

pdfrw-0.4/examples/rl1/4up.py

#!/usr/bin/env python

'''
usage: 4up.py my.pdf

Uses Form XObjects and reportlab to create 4up.my.pdf.

Demonstrates use of pdfrw with reportlab.

'''

import sys
import os

from reportlab.pdfgen.canvas import Canvas

from pdfrw import PdfReader
from pdfrw.buildxobj import pagexobj
from pdfrw.toreportlab import makerl

def addpage(canvas, allpages):
 pages = allpages[:4]
 del allpages[:4]

 x_max = max(page.BBox[2] for page in pages)
 y_max = max(page.BBox[3] for page in pages)

 canvas.setPageSize((x_max, y_max))

 for index, page in enumerate(pages):
 x = x_max * (index & 1) / 2.0
 y = y_max * (index <= 1) / 2.0
 canvas.saveState()
 canvas.translate(x, y)
 canvas.scale(0.5, 0.5)
 canvas.doForm(makerl(canvas, page))
 canvas.restoreState()
 canvas.showPage()

def go(argv):
 inpfn, = argv
 outfn = '4up.' + os.path.basename(inpfn)

 pages = PdfReader(inpfn).pages
 pages = [pagexobj(x) for x in pages]
 canvas = Canvas(outfn)

 while pages:
 addpage(canvas, pages)
 canvas.save()

if __name__ == '__main__':
 go(sys.argv[1:])

pdfrw-0.4/examples/rl1/README.txt

This directory contains example scripts which read in PDFs
and convert pages to PDF Form XObjects using pdfrw, and then
write out the PDFs using reportlab.

The examples, from easiest to hardest, are:

subset.py -- prints a subset of pages
4up.py -- prints pages 4-up
booklet.py -- creates a booklet out of the pages

pdfrw-0.4/examples/rl1/booklet.py

#!/usr/bin/env python

'''
usage: booklet.py my.pdf

Uses Form XObjects and reportlab to create booklet.my.pdf.

Demonstrates use of pdfrw with reportlab.

'''

import sys
import os

from reportlab.pdfgen.canvas import Canvas

from pdfrw import PdfReader
from pdfrw.buildxobj import pagexobj
from pdfrw.toreportlab import makerl

def read_and_double(inpfn):
 pages = PdfReader(inpfn).pages
 pages = [pagexobj(x) for x in pages]
 if len(pages) & 1:
 pages.append(pages[0]) # Sentinel -- get same size for back as front

 xobjs = []
 while len(pages) > 2:
 xobjs.append((pages.pop(), pages.pop(0)))
 xobjs.append((pages.pop(0), pages.pop()))
 xobjs += [(x,) for x in pages]
 return xobjs

def make_pdf(outfn, xobjpairs):
 canvas = Canvas(outfn)
 for xobjlist in xobjpairs:
 x = y = 0
 for xobj in xobjlist:
 x += xobj.BBox[2]
 y = max(y, xobj.BBox[3])

 canvas.setPageSize((x, y))

 # Handle blank back page
 if len(xobjlist) > 1 and xobjlist[0] == xobjlist[-1]:
 xobjlist = xobjlist[:1]
 x = xobjlist[0].BBox[2]
 else:
 x = 0
 y = 0

 for xobj in xobjlist:
 canvas.saveState()
 canvas.translate(x, y)
 canvas.doForm(makerl(canvas, xobj))
 canvas.restoreState()
 x += xobj.BBox[2]
 canvas.showPage()
 canvas.save()

inpfn, = sys.argv[1:]
outfn = 'booklet.' + os.path.basename(inpfn)

make_pdf(outfn, read_and_double(inpfn))

pdfrw-0.4/examples/rl1/platypus_pdf_template.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
usage: platypus_pdf_template.py source.pdf

Creates platypus.source.pdf

Example of using pdfrw to use page 1 of a source PDF as the background
for other pages programmatically generated with Platypus.

Contributed by user asannes

"""
import sys
import os

from reportlab.platypus import PageTemplate, BaseDocTemplate, Frame
from reportlab.platypus import NextPageTemplate, Paragraph, PageBreak
from reportlab.platypus.tableofcontents import TableOfContents
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.rl_config import defaultPageSize
from reportlab.lib.units import inch
from reportlab.graphics import renderPDF

from pdfrw import PdfReader
from pdfrw.buildxobj import pagexobj
from pdfrw.toreportlab import makerl

PAGE_WIDTH = defaultPageSize[0]
PAGE_HEIGHT = defaultPageSize[1]

class MyTemplate(PageTemplate):
 """The kernel of this example, where we use pdfrw to fill in the
 background of a page before writing to it. This could be used to fill
 in a water mark or similar."""

 def __init__(self, pdf_template_filename, name=None):
 frames = [Frame(
 0.85 * inch,
 0.5 * inch,
 PAGE_WIDTH - 1.15 * inch,
 PAGE_HEIGHT - (1.5 * inch)
)]
 PageTemplate.__init__(self, name, frames)
 # use first page as template
 page = PdfReader(pdf_template_filename).pages[0]
 self.page_template = pagexobj(page)
 # Scale it to fill the complete page
 self.page_xscale = PAGE_WIDTH/self.page_template.BBox[2]
 self.page_yscale = PAGE_HEIGHT/self.page_template.BBox[3]

 def beforeDrawPage(self, canvas, doc):
 """Draws the background before anything else"""
 canvas.saveState()
 rl_obj = makerl(canvas, self.page_template)
 canvas.scale(self.page_xscale, self.page_yscale)
 canvas.doForm(rl_obj)
 canvas.restoreState()

class MyDocTemplate(BaseDocTemplate):
 """Used to apply heading to table of contents."""

 def afterFlowable(self, flowable):
 """Adds Heading1 to table of contents"""
 if flowable.__class__.__name__ == 'Paragraph':
 style = flowable.style.name
 text = flowable.getPlainText()
 key = '%s' % self.seq.nextf('toc')
 if style == 'Heading1':
 self.canv.bookmarkPage(key)
 self.notify('TOCEntry', [1, text, self.page, key])

def create_toc():
 """Creates the table of contents"""
 table_of_contents = TableOfContents()
 table_of_contents.dotsMinLevel = 0
 header1 = ParagraphStyle(name='Heading1', fontSize=16, leading=16)
 header2 = ParagraphStyle(name='Heading2', fontSize=14, leading=14)
 table_of_contents.levelStyles = [header1, header2]
 return [table_of_contents, PageBreak()]

def create_pdf(filename, pdf_template_filename):
 """Create the pdf, with all the contents"""
 pdf_report = open(filename, "wb")
 document = MyDocTemplate(pdf_report)
 templates = [MyTemplate(pdf_template_filename, name='background')]
 document.addPageTemplates(templates)

 styles = getSampleStyleSheet()
 elements = [NextPageTemplate('background')]
 elements.extend(create_toc())

 # Dummy content (hello world x 200)
 for i in range(200):
 elements.append(Paragraph("Hello World" + str(i), styles['Heading1']))

 document.multiBuild(elements)
 pdf_report.close()

if __name__ == '__main__':
 template, = sys.argv[1:]
 output = 'platypus_pdf_template.' + os.path.basename(template)
 create_pdf(output, template)

pdfrw-0.4/examples/rl1/subset.py

#!/usr/bin/env python

'''
usage: subset.py my.pdf firstpage lastpage

Creates subset_<pagenum>_to_<pagenum>.my.pdf

Uses Form XObjects and reportlab to create output file.

Demonstrates use of pdfrw with reportlab.

'''

import sys
import os

from reportlab.pdfgen.canvas import Canvas

from pdfrw import PdfReader
from pdfrw.buildxobj import pagexobj
from pdfrw.toreportlab import makerl

def go(inpfn, firstpage, lastpage):
 firstpage, lastpage = int(firstpage), int(lastpage)
 outfn = 'subset.' + os.path.basename(inpfn)

 pages = PdfReader(inpfn).pages
 pages = [pagexobj(x) for x in pages[firstpage - 1:lastpage]]
 canvas = Canvas(outfn)

 for page in pages:
 canvas.setPageSize((page.BBox[2], page.BBox[3]))
 canvas.doForm(makerl(canvas, page))
 canvas.showPage()

 canvas.save()

if __name__ == '__main__':
 inpfn, firstpage, lastpage = sys.argv[1:]
 go(inpfn, firstpage, lastpage)

pdfrw-0.4/examples/rl2/README.txt

The copy.py demo in this directory parses the graphics stream from the PDF and actually plays it back through reportlab.

Doesn't yet handle fonts or unicode very well.

For a more practical demo, look at the Form XObjects approach in the examples/rl1 directory.

pdfrw-0.4/examples/rl2/copy.py

#!/usr/bin/env python

'''
usage: copy.py my.pdf

Creates copy.my.pdf

Uses somewhat-functional parser. For better results
for most things, see the Form XObject-based method.

'''

import sys
import os

from reportlab.pdfgen.canvas import Canvas

from decodegraphics import parsepage
from pdfrw import PdfReader, PdfWriter, PdfArray

inpfn, = sys.argv[1:]
outfn = 'copy.' + os.path.basename(inpfn)
pages = PdfReader(inpfn, decompress=True).pages
canvas = Canvas(outfn, pageCompression=0)

for page in pages:
 box = [float(x) for x in page.MediaBox]
 assert box[0] == box[1] == 0, "demo won't work on this PDF"
 canvas.setPageSize(box[2:])
 parsepage(page, canvas)
 canvas.showPage()
canvas.save()

pdfrw-0.4/examples/rl2/decodegraphics.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2009 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

'''
This file is an example parser that will parse a graphics stream
into a reportlab canvas.

Needs work on fonts and unicode, but works on a few PDFs.

Better to use Form XObjects for most things (see the example in rl1).

