
metadata.gz
metadata

--- !ruby/object:Gem::Specification
name: pdf-core
version: !ruby/object:Gem::Version
 version: 0.9.0
platform: ruby
authors:
- Gregory Brown
- Brad Ediger
- Daniel Nelson
- Jonathan Greenberg
- James Healy
autorequire:
bindir: bin
cert_chain:
- |
 -----BEGIN CERTIFICATE-----
 MIIDODCCAiCgAwIBAgIBATANBgkqhkiG9w0BAQsFADAjMSEwHwYDVQQDDBhhbGV4
 L0RDPXBvaW50bGVzcy9EQz1vbmUwHhcNMjAwODAxMTQxMjE1WhcNMjEwODAxMTQx
 MjE1WjAjMSEwHwYDVQQDDBhhbGV4L0RDPXBvaW50bGVzcy9EQz1vbmUwggEiMA0G
 CSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDPOVLPGEK+eaP6zJfifrpWvPTg4qo3
 XNJJPom80SwqX2hVCVsRDK4RYgKUQqKRQzHhlx14wZHwWLETBVbNDGX3uqyCnTWU
 JUKh3ydiZShXpNHoV/NW7hhEYvNsDcBAjYTmbvXOhuYCo0Tz/0N2Oiun/0wIICtP
 vytY9TY0/lklWjAbsqJjNOu3o8IYkJBAN/rU96E/6WhFwjnxLcTnV9RfFRXdjG5j
 CughoB2xSwKX8gwbQ8fsnaZRmdyDGYNpz6sGF0zycfiLkTttbLA2nYATCALy98CH
 nsyZNsTjb4WINCuY2yEDjwesw9f/ROkNC68EgQ5M+aMjp+D0WcYGfzojAgMBAAGj
 dzB1MAkGA1UdEwQCMAAwCwYDVR0PBAQDAgSwMB0GA1UdDgQWBBRPgIwSVbeonua/
 Ny/8576oxdUbrjAdBgNVHREEFjAUgRJhbGV4QHBvaW50bGVzcy5vbmUwHQYDVR0S
 BBYwFIESYWxleEBwb2ludGxlc3Mub25lMA0GCSqGSIb3DQEBCwUAA4IBAQAzhGxF
 M0bXJ9GWD9vdVHOyzBQBJcJAvnsz2yV3+r4eJBsQynFIscsea8lHFL/d1eHYP0mN
 k0fhK+WDcPlrj0Sn/Ezhk2qogTIekwDOK6pZkGRQzD45leJqQMnYd+/TXK3ri485
 Gi4oJ6NitnnUT59SQnjD5JcENfc0EcRzclmVRFE8W4O+ORgo4Dypq1rwYUzxeyUk
 mP5jNBWtH+hGUph28GQb0Hph6YnQb8zEFB88Xq80PK1SzkIPHpbTBk9mwPf6ypeX
 Un1TJEahAlgENVml6CyDXSwk0H8N1V3gm1mb9Fe1T2Z/kAzvjo0qTDEtMVLU7Bxh
 uqMUrdETjTnRYCVq
 -----END CERTIFICATE-----
date: 2020-10-24 00:00:00.000000000 Z
dependencies:
- !ruby/object:Gem::Dependency
 name: pdf-inspector
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: 1.1.0
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: 1.1.0
- !ruby/object:Gem::Dependency
 name: pdf-reader
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '1.2'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '1.2'
- !ruby/object:Gem::Dependency
 name: rake
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '0'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '0'
- !ruby/object:Gem::Dependency
 name: rspec
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '0'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '0'
- !ruby/object:Gem::Dependency
 name: rubocop
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '0.93'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '0.93'
- !ruby/object:Gem::Dependency
 name: rubocop-performance
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '1.8'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '1.8'
- !ruby/object:Gem::Dependency
 name: rubocop-rspec
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '1.44'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - "~>"
 - !ruby/object:Gem::Version
 version: '1.44'
- !ruby/object:Gem::Dependency
 name: simplecov
 requirement: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '0'
 type: :development
 prerelease: false
 version_requirements: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '0'
description: PDF::Core is used by Prawn to render PDF documents
email:
- gregory.t.brown@gmail.com
- brad@bradediger.com
- dnelson@bluejade.com
- greenberg@entryway.net
- jimmy@deefa.com
executables: []
extensions: []
extra_rdoc_files: []
files:
- COPYING
- GPLv2
- GPLv3
- Gemfile
- LICENSE
- Rakefile
- lib/pdf/core.rb
- lib/pdf/core/annotations.rb
- lib/pdf/core/byte_string.rb
- lib/pdf/core/destinations.rb
- lib/pdf/core/document_state.rb
- lib/pdf/core/filter_list.rb
- lib/pdf/core/filters.rb
- lib/pdf/core/graphics_state.rb
- lib/pdf/core/literal_string.rb
- lib/pdf/core/name_tree.rb
- lib/pdf/core/object_store.rb
- lib/pdf/core/outline_item.rb
- lib/pdf/core/outline_root.rb
- lib/pdf/core/page.rb
- lib/pdf/core/page_geometry.rb
- lib/pdf/core/pdf_object.rb
- lib/pdf/core/reference.rb
- lib/pdf/core/renderer.rb
- lib/pdf/core/stream.rb
- lib/pdf/core/text.rb
- lib/pdf/core/utils.rb
- pdf-core.gemspec
homepage: http://prawnpdf.org
licenses:
- PRAWN
- GPL-2.0
- GPL-3.0
metadata: {}
post_install_message:
rdoc_options: []
require_paths:
- lib
required_ruby_version: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: '2.5'
required_rubygems_version: !ruby/object:Gem::Requirement
 requirements:
 - - ">="
 - !ruby/object:Gem::Version
 version: 1.3.6
requirements: []
rubygems_version: 3.0.3
signing_key:
specification_version: 4
summary: PDF::Core is used by Prawn to render PDF documents
test_files: []

metadata.gz.sig

data.tar.gz
data.tar

COPYING

PDF::Core may be used under Matz's original licensing terms for Ruby, or GPLv2 or GPLv3.
See LICENSE for Matz's terms, or GPLv2 and GPLv3 files.

GPLv2

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

GPLv3

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Gemfile

frozen_string_literal: true

source 'https://rubygems.org'

gemspec

LICENSE

PDF::Core is copyrighted free software produced by Gregory Brown along with
community contributions. See git log for authorship information.

Licensing terms follow:

You can redistribute PDF::Core and/or modify it under either the terms of the GPLv2
or GPLv3 (see GPLv2 and GPLv3 files), or the conditions below:

 1. You may make and give away verbatim copies of the source form of the
 software without restriction, provided that you duplicate all of the
 original copyright notices and associated disclaimers.

 2. You may modify your copy of the software in any way, provided that
 you do at least ONE of the following:

 a) place your modifications in the Public Domain or otherwise
 make them Freely Available, such as by posting said
 modifications to Usenet or an equivalent medium, or by allowing
 the author to include your modifications in the software.

 b) use the modified software only within your corporation or
 organization.

 c) rename any non-standard executables so the names do not conflict
 with standard executables, which must also be provided.

 d) make other distribution arrangements with the author.

 3. You may distribute the software in object code or executable
 form, provided that you do at least ONE of the following:

 a) distribute the executables and library files of the software,
 together with instructions (in the manual page or equivalent)
 on where to get the original distribution.

 b) accompany the distribution with the machine-readable source of
 the software.

 c) give non-standard executables non-standard names, with
 instructions on where to get the original software distribution.

 d) make other distribution arrangements with the author.

 4. You may modify and include the part of the software into any other
 software (possibly commercial).

 5. The scripts and library files supplied as input to or produced as
 output from the software do not automatically fall under the
 copyright of the software, but belong to whomever generated them,
 and may be sold commercially, and may be aggregated with this
 software.

 6. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
 IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE.

