LifeLines Developer Documentation

LifeLines Developer Documentation

LifeLines Version 3.1.1

LifeLines Developer Documentation

COLLABORATORS

TITLE :

LifeLines Developer Documentation

ACTION NAME DATE SIGNATURE
WRITTEN BY Perry Rapp March 16, 2016
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

LifeLines Developer Documentation iii
Contents

1 Introduction to Lifelines Developers Manual 1

2 btree module 2

3 stdlib module 3

3.1 String Functions L e e e 3

3.1.1 String copy and concatenation e e e e e e e e e e e e e e e e 3

3.1.2 String append (IIstrapp) L e e 3

3.1.3 String append (appendstr) L e e e e e 4

3.1.4 charfunctions L e e e 4

3.1.5 string allocation functions L. e e e e e e e e e 4

3.1.6 string conversion functions L. L L e 4

3.1.7 string equality functions e 4

3.1.8 string comparison functions e e e e e e e e e e 4

3.1.9 string whitespace functions L. oL e 4

3.1.10 string UTF-8 functions e e e e 4

3.1.11 printpic functions L. e e e e 4

32 ListModule L e e 4

3.3 TableModule e e e 5

3.4 Balanced Binary Tree (rbtree) Module e 5

4 gedlib module 6

4.1 NAMES e e 6

42 refns . ..o e 6

43 xreffile L e e e 6

44 MESSAZES . . .t e e e e e e e e e e e e e e e e e e 6

4.5 translation tables (charmaps.c and translat.c) L L 6

4.6 IndiSeq e e e e e 6

47 brwslist . . . L e e e e e 7

LifeLines Developer Documentation iv
5 interp module 8
5.1 pvalues 8
52 symtab e e e e e e 8
5.3 date ... e e 8
6 liflines module 9
7 autotools build system 10
8 Building LifeLines 11
8.1 Cloningthe SOUICE tree v v v i i e i e 11
8.2 automake and autoconf 11
8.3 configure e 12
8.4 Building the code on Unix/Linux o oo e e 12
8.5 Generating the source tarball L e e e e 12
8.6 Generating the rpm package 12
8.7 Makingarelease e e e 13
8.8 Puttingareleaseon github e e e e 13

LifeLines Developer Documentation 1/13

Chapter 1

Introduction to Lifelines Developers Manual

LifeLines source code is divided into several functional subdirectories, which will be discussed individually below. They are
chained together by an autotools build system, which creates executables in both the liflines and tools subdirectories.

LifeLines Developer Documentation 2/13

Chapter 2

btree module

The btree subdirectory contains the implementation for a btree database, using fixed length 8 letter keys (RKEY).

nodes Each node in the btree is a separate file on disk (named, eg, "aa"), and the first 4096 (BUFLEN macro) bytes are the node
header.

index nodes These are the interior index nodes of the btree; they contain pointers to subordinate index or block nodes. The
program performs binary searches through index nodes to find a particular key.

block nodes These contain the actual data (keys and their associated records).

keyfile One special file on the disk, the keyfile, contains some meta information and a pointer to the root of the btree (the master
key). When the root changes (splits), the master key in the keyfile is updated accordingly.

traverse There is a traversal function implemented at the btree level, which uses a callback.
bterrno There is a global integer error variable, bterrno, which is set by this module upon most failure conditions.

FUTURE DIRECTIONS bterrno must be removed for multi-threading. Traversal is more elegantly done via iterator style
repeated calls in, instead of callback.

LifeLines Developer Documentation 3/13

Chapter 3

stdlib module

The stdlib directory contains various utility functions not specifically related to LifeLines, GEDCOM, or even genealogy.

3.1 String Functions

There has built up, over time, quite an assortment of string functions, split currently between mystring.c and stdstrng.c (and a
few macros in standard.h).

3.1.1 String copy and concatenation

char *llstrncpy(char *dest, , size_t n, , int utf§, , const char * fmt, , va_list args);
char *llstrncat(char *dest, , size_t n, , int utf8, , const char * fmt, , va_list args);

These are simple wrappers around the C RTL (run time library) functions. The ANSI versions do not zero-terminate on overflow,
which is greatly inconvenient, os the wrapper versions do so. Also, the wrapper versions are UTF-8 aware (they backtrack on
overflow, to avoid leaving part of a UTF-8 multibyte sequence at the end).