'''
from inspect import getargspec

from pdfrw import PdfTokens
from pdfrw.objects import PdfString

###
Graphics parsing

def parse_array(self, token='[', params=None):
 mylist = []
 for token in self.tokens:
 if token == ']':
 break
 mylist.append(token)
 self.params.append(mylist)

def parse_savestate(self, token='q', params=''):
 self.canv.saveState()

def parse_restorestate(self, token='Q', params=''):
 self.canv.restoreState()

def parse_transform(self, token='cm', params='ffffff'):
 self.canv.transform(*params)

def parse_linewidth(self, token='w', params='f'):
 self.canv.setLineWidth(*params)

def parse_linecap(self, token='J', params='i'):
 self.canv.setLineCap(*params)

def parse_linejoin(self, token='j', params='i'):
 self.canv.setLineJoin(*params)

def parse_miterlimit(self, token='M', params='f'):
 self.canv.setMiterLimit(*params)

def parse_dash(self, token='d', params='as'): # Array, string
 self.canv.setDash(*params)

def parse_intent(self, token='ri', params='n'):
 # TODO: add logging
 pass

def parse_flatness(self, token='i', params='i'):
 # TODO: add logging
 pass

def parse_gstate(self, token='gs', params='n'):
 # TODO: add logging
 # Could parse stuff we care about from here later
 pass

def parse_move(self, token='m', params='ff'):
 if self.gpath is None:
 self.gpath = self.canv.beginPath()
 self.gpath.moveTo(*params)
 self.current_point = params

def parse_line(self, token='l', params='ff'):
 self.gpath.lineTo(*params)
 self.current_point = params

def parse_curve(self, token='c', params='ffffff'):
 self.gpath.curveTo(*params)
 self.current_point = params[-2:]

def parse_curve1(self, token='v', params='ffff'):
 parse_curve(self, token, tuple(self.current_point) + tuple(params))

def parse_curve2(self, token='y', params='ffff'):
 parse_curve(self, token, tuple(params) + tuple(params[-2:]))

def parse_close(self, token='h', params=''):
 self.gpath.close()

def parse_rect(self, token='re', params='ffff'):
 if self.gpath is None:
 self.gpath = self.canv.beginPath()
 self.gpath.rect(*params)
 self.current_point = params[-2:]

def parse_stroke(self, token='S', params=''):
 finish_path(self, 1, 0, 0)

def parse_close_stroke(self, token='s', params=''):
 self.gpath.close()
 finish_path(self, 1, 0, 0)

def parse_fill(self, token='f', params=''):
 finish_path(self, 0, 1, 1)

def parse_fill_compat(self, token='F', params=''):
 finish_path(self, 0, 1, 1)

def parse_fill_even_odd(self, token='f*', params=''):
 finish_path(self, 0, 1, 0)

def parse_fill_stroke_even_odd(self, token='B*', params=''):
 finish_path(self, 1, 1, 0)

def parse_fill_stroke(self, token='B', params=''):
 finish_path(self, 1, 1, 1)

def parse_close_fill_stroke_even_odd(self, token='b*', params=''):
 self.gpath.close()
 finish_path(self, 1, 1, 0)

def parse_close_fill_stroke(self, token='b', params=''):
 self.gpath.close()
 finish_path(self, 1, 1, 1)

def parse_nop(self, token='n', params=''):
 finish_path(self, 0, 0, 0)

def finish_path(self, stroke, fill, fillmode):
 if self.gpath is not None:
 canv = self.canv
 canv._fillMode, oldmode = fillmode, canv._fillMode
 canv.drawPath(self.gpath, stroke, fill)
 canv._fillMode = oldmode
 self.gpath = None

def parse_clip_path(self, token='W', params=''):
 # TODO: add logging
 pass

def parse_clip_path_even_odd(self, token='W*', params=''):
 # TODO: add logging
 pass

def parse_stroke_gray(self, token='G', params='f'):
 self.canv.setStrokeGray(*params)

def parse_fill_gray(self, token='g', params='f'):
 self.canv.setFillGray(*params)

def parse_stroke_rgb(self, token='RG', params='fff'):
 self.canv.setStrokeColorRGB(*params)

def parse_fill_rgb(self, token='rg', params='fff'):
 self.canv.setFillColorRGB(*params)

def parse_stroke_cmyk(self, token='K', params='ffff'):
 self.canv.setStrokeColorCMYK(*params)

def parse_fill_cmyk(self, token='k', params='ffff'):
 self.canv.setFillColorCMYK(*params)

###
Text parsing

def parse_begin_text(self, token='BT', params=''):
 assert self.tpath is None
 self.tpath = self.canv.beginText()

def parse_text_transform(self, token='Tm', params='ffffff'):
 path = self.tpath

 # Stoopid optimization to remove nop
 try:
 code = path._code
 except AttributeError:
 pass
 else:
 if code[-1] == '1 0 0 1 0 0 Tm':
 code.pop()

 path.setTextTransform(*params)

def parse_setfont(self, token='Tf', params='nf'):
 fontinfo = self.fontdict[params[0]]
 self.tpath._setFont(fontinfo.name, params[1])
 self.curfont = fontinfo

def parse_text_out(self, token='Tj', params='t'):
 text = params[0].decode(self.curfont.remap, self.curfont.twobyte)
 self.tpath.textOut(text)

def parse_lf_text_out(self, token="'", params='t'):
 self.tpath.textLine()
 text = params[0].decode(self.curfont.remap, self.curfont.twobyte)
 self.tpath.textOut(text)

def parse_lf_text_out_with_spacing(self, token='"', params='fft'):
 self.tpath.setWordSpace(params[0])
 self.tpath.setCharSpace(params[1])
 self.tpath.textLine()
 text = params[2].decode(self.curfont.remap, self.curfont.twobyte)
 self.tpath.textOut(text)

def parse_TJ(self, token='TJ', params='a'):
 remap = self.curfont.remap
 twobyte = self.curfont.twobyte
 result = []
 for x in params[0]:
 if isinstance(x, PdfString):
 result.append(x.decode(remap, twobyte))
 else:
 # TODO: Adjust spacing between characters here
 int(x)
 text = ''.join(result)
 self.tpath.textOut(text)

def parse_end_text(self, token='ET', params=''):
 assert self.tpath is not None
 self.canv.drawText(self.tpath)
 self.tpath = None

def parse_move_cursor(self, token='Td', params='ff'):
 self.tpath.moveCursor(params[0], -params[1])

def parse_set_leading(self, token='TL', params='f'):
 self.tpath.setLeading(*params)

def parse_text_line(self, token='T*', params=''):
 self.tpath.textLine()

def parse_set_char_space(self, token='Tc', params='f'):
 self.tpath.setCharSpace(*params)

def parse_set_word_space(self, token='Tw', params='f'):
 self.tpath.setWordSpace(*params)

def parse_set_hscale(self, token='Tz', params='f'):
 self.tpath.setHorizScale(params[0] - 100)

def parse_set_rise(self, token='Ts', params='f'):
 self.tpath.setRise(*params)

def parse_xobject(self, token='Do', params='n'):
 # TODO: Need to do this
 pass

class FontInfo(object):
 ''' Pretty basic -- needs a lot of work to work right for all fonts
 '''
 lookup = {
 # WRONG -- have to learn about font stuff...
 'BitstreamVeraSans': 'Helvetica',
 }

 def __init__(self, source):
 name = source.BaseFont[1:]
 self.name = self.lookup.get(name, name)
 self.remap = chr
 self.twobyte = False
 info = source.ToUnicode
 if not info:
 return
 info = info.stream.split('beginbfchar')[1].split('endbfchar')[0]
 info = list(PdfTokens(info))
 assert not len(info) & 1
 info2 = []
 for x in info:
 assert x[0] == '<' and x[-1] == '>' and len(x) in (4, 6), x
 i = int(x[1:-1], 16)
 info2.append(i)
 self.remap = dict((x, chr(y)) for (x, y) in
 zip(info2[::2], info2[1::2])).get
 self.twobyte = len(info[0]) > 4

###
Control structures

def findparsefuncs():

 def checkname(n):
 assert n.startswith('/')
 return n

 def checkarray(a):
 assert isinstance(a, list), a
 return a

 def checktext(t):
 assert isinstance(t, PdfString)
 return t

 fixparam = dict(f=float, i=int, n=checkname, a=checkarray,
 s=str, t=checktext)
 fixcache = {}

 def fixlist(params):
 try:
 result = fixcache[params]
 except KeyError:
 result = tuple(fixparam[x] for x in params)
 fixcache[params] = result
 return result

 dispatch = {}
 expected_args = 'self token params'.split()
 for key, func in globals().items():
 if key.startswith('parse_'):
 args, varargs, keywords, defaults = getargspec(func)
 assert (args == expected_args and varargs is None and
 keywords is None and len(defaults) == 2), (
 key, args, varargs, keywords, defaults)
 token, params = defaults
 if params is not None:
 params = fixlist(params)
 value = func, params
 assert dispatch.setdefault(token, value) is value, repr(token)
 return dispatch

class _ParseClass(object):
 dispatch = findparsefuncs()

 @classmethod
 def parsepage(cls, page, canvas=None):
 self = cls()
 contents = page.Contents
 if contents.Filter is not None:
 raise SystemExit('Cannot parse graphics -- page encoded with %s'
 % contents.Filter)
 dispatch = cls.dispatch.get
 self.tokens = tokens = iter(PdfTokens(contents.stream))
 self.params = params = []
 self.canv = canvas
 self.gpath = None
 self.tpath = None
 self.fontdict = dict((x, FontInfo(y)) for
 (x, y) in page.Resources.Font.items())

 for token in self.tokens:
 info = dispatch(token)
 if info is None:
 params.append(token)
 continue
 func, paraminfo = info
 if paraminfo is None:
 func(self, token, ())
 continue
 delta = len(params) - len(paraminfo)
 if delta:
 if delta < 0:
 print ('Operator %s expected %s parameters, got %s' %
 (token, len(paraminfo), params))
 params[:] = []
 continue
 else:
 print ("Unparsed parameters/commands: %s" % params[:delta])
 del params[:delta]
 paraminfo = zip(paraminfo, params)
 try:
 params[:] = [x(y) for (x, y) in paraminfo]
 except:
 for i, (x, y) in enumerate(paraminfo):
 try:
 x(y)
 except:
 raise # For now
 continue
 func(self, token, params)
 params[:] = []

def debugparser(undisturbed=set('parse_array'.split())):
 def debugdispatch():
 def getvalue(oldval):
 name = oldval[0].__name__

 def myfunc(self, token, params):
 print ('%s called %s(%s)' % (token, name,
 ', '.join(str(x) for x in params)))
 if name in undisturbed:
 myfunc = oldval[0]
 return myfunc, oldval[1]
 return dict((x, getvalue(y))
 for (x, y) in _ParseClass.dispatch.items())

 class _DebugParse(_ParseClass):
 dispatch = debugdispatch()

 return _DebugParse.parsepage

parsepage = _ParseClass.parsepage

if __name__ == '__main__':
 import sys
 from pdfrw import PdfReader
 parse = debugparser()
 fname, = sys.argv[1:]
 pdf = PdfReader(fname, decompress=True)
 for i, page in enumerate(pdf.pages):
 print ('\nPage %s ------------------------------------' % i)
 parse(page)

pdfrw-0.4/examples/4up.py

#!/usr/bin/env python

'''
usage: 4up.py my.pdf

Creates 4up.my.pdf with a single output page for every
4 input pages.
'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, PageMerge

def get4(srcpages):
 scale = 0.5
 srcpages = PageMerge() + srcpages
 x_increment, y_increment = (scale * i for i in srcpages.xobj_box[2:])
 for i, page in enumerate(srcpages):
 page.scale(scale)
 page.x = x_increment if i & 1 else 0
 page.y = 0 if i & 2 else y_increment
 return srcpages.render()

inpfn, = sys.argv[1:]
outfn = '4up.' + os.path.basename(inpfn)
pages = PdfReader(inpfn).pages
writer = PdfWriter(outfn)
for index in range(0, len(pages), 4):
 writer.addpage(get4(pages[index:index + 4]))
writer.write()

pdfrw-0.4/examples/README.txt

Example programs:

4up.py -- Prints pages four-up

alter.py -- Simple example of making a very slight modification to a PDF.

booklet.py -- Converts a PDF into a booklet.

cat.py -- Concatenates multiple PDFs, adds metadata.

poster.py -- Changes the size of a PDF to create a poster

print_two.py -- this is used when printing two cut-down copies on a single sheet of paper (double-sided) Requires uncompressed PDF.

rotate.py -- This will rotate selected ranges of pages within a document.

subset.py -- This will retrieve a subset of pages from a document.

watermark.py -- Adds a watermark to a PDF

rl1/4up.py -- Same as 4up.py, using reportlab for output. Next simplest reportlab example.

rl1/booklet.py -- Version of print_booklet using reportlab for output.

rl1/platypus_pdf_template.py -- Example using a PDF page as a watermark background with reportlab.

rl1/subset.py -- Same as subset.py, using reportlab for output. Simplest reportlab example.

rl2/copy.py -- example of how you could parse a graphics stream and then use reportlab for output.
 Works on a few different PDFs, probably not a suitable starting point for real
 production work without a lot of work on the library functions.

pdfrw-0.4/examples/alter.py

#!/usr/bin/env python

'''
usage: alter.py my.pdf

Creates alter.my.pdf

Demonstrates making a slight alteration to a preexisting PDF file.

