to keep
working on a test, and Aegis only runs those that have not yet passed.

* Aegis now uses “fingerprints” to tell if files have changed, rather than simply relying on file modification
time stamps. While this makes Aegis more robust, there is one caveat: it is recommended that 3.0 be in-
stalled when there are no changes in the ’being reviewed’ or ’awaiting integration’ states, in any project.

* There is now a log file prefernces control, allowing users to set their preferred logging behaviour. See
aeuconf (5) for more information.

* It is now possible to specify the filename for new tests on the command line. See aent(1) for more infor-
mation.

» It is not possible to specify a pattern for test filesnames. See aepconf (5) for more information.

* There is now a -MAXimum option to the aeib command, allowing you to keep obsolete derived files at
integrate begin. This can avoid long integration build times for large projects.

Version 3.0 Bug Fixes
* Architecture names are now checked a ‘develop end’ time, to ensure there are no unknown variants. This
fixes the mysterious “you must build again” problem.

* The aecp(1l) and aed(1) commands now take a baseline read lock, to be more symetric with the aeb(1)
command which has always done so. The aeipass(1) command takes the complementary baseline write
lock, ensuring the the baseline remains constant for the duration of builds, file copies, differences and
merges. The manual entries for these commands have all been improved to document this behaviour. See
aeb(1), aecp(1), aed(1) and aeipass(1) for more information.

* There are now some reminder scripts in the library, which can be run from crontab(1). These are installed
into the /remind directory. These scripts can be used to remind users of changes in various states, such as
those being developed or being reviewed.

* All of the commands which accept the —Edit option now also accept a —Edit_BackGround option, allow-
ing edit commands to be piped in from the standard input.

* The aecp(1) command now accepts a —INDependent option, allowing files to be copied independent of
any change (similar to the —INDependent option of the command.) See aecp(l) for more information.

* The aecp(1) command now accepts a —Read_Only option, allowing files to be copied into a change
specifically to insulate it from baseline changes. Such files must be uncopied before development may end.
See aecp(1) for more information.

* The aenrls(1) command is now used only to convert pre-3.0 projects into post-3.0 projects. This is be-
cause the full branching support in 3.0 makes it more useful to create a new release of a project by ending
development on the branch of the previous release and starting development of a new branch numbered for
the new release. See the Branching chapter of the User Guide for more information.

Reference Manual Aegis 41

Read Me(Aegis) Read Me(Aegis)

Version 2.3
* The merging behaviour of the aed(1) command has changed. If any files require merging, it only merges.
In this way, merged files are not lost in the rest of the output. Also, there are now command line options
and user preferences so that you can select to only merge or only difference. See aed(1) and aeuconf (5)
for more nformation.

* It is now possible to assign symbolic names to project deltas. This means that you may now recreate ear-
lier project baselines by name.

* All commands which accept a —Edit option now check for most errors before commencing the edit. This
avoids wasted edits in many error cases.

* Fuzzy file name matches are now used to improve the error messages from aecp, aerm, etc.

* Version number separators in project names are preserved across new releases. Particularly, you can use a
minus (’-") between the name and the major version number.

* A new “copyright_years” project attribute has been added. This is a list of years maintained at integrate
begin time, to automate the insertion of list of copyright years into copyright messages and documentation.
There is a new ${Copyright_Years} substitution and the copyright years are also listed in the “aegis —list
version” listing. See aesub(5) and ael(1) for more information.

« It is now possible to specify patterns for acceptable and unacceptable filenames in the project configura-
tion file. See aepconf (5) for more information.

» Four more functions have been added to the report language: length, split, substr and wrap. See aer(5)
for more information.

* The tests distributed with are now more stable on very fast hosts. See the environment variables section
of aeb(1) for more information.

» The lib/config.example directory of the distribution now contains files with example portions of the
project config file. May thanks to David R Shue <shue @]l.mit.edu> for this suggestion.

Changes made in the previous release included:

Version 2.2
This release of Aegis provides 3 of the most commonly requested features: support for heterogeneous de-
velopment, support for a greater range of DMTs, support for user-defined reports.

* Aegis now supports heterogeneous development. Now you can be sure that your project not only always
builds and tests sucessfully, but that it does so across a configurable set of system or hardware architectures.
See the Heterogeneous Development secion of the Tips and Traps chapter of the User Guide for more infor-
mation.

* Aegis can now cope with a wider range of Dependency Maintenance Tools (DMTs). It now has the abil-
ity to fill development directories with symbolic links to all files in the baseline which are not present in the
development directory. This allows DMTs to assume all files are present below the current directory, al-
lowing DMTs such as cake and GNU Make to be used. See the Dependency Maintenance Tool section of
the User Guide and aeb(1) for more information.

* Aegis now has a report generator, so you can create your own reports. Many "canned" reports are in-
cluded in this distribution; of particular interest to many will be the File_Activity report, which details cur-
rently active files. See aer(1) for more information.

* Aegis is now configured using a shell script called configure, distributed with the package. This shell
script is generated using GNU Autoconf. See the BUILDING file for more information.

* The AEGIS environment variable has been renamed AEGIS_PATH, to bring it in line with the
AEGIS_PROJECT and AEGIS_CHANGE environment variable names. The old name will keep working
for some time, but aegis will warn you.

* Filename lengths are now configurable. The 14 character portability limit is still the default, but a higher
limit is configurable for each project, up to the filesystem filename limit. See aepconf(5) for more infor-
mation.

Reference Manual Aegis 42

Read Me(Aegis) Read Me(Aegis)

* It is now possible to specify that filenames must be within the minimum character set mandated by
POSIX. The default is as before, to allow any printing character. See aepconf (5) for more information.

* Limits on the length of project names have been relaxed. Project names are now only limited by the
filesystem filename limit.

* It is now possible to specify the command to run tests, allowing a project to use a specialized test facility,
rather than be forced to use shell scripts. See aet(1) and for more information.

* The commands which accept the —Edit now preserve the edited text in the event of a failure.

* The commands which delete files now accept a —Interactive option, which causes them to prompt the user
for confirmation of file deletion. This can be made the default by an appropriate setting of the aliases or in-
dividual users preferences files. See aenfu(1), aentu(1), aecpu(1), and aeuconf (5) for more information.

* The aecp(1) command now accepts directory names, allowing whole directory trees to be copied into a
change. The aecpu(1) command now has a —-UNChanged option which allows the unchanged files to be
uncopied.

* The aeb command now accepts file names, allowing partial builds to be performed. See aeb(1) for more
information.

* There is a new aechown(1l) command to facilitate reassigning the developer of a change which is in the
being developed state.

* It is now possible for project administrators to assign changes to specific developers. See aedb(1) for
more information.

Version 2.1
* Can now ask for history to maintained for file generated by the build. This is useful for generating patch
files.

Version 2.0
* A new command has been added to facilitate changing the name of a file as part of a change. See
aemv(1) for more information.

* It is now possible to list the locks currently held. See ael(1) for more information.

* If no other defaulting mechanism is specified, aegis will now attempt to guess the project name and
change number from the pathname of the current directory. This only works from within development di-
rectories.

» The aenc, aeca, aerfail, aeifail and aepa commands now accept a —Edit command line argument. See
the relevant manual pages for more information.

* The aenpr command now understands the -MAJor and —-MINOTr options, allowing the initial version of
a project to be something other than 1.0.

* The aed command now understands the —ANticipate option. See aed(1) for more information.

» It is now possible to list all the outstanding changes of a project, or of all projects. See ael(1) for more in-
formation.

Reference Manual Aegis 43

Read Me(Aegis) Read Me(Aegis)

Version 1.4

* Support has been added for systems without the sefeuid system call, or those with crippled implementa-
tions.

* Most of the unimplemented command variants have been finished. These include New Change Undo,
Develop Begin Undo and ReMove PRoject. Most notable of the exceptions is -ANticipate option for the
-CoPy_file and -DIF Ference command.

* The User Guide has been added to, making it a little more complete. It still needs more work, sigh.
* The code to handle automounters has been made more robust.

* The command substitutions have been vastly improved, and are now documented.

Reference Manual Aegis 44

Build(Aegis) Build(Aegis)

NAME
aegis — project change supervisor
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program is distributed under the terms of the GNU General Public License. See the LICENSE
section, below, for more details.

aegis (ee.j.iz) n., a protection, a defense.

SPACE REQUIREMENTS
You will need up to 250MB to unpack and build the aegis package. (This is the worst case seen so far,
most systems have binaries smaller than this, 200MB is more typical.) Your mileage may vary.

SITE CONFIGURATION

The aegis package is configured using the configure shell script included in this distribution.

The configure shell script attempts to guess correct values for various system-dependent variables used dur-
ing compilation, and creates the Makefile and common/config.h files. It also creates a shell script con-
fig.status that you can run in the future to recreate the current configuration.

Upgrading
The . /configure script will look for an existing install of Aegis and use the existing configuration set-
tings. This works best if the version you are upgrading is 4.11 or later.

To disable looking for an existing installation (maybe because you want to change the prefix), use the
./configure —--with-no-aegis-configured option.

To change the AEGIS_UID and AEGIS_GID values (these control the ownership of Aegis’ system files)
you need to set environment variables of these names before running the ./configure script. You almost
never need to do this, so if you have no idea what this is about, don’t try to change them.

Before You Start
Before you start configuring, it is worth reading the OTHER USEFUL SOFTWARE section, below.

The configure script checks for the internationalization library and functions. If your system does not have
them, it is worth fetching and installing GNU Gettext before you run the configure script. Make sure that
the msgfmt command from GNU Gettext appears earlier in your command search PATH than the existing
system ones, if any (this is very important for SunOS and Solaris). You must do the GNU gettext install be-
fore running the configure script, or the error messages, even for English speakers, will be terse and unin-
formative. Remember to use the GNU gettext configure ——with-gnu-gettext option if your system has na-
tive gettext tools.

The configure script checks for compression libraries and functions. If your system does not have them,
you must download and install the GNU zlib compression library (see
http://www.gzip.org/zlib/ for download) and the bzip2 compression library (see
http://www.bzip.org/ for download) before you run the configure script. These libraries are essen-
tial, Aegis will not build without them. (Note: z1ib is not the same thing as z1ibe which does some-
thing completely different.)

The configure script checks for the regular expression library and functions. If your system does not have
them, it is worth fetching and installing GNU rx compression library before you run the configure script.
(Note: test 81 will fail if the POSIX regular expression functions are not available.)

The GNOME libxml2 library (http://xmlsoft.org/) is used to parse XML, you will need version
1.8.17 or later. You do not have to install the rest of GNOME as this library is able to be used by itself.
This package is not optional, you need it to successfully build Aegis.

The libcurl library (http://curl.haxx.se/) is used to fetch remote files. This library is optional, but
some functionality, particularly aedist —replay, will not work without it. If you are using a package based
install, you will need the libcurl-dev or libcurl-devel package as well.

Reference Manual Aegis 45

Build(Aegis) Build(Aegis)

Running Configure
Normally, you just cd to the directory containing aegis’ source code and type

% ./configure —--sysconfdir=/etc
...lots of output...

o

If you’re using csh on an old version of System V, you might need to type
% sh configure —--sysconfdir=/etc
...lots of output...

o

instead to prevent csh from trying to execute configure itself.

Running configure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, run configure with its standard output redirected to /dev/null;
for example,

% ./configure —--sysconfdir=/etc —--quiet

%
There is a known problem with GCC 2.8.3 and HP/UX. You will need to set CFLAGS = -0 in the gener-
ated Makefile. (The configure script sets it to CFLAGS = -02.) This is because the code optimization

breaks the fingerprints. If test 32 fails (see below) this is probably the reason.