3.1.2 String append (listrapp)

char *llstrapps(char *dest, , size_t limit, , int utf8, , const char * src);

char *lIstrappc(char *dest, , size_t limit, , char ch);

char *llstrappc(char *dest, , int limit, , int utf8, , const char * fmt);

char *llstrappv(char *dest, , int limit, , int utf8, , const char * fmt, , va_list args);

This family of functions is one (thin) layer higher than llstrncpy, providing an interface wherein the caller specified the buffer’s
start and entire size. That is,

llstrncat (buffer, " more stuff", sizeof (buffer)-strlen (buffer));

may be replaced by

llstrapp (buffer, sizeof (buffer), " more stuff");

There are also varargs versions, so that

snprintf (buffer+strlen (buffer), sizeof (buffer)-strlen(buffer),

may be replaced by
llstrappf (buffer, sizeof (buffer),

LifeLines Developer Documentation 4/13

3.1.3 String append (appendstr)

This is a family of functions similar in purpose to the strapp family, but which uses an additional level of indirection, advancing
pointers and decrementing counts.

* NOTE: FUTURE DIRECTIONS I put these in, and I would like to take them out, as I find them less intuitive than the strapp
family, and more bug-prone. They are slightly faster, but I don’t think it is worth it. -Perry.

3.1.4 char functions

There are character classification functions, which have handling particular to Latin-1 and to Finnish (if the Finnish compilation
option was set).

* NOTE: FUTURE DIRECTIONS It would be very nice to see wchar-based functions, which handle unicode, replace these, and
then we might be able to jettison the Latin-1 and Finnish specific character code.

3.1.5 string allocation functions

TODO: (strsave, strfree, strupdate, strconcat, free_array_strings)

3.1.6 string conversion functions

TODO: (isnumeric, lower, upper, capitalize, titlecase)

3.1.7 string equality functions

TODO: (eqstr, eqstr_ex, nestr, cmpstr)

3.1.8 string comparison functions

TODO: (cmpstrloc)

3.1.9 string whitespace functions

TODO: (trim, striptrail, striplead, allwhite, chomp)

3.1.10 string UTF-8 functions

These are the low-level functions used to do UTF-8 mechanics. These should only be called when in a database with internal
codeset of UTF-8.

3.1.11 printpic functions

These are simple printf style functions, except they only handle string format, and they do handle reordering the inputs. These
are used for strings that are internationalized, so that words or numbers (passed in string format) may be reordered in other
languages. Instead of %s escapes, these handle %1, %2, and %3 escapes.

3.2 List Module

list.c and list.h implement a simple, doubly-linked list type, which takes void pointers (VPTR) as elements. The list manages its
own nodes and memory (struct tag_list and struct tag_Inode), but the for the elements, it only frees them if the caller so instructs
it (using list type LISTDOFREE), and of course this only works if they are stdalloc/stdfree heap blocks.

LifeLines Developer Documentation 5/13

3.3 Table Module

table.c and table.h implement a fixed size hash tree (with linear buckets). As of 2005-01, Perry has been changing the implemen-
tation of the table type, so it is currently in flux.

3.4 Balanced Binary Tree (rbtree) Module

rbtree.c and rbtree.h implement a generic red/black balanced binary tree. These are not currently used by lifelines, but are planned
as a replacement for the current fixed-size hash table in table.c.

LifeLines Developer Documentation 6/13

Chapter 4

gedlib module

This directory is a collection of routines for GEDCOM and for its use in a LifeLines btree database.

4.1 names

This module implements indexing names. TODO: Explain soundex indexing.

4.2 refns

This module implements indexing references (REFNs). TOD: Explain two character index.

4.3 xreffile

This module stores lists of deleted record numbers for each type. When a record is deleted, its number is added to the appropriate
deleted list in xreffile. When a record is added, first the appropriate deleted list in xreffile is checked for a free record number.

4.4 messages
Traditionally all translatable strings have been stored in this file. This is not necessary with the current gettext scheme, but it

would perhaps be helpful if a resource based scheme were adapted in the future.