'''

import sys
import os

from pdfrw import PdfReader, PdfWriter

inpfn, = sys.argv[1:]
outfn = 'alter.' + os.path.basename(inpfn)

trailer = PdfReader(inpfn)
trailer.Info.Title = 'My New Title Goes Here'
PdfWriter(outfn, trailer=trailer).write()

pdfrw-0.4/examples/booklet.py

#!/usr/bin/env python

'''
usage: booklet.py [-p] my.pdf

Creates booklet.my.pdf

Pages organized in a form suitable for booklet printing, e.g.
to print 4 8.5x11 pages using a single 11x17 sheet (double-sided).

The output would be using the same type of sheet
and you can get up to 3 blank sides if -p is enabled.

Otherwise the two sides in the middle will be in original page size
and you can have 1 blank sides at most.

'''

import os
import argparse

from pdfrw import PdfReader, PdfWriter, PageMerge

def fixpage(*pages):
 result = PageMerge() + (x for x in pages if x is not None)
 result[-1].x += result[0].w
 return result.render()

parser = argparse.ArgumentParser()
parser.add_argument("input", help="Input pdf file name")
parser.add_argument("-p", "--padding", action = "store_true",
 help="Padding the document so that all pages use the same type of sheet")
args = parser.parse_args()

inpfn = args.input
outfn = 'booklet.' + os.path.basename(inpfn)
ipages = PdfReader(inpfn).pages

if args.padding:
 pad_to = 4
else:
 pad_to = 2

Make sure we have a correct number of sides
ipages += [None]*(-len(ipages)%pad_to)

opages = []
while len(ipages) > 2:
 opages.append(fixpage(ipages.pop(), ipages.pop(0)))
 opages.append(fixpage(ipages.pop(0), ipages.pop()))

opages += ipages

PdfWriter(outfn).addpages(opages).write()

pdfrw-0.4/examples/cat.py

#!/usr/bin/env python

'''
usage: cat.py <first.pdf> [<next.pdf> ...]

Creates cat.<first.pdf>

This file demonstrates two features:

1) Concatenating multiple input PDFs.

2) adding metadata to the PDF.

'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, IndirectPdfDict

inputs = sys.argv[1:]
assert inputs
outfn = 'cat.' + os.path.basename(inputs[0])

writer = PdfWriter()
for inpfn in inputs:
 writer.addpages(PdfReader(inpfn).pages)

writer.trailer.Info = IndirectPdfDict(
 Title='your title goes here',
 Author='your name goes here',
 Subject='what is it all about?',
 Creator='some script goes here',
)
writer.write(outfn)

pdfrw-0.4/examples/extract.py

#!/usr/bin/env python

'''
usage: extract.py <some.pdf>

Locates Form XObjects and Image XObjects within the PDF,
and creates a new PDF containing these -- one per page.

Resulting file will be named extract.<some.pdf>

'''

import sys
import os

from pdfrw import PdfReader, PdfWriter
from pdfrw.findobjs import page_per_xobj

inpfn, = sys.argv[1:]
outfn = 'extract.' + os.path.basename(inpfn)
pages = list(page_per_xobj(PdfReader(inpfn).pages, margin=0.5*72))
if not pages:
 raise IndexError("No XObjects found")
writer = PdfWriter(outfn)
writer.addpages(pages)
writer.write()

pdfrw-0.4/examples/fancy_watermark.py

#!/usr/bin/env python

'''
Enhanced example of watermarking using form xobjects (pdfrw).

usage: fancy_watermark.py [-u] my.pdf single_page.pdf

Creates watermark.my.pdf, with every page overlaid with
first page from single_page.pdf. If -u is selected, watermark
will be placed underneath page (painted first).

The stock watermark.py program assumes all pages are the same
size. This example deals with pages of differing sizes in order
to show some concepts of positioning and scaling.

This version applies the watermark such that the upper right
corner of the watermark is at the upper right corner of the
document page for odd pages, and at the upper left corner
of the document page for even pages, for each page of the
document.

It also rescales the size of the watermark if the watermark
is too wide for the page.

These scaling and positioning adjustments can easily
be customized for any particular application.

To handle documents with different page sizes, a cache is
maintained of a modified intermediate watermark object
for each page size.
'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, PageMerge

Get all the filenames

argv = sys.argv[1:]
underneath = '-u' in argv
if underneath:
 del argv[argv.index('-u')]
inpfn, wmarkfn = argv
outfn = 'watermark.' + os.path.basename(inpfn)

Open both the source files
wmark_trailer = PdfReader(wmarkfn)
trailer = PdfReader(inpfn)

Handle different sized pages in same document with
a memoization cache, so we don't create more watermark
objects than we need to (typically only one per document).

wmark_page = wmark_trailer.pages[0]
wmark_cache = {}

Process every page
for pagenum, page in enumerate(trailer.pages, 1):

 # Get the media box of the page, and see
 # if we have a matching watermark in the cache
 mbox = tuple(float(x) for x in page.MediaBox)
 odd = pagenum & 1
 key = mbox, odd
 wmark = wmark_cache.get(key)
 if wmark is None:

 # Create and cache a new watermark object.
 wmark = wmark_cache[key] = PageMerge().add(wmark_page)[0]

 # The math is more complete than it probably needs to be,
 # because the origin of all pages is almost always (0, 0).
 # Nonetheless, we illustrate all the values and their names.

 page_x, page_y, page_x1, page_y1 = mbox
 page_w = page_x1 - page_x
 page_h = page_y1 - page_y # For illustration, not used

 # Scale the watermark if it is too wide for the page
 # (Could do the same for height instead if needed)
 if wmark.w > page_w:
 wmark.scale(1.0 * page_w / wmark.w)

 # Always put watermark at the top of the page
 # (but see horizontal positioning for other ideas)
 wmark.y += page_y1 - wmark.h

 # For odd pages, put it at the left of the page,
 # and for even pages, put it on the right of the page.
 if odd:
 wmark.x = page_x
 else:
 wmark.x += page_x1 - wmark.w

 # Optimize the case where the watermark is same width
 # as page.
 if page_w == wmark.w:
 wmark_cache[mbox, not odd] = wmark

 # Add the watermark to the page
 PageMerge(page).add(wmark, prepend=underneath).render()

Write out the destination file
PdfWriter(outfn, trailer=trailer).write()

pdfrw-0.4/examples/poster.py

#!/usr/bin/env python

'''
usage: poster.py my.pdf

Shows how to change the size on a PDF.

Motivation:

My daughter needed to create a 48" x 36" poster, but her Mac
version of Powerpoint only wanted to output 8.5" x 11" for
some reason.

So she did an 8.5x11" output with 0.5" margin all around
(actual size of useful area 7.5x10") and we scaled it
up by 4.8.

We also copy the Info dict to the new PDF.

'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, PageMerge, IndirectPdfDict

def adjust(page, margin=36, scale=4.8):
 info = PageMerge().add(page)
 x1, y1, x2, y2 = info.xobj_box
 viewrect = (margin, margin, x2 - x1 - 2 * margin, y2 - y1 - 2 * margin)
 page = PageMerge().add(page, viewrect=viewrect)
 page[0].scale(scale)
 return page.render()

inpfn, = sys.argv[1:]
outfn = 'poster.' + os.path.basename(inpfn)
reader = PdfReader(inpfn)
writer = PdfWriter(outfn)
writer.addpage(adjust(reader.pages[0]))
writer.trailer.Info = IndirectPdfDict(reader.Info or {})
writer.write()

pdfrw-0.4/examples/print_two.py

#!/usr/bin/env python

'''
usage: print_two.py my.pdf

Creates print_two.my.pdf

This is only useful when you can cut down sheets of paper to make two
small documents. Works for double-sided only right now.
'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, PageMerge

def fixpage(page, count=[0]):
 count[0] += 1
 oddpage = (count[0] & 1)

 result = PageMerge()
 for rotation in (180 + 180 * oddpage, 180 * oddpage):
 result.add(page, rotate=rotation)
 result[1].x = result[0].w
 return result.render()

inpfn, = sys.argv[1:]
outfn = 'print_two.' + os.path.basename(inpfn)
pages = PdfReader(inpfn).pages
PdfWriter(outfn).addpages(fixpage(x) for x in pages).write()

pdfrw-0.4/examples/rotate.py

#!/usr/bin/env python

'''
usage: rotate.py my.pdf rotation [page[range] ...]
 eg. rotate.py 270 1-3 5 7-9

 Rotation must be multiple of 90 degrees, clockwise.

Creates rotate.my.pdf with selected pages rotated. Rotates all by default.

'''

import sys
import os

from pdfrw import PdfReader, PdfWriter

inpfn = sys.argv[1]
rotate = sys.argv[2]
ranges = sys.argv[3:]

rotate = int(rotate)
assert rotate % 90 == 0

ranges = [[int(y) for y in x.split('-')] for x in ranges]
outfn = 'rotate.%s' % os.path.basename(inpfn)
trailer = PdfReader(inpfn)
pages = trailer.pages

if not ranges:
 ranges = [[1, len(pages)]]

for onerange in ranges:
 onerange = (onerange + onerange[-1:])[:2]
 for pagenum in range(onerange[0]-1, onerange[1]):
 pages[pagenum].Rotate = (int(pages[pagenum].inheritable.Rotate or
 0) + rotate) % 360

outdata = PdfWriter(outfn)
outdata.trailer = trailer
outdata.write()

pdfrw-0.4/examples/subset.py

#!/usr/bin/env python

'''
usage: subset.py my.pdf page[range] [page[range]] ...
 eg. subset.py 1-3 5 7-9

Creates subset.my.pdf

'''

import sys
import os

from pdfrw import PdfReader, PdfWriter

inpfn = sys.argv[1]
ranges = sys.argv[2:]
assert ranges, "Expected at least one range"

ranges = ([int(y) for y in x.split('-')] for x in ranges)
outfn = 'subset.%s' % os.path.basename(inpfn)
pages = PdfReader(inpfn).pages
outdata = PdfWriter(outfn)

for onerange in ranges:
 onerange = (onerange + onerange[-1:])[:2]
 for pagenum in range(onerange[0], onerange[1]+1):
 outdata.addpage(pages[pagenum-1])
outdata.write()

pdfrw-0.4/examples/subset_booklets.py

#!/usr/bin/env python

'''
usage: subset_booklets.py my.pdf

Creates subset_booklets.my.pdf

Pages organized in a form suitable for booklet printing, e.g.
to print 4 8.5x11 pages using a single 11x17 sheet (double-sided).
Instead of a large booklet, the pdf is divided into several mini
booklets. The reason is: professional printing works this way:
 - Print all of several mini booklets(subsets of booklet);
 - Saw each mini booklet individually;
 - glue them all together;
 - Insert the cover.