Rakefile

frozen_string_literal: true

require 'rake'
require 'rspec/core/rake_task'

task default: %i[spec rubocop]

desc 'Run all rspec files'
RSpec::Core::RakeTask.new('spec') do |c|
 c.rspec_opts = '-t ~unresolved'
end

require 'rubocop/rake_task'
RuboCop::RakeTask.new

require 'rubygems/package_task'
spec = Gem::Specification.load 'pdf-core.gemspec'
Gem::PackageTask.new(spec) do |pkg|
 pkg.need_zip = true
 pkg.need_tar = true
end

task :checksum do
 require 'digest/sha2'
 built_gem_path = "pkg/pdf-core-#{Prawn::VERSION}.gem"
 checksum = Digest::SHA512.new.hexdigest(File.read(built_gem_path))
 checksum_path = "checksums/#{built_gem_path}.sha512"
 File.write(checksum_path, checksum)
end

lib/pdf/core.rb

frozen_string_literal: true

require_relative 'core/pdf_object'
require_relative 'core/annotations'
require_relative 'core/byte_string'
require_relative 'core/destinations'
require_relative 'core/filters'
require_relative 'core/stream'
require_relative 'core/reference'
require_relative 'core/literal_string'
require_relative 'core/filter_list'
require_relative 'core/page'
require_relative 'core/object_store'
require_relative 'core/document_state'
require_relative 'core/name_tree'
require_relative 'core/graphics_state'
require_relative 'core/page_geometry'
require_relative 'core/outline_root'
require_relative 'core/outline_item'
require_relative 'core/renderer'
require_relative 'core/text'

module PDF
 module Core
 module Errors
 # This error is raised when pdf_object() fails
 FailedObjectConversion = Class.new(StandardError)

 # This error is raise when trying to restore a graphic state that
 EmptyGraphicStateStack = Class.new(StandardError)

 # This error is raised when Document#page_layout is set to anything
 # other than :portrait or :landscape
 InvalidPageLayout = Class.new(StandardError)
 end
 end
end

lib/pdf/core/annotations.rb

frozen_string_literal: true

annotations.rb : Implements low-level annotation support for PDF
#
Copyright November 2008, Jamis Buck. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.
#
module PDF
 module Core
 # Provides very low-level support for annotations.
 #
 module Annotations #:nodoc:
 # Adds a new annotation (section 8.4 in PDF spec) to the current page.
 # +options+ must be a Hash describing the annotation.
 #
 def annotate(options)
 state.page.dictionary.data[:Annots] ||= []
 options = sanitize_annotation_hash(options)
 state.page.dictionary.data[:Annots] << ref!(options)
 options
 end

 # A convenience method for creating Text annotations. +rect+ must be an
 # array of four numbers, describing the bounds of the annotation.
 # +contents+ should be a string, to be shown when the annotation is
 # activated.
 #
 def text_annotation(rect, contents, options = {})
 options = options.merge(Subtype: :Text, Rect: rect, Contents: contents)
 annotate(options)
 end

 # A convenience method for creating Link annotations. +rect+ must be an
 # array of four numbers, describing the bounds of the annotation. The
 # +options+ hash should include either :Dest (describing the target
 # destination, usually as a string that has been recorded in the
 # document's Dests tree), or :A (describing an action to perform on
 # clicking the link), or :PA (for describing a URL to link to).
 #
 def link_annotation(rect, options = {})
 options = options.merge(Subtype: :Link, Rect: rect)
 annotate(options)
 end

 private

 def sanitize_annotation_hash(options)
 options = options.merge(Type: :Annot)

 if options[:Dest].is_a?(String)
 options[:Dest] = PDF::Core::LiteralString.new(options[:Dest])
 end

 options
 end
 end
 end
end

lib/pdf/core/byte_string.rb

frozen_string_literal: true

module PDF
 module Core
 # This is used to differentiate strings that must be encoded as
 # a byte string, such as binary data from encrypted strings.
 class ByteString < String #:nodoc:
 end
 end
end

lib/pdf/core/destinations.rb

frozen_string_literal: true

Implements destination support for PDF
#
Copyright November 2008, Jamis Buck. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

module PDF
 module Core
 module Destinations #:nodoc:
 # The maximum number of children to fit into a single node in the Dests
 # tree.
 NAME_TREE_CHILDREN_LIMIT = 20 #:nodoc:

 # The Dests name tree in the Name dictionary (see
 # Prawn::Document::Internal#names). This name tree is used to store named
 # destinations (PDF spec 8.2.1). (For more on name trees, see section
 # 3.8.4 in the PDF spec.)
 #
 def dests
 names.data[:Dests] ||= ref!(
 PDF::Core::NameTree::Node.new(self, NAME_TREE_CHILDREN_LIMIT)
)
 end

 # Adds a new destination to the dests name tree (see #dests). The
 # +reference+ parameter will be converted into a PDF::Core::Reference if
 # it is not already one.
 #
 def add_dest(name, reference)
 reference = ref!(reference) unless reference.is_a?(PDF::Core::Reference)
 dests.data.add(name, reference)
 end

 # Return a Dest specification for a specific location (and optional zoom
 # level).
 #
 def dest_xyz(left, top, zoom = nil, dest_page = page)
 [dest_page.dictionary, :XYZ, left, top, zoom]
 end

 # Return a Dest specification that will fit the given page into the
 # viewport.
 #
 def dest_fit(dest_page = page)
 [dest_page.dictionary, :Fit]
 end

 # Return a Dest specification that will fit the given page horizontally
 # into the viewport, aligned vertically at the given top coordinate.
 #
 def dest_fit_horizontally(top, dest_page = page)
 [dest_page.dictionary, :FitH, top]
 end

 # Return a Dest specification that will fit the given page vertically
 # into the viewport, aligned horizontally at the given left coordinate.
 #
 def dest_fit_vertically(left, dest_page = page)
 [dest_page.dictionary, :FitV, left]
 end

 # Return a Dest specification that will fit the given rectangle into the
 # viewport, for the given page.
 #
 def dest_fit_rect(left, bottom, right, top, dest_page = page)
 [dest_page.dictionary, :FitR, left, bottom, right, top]
 end

 # Return a Dest specfication that will fit the given page's bounding box
 # into the viewport.
 #
 def dest_fit_bounds(dest_page = page)
 [dest_page.dictionary, :FitB]
 end

 # Same as #dest_fit_horizontally, but works on the page's bounding box
 # instead of the entire page.
 #
 def dest_fit_bounds_horizontally(top, dest_page = page)
 [dest_page.dictionary, :FitBH, top]
 end

 # Same as #dest_fit_vertically, but works on the page's bounding box
 # instead of the entire page.
 #
 def dest_fit_bounds_vertically(left, dest_page = page)
 [dest_page.dictionary, :FitBV, left]
 end
 end
 end
end

lib/pdf/core/document_state.rb

frozen_string_literal: true

module PDF
 module Core
 class DocumentState #:nodoc:
 def initialize(options)
 normalize_metadata(options)

 @store =
 if options[:print_scaling]
 PDF::Core::ObjectStore.new(
 info: options[:info],
 print_scaling: options[:print_scaling]
)
 else
 PDF::Core::ObjectStore.new(info: options[:info])
 end

 @version = 1.3
 @pages = []
 @page = nil
 @trailer = options.fetch(:trailer, {})
 @compress = options.fetch(:compress, false)
 @encrypt = options.fetch(:encrypt, false)
 @encryption_key = options[:encryption_key]
 @skip_encoding = options.fetch(:skip_encoding, false)
 @before_render_callbacks = []
 @on_page_create_callback = nil
 end

 attr_accessor :store, :version, :pages, :page, :trailer, :compress, :encrypt, :encryption_key, :skip_encoding
 attr_accessor :before_render_callbacks, :on_page_create_callback

 def populate_pages_from_store(document)
 return 0 if @store.page_count <= 0 || !@pages.empty?