There is a known problem with IRIX builds. You need to use the following configuration
systune ncargs 0x8000
to increase the length of command lines.

For mips IRIX and IRIX64 using the MipsPro compiler up to at least version 7.3 you must specify the flag
to allow —I for loop initializations. You may give either of:
CXXFLAGS='LANG:ansi-for-init-scope=0N’
CXXFLAGS='LANG:std’
Also required is —ICio but configure will test for that. Even using that library there remains a link failure
due to:
Unresolved text symbol
"std::_List_base<undo_item*, std::allocator<undo_item*> >::clear (void)"
on several of the binaries. A work around for this problem is not known at this time.

By default, configure will arrange for the make install command to install the aegis package’s files in
/usr/local/bin, /usr/local/com/aegis, /ust/local/lib/aegis, /usr/local/man and /usr/local/share/aegis. There
are a number of options which allow you to control the placement of these files.

——prefix=PATH
This specifies the path prefix to be used in the installation. Defaults to /usr/local unless otherwise
specified. The rest of these building instructions assume you are using the default /usr/local as
the install prefix.

——exec-prefix=PATH
You can specify separate installation prefixes for architecture-specific files and architecture-inde-
pendent files. Defaults to ${prefix} unless otherwise specified.

—-—-bindir=PATH
This directory contains executable programs. On a network, this directory may be shared be-
tween machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to ${exec_prefix}/bin unless otherwise specified.

-—datadir=PATH
This directory contains installed data, such as the documentation, reports and shell scripts distrib-
uted with Aegis. On a network, this directory may be shared between all machines; it may be
mounted read-only. Defaults to ${prefix}/share/aegis unless otherwise specified. An “aegis” di-
rectory will be appended if there is none in the specified path.

Reference Manual Aegis 46

Build(Aegis) Build(Aegis)

-—1ibdir=PATH
This directory contains installed data, such as the error message catalogues. On a network, this
directory may be shared between machines with identical hardware and operating systems; it may
be mounted read-only. Defaults to ${exec_prefix}/lib/aegis unless otherwise specified. An
“aegis” directory will be appended if there is none in the specified path.

—--mandir=PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to ${prefix}/man unless otherwise
specified.

--sharedstatedir=PATH
This directory contains share state information, such as the Aegis lock file, and information on
the location of the various Aegis projects. On a network, this directory may be shared between
all machines; it must be mounted read-write. Defaults to ${prefixj/com/aegis unless otherwise
specified. An “aegis” directory will be appended if there is none in the specified path.

—-sysconfdir=PATH
Location of system configuration files. You should almost always use the /etc directory.

configure ignores any other arguments that you give it.

On systems that require unusual options for compilation or linking that the aegis package’s configure script
does not know about, you can give configure initial values for variables by setting them in the environment.
In Bourne-compatible shells, you can do that on the command line like this:

$ CC='gecec —-traditional’ LIBS=-lposix \

./configure —--sysconfdir=/etc

...lots of output...

$
Here are the make variables that you might want to override with environment variables when running con-
figure.

Variable: CC
C compiler program. The default is cc.

Variable: INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form —-1foo —1bar. The configure script will append to this, rather
than replace it.

If you need to do unusual things to compile the package, the author encourages you to figure out how con-
figure could check whether to do them, and mail diffs or instructions to the author so that they can be in-
cluded in the next release.

Common Problem
It is very common that other packages, such as gettext, rx and zlib are installed using /us#/local as the pre-
fix. However, the configure script can’t work this out, even when it, too, is using /usr/local as the prefix.

To cope with this, you need to say
$ CPPFLAGS=-I/usr/local/include LDFLAGS=-L/usr/local/lib \
./configure —--sysconfdir=/etc
...lots of output...
$
when running configure. Substitute the appropriate prefix if you are using something other than the default
/usr/local prefix. Watch the output... it should now find your installed packages correctly.

GCC Version 3.*
On some operating systems, notabley MacOsX Jaguar and Panther, g++ versions 3.* will produce link-time
errors complaining of missing typeinfo symbols. The only known fix for this problem is to use GCC ver-
sion 2.95, 2.96 or 4.*. This means MacOsX Tiger does not have the problem.

Reference Manual Aegis 47

Build(Aegis) Build(Aegis)

AIX Command Line Lengths
For some reason, AIX has a very short command line length limit by default. You can extend this by using
the command
$ systune ncargs 0x8000
$

You will need to do this to build Aegis. It has some very long link lines.

PRIVILEGES
There are a number of items in the generated Makefile and common/config.h file which affect the way aegis
works. If they are altered too far, aegis will not be able to function correctly.

AEGIS_MIN_UID
This specifies the minimum unprivileged uid on your system. UIDs less than this may not own
projects, or play any other role in an aegis project. The default value is 100.

AEGIS_MIN_GID
This specifies the minimum unprivileged GID on your system. GIDs less than this may not own
projects, or play any other role in an aegis project. The default value is 10.

AEGIS_USER_UID
This is the owner of files used by aegis to record pointers to your projects. It is not used to own
projects (i.e. it must be less than AEGIS_MIN_UID). If possible, the configure script tries to
work out what value was used previously, but you must specify the ——prefix option correctly for
this to work. Because of operating system inconsistencies, this is specified numerically so that
aegis will work across NFS. The default value is 3.

AEGIS_USER_GID
This is the group of files used by aegis to record pointers to your projects. It is not used as the
group for projects (i.e. it must be less than AEGIS_MIN_GID). If possible, the configure script
tries to work out what value was used previously, but you must specify the ——prefix option cor-
rectly for this to work. Because of operating system inconsistencies, this is specified numerically
so that aegis will work across NFS. The default value is 3.

DEFAULT_UMASK
When aegis runs commands for you, or creates files or directories for you, it will use the defined
project umask. This is a project attribute, and may be altered using the aepa(l) command. The
DEFAULT_UMASK is the umask initially given to all new projects created by the aenpr(1) com-
mand. The default value of DEFAULT _UMASK is 026. See the comments in the common/con-
fig.h file for an explanation of the alternatives.

It is required that aegis run set-uid-root for all of its functionality to be available. It is not possible to create
an "aegis" account and make aegis run set-uid-aegis. This is because aegis does things as various different
user IDs, sometimes as many as 3 in the one command. This allows aegis to use UNIX security rather than
inventing its own, and also allows aegis to work across NFS. To be able to do these things, aegis must be
set-uid-root. Appendix D of the Aegis User Guide explains why aegis must run set-uid-root; please read it
if you have concerns.

Remember Your Settings
It is important to remember your configuration settings. This way, it will be a simple matter when it comes
time to upgrade Aegis.

BUILDING AEGIS
All you should need to do is use the

[)

% make
...lots of output...

%

command and wait. When this finishes you should see a directory called bin containing several files: aegis,
aereport, aefind, aefp, and fmtgen.

Reference Manual Aegis 48

Build(Aegis) Build(Aegis)

aegis The aegis program is a project change supervisor.

aefp The aefp program may be used to “fingerprint” files. It is used to test Aegis (see the testing sec-
tion, below) but it isn’t installed.

aereport The aereport program is used to query Aegis’ database.
aefind The aefind program is used to find files.

fmtgen The fintgen program is a utility used to build the aegis package; it is not intended for general use
and should not be installed.

You can remove the program binaries and object files from the source directory by using the

% make clean
...lots of output...

%

command. To remove all of the above files, and also remove the Makefile and common/config.h and con-
fig.status files, use the

% make distclean
...lots of output...

%

command.

The file aux/configure.in is used to create configure by a GNU program called autoconf. You only need to
know this if you want to regenerate configure using a newer version of autoconf .

Upgrading
When upgrading from one release to a newer one, it is important that all of the machines on your network
are running the same release of Aegis. This minimizes the possibility of database incompatibilities. In
general, Aegis is backwards compatible with earlier releases, but not forwards compatible in the face of
new capabilities.

OTHER USEFUL SOFTWARE
Before describing how to test aegis, you may need to grab some other free software, because the tests re-
quire it in some cases, and because it is generally useful in others.

GNOME libxml2
The GNOME libxml2 library (http://xmlsoft.org/) is used to parse XML. Version
1.8.17 or later. You do not have to install the rest of GNOME as this library is able to be used by
itself. This package is not optional, you need it to successfully build Aegis.

cook This is a dependency maintenance tool (DMT). An example of a well-known DMT is make(1),
however this old faithful is mostly not sufficiently capable to meet the demands placed on it by
the aegis program, but cook certainly is. The cook package is written by the same author as
aegis. The cook package is necessary if test 11 is to be meaningful. It is also used in the docu-
mentation. The cook program may be found at the same archive site as the aegis program. The
cook program is available under the terms of the GNU General Public License.

GNU diff
If the diff (1) utility supplied by your flavor of Unix does not have the —c¢ option, you will need
GNU diff for aepatch(1) to work (and the aepatch(1) tests to pass). Context differences are also
helpful for reviewing changes. GNU diff is essential for Solaris, because the Solaris diff has bugs
that Aegis’ tests uncover.

GNU patch
For best results with the aepatch(1) and aedist(1) when receiving change sets, you need the GNU
patch utility.

iso-codes
This package provides the ISO 639 and ISO 639-3 language code lists, the ISO 3166 territory
code list, list as XML files.
Homepage: http://pkg-isocodes.alioth.debian.org/

Reference Manual Aegis 49

Build(Aegis) Build(Aegis)

RCS This is a source control package, and is available from any of the GNU archives. (It is best to
compile and install RCS after GNU diff. This is because the RCS configuration hard-codes the
pathnames of the GNU diff utilities it needs into the RCS executables.) This package isn’t essen-
tial as Aegis comes with its own aesv#(1) history tool — although you are free to use any history
tool you like.

GNU Gettext

Many systems do not yet supply the getfext(3) function. Aegis uses this function to international-
ize its error messages. If your system does not have this function, you should fetch and install
GNU Gettext before running the configure script. If you do not, Aegis will still work, but the er-
ror messages will be rather terse, even for English speakers. (You will be able to tell if your sys-
tem has the internationalization library and functions, because the configure script will report
finding —1int1 and (CWIlibintl.h and msgfmt in its running commentary.) Please note that the
GNU Gettext implementation is likely to be superior to the one supplied with your system, if any.
Remember to use the GNU gettext configure ——with-gnu-gettext option if your system has native
gettext tools.

Please note: if you install GNU gettext package into /usr/local (for example) you must ensure that
the Aegis ./configure script is told to also look in /usr/local/include for include files (CFLAGS),
and /usr/local/lib for library files (LDFLAGS). Otherwise the ./configure script will incorrectly
conclude that GNU Gettext has not been installed.

GNU Gettext version 0.11.1 or later is recommended.

GNU Groff
This GNU software replaces the documentation tools which (sometimes) come with UNIX. They
produce superior error messages, and support a wider range of functionality and fonts. The Aegis
User Guide was prepared with GNU Groff. You need GNU Groff 1.14 or later.

bison This GNU software is a replacement for yacc(1). Some systems have very sick yaccs, and bison
may be necessary if your system include files disagree strongly with your system’s yacc. The
generated Makefile will use bison if you have it.

fthist This software, available under the terms of the GNU General Public License, is a set of file his-
tory and comparison utilities. It was originally written by David I. Bell, and is based on the mini-
mal difference algorithm by Eugene W. Myers. This copy is enhanced and maintained by the
same author as Aegis, and may be found at the same archive site, in the same directory.

rx This library provides POSIX regular expressions, for systems which don’t have them. (Note: test
81 will fail if the POSIX regular expression functions are not available.)

zlib This library provides access to the GNU Zip (de)compression algorithm(s). It is essential to have
this installed before you build Aegis. The home page may be found at
http://www.gzip.org/zlib/ if you need to download it. Note: this is not the same as
zlibec which is Linux specific.

tkdiff ~ This program shows the difference between two text files, nicely highlighted in color. This is
used by the tkaer and aecomp scripts (and probably others as they are contributed). By John M.
Klassa, http://www.ede.com/free/tkdiff

libmagic If libmagic(3) is present, the aeget(1) CGI handler will use it to determine the MIME type of
files. This is installed by file version 4.0 and later (ftp://ftp.astron.com/pub/file/),
and uses the same database as the file(1) command. If this library is not present when Aegis is
built, a much less accurate method will be used.