 Take a look at http://www.wikihow.com/Bind-a-Book
'''

import sys
import os
import time
from pdfrw import PdfReader, PdfWriter, PageMerge

BOOKLET_SIZE = 20
START = time.time()

def fixpage(*pages):
 result = PageMerge() + (x for x in pages if x is not None)
 result[-1].x += result[0].w
 return result.render()

INPFN, = sys.argv[1:]
OUTFN = 'booklet.' + os.path.basename(INPFN)
ALL_IPAGES = PdfReader(INPFN).pages
print 'The pdf file '+str(INPFN)+' has '+str(len(ALL_IPAGES))+' pages.'

#Make sure we have an even number
if len(ALL_IPAGES) & 1:
 ALL_IPAGES.append(None)
 print 'Inserting one more blank page to make pages number even.'
NUM_OF_ITER, ITERS_LEFT = divmod(len(ALL_IPAGES), BOOKLET_SIZE)

print 'Making '+str(NUM_OF_ITER)+' subbooklets of '+str(BOOKLET_SIZE)+' pages each.'
opages = []
for iteration in range(0, NUM_OF_ITER):
 ipages = ALL_IPAGES[iteration*BOOKLET_SIZE:(iteration+1)*BOOKLET_SIZE]
 while len(ipages) > 2:
 opages.append(fixpage(ipages.pop(), ipages.pop(0)))
 opages.append(fixpage(ipages.pop(0), ipages.pop()))

Making one more subbooklet with the left pages
ipages = ALL_IPAGES[len(ALL_IPAGES)-ITERS_LEFT:len(ALL_IPAGES)]
while len(ipages) > 2:
 opages.append(fixpage(ipages.pop(), ipages.pop(0)))
 opages.append(fixpage(ipages.pop(0), ipages.pop()))
if len(ipages) >= 1:
 opages.append(fixpage(ipages.pop(), ipages.pop(0)))

PdfWriter(OUTFN).addpages(opages).write()
print 'It took '+ str(round(time.time()-START, 2))+' seconds to make the pdf subbooklets changes.'

pdfrw-0.4/examples/unspread.py

#!/usr/bin/env python

'''
usage: unspread.py my.pdf

Creates unspread.my.pdf

Chops each page in half, e.g. if a source were
created in booklet form, you could extract individual
pages.
'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, PageMerge

def splitpage(src):
 ''' Split a page into two (left and right)
 '''
 # Yield a result for each half of the page
 for x_pos in (0, 0.5):
 yield PageMerge().add(src, viewrect=(x_pos, 0, 0.5, 1)).render()

inpfn, = sys.argv[1:]
outfn = 'unspread.' + os.path.basename(inpfn)
writer = PdfWriter(outfn)
for page in PdfReader(inpfn).pages:
 writer.addpages(splitpage(page))
writer.write()

pdfrw-0.4/examples/watermark.py

#!/usr/bin/env python

'''
Simple example of watermarking using form xobjects (pdfrw).

usage: watermark.py [-u] my.pdf single_page.pdf

Creates watermark.my.pdf, with every page overlaid with
first page from single_page.pdf. If -u is selected, watermark
will be placed underneath page (painted first).

NOTE 1: This program assumes that all pages (including the watermark
 page) are the same size. For other possibilities, see
 the fancy_watermark.py example.

NOTE 2: At one point, this example was extremely complicated, with
 multiple options. That only led to errors in implementation,
 so it has been re-simplified in order to show basic principles
 of the library operation and to match the other examples better.
'''

import sys
import os

from pdfrw import PdfReader, PdfWriter, PageMerge

argv = sys.argv[1:]
underneath = '-u' in argv
if underneath:
 del argv[argv.index('-u')]
inpfn, wmarkfn = argv
outfn = 'watermark.' + os.path.basename(inpfn)
wmark = PageMerge().add(PdfReader(wmarkfn).pages[0])[0]
trailer = PdfReader(inpfn)
for page in trailer.pages:
 PageMerge(page).add(wmark, prepend=underneath).render()
PdfWriter(outfn, trailer=trailer).write()

pdfrw-0.4/pdfrw/objects/__init__.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

'''
Objects that can occur in PDF files. The most important
objects are arrays and dicts. Either of these can be
indirect or not, and dicts could have an associated
stream.
'''
from .pdfname import PdfName
from .pdfdict import PdfDict, IndirectPdfDict
from .pdfarray import PdfArray
from .pdfobject import PdfObject
from .pdfstring import PdfString
from .pdfindirect import PdfIndirect

__all__ = """PdfName PdfDict IndirectPdfDict PdfArray
 PdfObject PdfString PdfIndirect""".split()

pdfrw-0.4/pdfrw/objects/pdfarray.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

from .pdfindirect import PdfIndirect
from .pdfobject import PdfObject

def _resolved():
 pass

class PdfArray(list):
 ''' A PdfArray maps the PDF file array object into a Python list.
 It has an indirect attribute which defaults to False.
 '''
 indirect = False

 def __init__(self, source=[]):
 self._resolve = self._resolver
 self.extend(source)

 def _resolver(self, isinstance=isinstance, enumerate=enumerate,
 listiter=list.__iter__, PdfIndirect=PdfIndirect,
 resolved=_resolved, PdfNull=PdfObject('null')):
 for index, value in enumerate(list.__iter__(self)):
 if isinstance(value, PdfIndirect):
 value = value.real_value()
 if value is None:
 value = PdfNull
 self[index] = value
 self._resolve = resolved

 def __getitem__(self, index, listget=list.__getitem__):
 self._resolve()
 return listget(self, index)

 try:
 def __getslice__(self, i, j, listget=list.__getslice__):
 self._resolve()
 return listget(self, i, j)
 except AttributeError:
 pass

 def __iter__(self, listiter=list.__iter__):
 self._resolve()
 return listiter(self)

 def count(self, item):
 self._resolve()
 return list.count(self, item)

 def index(self, item):
 self._resolve()
 return list.index(self, item)

 def remove(self, item):
 self._resolve()
 return list.remove(self, item)

 def sort(self, *args, **kw):
 self._resolve()
 return list.sort(self, *args, **kw)

 def pop(self, *args):
 self._resolve()
 return list.pop(self, *args)

 def __reversed__(self):
 self._resolve()
 return list.__reversed__(self)

pdfrw-0.4/pdfrw/objects/pdfdict.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

from .pdfname import PdfName, BasePdfName
from .pdfindirect import PdfIndirect
from .pdfobject import PdfObject
from ..py23_diffs import iteritems
from ..errors import PdfParseError

class _DictSearch(object):
 ''' Used to search for inheritable attributes.
 '''

 def __init__(self, basedict):
 self.basedict = basedict

 def __getattr__(self, name, PdfName=PdfName):
 return self[PdfName(name)]

 def __getitem__(self, name, set=set, getattr=getattr, id=id):
 visited = set()
 mydict = self.basedict
 while 1:
 value = mydict[name]
 if value is not None:
 return value
 myid = id(mydict)
 assert myid not in visited
 visited.add(myid)
 mydict = mydict.Parent
 if mydict is None:
 return

class _Private(object):
 ''' Used to store private attributes (not output to PDF files)
 on PdfDict classes
 '''

 def __init__(self, pdfdict):
 vars(self)['pdfdict'] = pdfdict

 def __setattr__(self, name, value):
 vars(self.pdfdict)[name] = value

class PdfDict(dict):
 ''' PdfDict objects are subclassed dictionaries
 with the following features:

 - Every key in the dictionary starts with "/"

 - A dictionary item can be deleted by assigning it to None

 - Keys that (after the initial "/") conform to Python
 naming conventions can also be accessed (set and retrieved)
 as attributes of the dictionary. E.g. mydict.Page is the
 same thing as mydict['/Page']

 - Private attributes (not in the PDF space) can be set
 on the dictionary object attribute dictionary by using
 the private attribute:

 mydict.private.foo = 3
 mydict.foo = 5
 x = mydict.foo # x will now contain 3
 y = mydict['/foo'] # y will now contain 5

 Most standard adobe dictionary keys start with an upper case letter,
 so to avoid conflicts, it is best to start private attributes with
 lower case letters.

 - PdfDicts have the following read-only properties:

 - private -- as discussed above, provides write access to
 dictionary's attributes
 - inheritable -- this creates and returns a "view" attribute
 that will search through the object hierarchy for
 any desired attribute, such as /Rotate or /MediaBox

 - PdfDicts also have the following special attributes:
 - indirect is not stored in the PDF dictionary, but in the object's
 attribute dictionary
 - stream is also stored in the object's attribute dictionary
 and will also update the stream length.
 - _stream will store in the object's attribute dictionary without
 updating the stream length.

 It is possible, for example, to have a PDF name such as "/indirect"
 or "/stream", but you cannot access such a name as an attribute:

 mydict.indirect -- accesses object's attribute dictionary
 mydict["/indirect"] -- accesses actual PDF dictionary
 '''
 indirect = False
 stream = None