 count = (1..@store.page_count)
 @pages =
 count.map do |index|
 orig_dict_id = @store.object_id_for_page(index)
 PDF::Core::Page.new(document, object_id: orig_dict_id)
 end
 end

 def normalize_metadata(options)
 options[:info] ||= {}
 options[:info][:Creator] ||= 'Prawn'
 options[:info][:Producer] ||= 'Prawn'

 options[:info]
 end

 def insert_page(page, page_number)
 pages.insert(page_number, page)
 store.pages.data[:Kids].insert(page_number, page.dictionary)
 store.pages.data[:Count] += 1
 end

 def on_page_create_action(doc)
 on_page_create_callback[doc] if on_page_create_callback
 end

 def before_render_actions(_doc)
 before_render_callbacks.each { |c| c.call(self) }
 end

 def page_count
 pages.length
 end

 def render_body(output)
 store.each do |ref|
 ref.offset = output.size
 output <<
 if @encrypt
 ref.encrypted_object(@encryption_key)
 else
 ref.object
 end
 end
 end
 end
 end
end

lib/pdf/core/filter_list.rb

frozen_string_literal: true

module PDF
 module Core
 class FilterList
 class NotFilter < StandardError
 DEFAULT_MESSAGE = 'Can not interpret input as a filter'
 MESSAGE_WITH_FILTER = 'Can not interpret input as a filter: %<filter>s'

 def initialize(message = DEFAULT_MESSAGE, filter: nil)
 if filter
 super format(MESSAGE_WITH_FILTER, filter: filter)
 else
 super(message)
 end
 end
 end
 def initialize
 @list = []
 end

 def <<(filter)
 case filter
 when Symbol
 @list << [filter, nil]
 when ::Hash
 filter.each do |name, params|
 @list << [name, params]
 end
 else
 raise NotFilter.new(filter: filter)
 end

 self
 end

 def normalized
 @list
 end
 alias to_a normalized

 def names
 @list.map do |(name, _)|
 name
 end
 end

 def decode_params
 @list.map do |(_, params)|
 params
 end
 end

 def inspect
 @list.inspect
 end

 def each(&block)
 @list.each(&block)
 end
 end
 end
end

lib/pdf/core/filters.rb

frozen_string_literal: true

prawn/core/filters.rb : Implements stream filters
#
Copyright February 2013, Alexander Mankuta. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

require 'zlib'

module PDF
 module Core
 module Filters
 module FlateDecode
 def self.encode(stream, _params = nil)
 Zlib::Deflate.deflate(stream)
 end

 def self.decode(stream, _params = nil)
 Zlib::Inflate.inflate(stream)
 end
 end

 # Pass through stub
 module DCTDecode
 def self.encode(stream, _params = nil)
 stream
 end

 def self.decode(stream, _params = nil)
 stream
 end
 end
 end
 end
end

lib/pdf/core/graphics_state.rb

frozen_string_literal: true

#
Implements graphics state saving and restoring
#
Copyright January 2010, Michael Witrant. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details
#

module PDF
 module Core
 class GraphicStateStack
 attr_accessor :stack

 def initialize(previous_state = nil)
 self.stack = [GraphicState.new(previous_state)]
 end

 def save_graphic_state(graphic_state = nil)
 stack.push(GraphicState.new(graphic_state || current_state))
 end

 def restore_graphic_state
 if stack.empty?
 raise PDF::Core::Errors::EmptyGraphicStateStack,
 "\n You have reached the end of the graphic state stack"
 end
 stack.pop
 end

 def current_state
 stack.last
 end

 def present?
 !stack.empty?
 end

 def empty?
 stack.empty?
 end
 end

 # NOTE: This class may be a good candidate for a copy-on-write hash.
 class GraphicState
 attr_accessor :color_space, :dash, :cap_style, :join_style, :line_width, :fill_color, :stroke_color

 def initialize(previous_state = nil)
 if previous_state
 initialize_copy(previous_state)
 else
 @color_space = {}
 @fill_color = '000000'
 @stroke_color = '000000'
 @dash = { dash: nil, space: nil, phase: 0 }
 @cap_style = :butt
 @join_style = :miter
 @line_width = 1
 end
 end

 def dash_setting
 return '[] 0 d' unless @dash[:dash]

 array =
 if @dash[:dash].is_a?(Array)
 @dash[:dash]
 else
 [@dash[:dash], @dash[:space]]
 end

 "[#{PDF::Core.real_params(array)}] "\
 "#{PDF::Core.real(@dash[:phase])} d"
 end

 private

 def initialize_copy(other)
 # mutable state
 @color_space = other.color_space.dup
 @fill_color = other.fill_color.dup
 @stroke_color = other.stroke_color.dup
 @dash = other.dash.dup

 # immutable state that doesn't need to be duped
 @cap_style = other.cap_style
 @join_style = other.join_style
 @line_width = other.line_width
 end
 end
 end
end

lib/pdf/core/literal_string.rb

frozen_string_literal: true

module PDF
 module Core
 # This is used to differentiate strings that must be encoded as
 # a *literal* string, versus those that can be encoded in
 # the PDF hexadecimal format.
 #
 # Some features of the PDF format appear to require that literal
 # strings be used. One such feature is the /Dest key of a link
 # annotation; if a hex encoded string is used there, the links
 # do not work (as tested in Mac OS X Preview, and Adobe Acrobat
 # Reader).
 class LiteralString < String #:nodoc:
 end
 end
end

lib/pdf/core/name_tree.rb

frozen_string_literal: true

require 'pdf/core/utils'

name_tree.rb : Implements NameTree for PDF
#
Copyright November 2008, Jamis Buck. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.
#
module PDF
 module Core
 module NameTree #:nodoc:
 class Node #:nodoc:
 attr_reader :children
 attr_reader :limit
 attr_reader :document
 attr_accessor :parent
 attr_accessor :ref

 def initialize(document, limit, parent = nil)
 @document = document
 @children = []
 @limit = limit
 @parent = parent
 @ref = nil
 end

 def empty?
 children.empty?
 end

 def size
 leaf? ? children.size : children.sum(&:size)
 end

 def leaf?
 children.empty? || children.first.is_a?(Value)
 end

 def add(name, value)
 self << Value.new(name, value)
 end

 def to_hash
 hash = {}

 hash[:Limits] = [least, greatest] if parent
 if leaf?
 hash[:Names] = children if leaf?
 else
 hash[:Kids] = children.map(&:ref)
 end

 hash
 end

 def least
 if leaf?
 children.first.name
 else
 children.first.least
 end
 end

 def greatest
 if leaf?
 children.last.name
 else
 children.last.greatest
 end
 end

 def <<(value)
 if children.empty?
 children << value
 elsif leaf?
 children.insert(insertion_point(value), value)
 split! if children.length > limit
 else
 fit = children.find { |child| child >= value }
 fit ||= children.last
 fit << value
 end

 value
 end

 def >=(other)
 children.empty? || children.last >= other
 end

 def split!
 if parent
 parent.split(self)
 else
 left = new_node(self)
 right = new_node(self)
 split_children(self, left, right)
 children.replace([left, right])
 end
 end

 # Returns a deep copy of this node, without copying expensive things
 # like the ref to @document.
 #
 def deep_copy
 node = dup
 node.instance_variable_set('@children', Utils.deep_clone(children))
 node.instance_variable_set('@ref', node.ref ? node.ref.deep_copy : nil)
 node
 end

 protected

 def split(node)
 new_child = new_node(self)
 split_children(node, node, new_child)
 index = children.index(node)
 children.insert(index + 1, new_child)
 split! if children.length > limit
 end

 private

 def new_node(parent = nil)
 node = Node.new(document, limit, parent)
 node.ref = document.ref!(node)
 node
 end

 def split_children(node, left, right)
 half = (node.limit + 1) / 2

 left_children = node.children[0...half]
 right_children = node.children[half..-1]

 left.children.replace(left_children)
 right.children.replace(right_children)

 unless node.leaf?
 left_children.each { |child| child.parent = left }
 right_children.each { |child| child.parent = right }
 end
 end

 def insertion_point(value)
 children.each_with_index do |child, index|
 return index if child >= value
 end
 children.length
 end
 end

 class Value #:nodoc:
 include Comparable

 attr_reader :name
 attr_reader :value

 def initialize(name, value)
 @name = PDF::Core::LiteralString.new(name)
 @value = value
 end

 def <=>(other)
 name <=> other.name
 end

 def inspect
 "#<Value: #{name.inspect} : #{value.inspect}>"
 end

 def to_s
 "#{name} : #{value}"
 end
 end
 end
 end
end

lib/pdf/core/object_store.rb

frozen_string_literal: true

Implements PDF object repository
#
Copyright August 2009, Brad Ediger. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

module PDF
 module Core
 class ObjectStore #:nodoc:
 include Enumerable

 attr_reader :min_version

 def initialize(opts = {})
 @objects = {}
 @identifiers = []