* FUTURE DIRECTIONS When/If GUI versions are incorporated into the same codebase, how to handle translate strings shared
and not shared between versions needs to be worked out.

4.5 translation tables (charmaps.c and translat.c)

The implementation of codeset translation is stored here (not to be confused with language translation for the user interface, called
localization, and not associated with these files). Both custom translation tables and delegation to the iconv codeset conversion
library are done here.

4.6 indiseq

The indiseq type is implemented here, a list of records (which no longer need all be persons).

LifeLines Developer Documentation 7/13

4.7 brwslist

Named browse lists are implemented here (temporary record lists named by user during this session).

LifeLines Developer Documentation 8/13

Chapter 5

interp module

The LifeLines reporting language parser and interpreter are stored here. A custom lexical analyzer is in lex.c, and a yacc parser
generator is in yacc.y.

The main interpreter is called with a list of files to parse, and some options. In actuality, I don’t think more than one file is ever
passed to the main entry point. If no file is passed, the routine will prompt (and here is where the user may choose a report from
a list). But a report may be passed in, if one was specified with commandline argument to llines or llexec.

The report file is parsed, and as it is parsed, any included reports are added to the list to be parsed (unless already on the list, so
circular references are not a problem).

require statements are handled at parse time. The handler puts the requested version into the file property table (stored inside the
pointer in the filetab entry for the file; filetab entries are indexed by full path of report). Later, just after parse completes for that
file (in the main parsing loop in the main interpreter function), require conditions are tested in check_rpt_requires(...).

5.1 pvalues

All variable values in report language interpretation are stored in a union type called pvalue.

5.2 symtab

Symbol tables are a thin wrapper around the table type provided by stdlib, specialized to hold pvalues.

5.3 date

A fairly complete GEDCOM date parser is also located here. It actually includes both a date parser, and a date formatter (which
generates the thousands of possible LifeLines date formats).

* FUTURE DIRECTIONS If a date type were added to the report language, it would be possible to distinguish fully-parsed
dates in the report language (so invalid or illegal dates could be flagged and handled separately in a report). The date module
already implements a date type internally, and it is exposed to the rest of the program (gdate and gdate_val, which correspond to
GEDCOM date types), but not to the report language.

LifeLines Developer Documentation 9/13

Chapter 6

lifines module

TODO:

LifeLines Developer Documentation 10/13

Chapter 7

autotools build system

todo

LifeLines Developer Documentation 11/13

Chapter 8

Building LifeLines

This chapter gives an overview of one way you can build LifeLines. It is not intended to be a comprehensive list of all techniques,
but rather enough to get you started. This section does not assume you are downloading the source tarball and building it, Those
instructions are in the file INSTALL. We are assuming you are checking out the sources from CVS.

8.1 Cloning the source tree

Anyone can clone the LifeLines source tree, using the following commands:

git clone https://github.com/MarcNo/lifelines.git

Once you have cloned the sources, git hides information in the .git subdirectories so all information about the repository is
retained. After the initial clone, if you want to update your sources, you can just type:

git pull

If you want to contribute (check-in) code to the main repository, please contact Marc Nozell (see github for contact information)
to gain project access. Once you do this, you can submit your changes using the following commands:

git add <filename> # to add files

git remove <filename> # to remove files

git commit # to commit changes

git push # to push files to remote repository

8.2 automake and autoconf

Many of the files you’re used to editing by hand are automatically generated by automake and/or autoconf. These include any
file named Makefile, Makefile.in, config.h, config.h.in, or configure.

The proper files to modify by hand are configure.ac (if there’s something new you need to determine about the host system at
configuration time) and Makefile.am (if source files are added or removed, targets added, or dependencies changed).

As long as you have autoconf and automake installed on your system, the Makefiles generated will be able to regenerate any file
dependent on a Makefile.am or configure.ac. To regenerate the build system explicitly run the script autogen.sh:

sh build/autogen.sh

autogen *must* be run after freshly checking a copy of the project out of git -- the files generated automatically are no longer
included in the git repository.

autogen.sh does the following: * Calls aclocal to generate aclocal.m4 from acinclude.m4, and populate build/autotools. * Calls
autoheader to generate acconfig.h. * Calls automake to generate Makefile.in files from Makefile.am * Calls autoconf to generate
configure from configure.ac

LifeLines Developer Documentation 12/13

8.3 configure

From a source distribution package, or a regenerated development environment, the *configure’ script will generate config.h and
generate Makefiles from every Makefile.in. At this point your source tree is properly configured for your machine and can be
built.