 _special = dict(indirect=('indirect', False),
 stream=('stream', True),
 _stream=('stream', False),
)

 def __setitem__(self, name, value, setter=dict.__setitem__,
 BasePdfName=BasePdfName, isinstance=isinstance):
 if not isinstance(name, BasePdfName):
 raise PdfParseError('Dict key %s is not a PdfName' % repr(name))
 if value is not None:
 setter(self, name, value)
 elif name in self:
 del self[name]

 def __init__(self, *args, **kw):
 if args:
 if len(args) == 1:
 args = args[0]
 self.update(args)
 if isinstance(args, PdfDict):
 self.indirect = args.indirect
 self._stream = args.stream
 for key, value in iteritems(kw):
 setattr(self, key, value)

 def __getattr__(self, name, PdfName=PdfName):
 ''' If the attribute doesn't exist on the dictionary object,
 try to slap a '/' in front of it and get it out
 of the actual dictionary itself.
 '''
 return self.get(PdfName(name))

 def get(self, key, dictget=dict.get, isinstance=isinstance,
 PdfIndirect=PdfIndirect):
 ''' Get a value out of the dictionary,
 after resolving any indirect objects.
 '''
 value = dictget(self, key)
 if isinstance(value, PdfIndirect):
 # We used to use self[key] here, but that does an
 # unwanted check on the type of the key (github issue #98).
 # Python will keep the old key object in the dictionary,
 # so that check is not necessary.
 value = value.real_value()
 if value is not None:
 dict.__setitem__(self, key, value)
 else:
 del self[name]
 return value

 def __getitem__(self, key):
 return self.get(key)

 def __setattr__(self, name, value, special=_special.get,
 PdfName=PdfName, vars=vars):
 ''' Set an attribute on the dictionary. Handle the keywords
 indirect, stream, and _stream specially (for content objects)
 '''
 info = special(name)
 if info is None:
 self[PdfName(name)] = value
 else:
 name, setlen = info
 vars(self)[name] = value
 if setlen:
 notnone = value is not None
 self.Length = notnone and PdfObject(len(value)) or None

 def iteritems(self, dictiter=iteritems,
 isinstance=isinstance, PdfIndirect=PdfIndirect,
 BasePdfName=BasePdfName):
 ''' Iterate over the dictionary, resolving any unresolved objects
 '''
 for key, value in list(dictiter(self)):
 if isinstance(value, PdfIndirect):
 self[key] = value = value.real_value()
 if value is not None:
 if not isinstance(key, BasePdfName):
 raise PdfParseError('Dict key %s is not a PdfName' %
 repr(key))
 yield key, value

 def items(self):
 return list(self.iteritems())

 def itervalues(self):
 for key, value in self.iteritems():
 yield value

 def values(self):
 return list((value for key, value in self.iteritems()))

 def keys(self):
 return list((key for key, value in self.iteritems()))

 def __iter__(self):
 for key, value in self.iteritems():
 yield key

 def iterkeys(self):
 return iter(self)

 def copy(self):
 return type(self)(self)

 def pop(self, key):
 value = self.get(key)
 del self[key]
 return value

 def popitem(self):
 key, value = dict.pop(self)
 if isinstance(value, PdfIndirect):
 value = value.real_value()
 return value

 def inheritable(self):
 ''' Search through ancestors as needed for inheritable
 dictionary items.
 NOTE: You might think it would be a good idea
 to cache this class, but then you'd have to worry
 about it pointing to the wrong dictionary if you
 made a copy of the object...
 '''
 return _DictSearch(self)
 inheritable = property(inheritable)

 def private(self):
 ''' Allows setting private metadata for use in
 processing (not sent to PDF file).
 See note on inheritable
 '''
 return _Private(self)
 private = property(private)

class IndirectPdfDict(PdfDict):
 ''' IndirectPdfDict is a convenience class. You could
 create a direct PdfDict and then set indirect = True on it,
 or you could just create an IndirectPdfDict.
 '''
 indirect = True

pdfrw-0.4/pdfrw/objects/pdfindirect.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

class _NotLoaded(object):
 pass

class PdfIndirect(tuple):
 ''' A placeholder for an object that hasn't been read in yet.
 The object itself is the (object number, generation number) tuple.
 The attributes include information about where the object is
 referenced from and the file object to retrieve the real object from.
 '''
 value = _NotLoaded

 def real_value(self, NotLoaded=_NotLoaded):
 value = self.value
 if value is NotLoaded:
 value = self.value = self._loader(self)
 return value

pdfrw-0.4/pdfrw/objects/pdfname.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

import re

from ..errors import log

warn = log.warning

class BasePdfName(str):
 ''' A PdfName is an identifier that starts with
 a slash.

 If a PdfName has illegal space or delimiter characters,
 then it will be decorated with an "encoded" attribute that
 has those characters properly escaped as #<hex><hex>

 The "encoded" attribute is what is sent out to a PDF file,
 the non-encoded main object is what is compared for equality
 in a PDF dictionary.
 '''

 indirect = False
 encoded = None

 whitespace = '\x00 \t\f\r\n'
 delimiters = '()<>{}[]/%'
 forbidden = list(whitespace) + list('\\' + x for x in delimiters)
 remap = dict((x, '#%02X' % ord(x)) for x in (whitespace + delimiters))
 split_to_encode = re.compile('(%s)' % '|'.join(forbidden)).split
 split_to_decode = re.compile(r'\#([0-9A-Fa-f]{2})').split

 def __new__(cls, name, pre_encoded=True, remap=remap,
 join=''.join, new=str.__new__, chr=chr, int=int,
 split_to_encode=split_to_encode,
 split_to_decode=split_to_decode,
):
 ''' We can build a PdfName from scratch, or from
 a pre-encoded name (e.g. coming in from a file).
 '''
 # Optimization for normal case
 if name[1:].isalnum():
 return new(cls, name)
 encoded = name
 if pre_encoded:
 if '#' in name:
 substrs = split_to_decode(name)
 substrs[1::2] = (chr(int(x, 16)) for x in substrs[1::2])
 name = join(substrs)
 else:
 encoded = split_to_encode(encoded)
 encoded[3::2] = (remap[x] for x in encoded[3::2])
 encoded = join(encoded)
 self = new(cls, name)
 if encoded != name:
 self.encoded = encoded
 return self

We could have used a metaclass, but this matches what
we were doing historically.

class PdfName(object):
 ''' Two simple ways to get a PDF name from a string:

 x = PdfName.FooBar
 x = pdfName('FooBar')

 Either technique will return "/FooBar"

 '''

 def __getattr__(self, name, BasePdfName=BasePdfName):
 return BasePdfName('/' + name, False)

 def __call__(self, name, BasePdfName=BasePdfName):
 return BasePdfName('/' + name, False)

PdfName = PdfName()

pdfrw-0.4/pdfrw/objects/pdfobject.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
MIT license -- See LICENSE.txt for details

class PdfObject(str):
 ''' A PdfObject is a textual representation of any PDF file object
 other than an array, dict or string. It has an indirect attribute
 which defaults to False.
 '''
 indirect = False

pdfrw-0.4/pdfrw/objects/pdfstring.py

A part of pdfrw (https://github.com/pmaupin/pdfrw)
Copyright (C) 2006-2017 Patrick Maupin, Austin, Texas
2016 James Laird-Wah, Sydney, Australia
MIT license -- See LICENSE.txt for details

"""

================================
PdfString encoding and decoding
================================

Introduction
=============

This module handles encoding and decoding of PDF strings. PDF strings
are described in the PDF 1.7 reference manual, mostly in chapter 3
(sections 3.2 and 3.8) and chapter 5.

PDF strings are used in the document structure itself, and also inside
the stream of page contents dictionaries.

A PDF string can represent pure binary data (e.g. for a font or an
image), or text, or glyph indices. For Western fonts, the glyph indices
usually correspond to ASCII, but that is not guaranteed. (When it does
happen, it makes examination of raw PDF data a lot easier.)

The specification defines PDF string encoding at two different levels.
At the bottom, it defines ways to encode arbitrary bytes so that a PDF
tokenizer can understand they are a string of some sort, and can figure
out where the string begins and ends. (That is all the tokenizer itself
cares about.) Above that level, if the string represents text, the
specification defines ways to encode Unicode text into raw bytes, before
the byte encoding is performed.

There are two ways to do the byte encoding, and two ways to do the text
(Unicode) encoding.

Encoding bytes into PDF strings
================================

Adobe calls the two ways to encode bytes into strings "Literal strings"
and "Hexadecimal strings."

Literal strings

A literal string is delimited by ASCII parentheses ("(" and ")"), and a
hexadecimal string is delimited by ASCII less-than and greater-than
signs ("<" and ">").

A literal string may encode bytes almost unmolested. The caveat is
that if a byte has the same value as a parenthesis, it must be escaped
so that the tokenizer knows the string is not finished. This is accomplished
by using the ASCII backslash ("\") as an escape character. Of course,
now any backslash appearing in the data must likewise be escaped.

Hexadecimal strings

A hexadecimal string requires twice as much space as the source data
it represents (plus two bytes for the delimiter), simply storing each
byte as two hexadecimal digits, most significant digit first. The spec
allows for lower or upper case hex digits, but most PDF encoders seem
to use upper case.

Special cases -- Legacy systems and readability

It is possible to create a PDF document that uses 7 bit ASCII encoding,
and it is desirable in many cases to create PDFs that are reasonably
readable when opened in a text editor. For these reasons, the syntax
for both literal strings and hexadecimal strings is slightly more
complicated that the initial description above. In general, the additional
syntax allows the following features:

 - Making the delineation between characters, or between sections of
 a string, apparent, and easy to see in an editor.
 - Keeping output lines from getting too wide for some editors
 - Keeping output lines from being so narrow that you can only see the
 small fraction of a string at a time in an editor.
 - Suppressing unprintable characters
 - Restricting the output string to 7 bit ASCII

Hexadecimal readability
~~~~~~~~~~~~~~~~~~~~~~~

For hexadecimal strings, only the first two bullets are relevant.  The syntax
to accomplish this is simple, allowing any ASCII whitespace to be inserted
anywhere in the encoded hex string.

Literal readability
~~~~~~~~~~~~~~~~~~~

For literal strings, all of the bullets except the first are relevant.
The syntax has two methods to help with these goals. The first method
is to overload the escape operator to be able to do different functions,
and the second method can reduce the number of escapes required for
parentheses in the normal case.

The escape function works differently, depending on what byte follows
the backslash. In all cases, the escaping backslash is discarded,
and then the next character is examined:

 - For parentheses and backslashes (and, in fact, for all characters
 not described otherwise in this list), the character after the
 backslash is preserved in the output.
 - A letter from the set of "nrtbf" following a backslash is interpreted as
 a line feed, carriage return, tab, backspace, or form-feed, respectively.
 - One to three octal digits following the backslash indicate the
 numeric value of the encoded byte.
 - A carriage return, carriage return/line feed, or line feed following
 the backslash indicates a line break that was put in for readability,
 and that is not part of the actual data, so this is discarded.

The second method that can be used to improve readability (and reduce space)
in literal strings is to not escape parentheses. This only works, and is
only allowed, when the parentheses are properly balanced. For example,
"((Hello))" is a valid encoding for a literal string, but "((Hello)" is not;
the latter case should be encoded "(\(Hello)"

Encoding text into strings
==========================

Section 3.8.1 of the PDF specification describes text strings.

The individual characters of a text string can all be considered to
be Unicode; Adobe specifies two different ways to encode these characters
into a string of bytes before further encoding the byte string as a
literal string or a hexadecimal string.

The first way to encode these strings is called PDFDocEncoding. This
is mostly a one-for-one mapping of bytes into single bytes, similar to
Latin-1. The representable character set is limited to the number of
characters that can fit in a byte, and this encoding cannot be used
with Unicode strings that start with the two characters making up the
UTF-16-BE BOM.

The second way to encode these strings is with UTF-16-BE. Text strings
encoded with this method must start with the BOM, and although the spec
does not appear to mandate that the resultant bytes be encoded into a
hexadecimal string, that seems to be the canonical way to do it.

When encoding a string into UTF-16-BE, this module always adds the BOM,
and when decoding a string from UTF-16-BE, this module always strips
the BOM. If a source string contains a BOM, that will remain in the
final string after a round-trip through the encoder and decoder, as
the goal of the encoding/decoding process is transparency.