 @info ||= ref(opts[:info] || {}).identifier
 @root ||= ref(Type: :Catalog).identifier
 if opts[:print_scaling] == :none
 root.data[:ViewerPreferences] = { PrintScaling: :None }
 end
 if pages.nil?
 root.data[:Pages] = ref(Type: :Pages, Count: 0, Kids: [])
 end
 end

 def ref(data, &block)
 push(size + 1, data, &block)
 end

 def info
 @objects[@info]
 end

 def root
 @objects[@root]
 end

 def pages
 root.data[:Pages]
 end

 def page_count
 pages.data[:Count]
 end

 # Adds the given reference to the store and returns the reference object.
 # If the object provided is not a PDF::Core::Reference, one is created
 # from the arguments provided.
 #
 def push(*args, &block)
 reference =
 if args.first.is_a?(PDF::Core::Reference)
 args.first
 else
 PDF::Core::Reference.new(*args, &block)
 end

 @objects[reference.identifier] = reference
 @identifiers << reference.identifier
 reference
 end

 alias << push

 def each
 @identifiers.each do |id|
 yield @objects[id]
 end
 end

 def [](id)
 @objects[id]
 end

 def size
 @identifiers.size
 end
 alias length size

 # returns the object ID for a particular page in the document. Pages
 # are indexed starting at 1 (not 0!).
 #
 # object_id_for_page(1)
 # => 5
 # object_id_for_page(10)
 # => 87
 # object_id_for_page(-11)
 # => 17
 #
 def object_id_for_page(page)
 page -= 1 if page.positive?
 flat_page_ids = get_page_objects(pages).flatten
 flat_page_ids[page]
 end
 end
 end
end

lib/pdf/core/outline_item.rb

frozen_string_literal: true

module PDF
 module Core
 class OutlineItem #:nodoc:
 attr_accessor :count, :first, :last, :next, :prev, :parent, :title, :dest, :closed

 def initialize(title, parent, options)
 @closed = options[:closed]
 @title = title
 @parent = parent
 @count = 0
 end

 def to_hash
 hash = {
 Title: title,
 Parent: parent,
 Count: closed ? -count : count
 }
 [
 { First: first }, { Last: last }, { Next: defined?(@next) && @next },
 { Prev: prev }, { Dest: dest }
].each do |h|
 unless h.values.first.nil?
 hash.merge!(h)
 end
 end
 hash
 end
 end
 end
end

lib/pdf/core/outline_root.rb

frozen_string_literal: true

module PDF
 module Core
 class OutlineRoot #:nodoc:
 attr_accessor :count, :first, :last

 def initialize
 @count = 0
 end

 def to_hash
 { Type: :Outlines, Count: count, First: first, Last: last }
 end
 end
 end
end

lib/pdf/core/page.rb

frozen_string_literal: true

prawn/core/page.rb : Implements low-level representation of a PDF page
#
Copyright February 2010, Gregory Brown. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.
#

require_relative 'graphics_state'

module PDF
 module Core
 class Page #:nodoc:
 attr_accessor :art_indents, :bleeds, :crops, :document, :margins, :stack, :trims
 attr_writer :content, :dictionary

 ZERO_INDENTS = {
 left: 0,
 bottom: 0,
 right: 0,
 top: 0
 }.freeze

 def initialize(document, options = {})
 @document = document
 @margins = options[:margins] || {
 left: 36,
 right: 36,
 top: 36,
 bottom: 36
 }
 @crops = options[:crops] || ZERO_INDENTS
 @bleeds = options[:bleeds] || ZERO_INDENTS
 @trims = options[:trims] || ZERO_INDENTS
 @art_indents = options[:art_indents] || ZERO_INDENTS
 @stack = GraphicStateStack.new(options[:graphic_state])
 @size = options[:size] || 'LETTER'
 @layout = options[:layout] || :portrait

 @stamp_stream = nil
 @stamp_dictionary = nil

 @content = document.ref({})
 content << 'q' << "\n"
 @dictionary = document.ref(
 Type: :Page,
 Parent: document.state.store.pages,
 MediaBox: dimensions,
 CropBox: crop_box,
 BleedBox: bleed_box,
 TrimBox: trim_box,
 ArtBox: art_box,
 Contents: content
)

 resources[:ProcSet] = %i[PDF Text ImageB ImageC ImageI]
 end

 def graphic_state
 stack.current_state
 end

 def layout
 return @layout if defined?(@layout) && @layout

 mb = dictionary.data[:MediaBox]
 if mb[3] > mb[2]
 :portrait
 else
 :landscape
 end
 end

 def size
 defined?(@size) && @size || dimensions[2, 2]
 end

 def in_stamp_stream?
 !@stamp_stream.nil?
 end

 def stamp_stream(dictionary)
 @stamp_dictionary = dictionary
 @stamp_stream = @stamp_dictionary.stream
 graphic_stack_size = stack.stack.size

 document.save_graphics_state
 document.__send__(:freeze_stamp_graphics)
 yield if block_given?

 until graphic_stack_size == stack.stack.size
 document.restore_graphics_state
 end

 @stamp_stream = nil
 @stamp_dictionary = nil
 end

 def content
 @stamp_stream || document.state.store[@content]
 end

 def dictionary
 defined?(@stamp_dictionary) && @stamp_dictionary ||
 document.state.store[@dictionary]
 end

 def resources
 if dictionary.data[:Resources]
 document.deref(dictionary.data[:Resources])
 else
 dictionary.data[:Resources] = {}
 end
 end

 def fonts
 if resources[:Font]
 document.deref(resources[:Font])
 else
 resources[:Font] = {}
 end
 end

 def xobjects
 if resources[:XObject]
 document.deref(resources[:XObject])
 else
 resources[:XObject] = {}
 end
 end

 def ext_gstates
 if resources[:ExtGState]
 document.deref(resources[:ExtGState])
 else
 resources[:ExtGState] = {}
 end
 end

 def finalize
 if dictionary.data[:Contents].is_a?(Array)
 dictionary.data[:Contents].each do |stream|
 stream.stream.compress! if document.compression_enabled?
 end
 elsif document.compression_enabled?
 content.stream.compress!
 end
 end

 def dimensions
 coords = PDF::Core::PageGeometry::SIZES[size] || size
 [0, 0] +
 case layout
 when :portrait
 coords
 when :landscape
 coords.reverse
 else
 raise PDF::Core::Errors::InvalidPageLayout,
 'Layout must be either :portrait or :landscape'
 end
 end

 def art_box
 left, bottom, right, top = dimensions
 [
 left + art_indents[:left],
 bottom + art_indents[:bottom],
 right - art_indents[:right],
 top - art_indents[:top]
]
 end

 def bleed_box
 left, bottom, right, top = dimensions
 [
 left + bleeds[:left],
 bottom + bleeds[:bottom],
 right - bleeds[:right],
 top - bleeds[:top]
]
 end

 def crop_box
 left, bottom, right, top = dimensions
 [
 left + crops[:left],
 bottom + crops[:bottom],
 right - crops[:right],
 top - crops[:top]
]
 end

 def trim_box
 left, bottom, right, top = dimensions
 [
 left + trims[:left],
 bottom + trims[:bottom],
 right - trims[:right],
 top - trims[:top]
]
 end

 private

 # some entries in the Page dict can be inherited from parent Pages dicts.
 #
 # Starting with the current page dict, this method will walk up the
 # inheritance chain return the first value that is found for key
 #
 # inherited_dictionary_value(:MediaBox)
 # => [0, 0, 595, 842]
 #
 def inherited_dictionary_value(key, local_dict = nil)
 local_dict ||= dictionary.data