The tests also depend on the presence of a number of common UNIX programs, including but not limited
to: cc, cmp, diff, ed, find, make, etc. Depending on your version of UNIX, some or all of these programs
may be in optional packages. (This is especially true of Linux.) You need to ensure that these programs
are correctly installed before you run the tests.

Reference Manual Aegis 50

Build(Aegis) Build(Aegis)

TESTING AEGIS
The Aegis program comes with a test suite. To run this test suite, use the command
% make sure
...lots of output...

Passed All Tests

%

The tests take a minute or two each, with a few very fast, and a couple very slow, but it varies greatly de-
pending on your CPU.

Known Problems
In order to get the long form of the error messages on Solaris, it is necessary to install GNU Gettext before
running ./configure, and once ./configure has been run you need to edit the Makefile to statically link the
executables.

The test/00/t0011a.sh file assumes the cook(1) command by the author is somewhere in the command
search path. This test reproduces the example used in Chapter 3 of the User Guide. If the cook(1l) com-
mand is not available, this test gives a pass result without testing anything.

If you are using HPUX and GCC, test 32 fails if you use —O2. You need to edit the Makefile to only opti-
mize at —O, delete the objects and rebuild.

If you are using Solaris’ diff, test 133 will report “no result”. You need to install GNU diff, because the So-
laris diff has bugs.

If you are using Sun’s tmpfs file system as your /tmp directory, the tests will fail. This is because the tmpfs
file system does not support file locking. Set the AEGIS_TMP environment variable to somewhere else be-
fore running the tests. Something like

% setenv AEGIS_TMP /usr/tmp

o

is usually sufficient if you are using C shell, or
$ AEGIS_TMP=/usr/tmp
$ export AEGIS_TMP
$

if you are using Bourne shell. Remember, this must be done before running the tests.

If the tests fail due to errors complaining of "user too privileged" you will need to adjust the
AEGIS_MIN_UID defined in the common/config.h file. Similarly for "group too privileged", although this
is rarer. This error message will also occur if you run the tests as root: the tests must be run as a mortal
each time.

If the POSIX regular expression functions are not available, test 81 will fail. The GNU rx library provides
these. Installing it and re-configuring and re-building Aegis will solve the problem.

TESTING SET-UID-ROOT
If the Aegis program is not set-uid-root then it runs in "test" mode which gives you some confidence that
Aegis is working before being tested again when it is set-uid-root. Two pass testing like this means that
you need not trust your system to a set-uid-root program which is not known to work.

You will need to do a little of the install, to create the directory which will contain Aegis’ lock file. (Note
that these building instructions assume you are using the default /usr/local as the install prefix. You will
need to substitute as appropriate if you are using some other prefix.)

make install-libdir

mkdir /usr/local/lib/aegis

chown 3 /usr/local/lib/aegis

chgrp 3 /usr/local/lib/aegis

chmod 0755 /usr/local/lib/aegis

mkdir /usr/local/com/aegis

chown 3 /usr/local/com/aegis

chgrp 3 /usr/local/com/aegis

Reference Manual Aegis 51

Build(Aegis) Build(Aegis)

chmod 0755 /usr/local/com/aegis

chown root bin/aegis

chmod 4755 bin/aegis

#
As you can see, the previous command also changed Aegis to be set-uid-root. Once this has been done,
Aegis should be tested again, in the same manner as before.

% make sure
...lots of output...

Passed All Tests

%

You should test Aegis as a mortal in both passes, rather than as root, to be sure the set-uid-root functionality
is working correctly.

It is required that Aegis run set-uid-root for all of its functionality to be available. It is not possible to cre-
ate an "aegis" account and make Aegis run set-uid-aegis. This is because Aegis does things as various dif-
ferent user IDs, sometimes as many as 3 in the one command. This allows Aegis to use UNIX security
rather than inventing its own, and also allows Aegis to work across NFS. To be able to do these things,
Aegis must be set-uid-root. Appendix D of the Aegis User Guide explains why Aegis must run set-uid-
root; please read it if you have concerns.

INSTALLING AEGIS
As explained in the SITE CONFIGURATION section, above, the Aegis package is installed under the
/usr/local tree by default. Use the ——prefix=PATH option to configure if you want some other path.
All that is required to install the Aegis package is to use the
% make install
...lots of output...

%

command. Control of the directories used may be found in the first few lines of the Makefile file if you
want to bypass the configure script.

The above procedure assumes that the soelim(1) command is somewhere in the command search PATH.
The soelim(1) command is available as part of the GNU Groff package, mentioned below in the PRINTED
MANUALS section. If you don’t have it, but you do have the cook package, then a link from roffpp to soe-
lim will also work.

The above procedure also assumes that the $(prefix)/man/manl and $(prefix)/man/man5 directories already
exist. If they do not, you will need to mkdir them manually.

USER CONFIGURATION
The Aegis command is assumed to be in a generally accessible place, otherwise users will need to add the
relevant directory to their PATH. Users should add
source /usr/local/lib/aegis/cshrc
to the end of their .cshrc file for the recommended aliases. (Note that these building instructions assume
you are using the default /usr/local as the install prefix. You will need to substitute as appropriate if you
are using some other prefix.)

There is also a profile for users of the Bourne shell (it assumes you have a version of the Bourne shell
which has functions). Users should add

/usr/local/share/aegis/profile
to the end of their .profile file for the recommended aliases. (This profile assumes that users are using a
Bourne shell which understands functions.)

The /usr/local/com/aegis/state file contains pointers to "system" projects. Users may add their own project
pointers (to their own projects) by putting a search path into the AEGIS_PATH environment variable. The
system part is always automatically appended by Aegis. The default, already set by the /usr/local/lib/-
aegis/cshrce file, is SHOME/lib/aegis. Do not create this directory, Aegis is finicky and wants to do this it-
self.

Reference Manual Aegis 52

Build(Aegis) Build(Aegis)

Where projects reside is completely flexible, be they system projects or user projects. They are not kept
under the /usr/local/com/aegis directory, this directory only contains pointers. (Note that these building in-
structions assume you are using the default /us#/local as the install prefix. You will need to substitute as ap-
propriate if you are using some other prefix.)

Web Interface
If you have a Web server, you may like to install the Aegis web interface. You do this by copying the aeget
script from /usr/local/bin/aeget into your web server’s cgi-bin directory. There is a aeget.instal helper
script, if you don’t know where your web server’s cgi-bin directory is.

You may prefer to use a symbolic link, as this will be more stable across Aegis upgrades. However, this re-
quires a corresponding follow-symlinks setting in your web server’s configuration file. (Use the aeget.instal
—s option.)

You may need to wrap aeget with a script which sets the AEGIS_PATH environment variable, if you want it
to be able to see more projects than just the global projects. You may also need to set the PATH environ-
ment variable, if you don’t have the Aegis install path in the default path.

(Note that these building instructions assume you are using the default /usr/local as the install prefix. You
will need to substitute as appropriate if you are using some other prefix.)

PRINTED MANUALS
This distribution contains the sources to all of the documentation for Aegis, however the simplest way to
get the documentation is by anonymous FTP; PostScript files of the User Guide and Reference Manual are
available from the FTP sites listed in the README file.

The Reference Manual contains the README and BUILDING files, as well as all of the section 1 and sec-
tion 5 manual pages. The Reference Manual is about 200 pages long.

The User Guide contains information about how to use Aegis, including a fully worked example. The User
Guide is about 100 pages long.

TIME SYNCHRONIZATION
The Aegis program uses time stamps to remember whether various events have happened and when. If you
are using Aegis in a networked environment, typically a server and data-less workstations, you need to
make absolutely sure that all of the machines agree about the time.

If possible, use the time daemon. Otherwise, use rdate(8) via cron(8) every hour or less.

GETTING HELP
If you need assistance with Aegis, please do not hesitate to contact the author at
Peter Miller <pmiller @opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the

% aegis —version
aegis version 4.25.D510

%

command. Please run this command to get the exact number, do not send the text of this example.

Runtime Checking
In the common/main.h file, there is a define of DEBUG in comments. If the comments are removed, exten-
sive debugging is turned on. This causes some performance loss, but performs much run-time checking and
adds the -TRAce command line option.

When the -TRAce command line option is followed by one or more file names, it turns on execution traces
in those source files. It is usually best to place this on the end of the command line so that names of the
files to be traced are not confused with other file names or strings on the command line.

Problem Reports
If you send email to the author, please include the following information:

Reference Manual Aegis 53

Build(Aegis) Build(Aegis)

1. The type of UNIX
The author will need to know the brand and version of UNIX you are using, or if it is not UNIX
but something else. The output of "uname —sr" is usually sufficient (but not all systems have it).

2. The Version Number
In any information you send, please include the version number reported in the common/patch-
level.h file, or *aegis -vers " if you can get it to compile.

3. The Archive Site
When and where you obtained this version of Aegis. If you tell me nothing else, tell me this (and,
hopefully, why you did nothing else).

4. Unpacking
Did you have problems unpacking Aegis? This probably isn’t a problem with the .tar.Z distribu-
tion, but you could have obtained a shar format copy.

5. Building
Did you have problems building Aegis? This could have been the instructions included, it could
have been the configure script, it could have been the Makefile, or anything else.

6. Testing, Non-Set-Uid
Did you have problems with the tests? You could have had problems running them, or some of
them could have failed. If some tests fail but not others, please let me know which ones failed, and
include the fact that Aegis was not set-uid-root at the time. The —k option to make can be useful if
some tests fail but not others.

7. Testing, Set-Uid-Root
Did you have problems with the tests when Aegis was set-uid-root? You could have had problems
running them, or some of them could have failed. If some tests fail but not others, please let me
know which ones failed, and include the fact that Aegis was set-uid-root at the time.

8. Installation
Did you have problems installing Aegis? This could have been the instructions, or anything else.

At this point it would probably be a very good idea to print out the manual entries and read them carefully.
You will also want to print a copy of the User Guide; if you don’t have groff, there should be a PostScript
copy at the archive site. It is a known flaw that the User Guide is incomplete, contributions are most wel-
come.

9. The Example Project
After reading the User Guide, it is often useful to manually run through the example in chapter 3.
You will need to do more than one change, hopefully several; the first change is not representative
of the system. Did you manually do the example? Did you find flaws in the User Guide or man-
ual entries?

10. Using Aegis
Did you have problems using Aegis? This is a whole can of worms. If possible, include a shell

script similar to the tests which accompany Aegis, which reproduces the bug. Exit code 1 on fail-
ure (bug), exit code 0 on success (for when bug is fixed).

11. The Source Code
Did you read the code? Did you write some code? If you read the code and found problems, fixed
them, or extended Aegis, these contributions are most welcome. I reserve the right to modify or
reject such contributions.

The above list is inclusive, not exclusive. Any and all feedback is greatly appreciated, as is the effort and
interest required to produce it.

Reference Manual Aegis 54

Build(Aegis) Build(Aegis)

LICENSE
The Aegis program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

The Aegis program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

It should be in the LICENSE file included in this distribution.