PDF string handling in pdfrw
=============================

Responsibility for handling PDF strings in the pdfrw library is shared
between this module, the tokenizer, and the pdfwriter.

tokenizer string handling

As far as the tokenizer and its clients such as the pdfreader are concerned,
the PdfString class must simply be something that it can instantiate by
passing a string, that doesn't compare equal (or throw an exception when
compared) to other possible token strings. The tokenizer must understand
enough about the syntax of the string to successfully find its beginning
and end in a stream of tokens, but doesn't otherwise know or care about
the data represented by the string.

pdfwriter string handling

The pdfwriter knows and cares about two attributes of PdfString instances:

 - First, PdfString objects have an 'indirect' attribute, which pdfwriter
 uses as an indication that the object knows how to represent itself
 correctly when output to a new PDF. (In the case of a PdfString object,
 no work is really required, because it is already a string.)
 - Second, the PdfString.encode() method is used as a convenience to
 automatically convert any user-supplied strings (that didn't come
 from PDFs) when a PDF is written out to a file.

pdfstring handling

The code in this module is designed to support those uses by the
tokenizer and the pdfwriter, and to additionally support encoding
and decoding of PdfString objects as a convenience for the user.

Most users of the pdfrw library never encode or decode a PdfString,
so it is imperative that (a) merely importing this module does not
take a significant amount of CPU time; and (b) it is cheap for the
tokenizer to produce a PdfString, and cheap for the pdfwriter to
consume a PdfString -- if the tokenizer finds a string that conforms
to the PDF specification, it will be wrapped in a PdfString object,
and if the pdfwriter finds an object with an indirect attribute, it
simply calls str() to ask it to format itself.

Encoding and decoding are not actually performed very often at all,
compared to how often tokenization and then subsequent concatenation
by the pdfwriter are performed. In fact, versions of pdfrw prior to
0.4 did not even support Unicode for this function. Encoding and
decoding can also easily be performed by the user, outside of the
library, and this might still be recommended, at least for encoding,
if the visual appeal of encodings generated by this module is found
lacking.

Decoding strings
~~~~~~~~~~~~~~~~~~~

Decoding strings can be tricky, but is a bounded process.  Each
properly-encoded encoded string represents exactly one output string,
with the caveat that is up to the caller of the function to know whether
he expects a Unicode string, or just bytes.

The caller can call PdfString.to_bytes() to get a byte string (which may
or may not represent encoded Unicode), or may call PdfString.to_unicode()
to get a Unicode string.  Byte strings will be regular strings in Python 2,
and b'' bytes in Python 3; Unicode strings will be regular strings in
Python 3, and u'' unicode strings in Python 2.

To maintain application compatibility with earlier versions of pdfrw,
PdfString.decode() is an alias for PdfString.to_unicode().

Encoding strings
~~~~~~~~~~~~~~~~~~

PdfString has three factory functions that will encode strings into
PdfString objects:

 - PdfString.from_bytes() accepts a byte string (regular string in Python 2
 or b'' bytes string in Python 3) and returns a PdfString object.
 - PdfString.from_unicode() accepts a Unicode string (u'' Unicode string in
 Python 2 or regular string in Python 3) and returns a PdfString object.
 - PdfString.encode() examines the type of object passed, and either
 calls from_bytes() or from_unicode() to do the real work.

Unlike decoding(), encoding is not (mathematically) a function.
There are (literally) an infinite number of ways to encode any given
source string. (Of course, most of them would be stupid, unless
the intent is some sort of denial-of-service attack.)

So encoding strings is either simpler than decoding, or can be made to
be an open-ended science fair project (to create the best looking
encoded strings).

There are parameters to the encoding functions that allow control over
the final encoded string, but the intention is to make the default values
produce a reasonable encoding.

As mentioned previously, if encoding does not do what a particular
user needs, that user is free to write his own encoder, and then
simply instantiate a PdfString object by passing a string to the
default constructor, the same way that the tokenizer does it.

However, if desirable, encoding may gradually become more capable
over time, adding the ability to generate more aesthetically pleasing
encoded strings.

PDFDocString encoding and decoding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To handle this encoding in a fairly standard way, this module registers
an encoder and decoder for PDFDocEncoding with the codecs module.

"""

import re
import codecs
import binascii
import itertools
from ..py23_diffs import convert_load, convert_store

def find_pdfdocencoding(encoding):
    """ This function conforms to the codec module registration
        protocol.  It defers calculating data structures until
        a pdfdocencoding encode or decode is required.

        PDFDocEncoding is described in the PDF 1.7 reference manual.
    """

    if encoding != 'pdfdocencoding':
        return

    # Create the decoding map based on the table in section D.2 of the
    # PDF 1.7 manual

    # Start off with the characters with 1:1 correspondence
    decoding_map = set(range(0x20, 0x7F)) | set(range(0xA1, 0x100))
    decoding_map.update((0x09, 0x0A, 0x0D))
    decoding_map.remove(0xAD)
    decoding_map = dict((x, x) for x in decoding_map)

    # Add in the special Unicode characters
    decoding_map.update(zip(range(0x18, 0x20), (
            0x02D8, 0x02C7, 0x02C6, 0x02D9, 0x02DD, 0x02DB, 0x02DA, 0x02DC)))
    decoding_map.update(zip(range(0x80, 0x9F), (
            0x2022, 0x2020, 0x2021, 0x2026, 0x2014, 0x2013, 0x0192, 0x2044,
            0x2039, 0x203A, 0x2212, 0x2030, 0x201E, 0x201C, 0x201D, 0x2018,
            0x2019, 0x201A, 0x2122, 0xFB01, 0xFB02, 0x0141, 0x0152, 0x0160,
            0x0178, 0x017D, 0x0131, 0x0142, 0x0153, 0x0161, 0x017E)))
    decoding_map[0xA0] = 0x20AC

    # Make the encoding map from the decoding map
    encoding_map = codecs.make_encoding_map(decoding_map)

    # Not every PDF producer follows the spec, so conform to Postel's law
    # and interpret encoded strings if at all possible.  In particular, they
    # might have nulls and form-feeds, judging by random code snippets
    # floating around the internet.
    decoding_map.update(((x, x) for x in range(0x18)))

    def encode(input, errors='strict'):
        return codecs.charmap_encode(input, errors, encoding_map)

    def decode(input, errors='strict'):
        return codecs.charmap_decode(input, errors, decoding_map)

    return codecs.CodecInfo(encode, decode, name='pdfdocencoding')

codecs.register(find_pdfdocencoding)

class PdfString(str):
    """ A PdfString is an encoded string.  It has a decode
        method to get the actual string data out, and there
        is an encode class method to create such a string.
        Like any PDF object, it could be indirect, but it
        defaults to being a direct object.
    """
    indirect = False


    # The byte order mark, and unicode that could be
    # wrongly encoded into the byte order mark by the
    # pdfdocencoding codec.

    bytes_bom = codecs.BOM_UTF16_BE
    bad_pdfdoc_prefix = bytes_bom.decode('latin-1')

    # Used by decode_literal; filled in on first use

    unescape_dict = None
    unescape_func = None

    @classmethod
    def init_unescapes(cls):
        """ Sets up the unescape attributes for decode_literal
        """
        unescape_pattern = r'\\([0-7]{1,3}|\r\n|.)'
        unescape_func = re.compile(unescape_pattern, re.DOTALL).split
        cls.unescape_func = unescape_func

        unescape_dict = dict(((chr(x), chr(x)) for x in range(0x100)))
        unescape_dict.update(zip('nrtbf', '\n\r\t\b\f'))
        unescape_dict['\r'] = ''
        unescape_dict['\n'] = ''
        unescape_dict['\r\n'] = ''
        for i in range(0o10):
            unescape_dict['%01o' % i] = chr(i)
        for i in range(0o100):
            unescape_dict['%02o' % i] = chr(i)
        for i in range(0o400):
            unescape_dict['%03o' % i] = chr(i)
        cls.unescape_dict = unescape_dict
        return unescape_func

    def decode_literal(self):
        """ Decode a PDF literal string, which is enclosed in parentheses ()

            Many pdfrw users never decode strings, so defer creating
            data structures to do so until the first string is decoded.

            Possible string escapes from the spec:
            (PDF 1.7 Reference, section 3.2.3, page 53)

                1. \[nrtbf\()]: simple escapes
                2. \\d{1,3}: octal. Must be zero-padded to 3 digits
                    if followed by digit
                3. \<end of line>: line continuation. We don't know the EOL
                    marker used in the PDF, so accept \r, \n, and \r\n.
                4. Any other character following \ escape -- the backslash
                    is swallowed.
        """
        result = (self.unescape_func or self.init_unescapes())(self[1:-1])
        if len(result) == 1:
            return convert_store(result[0])
        unescape_dict = self.unescape_dict
        result[1::2] = [unescape_dict[x] for x in result[1::2]]
        return convert_store(''.join(result))


    def decode_hex(self):
        """ Decode a PDF hexadecimal-encoded string, which is enclosed
            in angle brackets <>.
        """
        hexstr = convert_store(''.join(self[1:-1].split()))
        if len(hexstr) % 1: # odd number of chars indicates a truncated 0
            hexstr += '0'
        return binascii.unhexlify(hexstr)


    def to_bytes(self):
        """ Decode a PDF string to bytes.  This is a convenience function
            for user code, in that (as of pdfrw 0.3) it is never
            actually used inside pdfrw.
        """
        if self.startswith('(') and self.endswith(')'):
            return self.decode_literal()

        elif self.startswith('<') and self.endswith('>'):
            return self.decode_hex()

        else:
            raise ValueError('Invalid PDF string "%s"' % repr(self))

    def to_unicode(self):
        """ Decode a PDF string to a unicode string.  This is a
            convenience function for user code, in that (as of
            pdfrw 0.3) it is never actually used inside pdfrw.

            There are two Unicode storage methods used -- either
            UTF16_BE, or something called PDFDocEncoding, which
            is defined in the PDF spec.  The determination of
            which decoding method to use is done by examining the
            first two bytes for the byte order marker.
        """
        raw = self.to_bytes()

        if raw[:2] == self.bytes_bom:
            return raw[2:].decode('utf-16-be')
        else:
            return raw.decode('pdfdocencoding')

    # Legacy-compatible interface
    decode = to_unicode

    # Internal value used by encoding

    escape_splitter = None  # Calculated on first use

    @classmethod
    def init_escapes(cls):
        """ Initialize the escape_splitter for the encode method
        """
        cls.escape_splitter = re.compile(br'(\(|\\|\))').split
        return cls.escape_splitter

    @classmethod
    def from_bytes(cls, raw, bytes_encoding='auto'):
        """ The from_bytes() constructor is called to encode a source raw
            byte string into a PdfString that is suitable for inclusion
            in a PDF.