 if local_dict.key?(key)
 local_dict[key]
 elsif local_dict.key?(:Parent)
 inherited_dictionary_value(key, local_dict[:Parent].data)
 end
 end
 end
 end
end

lib/pdf/core/page_geometry.rb

frozen_string_literal: true

Describes PDF page geometries
#
Copyright April 2008, Gregory Brown. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

module PDF
 module Core
 # Dimensions pulled from PDF::Writer, rubyforge.org/projects/ruby-pdf
 #
 # All of these dimensions are in PDF Points (1/72 inch)
 #
 # ===Inbuilt Sizes:
 #
 #
 # 4A0:: => 4767.87 x 6740.79
 # 2A0:: => 3370.39 x 4767.87
 # A0:: => 2383.94 x 3370.39
 # A1:: => 1683.78 x 2383.94
 # A2:: => 1190.55 x 1683.78
 # A3:: => 841.89 x 1190.55
 # A4:: => 595.28 x 841.89
 # A5:: => 419.53 x 595.28
 # A6:: => 297.64 x 419.53
 # A7:: => 209.76 x 297.64
 # A8:: => 147.40 x 209.76
 # A9:: => 104.88 x 147.40
 # A10:: => 73.70 x 104.88
 # B0:: => 2834.65 x 4008.19
 # B1:: => 2004.09 x 2834.65
 # B2:: => 1417.32 x 2004.09
 # B3:: => 1000.63 x 1417.32
 # B4:: => 708.66 x 1000.63
 # B5:: => 498.90 x 708.66
 # B6:: => 354.33 x 498.90
 # B7:: => 249.45 x 354.33
 # B8:: => 175.75 x 249.45
 # B9:: => 124.72 x 175.75
 # B10:: => 87.87 x 124.72
 # C0:: => 2599.37 x 3676.54
 # C1:: => 1836.85 x 2599.37
 # C2:: => 1298.27 x 1836.85
 # C3:: => 918.43 x 1298.27
 # C4:: => 649.13 x 918.43
 # C5:: => 459.21 x 649.13
 # C6:: => 323.15 x 459.21
 # C7:: => 229.61 x 323.15
 # C8:: => 161.57 x 229.61
 # C9:: => 113.39 x 161.57
 # C10:: => 79.37 x 113.39
 # RA0:: => 2437.80 x 3458.27
 # RA1:: => 1729.13 x 2437.80
 # RA2:: => 1218.90 x 1729.13
 # RA3:: => 864.57 x 1218.90
 # RA4:: => 609.45 x 864.57
 # SRA0:: => 2551.18 x 3628.35
 # SRA1:: => 1814.17 x 2551.18
 # SRA2:: => 1275.59 x 1814.17
 # SRA3:: => 907.09 x 1275.59
 # SRA4:: => 637.80 x 907.09
 # EXECUTIVE:: => 521.86 x 756.00
 # FOLIO:: => 612.00 x 936.00
 # LEGAL:: => 612.00 x 1008.00
 # LETTER:: => 612.00 x 792.00
 # TABLOID:: => 792.00 x 1224.00
 #
 module PageGeometry
 SIZES = {
 '4A0' => [4767.87, 6740.79],
 '2A0' => [3370.39, 4767.87],
 'A0' => [2383.94, 3370.39],
 'A1' => [1683.78, 2383.94],
 'A2' => [1190.55, 1683.78],
 'A3' => [841.89, 1190.55],
 'A4' => [595.28, 841.89],
 'A5' => [419.53, 595.28],
 'A6' => [297.64, 419.53],
 'A7' => [209.76, 297.64],
 'A8' => [147.40, 209.76],
 'A9' => [104.88, 147.40],
 'A10' => [73.70, 104.88],
 'B0' => [2834.65, 4008.19],
 'B1' => [2004.09, 2834.65],
 'B2' => [1417.32, 2004.09],
 'B3' => [1000.63, 1417.32],
 'B4' => [708.66, 1000.63],
 'B5' => [498.90, 708.66],
 'B6' => [354.33, 498.90],
 'B7' => [249.45, 354.33],
 'B8' => [175.75, 249.45],
 'B9' => [124.72, 175.75],
 'B10' => [87.87, 124.72],
 'C0' => [2599.37, 3676.54],
 'C1' => [1836.85, 2599.37],
 'C2' => [1298.27, 1836.85],
 'C3' => [918.43, 1298.27],
 'C4' => [649.13, 918.43],
 'C5' => [459.21, 649.13],
 'C6' => [323.15, 459.21],
 'C7' => [229.61, 323.15],
 'C8' => [161.57, 229.61],
 'C9' => [113.39, 161.57],
 'C10' => [79.37, 113.39],
 'RA0' => [2437.80, 3458.27],
 'RA1' => [1729.13, 2437.80],
 'RA2' => [1218.90, 1729.13],
 'RA3' => [864.57, 1218.90],
 'RA4' => [609.45, 864.57],
 'SRA0' => [2551.18, 3628.35],
 'SRA1' => [1814.17, 2551.18],
 'SRA2' => [1275.59, 1814.17],
 'SRA3' => [907.09, 1275.59],
 'SRA4' => [637.80, 907.09],
 'EXECUTIVE' => [521.86, 756.00],
 'FOLIO' => [612.00, 936.00],
 'LEGAL' => [612.00, 1008.00],
 'LETTER' => [612.00, 792.00],
 'TABLOID' => [792.00, 1224.00]
 }.freeze
 end
 end
end

lib/pdf/core/pdf_object.rb

frozen_string_literal: true

pdf_object.rb : Handles Ruby to PDF object serialization
#
Copyright April 2008, Gregory Brown. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

Top level Module
#
module PDF
 module Core
 module_function

 def real(num)
 format('%<number>.5f', number: num).sub(/((?<!\.)0)+\z/, '')
 end

 def real_params(array)
 array.map { |e| real(e) }.join(' ')
 end

 def utf8_to_utf16(str)
 (+"\xFE\xFF").force_encoding(::Encoding::UTF_16BE) +
 str.encode(::Encoding::UTF_16BE)
 end

 # encodes any string into a hex representation. The result is a string
 # with only 0-9 and a-f characters. That result is valid ASCII so tag
 # it as such to account for behaviour of different ruby VMs
 def string_to_hex(str)
 str.unpack1('H*').force_encoding(::Encoding::US_ASCII)
 end

 ESCAPED_NAME_CHARACTERS = (1..32).to_a + [35, 40, 41, 47, 60, 62] + (127..255).to_a

 # Serializes Ruby objects to their PDF equivalents. Most primitive objects
 # will work as expected, but please note that Name objects are represented
 # by Ruby Symbol objects and Dictionary objects are represented by Ruby
 # hashes (keyed by symbols)
 #
 # Examples:
 #
 # pdf_object(true) #=> "true"
 # pdf_object(false) #=> "false"
 # pdf_object(1.2124) #=> "1.2124"
 # pdf_object('foo bar') #=> "(foo bar)"
 # pdf_object(:Symbol) #=> "/Symbol"
 # pdf_object(['foo',:bar, [1,2]]) #=> "[foo /bar [1 2]]"
 #
 def pdf_object(obj, in_content_stream = false)
 case obj
 when NilClass then 'null'
 when TrueClass then 'true'
 when FalseClass then 'false'
 when Numeric
 obj = real(obj) unless obj.is_a?(Integer)

 # NOTE: this can fail on huge floating point numbers, but it seems
 # unlikely to ever happen in practice.
 num_string = String(obj)