8.4 Building the code on Unix/Linux

There are lots of dependencies required to build LifeLines. These include: * C compiler (gcc, clang, etc) * GNU make * GNU
bison * GNU flex * GNU autoconf and automake One way to build the code is to make a subdirectory, lets say called bld in
your lifelines directory, (where the toplevel Makefile.am is located) and then build all the code there. This keeps the objects and
executables out of the source directories. This is the process shown here, and the process used by the build/build_dist.sh script.

sh build/autogen.sh
mkdir bld

cd bld

../configure

make

This should build LifeLines and leave the results in subdirectories of the the directory bld.

8.5 Generating the source tarball

If you have build the code as described above, you can generate the source tarball as follows;

cd bld
make dist

While this is a source tarball it does contain a number of generated files that make it easier to generate LifeLines from the
source tarball and/or package for third-party distribution. This includes the configure script, the makefiles, and the HTML/PDF
documentation.

8.6 Generating the rpm package

The specification file to build a rpm for redhat linux is included in the git repository. These notes show how you can use this to
build the source and binary rpm for redhat linux.

These instructions use techniques described by Mike Harris in a note entitled "Building RPM packages as a non-root user." These
were found at http://www.rpm.org/hintskinks/buildtree. At that url was also a tarball that included the files README(the note),
rpmrc and .rpmmacros. The later two files are installed in your home directory. These do alter the default behavior of rpm for
you and are not required to build the rpm, however, these instructions will fail.

Make sure there is a line of the form

$packager Joe Blow <joe@blow.com>

In your ~/.rpmmacros file. It is used to put the name and email address of the individual generating the rpm package into the file.
Be sure to use your name and email address. If there is a "Packager:" entry in the lifelines.spec file, make sure it is correct, as it
overrides the value in your .rpmmacros file.

From the lifelines directory (where the toplevel Makefile.am and the bld directory are, execute the following commands (with
appropriate version numbers of course)

LifeLines Developer Documentation 13/13

mkdir ~/rpmbuild

mkdir ~/rpmbuild/SRPMS

mkdir ~/rpmbuild/RPMS

mkdir ~/rpmbuild/BUILD

mkdir ~/rpmbuild/tmp

mkdir ~/rpmbuild/lifelines-3.0.22

cp bld/lifelines-3.0.22.tar.gz ~/rpmbuild/lifelines-3.0.22.
cp build/rpm/lifelines.spec ~/rpmbuild/lifelines-3.0.22

cd ~/rpmbuild/lifeines-3.0.22

rpmbuild -ba lifelines.spec

The mkdir commands only need to be executed if needed. If everything goes ok, this will generate a source and binary rpm.

8.7 Making a release

To release a new version, run the build/setversions.sh script to set the version in the many necessary files. Add an entry mentioning
the new version in the

Changelog

Tag the git source via (for example, for version X.Y.Z)

git tag vX_Y Z

Finally, Send an announcement to the LINES-L mailing list

8.8 Putting a release on github

This process is still being developed.

	 Introduction to Lifelines Developers Manual
	btree module
	stdlib module
	String Functions
	String copy and concatenation
	String append (llstrapp)
	String append (appendstr)
	char functions
	string allocation functions
	string conversion functions
	string equality functions
	string comparison functions
	string whitespace functions
	string UTF-8 functions
	printpic functions

	List Module
	Table Module
	Balanced Binary Tree (rbtree) Module

	gedlib module
	names
	refns
	xreffile
	messages
	translation tables (charmaps.c and translat.c)
	indiseq
	brwslist

	interp module
	pvalues
	symtab
	date

	liflines module
	autotools build system
	Building LifeLines
	Cloning the source tree
	automake and autoconf
	configure
	Building the code on Unix/Linux
	Generating the source tarball
	Generating the rpm package
	Making a release
	Putting a release on github