            NOTE:  There is no magic in the encoding process.  A user
            can certainly do his own encoding, and simply initialize a
            PdfString() instance with his encoded string.  That may be
            useful, for example, to add line breaks to make it easier
            to load PDFs into editors, or to not bother to escape balanced
            parentheses, or to escape additional characters to make a PDF
            more readable in a file editor.  Those are features not
            currently supported by this method.

            from_bytes() can use a heuristic to figure out the best
            encoding for the string, or the user can control the process
            by changing the bytes_encoding parameter to 'literal' or 'hex'
            to force a particular conversion method.
        """

        # If hexadecimal is not being forced, then figure out how long
        # the escaped literal string will be, and fall back to hex if
        # it is too long.

        force_hex = bytes_encoding == 'hex'
        if not force_hex:
            if bytes_encoding not in ('literal', 'auto'):
                raise ValueError('Invalid bytes_encoding value: %s'
                                 % bytes_encoding)
            splitlist = (cls.escape_splitter or cls.init_escapes())(raw)
            if bytes_encoding == 'auto' and len(splitlist) // 2 >= len(raw):
                force_hex = True

        if force_hex:
            # The spec does not mandate uppercase,
            # but it seems to be the convention.
            fmt = '<%s>'
            result = binascii.hexlify(raw).upper()
        else:
            fmt = '(%s)'
            splitlist[1::2] = [(b'\\' + x) for x in splitlist[1::2]]
            result = b''.join(splitlist)

        return cls(fmt % convert_load(result))

    @classmethod
    def from_unicode(cls, source, text_encoding='auto',
                     bytes_encoding='auto'):
        """ The from_unicode() constructor is called to encode a source
            string into a PdfString that is suitable for inclusion in a PDF.

            NOTE:  There is no magic in the encoding process.  A user
            can certainly do his own encoding, and simply initialize a
            PdfString() instance with his encoded string.  That may be
            useful, for example, to add line breaks to make it easier
            to load PDFs into editors, or to not bother to escape balanced
            parentheses, or to escape additional characters to make a PDF
            more readable in a file editor.  Those are features not
            supported by this method.

            from_unicode() can use a heuristic to figure out the best
            encoding for the string, or the user can control the process
            by changing the text_encoding parameter to 'pdfdocencoding'
            or 'utf16', and/or by changing the bytes_encoding parameter
            to 'literal' or 'hex' to force particular conversion methods.

            The function will raise an exception if it cannot perform
            the conversion as requested by the user.
        """

        # Give preference to pdfdocencoding, since it only
        # requires one raw byte per character, rather than two.
        if text_encoding != 'utf16':
            force_pdfdoc = text_encoding == 'pdfdocencoding'
            if text_encoding != 'auto' and not force_pdfdoc:
                raise ValueError('Invalid text_encoding value: %s'
                                 % text_encoding)

            if source.startswith(cls.bad_pdfdoc_prefix):
                if force_pdfdoc:
                    raise UnicodeError('Prefix of string %r cannot be encoded '
                                       'in pdfdocencoding' % source[:20])
            else:
                try:
                    raw = source.encode('pdfdocencoding')
                except UnicodeError:
                    if force_pdfdoc:
                        raise
                else:
                    return cls.from_bytes(raw, bytes_encoding)

        # If the user is not forcing literal strings,
        # it makes much more sense to use hexadecimal with 2-byte chars
        raw = cls.bytes_bom + source.encode('utf-16-be')
        encoding = 'hex' if bytes_encoding == 'auto' else bytes_encoding
        return cls.from_bytes(raw, encoding)

    @classmethod
    def encode(cls, source, uni_type = type(u''), isinstance=isinstance):
        """ The encode() constructor is a legacy function that is
            also a convenience for the PdfWriter.
        """
        if isinstance(source, uni_type):
            return cls.from_unicode(source)
        else:
            return cls.from_bytes(source)







pdfrw-0.4/pdfrw/__init__.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

from .pdfwriter import PdfWriter
from .pdfreader import PdfReader
from .objects import (PdfObject, PdfName, PdfArray,
                      PdfDict, IndirectPdfDict, PdfString)
from .tokens import PdfTokens
from .errors import PdfParseError
from .pagemerge import PageMerge

__version__ = '0.4'

# Add a tiny bit of compatibility to pyPdf

PdfFileReader = PdfReader
PdfFileWriter = PdfWriter

__all__ = """PdfWriter PdfReader PdfObject PdfName PdfArray
             PdfTokens PdfParseError PdfDict IndirectPdfDict
             PdfString PageMerge""".split()








pdfrw-0.4/pdfrw/buildxobj.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''

This module contains code to build PDF "Form XObjects".

A Form XObject allows a fragment from one PDF file to be cleanly
included in another PDF file.

Reference for syntax: "Parameters for opening PDF files" from SDK 8.1

        http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf

        supported 'page=xxx', 'viewrect=<left>,<top>,<width>,<height>'

        Also supported by this, but not by Adobe:
            'rotate=xxx'  where xxx in [0, 90, 180, 270]

        Units are in points


Reference for content:   Adobe PDF reference, sixth edition, version 1.7

        http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

        Form xobjects discussed chapter 4.9, page 355
'''

from .objects import PdfDict, PdfArray, PdfName
from .pdfreader import PdfReader
from .errors import log, PdfNotImplementedError
from .py23_diffs import iteritems
from .uncompress import uncompress
from .compress import compress


class ViewInfo(object):
    ''' Instantiate ViewInfo with a uri, and it will parse out
        the filename, page, and viewrect into object attributes.

        Note 1:
            Viewrects follow the adobe definition.  (See reference
            above). They are arrays of 4 numbers:

            - Distance from left of document in points
            - Distance from top (NOT bottom) of document in points
            - Width of rectangle in points
            - Height of rectangle in points

        Note 2:
            For simplicity, Viewrects can also be specified
            in fractions of the document.  If every number in
            the viewrect is between 0 and 1 inclusive, then
            viewrect elements 0 and 2 are multiplied by the
            mediabox width before use, and viewrect elements
            1 and 3 are multiplied by the mediabox height before
            use.

        Note 3:
            By default, an XObject based on the view will be
            cacheable.  It should not be cacheable if the XObject
            will be subsequently modified.
    '''
    doc = None
    docname = None
    page = None
    viewrect = None
    rotate = None
    cacheable = True

    def __init__(self, pageinfo='', **kw):
        pageinfo = pageinfo.split('#', 1)
        if len(pageinfo) == 2:
            pageinfo[1:] = pageinfo[1].replace('&', '#').split('#')
        for key in 'page viewrect'.split():
            if pageinfo[0].startswith(key + '='):
                break
        else:
            self.docname = pageinfo.pop(0)
        for item in pageinfo:
            key, value = item.split('=')
            key = key.strip()
            value = value.replace(',', ' ').split()
            if key in ('page', 'rotate'):
                assert len(value) == 1
                setattr(self, key, int(value[0]))
            elif key == 'viewrect':
                assert len(value) == 4
                setattr(self, key, [float(x) for x in value])
            else:
                log.error('Unknown option: %s', key)
        for key, value in iteritems(kw):
            assert hasattr(self, key), key
            setattr(self, key, value)


def get_rotation(rotate):
    ''' Return clockwise rotation code:
          0 = unrotated
          1 = 90 degrees
          2 = 180 degrees
          3 = 270 degrees
    '''
    try:
        rotate = int(rotate)
    except (ValueError, TypeError):
        return 0
    if rotate % 90 != 0:
        return 0
    return rotate // 90


def rotate_point(point, rotation):
    ''' Rotate an (x,y) coordinate clockwise by a
        rotation code specifying a multiple of 90 degrees.
    '''
    if rotation & 1:
        point = point[1], -point[0]
    if rotation & 2:
        point = -point[0], -point[1]
    return point


def rotate_rect(rect, rotation):
    ''' Rotate both points within the rectangle, then normalize
        the rectangle by returning the new lower left, then new
        upper right.
    '''
    rect = rotate_point(rect[:2], rotation) + rotate_point(rect[2:], rotation)
    return (min(rect[0], rect[2]), min(rect[1], rect[3]),
            max(rect[0], rect[2]), max(rect[1], rect[3]))


def getrects(inheritable, pageinfo, rotation):
    ''' Given the inheritable attributes of a page and
        the desired pageinfo rectangle, return the page's
        media box and the calculated boundary (clip) box.
    '''
    mbox = tuple([float(x) for x in inheritable.MediaBox])
    cbox = tuple([float(x) for x in (inheritable.CropBox or mbox)])
    vrect = pageinfo.viewrect
    if vrect is not None:
        # Rotate the media box to match what the user sees,
        # figure out the clipping box, then rotate back
        mleft, mbot, mright, mtop = rotate_rect(cbox, rotation)
        x, y, w, h = vrect

        # Support operations in fractions of a page
        if 0 <= min(vrect) < max(vrect) <= 1:
            mw = mright - mleft
            mh = mtop - mbot
            x *= mw
            w *= mw
            y *= mh
            h *= mh

        cleft = mleft + x
        ctop = mtop - y
        cright = cleft + w
        cbot = ctop - h
        cbox = (max(mleft, cleft), max(mbot, cbot),
                min(mright, cright), min(mtop, ctop))
        cbox = rotate_rect(cbox, -rotation)
    return mbox, cbox


def _build_cache(contents, allow_compressed):
    ''' Build a new dictionary holding the stream,
        and save it along with private cache info.
        Assumes validity has been pre-checked if
        we have a non-None xobj_copy.

        Also, the spec says nothing about nested arrays,
        so we assume those don't exist until we see one
        in the wild.
    '''
    try:
        xobj_copy = contents.xobj_copy
    except AttributeError:
        # Should have a PdfArray here...
        array = contents
        private = contents
    else:
        # Should have a PdfDict here -- might or might not have cache copy
        if xobj_copy is not None:
            return xobj_copy
        array = [contents]
        private = contents.private

    # If we don't allow compressed objects, OR if we have multiple compressed
    # objects, we try to decompress them, and fail if we cannot do that.

    if not allow_compressed or len(array) > 1:
        keys = set(x[0] for cdict in array for x in iteritems(cdict))
        was_compressed = len(keys) > 1
        if was_compressed:
            # Make copies of the objects before we uncompress them.
            array = [PdfDict(x) for x in array]
            if not uncompress(array):
                raise PdfNotImplementedError(
                    'Xobjects with these compression parameters not supported: %s' %
                    keys)
    
    xobj_copy = PdfDict(array[0])
    xobj_copy.private.xobj_cachedict = {}
    private.xobj_copy = xobj_copy

    if len(array) > 1:
        newstream = '\n'.join(x.stream for x in array)
        newlength = sum(int(x.Length) for x in array) + len(array) - 1
        assert newlength == len(newstream)
        xobj_copy.stream = newstream
        if was_compressed and allow_compressed:
            compress(xobj_copy)

    return xobj_copy


def _cache_xobj(contents, resources, mbox, bbox, rotation, cacheable=True):
    ''' Return a cached Form XObject, or create a new one and cache it.
        Adds private members x, y, w, h
    '''
    cachedict = contents.xobj_cachedict
    cachekey = mbox, bbox, rotation
    result = cachedict.get(cachekey) if cacheable else None
    if result is None:
        # If we are not getting a full page, or if we are going to
        # modify the results, first retrieve an underlying Form XObject
        # that represents the entire page, so that we are not copying
        # the full page data into the new file multiple times
        func = (_get_fullpage, _get_subpage)[mbox != bbox or not cacheable]
        result = PdfDict(
            func(contents, resources, mbox),
            Type=PdfName.XObject,
            Subtype=PdfName.Form,
            FormType=1,
            BBox=PdfArray(bbox),
        )
        rect = bbox
        if rotation:
            matrix = (rotate_point((1, 0), rotation) +
                      rotate_point((0, 1), rotation))
            result.Matrix = PdfArray(matrix + (0, 0))
            rect = rotate_rect(rect, rotation)

        private = result.private
        private.x = rect[0]
        private.y = rect[1]
        private.w = rect[2] - rect[0]
        private.h = rect[3] - rect[1]
        if cacheable:
            cachedict[cachekey] = result
    return result


def _get_fullpage(contents, resources, mbox):
    ''' fullpage is easy.  Just copy the contents,
        set up the resources, and let _cache_xobj handle the
        rest.
    '''
    return PdfDict(contents, Resources=resources)


def _get_subpage(contents, resources, mbox):
    ''' subpages *could* be as easy as full pages, but we
        choose to complicate life by creating a Form XObject
        for the page, and then one that references it for
        the subpage, on the off-chance that we want multiple
        items from the page.
    '''
    return PdfDict(
        stream='/FullPage Do\n',
        Resources=PdfDict(
            XObject=PdfDict(
                FullPage=_cache_xobj(contents, resources, mbox, mbox, 0)
            )
        )
    )


def pagexobj(page, viewinfo=ViewInfo(), allow_compressed=True):
    ''' pagexobj creates and returns a Form XObject for
        a given view within a page (Defaults to entire page.)