 # Truncate trailing fraction zeroes
 num_string.sub(/(\d*)((\.0*$)|(\.0*[1-9]*)0*$)/, '\1\4')
 when Array
 "[#{obj.map { |e| pdf_object(e, in_content_stream) }.join(' ')}]"
 when PDF::Core::LiteralString
 obj = obj.gsub(/[\\\n\r\t\b\f()]/) { |m| "\\#{m}" }
 "(#{obj})"
 when Time
 obj = "#{obj.strftime('D:%Y%m%d%H%M%S%z').chop.chop}'00'"
 obj = obj.gsub(/[\\\n\r\t\b\f()]/) { |m| "\\#{m}" }
 "(#{obj})"
 when PDF::Core::ByteString
 "<#{obj.unpack1('H*')}>"
 when String
 obj = utf8_to_utf16(obj) unless in_content_stream
 "<#{string_to_hex(obj)}>"
 when Symbol
 name_string =
 obj.to_s.unpack('C*').map do |n|
 if ESCAPED_NAME_CHARACTERS.include?(n)
 "##{n.to_s(16).upcase}"
 else
 [n].pack('C*')
 end
 end.join
 "/#{name_string}"
 when ::Hash
 output = +'<< '
 obj.each do |k, v|
 unless k.is_a?(String) || k.is_a?(Symbol)
 raise PDF::Core::Errors::FailedObjectConversion,
 'A PDF Dictionary must be keyed by names'
 end
 output << pdf_object(k.to_sym, in_content_stream) << ' ' <<
 pdf_object(v, in_content_stream) << "\n"
 end
 output << '>>'
 when PDF::Core::Reference
 obj.to_s
 when PDF::Core::NameTree::Node
 pdf_object(obj.to_hash)
 when PDF::Core::NameTree::Value
 "#{pdf_object(obj.name)} #{pdf_object(obj.value)}"
 when PDF::Core::OutlineRoot, PDF::Core::OutlineItem
 pdf_object(obj.to_hash)
 else
 raise PDF::Core::Errors::FailedObjectConversion,
 "This object cannot be serialized to PDF (#{obj.inspect})"
 end
 end
 end
end

lib/pdf/core/reference.rb

frozen_string_literal: true

reference.rb : Implementation of PDF indirect objects
#
Copyright April 2008, Gregory Brown. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

require 'pdf/core/utils'

module PDF
 module Core
 class Reference #:nodoc:
 attr_accessor :gen, :data, :offset, :stream, :identifier

 class CannotAttachStream < StandardError
 def initialize(message = 'Cannot attach stream to a non-dictionary object')
 super
 end
 end

 def initialize(id, data)
 @identifier = id
 @gen = 0
 @data = data
 @stream = Stream.new
 end

 def object
 output = +"#{@identifier} #{gen} obj\n"
 if @stream.empty?
 output << PDF::Core.pdf_object(data) << "\n"
 else
 output << PDF::Core.pdf_object(data.merge(@stream.data)) <<
 "\n" << @stream.object
 end

 output << "endobj\n"
 end

 def <<(io)
 unless @data.is_a?(::Hash)
 raise CannotAttachStream
 end

 (@stream ||= Stream.new) << io
 end

 def to_s
 "#{@identifier} #{gen} R"
 end

 # Creates a deep copy of this ref. If +share+ is provided, shares the
 # given dictionary entries between the old ref and the new.
 #
 def deep_copy(share = [])
 r = dup

 case r.data
 when ::Hash
 # Copy each entry not in +share+.
 (r.data.keys - share).each do |k|
 r.data[k] = Utils.deep_clone(r.data[k])
 end
 when PDF::Core::NameTree::Node
 r.data = r.data.deep_copy
 else
 r.data = Utils.deep_clone(r.data)
 end

 r.stream = Utils.deep_clone(r.stream)
 r
 end

 # Replaces the data and stream with that of other_ref.
 def replace(other_ref)
 @data = other_ref.data
 @stream = other_ref.stream
 end
 end
 end
end

lib/pdf/core/renderer.rb

frozen_string_literal: true

require 'stringio'

module PDF
 module Core
 class Renderer
 def initialize(state)
 @state = state
 @state.populate_pages_from_store(self)

 min_version(state.store.min_version) if state.store.min_version

 @page_number = 0
 end

 attr_reader :state

 # Creates a new Reference and adds it to the Document's object list. The
 # +data+ argument is anything that Prawn.pdf_object() can convert.
 #
 # Returns the identifier which points to the reference in the ObjectStore
 #
 def ref(data)
 ref!(data).identifier
 end

 # Like ref, but returns the actual reference instead of its identifier.
 #
 # While you can use this to build up nested references within the object
 # tree, it is recommended to persist only identifiers, and then provide
 # helper methods to look up the actual references in the ObjectStore
 # if needed. If you take this approach, Document::Snapshot
 # will probably work with your extension
 #
 def ref!(data)
 state.store.ref(data)
 end

 # At any stage in the object tree an object can be replaced with an
 # indirect reference. To get access to the object safely, regardless
 # of if it's hidden behind a Prawn::Reference, wrap it in deref().
 #
 def deref(obj)
 obj.is_a?(PDF::Core::Reference) ? obj.data : obj
 end

 # Appends a raw string to the current page content.
 #
 # # Raw line drawing example:
 # x1,y1,x2,y2 = 100,500,300,550
 #
 # pdf.add_content("#{PDF::Core.real_params([x1, y1])} m") # move
 # pdf.add_content("#{PDF::Core.real_params([x2, y2])} l") # draw path
 # pdf.add_content('S') # stroke
 #
 def add_content(str)
 save_graphics_state if graphic_state.nil?
 state.page.content << str << "\n"
 end

 # The Name dictionary (PDF spec 3.6.3) for this document. It is
 # lazily initialized, so that documents that do not need a name
 # dictionary do not incur the additional overhead.
 #
 def names
 state.store.root.data[:Names] ||= ref!(Type: :Names)
 end

 # Returns true if the Names dictionary is in use for this document.
 #
 def names?
 state.store.root.data[:Names]
 end

 # Defines a block to be called just before the document is rendered.
 #
 def before_render(&block)
 state.before_render_callbacks << block
 end

 # Defines a block to be called just before a new page is started.
 #
 def on_page_create(&block)
 state.on_page_create_callback =
 if block_given?
 block
 end
 end

 def start_new_page(options = {})
 last_page = state.page
 if last_page
 last_page_size = last_page.size
 last_page_layout = last_page.layout
 last_page_margins = last_page.margins
 end

 page_options = {
 size: options[:size] || last_page_size,
 layout: options[:layout] || last_page_layout,
 margins: last_page_margins
 }
 if last_page
 if last_page.graphic_state
 new_graphic_state = last_page.graphic_state.dup
 end

 # Erase the color space so that it gets reset on new page for fussy
 # pdf-readers
 if new_graphic_state
 new_graphic_state.color_space = {}
 end
 page_options[:graphic_state] = new_graphic_state
 end

 state.page = PDF::Core::Page.new(self, page_options)

 state.insert_page(state.page, @page_number)
 @page_number += 1

 state.on_page_create_action(self)
 end

 def page_count
 state.page_count
 end

 # Re-opens the page with the given (1-based) page number so that you can
 # draw on it.
 #
 # See Prawn::Document#number_pages for a sample usage of this capability.

 def go_to_page(page_number)
 @page_number = page_number
 state.page = state.pages[page_number - 1]
 end

 def finalize_all_page_contents
 (1..page_count).each do |i|
 go_to_page i
 while graphic_stack.present?
 restore_graphics_state
 end
 state.page.finalize
 end
 end

 # raise the PDF version of the file we're going to generate.
 # A private method, designed for internal use when the user adds a feature
 # to their document that requires a particular version.
 #
 def min_version(min)
 state.version = min if min > state.version
 end

 # Renders the PDF document to string.
 # Pass an open file descriptor to render to file.
 #
 def render(output = StringIO.new)
 if output.instance_of?(StringIO)
 output.set_encoding(::Encoding::ASCII_8BIT)
 end
 finalize_all_page_contents

 render_header(output)
 render_body(output)
 render_xref(output)
 render_trailer(output)
 if output.instance_of?(StringIO)
 str = output.string
 str.force_encoding(::Encoding::ASCII_8BIT)
 str
 end
 end

 # Renders the PDF document to file.
 #
 # pdf.render_file 'foo.pdf'
 #
 def render_file(filename)
 File.open(filename, 'wb') { |f| render(f) }
 end