AUTHOR
Peter Miller ~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 55

Build(Aegis) Build(Aegis)

WINDOWS-NT
It is possible to build Aegis for Windows-NT. I have only done this using the Cygnus freeware CygWin32
system, though it may be possible with other Unix porting layers also.

Caveat
This document only describes a single user port of Aegis to Windows NT.

Aegis depends on the underlying security provided by the operating system (rather than re-invent yet an-
other security mechanism). However, in order to do this, Aegis uses the POSIX seteuid(2) system call,
which has no direct equivalent on Windows NT. This makes porting difficult. Single user ports are possi-
ble (e.g. using Cygwin (http://www.cygwin.com/), but are not usually what folks want.

Compounding this is the fact that many sites want to develop their software for both Unix and Windows NT
simultaneously. This means that the security of the repository needs to be guaranteed to be handled in the
same way by both operating systems, otherwise one can act as a “back door” into the repository. Many
sites do not have the same users and permissions (sourced from the same network register of users) on both
Unix and Windows NT, making the mapping almost impossible even if the security models did actually
correspond.

Most sites using Aegis and Windows NT together do so by running Aegis on the Unix systems, but building
and testing on the NT systems. The work areas and repository are accessed via Samba or NFS.

The Source
You need to FTP the Cygwin system from RedHat. It can be found at
http://www.cygwin.com/
and then follow the links. The original version used was B20.1, but more recently 1.1.7 has been used.

It is absolutely essential to run the mkpasswd and mkgroup commands, otherwise Aegis will give fatal er-
rors about unknown users and groups. See the Cygwin README for instructions.

Mounting Things
You need to mount a directory onto /tmp, or lots of things, and especially bash(1), don’t work. If you are
in a heavily networked environment, like me, you need to know that using a networked drive for /tmp just
doesn’t work. I have no idea why. Use
mount C:/temp /tmp
instead. (Or some other local drive.)

Just a tip for all of you who, like me, know Unix much better than you know Windows-NT: the left-hand
mount argument needs to be specified with a drive letter (e.g. C:) rather than with a double slash (e.g. not
/ /C) unless its Windows-NT name starts with \\

You need to follow the install instructions about /bin/sh, otherwise shell scripts that start with #! /bin/sh
don’t work, among other things. This includes the ./configure script, and the scripts it writes (e.g.
config.status).

You will want to mount your various network drives onto the same places they appear on your Unix hosts.
This way you don’t need to learn two names for all your files.

Mounts persist across Cygwin sessions. They are stored in a registry file somewhere. You will not need to
do all this every time!

Too Much Administrator
If you have administrator privilege on your Windows NT box, you need to get rid of it. (Have a second ad-
min account instead.) This is because Windows NT will make the files belong to the wrong user for files
on some partitions, like /tmp. (This took me days to work out!) This confuses both Aegis and RCS.

If you get weird “Permission denied” errors from amazingly unlikely causes, this is probably why.

Before You Start
There are several pieces of software you need before you can build Aegis on Cygwin.

Reference Manual Aegis 56

Build(Aegis) Build(Aegis)

I’m going to keep mentioning “your local GNU mirror”. You can find
GNU at http://www.gnu.org, however you are better off using a local mirror, and these are
scattered around the globe. Follow the “mirrors” link on their front page to find your closest mir-
ror. Also, it’s often a good idea to configure these packages with the “—with-gnu-gettext” option
to their ./configure commands.

Do not use WinZip to unpack the tarball. It has a nasty habit of
turning all of the newlines into CRLFs. This will confuse lots of utilities, especially GNU Groff.
Use the “tar xzf aegis-4.25.tar.gz” command from within Cygwin.

Make sure the Cygwin you are using has GNU Groff 1.15 or later
(use a “groff —v”’ command). Grab and install the latest from your local GNU mirror, if it isn’t.

util-linux
You need to get GNU rx, but to make it work you have to find a fsort command, so that GNU rx’s
J/configure script works. Try the latest copy of system/misc/util-linux-?.?.tar.gz
from the metalab.unc.edu Linux archive (or a mirror). Simply build and install misc-
utils/tsort.c by hand.

GNU rx Once you have tsort installed, you will be able to get GNU rx configured. Get a copy from your

local GNU mirror.

zlib You need to grab a copy of zlib; the same source as works for Unix will work for Cygwin. It will
install as a static library.

GNU diffutils

You need GNU diffults, because when you come to configure GNU RCS (next) it would other-
wise complain about a stupid diff and a missing diff3 command. The install-sh script is broken,
so you’ll need to do the final step in the install by hand.

GNU RCS
All of Aegis’ tests assume RCS is present. Also, you are going to need something for a history
tool. The install-sh script is broken, so you’ll need to do the final step in the install by hand.

Configure

The configure and build step should be the same as for Unix, as described above. All the problems I en-
countered were to do with getting the mounts just right. (But expect it to be dog slow compared to Linux or
FreeBSD on the same box.)

Sharutils
You need the uudecode command for several of the tests, and this may be found in the GNU
Sharutils package. You can get a copy from your local GNU mirror.

The configure step is almost the same as for Unix. I know you are itching to get typing, but read through to
the install section before you configure anything.

bash$./configure

...lots of output...

bash$

Build

Test

The build step is exactly the same as for Unix, and you shouldn’t notice any difference...
bash$ make
bash$

The tests are run in the same way as the Unix tests, but you don’t need to run the set-uid-root variants, be-
cause no such thing exists under Windows NT.

bash$ make sure

...lots of output...

Passed All Tests

bash$

Reference Manual Aegis 57

Build(Aegis) Build(Aegis)

Unfortunately, it isn’t that simple. There are a number of things you will see go wrong...

» Several tests fail because ed isn’t there.

» Several tests fail because ci (RCS 5.7) dumps core much too often for my liking.

* A couple of tests fail because they don’t expect the “.exe” extension on executable files.

* A couple of tests (notably, the aedist tests) fail because of the CRLF vs NL dichotomy. This means that
the expected results don’t match, not that it isn’t working.

Despite all the bad news, the vast majority of tests pass, and the others have good excuses.

Install

Installing the software works as usual, though you need to make some choices right at the start (I told you
to read this all the way through first). If you want to use the “/usr/local” prefix (or any other install prefix)
you mount it right at the start. For anything other than the “/usr/local” default prefix, you also needed to
give a “—prefix=blahblah” argument to the configure script, right at the start.

bash$ make install

...lots of output...

bash$

//vim: set ts=8 sw=4 et :

Reference Manual Aegis 58

aegis(1)

General Commands Manual aegis(1)

NAME

aegis — project change supervisor
SYNOPSIS

aegis function [option...]

aegis —Help
DESCRIPTION

The aegis program is a transaction base software configuration management system. It is used to supervise
the development and integration of changes into projects.

FUNCTIONS

The following functions are available:

—Build
The aegis —Build command is used to build a project. See aeb(1) for more information.

—Change_Attributes
The aegis —Change_Attributes command is used to modify the attributes of a change. See
aeca(l) for more information.

—Change_Directory
The aegis —Change_Directory command is used to change directory. See aecd(1) for more in-
formation.

—Change_Owner
The aegis —Change_Owner command is used to facilitate reassignment of the developer of a
change in the being developed state. See aechown(1) for more information.

—CLone
The aegis —CLone command is used to exactly replicate a change, usually on another branch.
See aeclone(1) for more information.

—CoPy_file
The aegis —CoPy_file command is used to copy a file into a change. See aecp(1) for more infor-
mation.

—CoPy_file_Undo
The aegis —Copy_File_Undo command is used to remove a copy of a file from a change. See
aecpu(1) for more information.

-DELta_NAme
The aegis —DELta_NAme command is used to add a symbolic name to a project delta. See
aedn(1) for more information.

—Develop_Begin
The aegis —Develop_Begin command is used to begin development of a change. See aedb(1) for
more information.

—Develop_Begin_Undo
The aegis —Develop_Begin_Undo command is used to cease development of a change. See
aedbu(1) for more information.

—Develop_End
The aegis —Develop_End command is used to complete development of a change. See aede(1)
for more information.

—Develop_End_Undo
The aegis —Develop_End_Undo command is used to recall a change for further development.
See aedeu(1) for more information.

—DIFFerence
The aegis —DIFFerence command is used to find differences between development directory and
baseline. See aed(1) for more information.

Reference Manual Aegis 59

General Commands Manual aegis(1)

-Help
This option may be used to obtain more information about how to use the aegis program.

—Integrate_Begin
The aegis —Integrate_Begin command is used to begin integrating a change. See aeib(1) for
more information.

—Integrate_Begin_Undo
The aegis —Integrate_Begin_Undo command is used to cease integrating a change. See aeibu(1)
for more information.

—Integrate_Fail
The aegis —Integrate_Fail command is used to fail a change integration. See aeifail(1) for more
information.

—Integrate_Pass
The aegis —Integrate_PASS command is used to pass a change integration. See aeipass(1l) for
more information.

—List
The aegis —List command is used to list interesting things. See ael(1) for more information.

—MoVe_file
The aegis —MoVe_file command is used to change the name of a file as part of a change. See
aemv(1) for more information.

—MoVe_file_Undo
The aegis —MoVe_file_Undo command is used to undo a change to the name of a file as part of a
change. See aemvu(1) for more information.

—New_Administrator
The aegis —New_Administrator command is used to add new administrators to a project. See
aena(1) for more information.

—New_BRanch
The aegis —New_BRanch command is used to add a new branch to a project. See aenbr(1) for
more information.

—New_BRanch_Undo
The aegis —New_BRanch_Undo command is used to remove a new branch from a project. See
aenbru(1) for more information.

—New_Change
The aegis —New_Change command is used to add a new change to a project. See aenc(1l) for
more information.

—New_Change_Undo
The aegis —New_Change_Undo command is used to remove a new change from a project. See
aencu(1) for more information.

—New_Developer
The aegis —New_Developer command is used to add new developers to a project. See aend(1)
for more information.

—New_File
The aegis —New_File command is used to add new files to a change. See aenf (1) for more infor-
mation.

—New_File_Undo
The aegis —New_File_Undo command is used to remove new files from a change. See aenfu(1)
for more information.

Reference Manual Aegis 60

aegis(1) General Commands Manual aegis(1)

—New_Integrator
The aegis —New_Integrator command is used to add new integrators to a project. See aeni(1l) for
more information.

—New_Project
The aegis —New_Project command is used to create a new project to be watched over by aegis.
See aenpr(1) for more information.

—New_Project_Alias
The aegis —New_Project_Alias command is used to create a new project alias. See aenpa(1) for
more information.

—New_ReLeaSe
The aegis —New_ReLeaSe command is used to create a new project from an existing project. See
aenrls(1) for more information.

—New_ReViewer
The aegis —New_ReViewer command is used to add new reviewers to a project. See aenrv(1) for
more information.

—New_Test
The aegis —New_Test command is used to add a new test to a change. See aent(1) for more in-
formation.

—New_Test_Undo
The aegis —New_Test_Undo command is used to remove new tests from a change. See aentu(1)
for more information.

—Project_Attributes
The aegis —Project_Attributes command is used to modify the attributes of a project. See
aepa(1) for more information.

—Remove_Administrator
The aegis —Remove_Administrator command is used to remove administrators from a project.
See aera(1) for more information.

—Remove_Developer
The aegis —Remove_Developer command is used to remove developers from a project. See
aerd(1) for more information.

—ReMove_file
The aegis —ReMove_file command is used to add files to be deleted to a change. See aerm(1) for
more information.

—ReMove_file_Undo
The aegis —Remove_File_Undo command is used to remove files to be deleted from a change.
See aermu(1) for more information.

—Remove_Integrator
The aegis —Remove_Integrator command is used to remove integrators from a project. See
aeri(1) for more information.