 # Write out the PDF Header, as per spec 3.4.1
 #
 def render_header(output)
 state.before_render_actions(self)

 # pdf version
 output << "%PDF-#{state.version}\n"

 # 4 binary chars, as recommended by the spec
 output << "%\xFF\xFF\xFF\xFF\n"
 end

 # Write out the PDF Body, as per spec 3.4.2
 #
 def render_body(output)
 state.render_body(output)
 end

 # Write out the PDF Cross Reference Table, as per spec 3.4.3
 #
 def render_xref(output)
 @xref_offset = output.size
 output << "xref\n"
 output << "0 #{state.store.size + 1}\n"
 output << "0000000000 65535 f \n"
 state.store.each do |ref|
 output.printf('%<offset>010d', offset: ref.offset)
 output << " 00000 n \n"
 end
 end

 # Write out the PDF Trailer, as per spec 3.4.4
 #
 def render_trailer(output)
 trailer_hash = {
 Size: state.store.size + 1,
 Root: state.store.root,
 Info: state.store.info
 }
 trailer_hash.merge!(state.trailer) if state.trailer

 output << "trailer\n"
 output << PDF::Core.pdf_object(trailer_hash) << "\n"
 output << "startxref\n"
 output << @xref_offset << "\n"
 output << '%%EOF' << "\n"
 end

 def open_graphics_state
 add_content 'q'
 end

 def close_graphics_state
 add_content 'Q'
 end

 def save_graphics_state(graphic_state = nil)
 graphic_stack.save_graphic_state(graphic_state)
 open_graphics_state
 if block_given?
 yield
 restore_graphics_state
 end
 end

 # Returns true if content streams will be compressed before rendering,
 # false otherwise
 #
 def compression_enabled?
 state.compress
 end

 # Pops the last saved graphics state off the graphics state stack and
 # restores the state to those values
 def restore_graphics_state
 if graphic_stack.empty?
 raise PDF::Core::Errors::EmptyGraphicStateStack,
 "\n You have reached the end of the graphic state stack"
 end
 close_graphics_state
 graphic_stack.restore_graphic_state
 end

 def graphic_stack
 state.page.stack
 end

 def graphic_state
 save_graphics_state unless graphic_stack.current_state
 graphic_stack.current_state
 end
 end
 end
end

lib/pdf/core/stream.rb

frozen_string_literal: true

prawn/core/stream.rb : Implements Stream objects
#
Copyright February 2013, Alexander Mankuta. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

module PDF
 module Core
 class Stream
 attr_reader :filters

 def initialize(io = nil)
 @filtered_stream = ''
 @stream = io
 @filters = FilterList.new
 end

 def <<(io)
 (@stream ||= +'') << io
 @filtered_stream = nil
 self
 end

 def compress!
 unless @filters.names.include? :FlateDecode
 @filtered_stream = nil
 @filters << :FlateDecode
 end
 end

 def compressed?
 @filters.names.include? :FlateDecode
 end

 def empty?
 @stream.nil?
 end

 def filtered_stream
 if @stream
 if @filtered_stream.nil?
 @filtered_stream = @stream.dup

 @filters.each do |(filter_name, params)|
 filter = PDF::Core::Filters.const_get(filter_name)
 if filter
 @filtered_stream = filter.encode @filtered_stream, params
 end
 end
 end

 @filtered_stream
 # XXX Fillter stream
 end
 end

 def length
 @stream.length
 end

 def object
 if filtered_stream
 "stream\n#{filtered_stream}\nendstream\n"
 else
 ''
 end
 end

 def data
 if @stream
 filter_names = @filters.names
 filter_params = @filters.decode_params

 d = {
 Length: filtered_stream.length
 }
 if filter_names.any?
 d[:Filter] = filter_names
 end
 if filter_params.any? { |f| !f.nil? }
 d[:DecodeParms] = filter_params
 end

 d
 else
 {}
 end
 end

 def inspect
 format(
 '#<%<class>s:0x%<object_id>014x '\
 '@stream=%<stream>s, @filters=%<filters>s>',
 class: self.class.name,
 object_id: object_id,
 stream: @stream.inspect,
 filters: @filters.inspect
)
 end
 end
 end
end

lib/pdf/core/text.rb

frozen_string_literal: true

prawn/core/text.rb : Implements low level text helpers for Prawn
#
Copyright January 2010, Daniel Nelson. All Rights Reserved.
#
This is free software. Please see the LICENSE and COPYING files for details.

module PDF
 module Core
 module Text #:nodoc:
 # These should be used as a base. Extensions may build on this list
 #
 VALID_OPTIONS = %i[kerning size style].freeze
 MODES = {
 fill: 0,
 stroke: 1,
 fill_stroke: 2,
 invisible: 3,
 fill_clip: 4,
 stroke_clip: 5,
 fill_stroke_clip: 6,
 clip: 7
 }.freeze

 class BadFontFamily < StandardError
 def initialize(message = 'Bad font family')
 super
 end
 end

 attr_reader :skip_encoding

 # Low level call to set the current font style and extract text options
 # from an options hash. Should be called from within a save_font block
 #
 def process_text_options(options)
 if options[:style]
 raise BadFontFamily unless font.family

 font(font.family, style: options[:style])
 end

 # must compare against false to keep kerning on as default
 unless options[:kerning] == false
 options[:kerning] = font.has_kerning_data?
 end

 options[:size] ||= font_size
 end

 # Retrieve the current default kerning setting.
 #
 # Defaults to true
 #
 def default_kerning?
 return true unless defined?(@default_kerning)

 @default_kerning
 end

 # Call with a boolean to set the document-wide kerning setting. This can
 # be overridden using the :kerning text option when drawing text or a text
 # box.
 #
 # pdf.default_kerning = false
 # pdf.text('hello world') # text is not kerned
 # pdf.text('hello world', :kerning => true) # text is kerned
 #
 def default_kerning(boolean)
 @default_kerning = boolean
 end

 alias default_kerning= default_kerning

 # Call with no argument to retrieve the current default leading.
 #
 # Call with a number to set the document-wide text leading. This can be
 # overridden using the :leading text option when drawing text or a text
 # box.
 #
 # pdf.default_leading = 7
 # pdf.text('hello world') # a leading of 7 is used
 # pdf.text('hello world', :leading => 0) # a leading of 0 is used
 #
 # Defaults to 0
 #
 def default_leading(number = nil)
 if number.nil?
 defined?(@default_leading) && @default_leading || 0
 else
 @default_leading = number
 end
 end

 alias default_leading= default_leading

 # Call with no argument to retrieve the current text direction.
 #
 # Call with a symbol to set the document-wide text direction. This can be
 # overridden using the :direction text option when drawing text or a text
 # box.
 #
 # pdf.text_direction = :rtl
 # pdf.text('hello world') # prints 'dlrow olleh'
 # pdf.text('hello world', :direction => :ltr) # prints 'hello world'
 #
 # Valid directions are:
 #
 # * :ltr - left-to-right (default)
 # * :rtl - right-to-left
 #
 # Side effects:
 #
 # * When printing left-to-right, the default text alignment is :left
 # * When printing right-to-left, the default text alignment is :right
 #
 def text_direction(direction = nil)
 if direction.nil?
 defined?(@text_direction) && @text_direction || :ltr
 else
 @text_direction = direction
 end
 end

 alias text_direction= text_direction

 # Call with no argument to retrieve the current fallback fonts.
 #
 # Call with an array of font names. Each name must be the name of an AFM
 # font or the name that was used to register a family of TTF fonts (see
 # Prawn::Document#font_families). If present, then each glyph will be
 # rendered using the first font that includes the glyph, starting with the
 # current font and then moving through :fallback_fonts from left to right.
 #
 # Call with an empty array to turn off fallback fonts
 #
 # file = "#{Prawn::DATADIR}/fonts/gkai00mp.ttf"
 # font_families['Kai'] = {
 # :normal => { :file => file, :font => 'Kai' }
 # }
 # file = "#{Prawn::DATADIR}/fonts/Action Man.dfont"
 # font_families['Action Man'] = {
 # :normal => { :file => file, :font => 'ActionMan' },
 # }
 # fallback_fonts ['Times-Roman', 'Kai']
 # font 'Action Man'
 # text 'hello ƒ 你好'
 # > hello prints in Action Man
 # > ƒ prints in Times-Roman
 # > 你好 prints in Kai
 #
 # fallback_fonts [] # clears document-wide fallback fonts
 #
 # Side effects:
 #
 # * Increased overhead when fallback fonts are declared as each glyph is
 # checked to see whether it exists in the current font
 #
 def fallback_fonts(fallback_fonts = nil)
 if fallback_fonts.nil?
 defined?(@fallback_fonts) && @fallback_fonts || []
 else
 @fallback_fonts = fallback_fonts
 end
 end

 alias fallback_fonts= fallback_fonts

 # Call with no argument to retrieve the current text rendering mode.
 #
 # Call with a symbol and block to temporarily change the current
 # text rendering mode.
 #
 # pdf.text_rendering_mode(:stroke) do
 # pdf.text('Outlined Text')
 # end
 #
 # Valid modes are:
 #
 # * :fill - fill text (default)
 # * :stroke - stroke text
 # * :fill_stroke - fill, then stroke text
 # * :invisible - invisible text
 # * :fill_clip - fill text then add to path for clipping
 # * :stroke_clip - stroke text then add to path for clipping
 # * :fill_stroke_clip - fill then stroke text, then add to path for
 # clipping
 # * :clip - add text to path for clipping
 def text_rendering_mode(mode = nil)
 if mode.nil?
 return defined?(@text_rendering_mode) && @text_rendering_mode || :fill
 end

 unless MODES.key?(mode)
 raise ArgumentError,
 "mode must be between one of #{MODES.keys.join(', ')} (#{mode})"
 end
 original_mode = text_rendering_mode

 if original_mode == mode
 yield
 else
 @text_rendering_mode = mode
 add_content "\n#{MODES[mode]} Tr"
 yield
 add_content "\n#{MODES[original_mode]} Tr"
 @text_rendering_mode = original_mode
 end
 end

 def forget_text_rendering_mode!
 @text_rendering_mode = :unknown
 end

 # Increases or decreases the space between characters.
 # For horizontal text, a positive value will increase the space.
 # For veritical text, a positive value will decrease the space.
 #
 def character_spacing(amount = nil)
 if amount.nil?
 return defined?(@character_spacing) && @character_spacing || 0
 end

 original_character_spacing = character_spacing
 if original_character_spacing == amount
 yield
 else
 @character_spacing = amount
 add_content "\n#{PDF::Core.real(amount)} Tc"
 yield
 add_content "\n#{PDF::Core.real(original_character_spacing)} Tc"
 @character_spacing = original_character_spacing
 end
 end

 # Increases or decreases the space between words.
 # For horizontal text, a positive value will increase the space.
 # For veritical text, a positive value will decrease the space.
 #
 def word_spacing(amount = nil)
 return defined?(@word_spacing) && @word_spacing || 0 if amount.nil?

 original_word_spacing = word_spacing
 if original_word_spacing == amount
 yield
 else
 @word_spacing = amount
 add_content "\n#{PDF::Core.real(amount)} Tw"
 yield
 add_content "\n#{PDF::Core.real(original_word_spacing)} Tw"

 @word_spacing = original_word_spacing
 end
 end

 # Set the horizontal scaling. amount is a number specifying the
 # percentage of the normal width.
 def horizontal_text_scaling(amount = nil)
 if amount.nil?
 return defined?(@horizontal_text_scaling) && @horizontal_text_scaling || 100
 end

 original_horizontal_text_scaling = horizontal_text_scaling
 if original_horizontal_text_scaling == amount
 yield
 else
 @horizontal_text_scaling = amount
 add_content "\n#{PDF::Core.real(amount)} Tz"
 yield
 add_content "\n#{PDF::Core.real(original_horizontal_text_scaling)} Tz"
 @horizontal_text_scaling = original_horizontal_text_scaling
 end
 end

 def add_text_content(text, x, y, options)
 chunks = font.encode_text(text, options)

 add_content "\nBT"

 if options[:rotate]
 rad = options[:rotate].to_f * Math::PI / 180
 array = [
 Math.cos(rad),
 Math.sin(rad),
 -Math.sin(rad),
 Math.cos(rad),
 x, y
]
 add_content "#{PDF::Core.real_params(array)} Tm"
 else
 add_content "#{PDF::Core.real_params([x, y])} Td"
 end

 chunks.each do |(subset, string)|
 font.add_to_current_page(subset)
 add_content [
 PDF::Core.pdf_object(font.identifier_for(subset), true),
 PDF::Core.pdf_object(font_size, true),
 'Tf'
].join(' ')

 operation = options[:kerning] && string.is_a?(Array) ? 'TJ' : 'Tj'
 add_content "#{PDF::Core.pdf_object(string, true)} #{operation}"
 end

 add_content "ET\n"
 end
 end
 end
end

lib/pdf/core/utils.rb

frozen_string_literal: true

module PDF
 module Core
 module Utils
 module_function

 def deep_clone(object)
 Marshal.load(Marshal.dump(object))
 end
 end
 end
end

pdf-core.gemspec

frozen_string_literal: true

Gem::Specification.new do |spec|
 spec.name = 'pdf-core'
 spec.version = '0.9.0'
 spec.platform = Gem::Platform::RUBY
 spec.summary = 'PDF::Core is used by Prawn to render PDF documents'
 spec.files =
 Dir.glob('lib/**/**/*') +
 %w[COPYING GPLv2 GPLv3 LICENSE] +
 %w[Gemfile Rakefile] +
 ['pdf-core.gemspec']
 spec.require_path = 'lib'
 spec.required_ruby_version = '>= 2.5'
 spec.required_rubygems_version = '>= 1.3.6'

 spec.cert_chain = ['certs/pointlessone.pem']
 if $PROGRAM_NAME.end_with? 'gem'
 spec.signing_key = File.expand_path('~/.gem/gem-private_key.pem')
 end

 # spec.extra_rdoc_files = %w{README.md LICENSE COPYING GPLv2 GPLv3}
 # spec.rdoc_options << '--title' << 'Prawn Documentation' <<
 # '--main' << 'README.md' << '-q'
 spec.authors = [
 'Gregory Brown', 'Brad Ediger', 'Daniel Nelson', 'Jonathan Greenberg',
 'James Healy'
]
 spec.email = [
 'gregory.t.brown@gmail.com', 'brad@bradediger.com', 'dnelson@bluejade.com',
 'greenberg@entryway.net', 'jimmy@deefa.com'
]
 spec.licenses = %w[PRAWN GPL-2.0 GPL-3.0]
 spec.add_development_dependency('pdf-inspector', '~> 1.1.0')
 spec.add_development_dependency('pdf-reader', '~>1.2')
 spec.add_development_dependency('rake')
 spec.add_development_dependency('rspec')
 spec.add_development_dependency('rubocop', '~> 0.93')
 spec.add_development_dependency('rubocop-performance', '~> 1.8')
 spec.add_development_dependency('rubocop-rspec', '~> 1.44')
 spec.add_development_dependency('simplecov')
 spec.homepage = 'http://prawnpdf.org'
 spec.description = 'PDF::Core is used by Prawn to render PDF documents'
end

data.tar.gz.sig

checksums.yaml.gz
checksums.yaml

SHA256:
 metadata.gz: 429f3bfae75301dabdb339edccbdd816026f605dc84d1902f07d6494277d6360
 data.tar.gz: 13fa187ef7307bc6de531a06d9d97272ff2ba0c2a9e21744b52efe1c387094d5
SHA512:
 metadata.gz: 76f74e81e59e382b4ab8c0bfe0cd58eb6b8624afd4b6b92fee6ed56da432205ad682cd3bd99b364d29be38747727a198f796975cb7718c7f62ad682f33f4953f
 data.tar.gz: b0b08cdd020ba23a4b3aa135d795eb35089cf0c6fbe34dd5457a3302f78969062347952b2f0f532b9066578a81537059afed889edd7d102817f26439b7f0848e

checksums.yaml.gz.sig