—ReMove_PRoject
The aegis —ReMove_PRoject command is used to remove a project. See aermpr(1) for more in-
formation.

—Remove_Project_Alias
The aegis —Remove_Project_Alias command is used to remove a project alias. See aerpa(1) for
more information.

—Remove_ReViewer
The aegis —Remove_ReViewer command is used to remove reviewers from a project. See
aerrv(1) for more information.

Reference Manual Aegis 61

aegis(1) General Commands Manual aegis(1)

—RePorT
The aegis —RePorT command is used to generate reports from aegis’ database. These reports
may be written by users, or be distributed with aegis.

—Review_Fail
The aegis —Review_Fail command is used to fail a change review. See aerfail(1) for more infor-
mation.

—Review_Begin
The aegis —Review_Begin command is used to begin to review a change. See aerb(1) for more
information.

—Review_Begin_Undo
The aegis —Review_Begin_Undo command is used to stop reviewing a change. See aerbu(1) for
more information.

—Review_Pass
The aegis —Review_PASS command is used to pass a change review. See aerpass(1) for more in-
formation.

—Review_Pass_Undo
The aegis —Review_Pass_Undo command is used to rescind a change review pass. See aerpu(1)
for more information.

—Test
The aegis —Test command is used to run tests. See aet(1) for more information.

—VERSion
The aegis —VERSion command is used to get copyright and version details. See aev(1) for more
information.

All function selectors are case insensitive. Function selectors may be abbreviated; the abbreviation is the
upper case letters. Function selectors must appear as the first command line argument.

Notification
Many aegis commands are capable of notification that they have been run. The individual commands docu-
ment those specific to them. For documentation on the various configurable notifications, see aepconf(5)
and aepattr(5) for more information.

OPTIONS
The following options are available to all functions. These options may appear anywhere on the command
line following the function selectors.

—LIBrary abspath
This option may be used to specify a directory to be searched for global state files and user state
files. (See aegstate(5) and aeustate(5) for more information.) Several library options may be
present on the command line, and are search in the order given. Appended to this explicit search
path are the directories specified by the AEGIS_PATH environment variable (colon separated),
and finally, /usr/local/lib/aegis is always searched. All paths specified, either on the command
line or in the AEGIS_PATH environment variable, must be absolute.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

The following options are available to most functions. These options may appear anywhere on the com-
mand line following the function selectors.

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf(5) for more

Reference Manual Aegis 62

aegis(1) General Commands Manual aegis(1)

information). If that does not exist, when the user is only working on changes within a single
project, the project name defaults to that project. Otherwise, it is an error.

—Change number
This option may be used to specify a particular change within a project. When no —Change op-
tion is specified, the AEGIS_CHANGE environment variable is consulted. If that does not exist,
the user’s SHOME/.aegisrc file is examined for a default change field (see aeuconf(5) for more
information). If that does not exist, when the user is only working on one change within a
project, that is the default change number. Otherwise, it is an error.

—Change project.Cnumber
As a shortcut, it is possible to combine the —Project and —Change options into a single option.

—Change branch.Cnumber
Several functions accept a —BRanch option; it is possible to combine the —BRanch and
—Change options in a single option. (This intentinally has the same form as the ${version} sub-
stitution output for incomplete changes.)

—Change branch.Dnumber
Several functions accept both the —-BRanch and —Delta options (or —-BRanch and —Change-
From-Delta options); it is possible to combine them in a single option. (This intentinally has the
same form as the ${version} substitution output for completed changes.)

—Change project.Dnumber
It is possible to combine the —Project and —Change-From-Delta options as a single option.

—Change UUID
Each completed change is assigned a globallay unique identifier (UUID). You can specify a
change by its 36-character UUID, or any unambiguous leading predix of the UUID (it must be at
least 4 characters, and not look like a number).

Listings
The following options are available to all listings. These options may appear anywhere on the command
line following the function selectors.

—PAGer The output of listings and help is piped through the pager command given in the PAGER environ-
ment variable (or more if not set). This is the default if the command is in the foreground, and the
output is a TTY. This option may be used to override any preference specified in the aeuconf (5)
file.

—No_PAGer
This option may be used to ensure that the output of listings and help is not piped through a pager
command. This is the default if the command is in the background, or if the output is not a TTY.
This option may be used to override any preference specified in the aeuconf (5) file.

—Page_Length number
This option may be used to set the page length of listings. The default, in order of preference, is
obtained from the system, from the LINES environment variable, or set to 24 lines.

—Page_Width number
This option may be used to set the page width of listings and error messages. The default, in or-
der of preference, is obtained from the system, from the COLS environment variable, or set to 79
characters.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-UNFormatted
This option may be used with most listings to specify that the column formatting is not to be per-
formed. This is useful for shell scripts.

Reference Manual Aegis 63

aegis(1) General Commands Manual aegis(1)

-Page-Header
This option requests that page headings be present in listings and reports. This is the default.

-No-Page-Header
This option requests that page headings be omitted from listings and reports.

Abbreviations
All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’—’. The “——option=value” convention is also understood.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES

The aegis command understands the following environment variables:

AEGIS_PATH
A colon-separated list of library directories. See the —LIBrary option for a description how this
environment variable is used.

AEGIS_PROJECT
Names a default project. See the —Project option for a description how this environment variable
is used.

AEGIS_CHANGE
Specifies a default change. See the —Change option for a description how this environment vari-
able is used.

AEGIS_FLAGS
This environment variable is used to hold aeuconf (5) information, and over-rides the settings in
the users .aegisrc file. This is intended to be used within the tests distributed with aegis, but can
also be of use within some shell scripts.

AEGIS_THROTTLE
Specifies the number of seconds to delay execution within commands which set time stamps.
This is intended to be used within the tests distributed with aegis, but can also be of use within
some shell scripts.

AEGIS_AUTOMOUNT_POINTS
A colon-separated list of directories which the automounter may use to mount file systems. Use
with extreme care, as this distorts Aegis’ idea of the shape of the filesystem.

This feature assumes that paths below the automounter’s mount directory are echoes of paths
without it. E.g. When /home is the trigger, and /tmp_mnt /home is where the on-demand
NFS mount is performed, with /home appearing to processes to be a symlink.

This is the behavior of the Sun automounter. The AMD automounter is capable of being config-
ured in this way, though it is not typical of the examples in the manual. Nor is it typical of the
out-of-the-box Linux AMD configuration in many distributions.

Reference Manual Aegis 64

aegis(1) General Commands Manual aegis(1)

COLS Specifies the page width for errors and listings. See the —Page_Width option for a description
how this environment variable is used.

EDITOR
Specifies the program use to edit files when the —Edit or —Edit_BackGround options are used.
(See also the VISUAL environment variable.) Defaults to vi if not set. See the editor_command
fields in aeuconf(1) for how to override this specifically for Aegis.

LINES Specifies the page length for listings. See the —Page_Length option for a description how this
environment variable is used.

PAGER Specifies the program to use to view listings and help. Not used if output is to a file or a pipe.
Defaults to more if not set.

VISUAL
Specifies the program use to edit files when the —Edit option is used. (See also the EDITOR en-
vironment variable.) Defaults to vi if not set. See the visual_command fields in aeuconf(1) for
how to override this specifically for Aegis.

AEGIS_DATADIR
Overrides the datadir as specified at configure invocation. Useful mainly for testing.

When commands are executed by Aegis, it ensures that the AEGIS_PROJECT, AEGIS_CHANGE,
AEGIS_ARCH, LINES and COLS environment variables are set appropriately. The project configuration
file’s project_specific field is also consulted, looking for value’s whose name starts with "setenv:" and sets
the corresponding environment variable. All of the substitutions described by aesub(5) are available. For
example: specifying a PATH and a SEARCH_PATH to be used for all commands may be set as follows:

project_specific =

[

{

name = "setenv:PATH";
value = "/usr/bin:/bin";
}l
{
name = "setenv:SEARCH_PATH";
value = "${search_path}l";

by
1i
As many environment variables as desired may be specified in this way.

SEE ALSO

aegis(5) aegis file format syntax

aecattr(5)
change attributes file format

aecstate(5)
change state file format

aedir(5) directory structures

aegstate(5)
aegis state file format

aepattr(S)
project attributes file format

aepconf (5)
project configuration file format

aepstate(5)
project state file format

Reference Manual Aegis 65

aegis(1) General Commands Manual

aer(5) report script language definition

aesub(5)
available command substitutions

aeuconf (5)
user configuration file format

aeustate(5)
user state file format

COPYRIGHT
aegis version 4.25.D510

aegis(1)

Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,

2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the 'aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for

details use the ’aegis —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis

66

ae-cvs-ci(1) ae-cvs-ci(1)

NAME

ae-cvs-ci — checkin a change set to CVS
SYNOPSIS

ae-cvs-ci project-name change-number
DESCRIPTION

The ae-cvs-ci command is used to check an Aegis change set into CVS.
This script is a short wrapper around the ae-repo-ci(1) command.

This is usually used in the integrate pass notify command project attribute, as in
integrate_pass_notify_command =
"$bin/ae-cvs-ci $project $change";

EXIT STATUS
The ae-cvs-ci command will exit with a status of 1 on any error. The ae-cvs-ci command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
ae-cvs-ci version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The ae-cvs-ci program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-cvs-ci —VER-
Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’ae-cvs-ci —VERSion License’ command.

AUTHOR
Peter Miller ~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 67

ae-repo-ci(1) ae-repo-ci(1)

NAME

ae-repo-ci — redundant repository checkin

SYNOPSIS
ae-repo-ci —Project name —Change number —REPOsitory type [option...]
ae-repo-ci —Help
ae-repo-ci —~VERSion

DESCRIPTION

The ae-repo-ci command is used to redundantly commit an Aegis change set into a parallel repository.

Integrate Pass Notify Command
The intended use for the ae-repo-ci command is as an integrate_pass_notify_command (see aepa(l) for
more information) to do a redundant checkin of a change set into a second parallel repository.

For example, if you were using CVS, the project attribute would look something like this:
integrate_pass_notify_command =
"$pbin/ae-repo-ci -repo cvs "
" -p $project -c S$change";
You may also need to specify the module, if the module name is not the same as the project name.

Commit Messages
You are able to control the commit message, by using the ae—repo-ci:commit-message attribute in
the project_specific field of the project configuration file.

The default is as if the following entry were present:
project_specific = [
{
name = "ae-repo-ci:commit-message";
value = "$version — ${change brief_description}";
H
All of the aesub(5) substitutions are available.
OPTIONS

The following options are understood:

—Change number
This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

—DIRectory path
This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

-Help
This option may be used to obtain more information about how to use the ae-repo-ci program.

—List This option may be used to obtain a list of supported repository types.

—MODule name
This option may be used to specify which module is to be checked out. If not set, it defaults to
the trunk project name (i.e. the project name without any branch or version numbers).

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf (5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

Reference Manual Aegis 68

ae-repo-ci(1) ae-repo-ci(1)

—REPOsitory type
This option is used to specify the repository type for the checkin. Known repository types are:

cvs Concurrent version System. You will need to set the CVSROOT environment variable
appropriately, and the —module option will be relative to it.

svn
Subversion. You must specify the complete URL with the —module option.

The following field in the project_specific field of the project configuration file
(see aepconf(5) for more information) are relevant:

svn:username
If present, the ~username command line option will be added to svn(l)
command lines, with this value.

svn:password 8n
If present, the ~username command line option will be added to svn(l)
command lines, with this value.

These options can help when you can’t convince Subversion to use the correct autho-
rization any other way.

This option must be specified, there is no default. The —list option may be used to obtain an up-
to-date list of supported repository types.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for ae-repo-ci are long, this means ig-
noring the extra leading —’. The “——option=value” convention is also understood.

EXIT STATUS

The ae-repo-ci command will exit with a status of 1 on any error. The ae-repo-ci command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO

aeca(l) how to change project attributes

Reference Manual Aegis 69

ae-repo-ci(1) ae-repo-ci(1)

COPYRIGHT
ae-repo-ci version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,

2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The ae-repo-ci program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-repo-ci
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’ae-repo-ci —VERSion License’ command.

AUTHOR
Peter Miller ~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 70

ae-sccs-put(1) ae-sccs-put(1)

NAME

ae-sccs-put — put sccs version
SYNOPSIS

ae-sces-put —ycomment —Ginput-file history-file
DESCRIPTION

The ae-sccs-put command is used to commit changes to an SCCS file. It insulates against a number of
SCCS’s quirks, and maps to Aegis’ expectations better than using the SCCS commands directory in the his-
tory commands in the project aegis.conf configuration file.

The file comments must be specified on the command line.
The source file must be specified on the command line.

It is expected that there is not lock current in the history file. This is consistent with Aegis’ use of its his-
tory tool.

The history file need to exist yet. It will be created (with the sccs admin command) if it does not.

OPTIONS

The following options are understood:

—Gsource-file
This option must be used to specify the source file to be checked into the history.

—ycomment
This option must be used to specify the comment to be attached to the file history. You probably
need to use quotes to insulate the white space in the comment.

EXIT STATUS
The ae-sccs-put command will exit with a status of 1 on any error. The ae-sccs-put command will only
exit with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

COPYRIGHT
ae-sccs-put version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The ae-sccs-put program comes with ABSOLUTELY NO WARRANTY; for details use the ’ae-sccs-put
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’ae-sccs-put —VERSion License’ command.

AUTHOR
Peter Miller ~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 71

ae_c(1) ae_c(1)

NAME

ae_c — set change number

SYNOPSIS

ae_c change-number

DESCRIPTION
The ae_c command is an alias used to set the AEGIS_CHANGE environment variable. No checking of the
argument is performed.

This can make changing the change you are working on quick and simple.

SEE ALSO

aegis(1) For information on environment variables.

ae_p(1) Set project name.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the 'aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the 'aegis —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 72

ae_diff2htm(1) ae_diff2htm(1)

NAME
ae_diff2htm — wraps the diff2html command

SYNOPSIS
ae_diff2htm

DESCRIPTION

DESCRIPTION
The ae_diff2htm script wraps the diff2html command if available or otherwise falls back to a simple con-
text diff.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the 'aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the 'aegis —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 73

ae_p(1) ae_p(1)

NAME

ae_p — set project name

SYNOPSIS

ae_p project-name

DESCRIPTION
The ae_p command is an alias used to set the AEGIS_PROJECT environment variable. No checking of the
argument is performed.

This can make changing projects quick and simple.

SEE ALSO

aegis(1) For information on environment variables.

ae_c(1) Set change number.

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the 'aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis —VERSion License’ command.

AUTHOR
Peter Miller ~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 74

aeannotate(1) aeannotate(1)

NAME

aeannotate — annotated source file listing

SYNOPSIS
aeannotate [option...] filename
aeannotate —Help
aeannotate —List
aeannotate —VERSion

DESCRIPTION

The aeannotate command is used to produce an annotated listing of the named source file.

The columns specified by the user (see the —column option, below) are used of the left hand side of the
output. Two additional columns are always added: the line number and the source code.

If no columns are specified, the default columns are

—column ’${change date %Y-%m}’ Date 7
—column ’$version’ Version 9
—column ’${change developer}’ Who 8

The $version string always contains enough information to reproduce the entire project baseline at the time
of the delta. The first portion is the project branch, and the second portion (following the ‘D’) is the delta
number; use these to form the —branch and —delta options for an aecp(1) command.

At the end of the listing, accumulated statistics are presented, correlated to the unique columns values see
in the listing.

OPTIONS

The following options are understood:

—COLumn formula [heading][width]
This option may be used to specify columns you wish to see in the output. The formula is in the
for of an aesub(5) string. The heading is a string to be used as the column heading; defaults to
the formula if not specified. The width is the width of the columns; defaults to 7 if not specified.

—File_Statistics
This option causes file statistics to be appended. This lists the number of lines in the file were
changed at the same time as another file. For example, this allows you to see tests associated
with source files, and vice versa.

-Help
This option may be used to obtain more information about how to use the aeannotate program.

-Diff_Option string
This option may be used to pass addition arguments to the diff commands that is run between
each delta of the file. Use with caution: poor choice of options can render aecannotate inoperable,
or yield meaningless results. Probably the best use of this option is to pass the —b option, to ig-
nore white space changes, because this ignores the vast majority of cosmetic formatting changes,
showing you the content changes instead. The —i option, to ignore case, can also be useful for
case-insensitive languages.

—QOutput filename
This option may be used to specify the output file. The output is sent to the standard output by
default.

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf(5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case

Reference Manual Aegis 75

aeannotate(1) aeannotate(1)

letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aeannotate are long, this means
ignoring the extra leading —’. The “——option=value” convention is also understood.

EXIT STATUS
The aeannotate command will exit with a status of 1 on any error. The aeannotate command will only exit
with a status of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

EXAMPLES

If you wanted to list only the year against the lines of the file, use this column specification:
—column ’${change date %Y} Year 4

If you wanted to list the developer and the reviewer against the lines of the file (commonly called a “blame”
listing) use this column specification:

—column ’${change developer}’ Develop. 8

—column ’${change reviewer}’ Reviewer 8

If you wanted to see the change cause of each line, use this column specification:
—column ’$version’ Version 9
—column ’${change cause}’ Cause 20

All of the aesub(5) substitutions are available, however only the ${change ...} variants are particularly use-
ful.

To see only content changes, and ignore changes in indentation (assuming you are using GNU diff), use this
command:
aeannotate —diff-opt —b filename

COPYRIGHT
aeannotate version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aeannotate program comes with ABSOLUTELY NO WARRANTY; for details use the ’aeannotate
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’aeannotate —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 76

aegis —Build(1) General Commands Manual aegis —Build(1)

NAME
aegis build — build a change

SYNOPSIS
aegis —Build [option...][filename...]
aegis —Build -List [option...]
aegis —Build —Help

DESCRIPTION
The aegis —Build command is used to build a project. The project configuration file is consulted for the
appropriate build command, and that command is executed (see the build command and integration_-
build_command fields in aepconf(5) for more information.) Output of the command is automatically
logged to the aegis.log file at the root of the development directory tree. The build command will be exe-
cuted with its current directory being the root of the development directory, irrespective of there the aegis
—Build command was executed.

If the change is in the being integrated state, references to the development directory, above, should be read
as the integration directory. Integration build commands are executed with the user and group set to the
project’s owning user and group. That is, it is not necessary for an integrator to log in as someone else, the
project account for instance, in order to do an integration.

No Build Required
It is possible to configure your project so that no build is required. To do this, set the following
build_command = "exit 0";
in the project configuration file.

Process Side Effects
This command will cancel any test registrations, because building the project logically invalidates them. If
the project configuration file was deleted, any diff registration will also be canceled.

Notification
The actions of the command are controlled by the build_ command and integration_build_command fields
of the project config file. See aepconf(5) for more information.

File Action Adjustment
When this command runs, it first checks the change files against the projects files. If there are inconsisten-
cies, the file actions will be adjusted as follows:

create If a file is being created, but another change set is integrated which also creates the file, the file
action in the change set still being developed will be adjusted to "modify".

modify If a file is being modified, but another change set is integrated which removes the file, the file ac-
tion in the change set still being developed will be adjusted to "create".

remove If a file is being removed, but another change set is integrated which removes the file, the file will
be dropped from the change set still being developed.

PARTIAL BUILD
If files are named on the command line, these files are appended to the build command. This is known as a
partial build. Partial builds are not legal in the being integrated state, but can often be useful in the being
developed state. Partial builds are not recorded in the change status, because builds are decoupled from
aegis it is not possible for aegis to know if any set of partial builds is equivalent to a full build.

Warning: no change state lock is taken for a partial build, only a baseline read lock.

File Name Interpretation
The aegis program will attempt to determine the project file names from the file names given on the com-
mand line. All file names are stored within aegis projects as relative to the root of the baseline directory
tree. The development directory and the integration directory are shadows of this baseline directory, and so
these relative names apply here, too. Files named on the command line are first converted to absolute paths
if necessary. They are then compared with the baseline path, the development directory path, and the inte-
gration directory path, to determine a baseline-relative name. It is an error if the file named is outside one

Reference Manual Aegis 77

aegis —Build(1) General Commands Manual aegis —Build(1)

of these directory trees.

The —BAse_RElative option may be used to cause relative filenames to be interpreted as relative to the
baseline path; absolute filenames will still be compared with the various paths in order to determine a base-
line-relative name.

The relative_filename_preference in the user configuration file may be used to modify this default behavior.
See aeuconf(S) for more information.

SYMBOLIC LINKS
Many dependency maintenance tools, and indeed some compilers, have little or no support for include file
search paths, and thus for the concept of the two-level directory hierarchy employed by Aegis. (It becomes
multi-level when Aegis’ branching functionality is used.) To allow these tools to be used, Aegis provides
the ability to maintain a set of symbolic links between the development directory of a change and the base-
line of a project, so it appears to these tools that all of the project’s files are present in the development di-
rectory.

Project Configuration
The development_directory_style field of the project configuration file controls the appearance of the devel-
opment directory. See aepconf(5) for more information.

By using a setting such as
development_directory_style =
{
source_file_symlink = true;
during_build_only = true;
i
the user never sees the symbolic links, because they are added purely for the benefit of the dependency
maintenance tool during the execution of the aeb(1) command.

By using a setting such as

development_directory_style =

{

source_file_symlink = true;

i
(the other will default to false) the symbolic links will be created at develop begin time (see aedb(1) for
more information) and also maintained by each aeb(1) invocation. Note that the symbolic links are only
maintained at these times, so project integrations during the course of editing change sourec files may leave
the symbolic links in an inconsistent state until the next build.

When files are copied from the baseline into a change, using the aecp(1) command, the symbolic link
pointing into the baseline, if any, will be removed before the file is copied.

Note: Using this functionality in either form has implications for how the rules file of the dependency
maintenance tool is written. Rules must remove their targets before creating them (usually with an rm —f
command) if you use any of the link sub-fields (both hard links and symbolic links). This is to avoid at-
tempting to write the result on the symbolic link, which will point at a read-only file in the project baseline.
This is similar to the same requirement for using the link_integration_directory field of the project configu-
ration file.

User Configuration
There is a symbolic_link_preference field in the user configuration file (see aeuconf(5) for more informa-
tion). This controls whether aeb(1) will verify the symbolic links before the build (default) or whether it
will assume they are up-to-date. (This field is only relevant if development _directory__style.source_file_-
symlink is true.)

For medium-to-large projects, verifying the symbolic links can take as long as the build itself. Assuming
the symbolic links are up-to-date can be a large time-saving for these projects. It may be advisable to re-
view your choice of DMT in such a situation.

The aedb(1) command does not consult this preference. Thus, in most situations, the symbolic links will

Reference Manual Aegis 78

aegis —Build(1) General Commands Manual aegis —Build(1)

be up-to-date when the build is performed. The only Aegis function which may result in the symbolic links
becoming out-of-date is the integration of another change, as this may alter the presence or absence of files
in the baseline. In this situation, the default aeb(1) action is to ignore the user preference and the verify
symbolic links.

There are two command line options which modify aeb(1) behavior further: the —Verify-Symbolic-Links
option says to verify the symbolic links; and the —Assume-Symbolic-Links option says to assume the sym-
bolic links are up-to-date. In each case the option over-rides the default and the user preference.

It is possible to obtain behaviour similar to Tom Lord’a Arch by using a setting such as:
development_directory_style =
{
source_file_link = true;
source_file_symlink = true;
i

It is possible to obtain behaviour similar to CVS by using a setting such as:

development_directory_style =

{

source_file_copy = true;

i
There are many more possible configurations of the development_directory_style, usually with helpful build
side-effects. See aepconf(1) and the Depenedency Maintenance Tool chapter of the User Guide for more
information.

The symbolic link command line options and preferences apply equally to hard links and file copies (the
names have historical origins).

THE BASELINE LOCK
The baseline lock is used to ensure that the baseline remains in a consistent state for the duration of com-
mands which need to read the contents of files in the baseline.

The commands which require the baseline to be consistent (these include the aeb(1), aecp(1) and aed(1)
commands) take a baseline read lock. This is a non-exclusive lock, so the concurrent development of
changes is not hindered.

The command which modifies the baseline, aeipass(1), takes a baseline write lock. This is an exclusive
lock, forcing aeipass(1) to block until there are no active baseline read locks.

It is possible that one of the above development commands will block until an in-progress aegis —Inte-
grate_PASS completes. This is usually of short duration while the project history is updated. The delay is
essential so that these commands receive a consistent view of the baseline. No other integration command
will cause the above development commands to block.

When aegis’ branch functionality is in use, a read (non-exclusive) lock is taken on the branch baseline and
also each of the "parent" baselines. However, a baseline write (exclusive) lock is only taken on the branch
baseline; the "parent"” baselines are only read (non-exclusive) locked.

METRICS
Aegis is capable of recording metrics as part of the file attributes of a change. This allows various proper-
ties of files to be recorded for later trend analysis, or other uses.

The specific metrics are not dictated by Aegis. It is expected that the integration build will create a metrics
file for each of the source files the change. These metrics files must be in the format specified by aemet-
rics(5).

The name of the metrics file defaults to “filename,S”, however it may be varied, by setting the metrics_-
filename_pattern field of the project config file. See aepconf(5) for more information.

If such a metrics file exists, for each source file in a change, it will be read and remembered at integrate
pass time. If it does not exist, Aegis assumes there are no relevant metrics for that file, and proceeds
silently; it is not an error.

Reference Manual Aegis 79

aegis —Build(1) General Commands Manual aegis —Build(1)

OPTIONS

The following options are understood:

name=value
Command line arguments of this form are assumed to be variable assignments for the build tool.
They are passed through unchanged. They imply a partial build.

—BAse_RElative
This option may be used to cause relative filenames to be considered relative to the base of the
source tree. See aeuconf(5) for the corresponding user preference.

—CUrrent_RElative
This option may be used to cause relative filenames to be considered relative to the current direc-
tory. This is usually the default. See aeuconf(5) for the corresponding user preference.

—Change number
This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

—MINImum
This option may be used to request a source-only development_directory_style. This is useful if
you want to simulate something like aeib —minimum in the development directory. This option is
only meaningful if development_directory_style is being used. If the change is in the being inte-
grated state, and the developer specified -MINImum when issuing the aegis —Integrate_Begin
command, then this option is set by default.

-Not_Logging
This option may be used to disable the automatic logging of output and errors to a file. This is
often useful when several aegis commands are combined in a shell script.

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf(5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

—Verify_Symbolic_Links
This option may be used to request that the symbolic links, or hard links, or file copies, in the
work area be updated to reflect the current state of the baseline. This is controlled by the
development_directory_style field of the project configuration file. Only files which are not in-
volved in the change are updated. See also the “symbolic_links_preference” field of aeuconf(s).
This option is the default, if meaningful for your configuration. The name is an historical acci-
dent, hard links and file copies are included.

Reference Manual Aegis 80

aegis —Build(1) General Commands Manual aegis —Build(1)

—Assume_Symbolic_Links
This option may be used to request that no update of baseline mirror files take place. This op-
tions is useful when you definitely know the files’ up-to-date-ness isn’t important right now; in-
correct use of this option may have unanticipated build side-effects. See also the “sym-
bolic_links_preference” field of aeuconf(5). This option is the default, if not meaningful for your
configuration. The name is an historical accident, hard links and file copies are included.

—Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-
conf (5) for more information.

—No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-
conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading —’. The “——option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeb ’aegis —b \!* —v’
sh$ aeb(){aegis -b "$@" —v}

ERRORS
It is an error if the change is not assigned to the current user.
It is an error if the change is not in one of the being developed or being integrated states.
It is an error if a partial build is requested and the change is in the being integrated state.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aedb(1) begin development of a change

aecp(l) file copy also takes a baseline read lock (non-exclusive)
aeib(1) begin integration of a change

aeipass(1)
integrate pass takes a baseline write lock (exclusive)

aet(1) run tests

aemetrics(5)
metrics values file format

Reference Manual Aegis 81

aegis —Build(1) General Commands Manual aegis —Build(1)

aepconf (5)
project configuration file format

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the 'aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 82

aebisect(1) General Commands Manual aebisect(1)

NAME

aebisect — search for a delta which changed project behaviour

SYNOPSIS

aebisect [option...] [-Branch branchl] —DELta deltal [-Branch branch2] -DELta delta2 —— command
[command_args]

DESCRIPTION
The aebisect command is used to determine when in a project history some property or behavior changed.
It does this by means of a bisection search through the inventory of deltas. The user must specify starting
and ending deltas, which may be in historical branches of the project.

For each delta tested in the search, aebisect sets up a development directory, builds the project, and then
runs the specified command in the development directory. By iteration, aebisect finds two consecutive
deltas where the return code of command changed.

Note: aebisect can take considerable CPU effort, since it (normally) does a full build from scratch for each
delta tested.

OPTIONS

The following options are understood:

—Help
Show usage information.

—Project project—name
specify the project (otherwise done via the AEGIS_PROJECT environment variable)

—Change change—number
specify the change to use for the processing (otherwise done via the AEGIS_CHANGE environment
variable). The change must be in the awaiting_development state; this ensures a correct environment for
building and testing.

—Branch branch—extension
specify the branch for one of the deltas. Defaults to the baseline branch of the project. Use —b — (single
dash) to specify the trunk. Branch specifiers must precede the corresponding delta specifiers.

—Logfile logfile
specify where normal output goes; defaults to $HOME/aebisect.log.

—Verbose
produce more diagnostic information (both logfile and standard output).

—Keep
do not delete working files, which are in a temporary directory. Warning: these may be voluminous!
—DIRectory path
specify a development directory to use for building and testing.
—Minimum
use the —minimum option for the builds.
—Nobuild

skip the build steps. This option is useful if the test command only involves source files. (Consider us-
ing aeannotate(1) instead.)

—Zero_only
treat all test result codes other than 0 as equivalent.

DIAGNOSTICS
Normally, exit status is O if consecutive deltas are found to bracket a change in the test command result.
Exit status is 1 if errors are detected in arguments. Exit status is 2 if a subordinate command fails (possibly
leaving the development directory in an uncertain state) or if the test behavior is found to be inconsistent

Reference Manual Aegis 83

aebisect(1) General Commands Manual aebisect(1)

with bisection search.

SIGNALS

aebisect will stop on INT, QUIT, and TERM signals, probably leaving the development directory in an un-
certain state.

EXAMPLE

BUGS

Suppose a bug was introduced by development on project foo—4.5, sometime between version 1.2.D003
and 4.5.D006, and you have written an Aegis test script for the bug (see aent(l)), called
/wrk/test/00/t0007a.sh, taking an argument for system architecture. Then the following should isolate the
change which introduced the bug:

% aenc —p foo—4.5 —c 20 file caf
% aebisect —p foo—4.5 —c 20 —b 1.2 —del 3 -b 4.5 —del 6\
—— sh /wrk/test/00/t0007a.sh linux—i486

Note that the full path for the test script is specified, since the command is executed in a development direc-
tory.

aebisect depends on aecp —delta for historical reconstructions. This can be problematic.

It is possible for a build to fail: derived files from the baseline may poison the build, or there may have been
changes in the system infrastructure since the old deltas were integrated. In such cases, aebisect exits. The
user may then snoop around the development directory, fix something, rebuild, perform the test, and use the
logfile to see how to proceed. Remember to aedbu when done.

In some situations the problem may be cured by an additional step between aedb and aeb. A command to
be interposed may be defined via the environment variable AEBISECT_DB_HOOK; this command is ex-
ecuted after aecp, so it may be used to patch source files — see the script source for details.

COPYRIGHT

Copyright © 2007 Ralph Smith
Partially derived from aeintegratq, Copyright © 1998-2005 Endocardial Solutions, Inc.

This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Reference Manual Aegis 84

aebuffy(1) aebuffy(1)

NAME

aebuffy — watch for changes

SYNOPSIS
aebuffy [project-name]

DESCRIPTION
The aebuffy command is used to watch for changes which the current user may be able to act upon. These
include changes being developed by the user, and changes which could be reviewed or integrated by the
user.

If you don’t use the project-name command line option, you need to set the AEGIS_PROJECT environ-
ment variable, or the default_project field of the .aegisrc file before you invoke this command. This is es-
pecially important if you launch it from your X11 session start-up file.

Double clicking on a change will invoke the tkaer(1) command for that change. This does not work for
changes in the awaiting development and completed states, but works for all other states.

Use the “q” key to quit.
At the moment it can only watch one project. If you are good at Tcl/Tk, improvements are most welcome.

COPYRIGHT
aebuffy version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aebuffy program comes with ABSOLUTELY NO WARRANTY; for details use the ’aebuffy —VERSion
License’ command. This is free software and you are welcome to redistribute it under certain conditions;
for details use the *aebuffy —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 85

aegis —Change_Attributes(1) General Commands Manual aegis —Change_Attributes(1)

NAME

aegis change attributes — modify the attributes of a change

SYNOPSIS
aegis —Change_Attributes —File attr-file [option...]
aegis —Change_Attributes —Edit [option...]
aegis —Change_Attributes —Fix_ARchitecture
aegis —Change_Attributes name=value
aegis —Change_Attributes —List [option...]
aegis —Change_Attributes —Help
aegis —Change_Attributes —UUID string [option...]

DESCRIPTION

The aegis —Change_Attributes command is used to set, edit or list the attributes of a change.

The output of the —List variant is suitable for use as input at a later time.

See aecattr(5) for a description of the file format.

The name=value form of the command may be used when you wish to add or modify change set attributes.
If an attribute is already present, it will be modified; if there is more than one attribute with the same name,

only the first will be modified. The name+=value form will always append the pair.

Example
When you edit the file, you will see something like this:
brief description = "login(l) is too fussy";
description = "When users type their password "

"incorrectly, after three times the login(l) "
"program should assume they have forgotten "
"their password and automatically reset it "
"for them.";

cause = external_enhancement;
attribute =
[
{
name = "bugzilla";
value = "666";
}l
{
name = "customer-priority";
value = "high";
}l
{
name = "marketing-priority";
value = "urgent-panic-headless-chicken";
}l
{
name = "engineering-priority";
value = "after-heat-death-of-universe";

1;

Note the semicolons, you need to get them right. Edit the fields you want to change. When you quit the

editor, they will be updated.

Known Attribute Names

While many of the anticipated used of change attributes are to allow projects to attach their own specialized
data to change sets, Aegis also uses some attributes for its own purposes (and arguably, should always have

done so to maximize forwards compatibility across Aegis upgrades).

Reference Manual Aegis

86

aegis —Change_Attributes(1) General Commands Manual aegis —Change_Attributes(1)

aeget:inventory:hide
boolean. If true, this change set does not appear in aeget(1)’s change set inventory pages, used by
aedist —replay to decide what to download and apply. Think of it as a "local only" flag.

aeget-inventory-hide
Do not show this change set in the file inventory. See aeget(1) for more information.

aegis:history_get_command
Used when reconstructing file history, and the history tool has been changed at some point in the
past.

aemakegen:debian:accepted
Set to true when a debian package upload has succeeded, and the BTS tells you the bug fixes
have been accepted.

foreign-copyright
boolean. If true, none of the files in this change set will not be checked by the aede-policy(1)
copyright validation.

integrate-begin-hint
Suggest options when integrating. See aeib(1) for more information.

original-uuid
This is set by aedist —receive when an incoming change set is changed before it can end develop-
ment. There may be more than one. The aegef(1) inventory "all" page will show these additional
UUIDs, used by the aedist —pending command..

aegis:history_get_command
This is set by aeipass when integrating a change. See the CHANGING HISTORY TOOL section
of aepconf(5) for more information.

Universal Unique Identifier
Each change set is assigned a unique universal identifier (UUID) at integrate pass time. This serves to
identify the change across all sites when a geographically distributed development model is being used.
This may be exploited to rapidly determine which change sets need to be downloaded.

The —Universal_Unique_IDentifier option is used by the aedist(1) and aepatch(1) commands to set the
UUID of a change set. It should not be used by developers.

Using Change Attributes in Scripts
There are several ways you can use the attributes of an Aegis change in a shell script:

aereport(1l)
The report generator is able to access change attributes. You can then have the report generator
print the necessary data.

aesub(1) Many change attributes can be accessed via the aesub(5) command substitutions, and printed us-
ing the aesub(1) command.

aeca—1 The list option of the aeca(1) command may be used to print the values of all editable change at-
tributes. It can be groped using grep(1) or awk(1), or similar.

aexml(1)
It is possible to get a great deal of information in XML format, including change attributes. This
format can be parsed by a variety of packages.

Use the method best suited to your particular needs.

OPTIONS

The following options are understood:

—Change number
This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

Reference Manual Aegis 87

aegis —Change_Attributes(1) General Commands Manual aegis —Change_Attributes(1)

—Description_Only
This option may be used to specify that only the change description is the subject of this com-
mand. It will be presented as plain text, without any of the quotes or escapes present when this
command is not used.

-Edit
Edit the attributes with a text editor, this is usually more convenient than supplying a text file.
The VISUAL and then EDITOR environment variables are consulted for the name of the editor to
use; defaults to vi(1) if neither is set. See the visual_command and editor_command fields in
aeuconf(1) for how to override this specifically for Aegis.

Warning: Aegis tries to be well behaved when faced with errors, so the temporary file is left in
your home directory where you can edit it further and re-use it with a —file option.

The —edit option may not be used in the background, or when the standard input is not a terminal.

—Edit_BackGround
Edit the attributes with a dumb text editor, this is most often desired when edit commands are be-
ing piped into the editor via the standard input. Only the EDITOR environment variable is con-
sulted for the name of the editor to use; it is a fatal error if it is not set. See the editor_command
field in aeuconf(1) for how to override this specifically for Aegis.

—File filename
Take the attributes from the specified file. The filename ‘-’ is understood to mean the standard
input.

—Fix_ARchitecture
This option may be used to replace change change’s architecture list with all of the mandatory ar-
chitectures from the project configuration file, plus any of the optional architectures that match
the current machine. May not be used with —file or —edit options.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf(5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

—Universal_Unique_IDentifier string
This option may be used to set the UUID of change change.

—Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-
conf (5) for more information.

Reference Manual Aegis 88

aegis —Change_Attributes(1) General Commands Manual aegis —Change_Attributes(1)

—No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-
conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’—’. The “——option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aeca ’aegis —ca \!* —v’
sh$ aeca(){aegis —ca "$@" —v}
ERRORS

It is an error if the current user is not an administrator of the specified project.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
tkaeca(l)
GUI interface to the aeca(1) command.

aecattr(5)
change attributes file format

aecstate(5)
change state file format

aepa(5) modify the attributes of a project

aesub(5)
available command substitutions

aeuconf (5)
user configuration file format

Reference Manual Aegis 89

aegis —Change_Attributes(1) General Commands Manual aegis —Change_Attributes(1)

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the ’aegis —VERSion License’ command.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 90

aegis —Change_Directory(1) General Commands Manual aegis —Change_Directory(1)

NAME

aegis change directory — change directory

SYNOPSIS
aegis —Change_Directory [option...][relative-path]
aegis —Change_Directory —List [option...]
aegis —Change_Directory —Help

DESCRIPTION
The aegis —Change_Directory command is used to obtain a path to change directory to. If the relative-
path is supplied, this will be added to the output.

This command is usually used to calculate an argument for cd(1), however it can also be used to obtain an
absolute path for change and project files.

OPTIONS

The following options are understood:

-BaseLine
This option may be used to specify that the project baseline is the subject of the command.

—-BRanch number
This option may be used to specify a different branch for the origin file, rather than the baseline.
(See also —TRunk option. Please Note: the —BRanch option does not take a project name, just
the branch number suffix.

—GrandParent
This option may be used to specify the grandparent branch (one up from the current branch) for
the origin file, rather than the baseline. (The —grandparent option is the same as the “~branch ..”
option.)

—Change number
This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

-Development_Directory
This option is used to specify that the development directory is the subject of the command. This
is only useful for a change which is in the being integrated state, when the default is the integra-
tion directory.

-Help
This option may be used to obtain more information about how to use the aegis program.

-List
This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf(5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

-TRunk
This option may be used to specify the project trunk for the origin file, rather than the baseline.
(See also —BRanch option, the —trunk option is the same as the “~branch - option.)

Reference Manual Aegis 91

aegis —Change_Directory(1) General Commands Manual aegis —Change_Directory(1)

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selectors.

The GNU long option names are understood. Since all option names for aegis are long, this means ignor-
ing the extra leading ’—’. The “——option=value” convention is also understood.

RECOMMENDED ALIAS
The recommended alias for this command is
csh% alias aecd “cd ‘aegis —cd \!* —v*’
sh$ aecd(){cd ‘aegis —cd "$@" —v*}
ERRORS

It is an error if the specified change is not in a state where it has a directory to change to.

EXIT STATUS
The aegis command will exit with a status of 1 on any error. The aegis command will only exit with a sta-
tus of 0 if there are no errors.

ENVIRONMENT VARIABLES
See aegis(1) for a list of environment variables which may affect this command. See aepconf(5) for the
project configuration file’s project_specific field for how to set environment variables for all commands ex-
ecuted by Aegis.

SEE ALSO
aedb(1) begin development of a change

aeib(1) begin integration of a change
aerpass(1l)

pass review of a change
aerfail(1)

fail review of a change

aeuconf (5)
user configuration file format

COPYRIGHT
aegis version 4.25.D510
Copyright © 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012 Peter Miller

The aegis program comes with ABSOLUTELY NO WARRANTY; for details use the 'aegis —VERSion Li-
cense’ command. This is free software and you are welcome to redistribute it under certain conditions; for
details use the 'aegis —VERSion License’ command.

Reference Manual Aegis 92

aegis —Change_Directory(1) General Commands Manual aegis —Change_Directory(1)

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual Aegis 93

aegis —Change_Owner (1) General Commands Manual aegis —Change_Owner(1)

NAME

aegis change owner — set change owner

SYNOPSIS

aegis —Change_QOwner change-number user-name [option... |
aegis —Change_QOwner —Help
aegis —Change_Owner —VERSion

DESCRIPTION

The aegis —Change_Owner command is used to reassign a change from one developer to another.

A new development directory is created for the change in the new developers default area (see aedb(1) for
more information) and the change files are copied across. Derived files are ignored, so a new build will be
required. The old development directory will be deleted.

This command must be performed by a project administrator, and the new assignee must be a developer.

Warning: capricious use of this command will alienate developers very rapidly.

Notification

This command mimics many of the actions of the aebdu(1) and aedb(1) command. In particular, it invokes
the develop_begin_undo_command and develop_begin_command of the project config file. See aepconf(5)
for more information.

Development Directory Location

Please Note: Aegis also consults the underlying file system, to determine its notion of maximum file size.
Where the file system’s maximum file size is less than maximum_filename_length, the filesystem wins.
This can happen, for example, when you are using the Linux UMSDOS file system, or when you have an
NFS mounted an ancient V7 filesystem. Setting maximum_filename_length to 255 in these cases does not
alter the fact that the underlying file systems limits are far smaller (12 and 14, respectively).

If your development directories (or your whole project) is on filesystems with filename limitations, or a
portion of the heterogeneous builds take place in such an environment, it helps to tell Aegis what they are
(using the project config file’s fields) so that you don’t run into the situation where the project builds on the
more permissive environments, but fails with mysterious errors in the more limited environments.

If your development directories are routinely on a Linux UMSDOS filesystem, you would probably be bet-
ter off setting dos_filename_required = true, and also changing the development_directory_template field.
Heterogeneous development with various Windows environments may also require this.

OPTIONS

The following options are understood:

—Change number
This option may be used to specify a particular change within a project. See aegis(1) for a com-
plete description of this option.

—DIRectory path
This option may be used to specify which directory is to be used. It is an error if the current user
does not have appropriate permissions to create the directory path given. This must be an ab-
solute path.

Caution: If you are using an automounter do not use ‘pwd‘ to make an absolute path, it usually
gives the wrong answer.

-Help
This option may be used to obtain more information about how to use the aegis program.

-Interactive
Specify that aegis should ask the user for confirmation before deleting each file. Answer the
question yes to delete the file, or no to keep the file. You can also answer all to delete the file
and all that follow, or none to keep the file and all that follow.

Defaults to the user’s delete_file preference if not specified, see aeuconf(5) for more

Reference Manual Aegis 94

aegis —Change_Owner (1) General Commands Manual aegis —Change_Owner(1)

information.

If aegis is running in the background, the question will not be asked, and the files will be deleted.

-Keep
This option may be used to retain files and/or directories usually deleted or replaced by the com-
mand. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more in-
formation.

-No_Keep
This option may be used to ensure that the files and/or directories are deleted or replaced by the
command. Defaults to the user’s delete_file_preference if not specified, see aeuconf (5) for more
information.

-List

This option may be used to obtain a list of suitable subjects for this command. The list may be
more general than expected.

—Project name
This option may be used to select the project of interest. When no —Project option is specified,
the AEGIS_PROJECT environment variable is consulted. If that does not exist, the user’s
SHOME/.aegisrc file is examined for a default project field (see aeuconf(5) for more informa-
tion). If that does not exist, when the user is only working on changes within a single project, the
project name defaults to that project. Otherwise, it is an error.

—REAson fext
This option may be used to attach a comment to the change history generated by this command.
You will need to use quotes to insulate the spaces from the shell.

-TERse
This option may be used to cause listings to produce the bare minimum of information. It is usu-
ally useful for shell scripts.

—User name
This option is used to specify the user who is to develop the change.

-Verbose
This option may be used to cause aegis to produce more output. By default aegis only produces
output on errors. When used with the -List option this option causes column headings to be
added.

—Wait This option may be used to require Aegis commands to wait for access locks, if they cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-
conf (5) for more information.

—No_Wait
This option may be used to require Aegis commands to emit a fatal error if access locks cannot be
obtained immediately. Defaults to the user’s lock_wait_preference if not specified, see aeu-
conf (5) for more information.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—project”, “~PROJ” and “—p” are all interpreted to mean the —Project option.
The argument “—prj” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line, after the func-
tion selector