        pagexobj is passed a page and a viewrect.
    '''
    inheritable = page.inheritable
    resources = inheritable.Resources
    rotation = get_rotation(inheritable.Rotate)
    mbox, bbox = getrects(inheritable, viewinfo, rotation)
    rotation += get_rotation(viewinfo.rotate)
    contents = _build_cache(page.Contents, allow_compressed)
    return _cache_xobj(contents, resources, mbox, bbox, rotation,
                       viewinfo.cacheable)


def docxobj(pageinfo, doc=None, allow_compressed=True):
    ''' docinfo reads a page out of a document and uses
        pagexobj to create the Form XObject based on
        the page.

        This is a convenience function for things like
        rst2pdf that want to be able to pass in textual
        filename/location descriptors and don't want to
        know about using PdfReader.

        Can work standalone, or in conjunction with
        the CacheXObj class (below).

    '''
    if not isinstance(pageinfo, ViewInfo):
        pageinfo = ViewInfo(pageinfo)

    # If we're explicitly passed a document,
    # make sure we don't have one implicitly as well.
    # If no implicit or explicit doc, then read one in
    # from the filename.
    if doc is not None:
        assert pageinfo.doc is None
        pageinfo.doc = doc
    elif pageinfo.doc is not None:
        doc = pageinfo.doc
    else:
        doc = pageinfo.doc = PdfReader(pageinfo.docname,
                                       decompress=not allow_compressed)
    assert isinstance(doc, PdfReader)

    sourcepage = doc.pages[(pageinfo.page or 1) - 1]
    return pagexobj(sourcepage, pageinfo, allow_compressed)


class CacheXObj(object):
    ''' Use to keep from reparsing files over and over,
        and to keep from making the output too much
        bigger than it ought to be by replicating
        unnecessary object copies.

        This is a convenience function for things like
        rst2pdf that want to be able to pass in textual
        filename/location descriptors and don't want to
        know about using PdfReader.
    '''
    def __init__(self, decompress=False):
        ''' Set decompress true if you need
            the Form XObjects to be decompressed.
            Will decompress what it can and scream
            about the rest.
        '''
        self.cached_pdfs = {}
        self.decompress = decompress

    def load(self, sourcename):
        ''' Load a Form XObject from a uri
        '''
        info = ViewInfo(sourcename)
        fname = info.docname
        pcache = self.cached_pdfs
        doc = pcache.get(fname)
        if doc is None:
            doc = pcache[fname] = PdfReader(fname, decompress=self.decompress)
        return docxobj(info, doc, allow_compressed=not self.decompress)







pdfrw-0.4/pdfrw/compress.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
Currently, this sad little file only knows how to compress
using the flate (zlib) algorithm.  Maybe more later, but it's
not a priority for me...
'''

from .objects import PdfName
from .uncompress import streamobjects
from .py23_diffs import zlib, convert_load, convert_store


def compress(mylist):
    flate = PdfName.FlateDecode
    for obj in streamobjects(mylist):
        ftype = obj.Filter
        if ftype is not None:
            continue
        oldstr = obj.stream
        newstr = convert_load(zlib.compress(convert_store(oldstr)))
        if len(newstr) < len(oldstr) + 30:
            obj.stream = newstr
            obj.Filter = flate
            obj.DecodeParms = None







pdfrw-0.4/pdfrw/crypt.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2017  Jon Lund Steffensen
# MIT license -- See LICENSE.txt for details

from __future__ import division

import hashlib
import struct

try:
    from Crypto.Cipher import ARC4, AES
    HAS_CRYPTO = True
except ImportError:
    HAS_CRYPTO = False

from .objects import PdfDict, PdfName

_PASSWORD_PAD = (
    '(\xbfN^Nu\x8aAd\x00NV\xff\xfa\x01\x08'
    '..\x00\xb6\xd0h>\x80/\x0c\xa9\xfedSiz')


def streamobjects(mylist, isinstance=isinstance, PdfDict=PdfDict):
    for obj in mylist:
        if isinstance(obj, PdfDict) and obj.stream is not None:
            yield obj


def create_key(password, doc):
    """Create an encryption key (Algorithm 2 in PDF spec)."""
    key_size = int(doc.Encrypt.Length or 40) // 8
    padded_pass = (password + _PASSWORD_PAD)[:32]
    hasher = hashlib.md5()
    hasher.update(padded_pass)
    hasher.update(doc.Encrypt.O.to_bytes())
    hasher.update(struct.pack('<i', int(doc.Encrypt.P)))
    hasher.update(doc.ID[0].to_bytes())
    temp_hash = hasher.digest()

    if int(doc.Encrypt.R or 0) >= 3:
        for _ in range(50):
            temp_hash = hashlib.md5(temp_hash[:key_size]).digest()

    return temp_hash[:key_size]


def create_user_hash(key, doc):
    """Create the user password hash (Algorithm 4/5)."""
    revision = int(doc.Encrypt.R or 0)
    if revision < 3:
        cipher = ARC4.new(key)
        return cipher.encrypt(_PASSWORD_PAD)
    else:
        hasher = hashlib.md5()
        hasher.update(_PASSWORD_PAD)
        hasher.update(doc.ID[0].to_bytes())
        temp_hash = hasher.digest()

        for i in range(20):
            temp_key = ''.join(chr(i ^ ord(x)) for x in key)
            cipher = ARC4.new(temp_key)
            temp_hash = cipher.encrypt(temp_hash)

        return temp_hash


def check_user_password(key, doc):
    """Check that the user password is correct (Algorithm 6)."""
    expect_user_hash = create_user_hash(key, doc)
    revision = int(doc.Encrypt.R or 0)
    if revision < 3:
        return doc.Encrypt.U.to_bytes() == expect_user_hash
    else:
        return doc.Encrypt.U.to_bytes()[:16] == expect_user_hash


class AESCryptFilter(object):
    """Crypt filter corresponding to /AESV2."""
    def __init__(self, key):
        self._key = key

    def decrypt_data(self, num, gen, data):
        """Decrypt data (string/stream) using key (Algorithm 1)."""
        key_extension = struct.pack('<i', num)[:3]
        key_extension += struct.pack('<i', gen)[:2]
        key_extension += 'sAlT'
        temp_key = self._key + key_extension
        temp_key = hashlib.md5(temp_key).digest()

        iv = data[:AES.block_size]
        cipher = AES.new(temp_key, AES.MODE_CBC, iv)
        decrypted = cipher.decrypt(data[AES.block_size:])

        # Remove padding
        pad_size = ord(decrypted[-1])
        assert 1 <= pad_size <= 16
        return decrypted[:-pad_size]


class RC4CryptFilter(object):
    """Crypt filter corresponding to /V2."""
    def __init__(self, key):
        self._key = key

    def decrypt_data(self, num, gen, data):
        """Decrypt data (string/stream) using key (Algorithm 1)."""
        new_key_size = min(len(self._key) + 5, 16)
        key_extension = struct.pack('<i', num)[:3]
        key_extension += struct.pack('<i', gen)[:2]
        temp_key = self._key + key_extension
        temp_key = hashlib.md5(temp_key).digest()[:new_key_size]

        cipher = ARC4.new(temp_key)
        return cipher.decrypt(data)


class IdentityCryptFilter(object):
    """Identity crypt filter (pass through with no encryption)."""
    def decrypt_data(self, num, gen, data):
        return data


def decrypt_objects(objects, default_filter, filters):
    """Decrypt list of stream objects.

    The parameter default_filter specifies the default filter to use. The
    filters parameter is a dictionary of alternate filters to use when the
    object specfies an alternate filter locally.
    """
    for obj in streamobjects(objects):
        if getattr(obj, 'decrypted', False):
            continue

        filter = default_filter

        # Check whether a locally defined crypt filter should override the
        # default filter.
        ftype = obj.Filter
        if ftype is not None:
            if not isinstance(ftype, list):
                ftype = [ftype]
            if len(ftype) >= 1 and ftype[0] == PdfName.Crypt:
                ftype = ftype[1:]
                parms = obj.DecodeParms or obj.DP
                filter = filters[parms.Name]

        num, gen = obj.indirect
        obj.stream = filter.decrypt_data(num, gen, obj.stream)
        obj.private.decrypted = True
        obj.Filter = ftype or None







pdfrw-0.4/pdfrw/errors.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
PDF Exceptions and error handling
'''

import logging


fmt = logging.Formatter('[%(levelname)s] %(filename)s:%(lineno)d %(message)s')

handler = logging.StreamHandler()
handler.setFormatter(fmt)

log = logging.getLogger('pdfrw')
log.setLevel(logging.WARNING)
log.addHandler(handler)


class PdfError(Exception):
    "Abstract base class of exceptions thrown by this module"

    def __init__(self, msg):
        self.msg = msg

    def __str__(self):
        return self.msg


class PdfParseError(PdfError):
    "Error thrown by parser/tokenizer"


class PdfOutputError(PdfError):
    "Error thrown by PDF writer"


class PdfNotImplementedError(PdfError):
    "Error thrown on missing features"







pdfrw-0.4/pdfrw/findobjs.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

''' This module contains a function to find all the XObjects
    in a document, and another function that will wrap them
    in page objects.
'''

from .objects import PdfDict, PdfArray, PdfName


def find_objects(source, valid_types=(PdfName.XObject, None),
                 valid_subtypes=(PdfName.Form, PdfName.Image),
                 no_follow=(PdfName.Parent,),
                 isinstance=isinstance, id=id, sorted=sorted,
                 reversed=reversed, PdfDict=PdfDict):
    '''
        Find all the objects of a particular kind in a document
        or array.  Defaults to looking for Form and Image XObjects.

        This could be done recursively, but some PDFs
        are quite deeply nested, so we do it without
        recursion.

        Note that we don't know exactly where things appear on pages,
        but we aim for a sort order that is (a) mostly in document order,
        and (b) reproducible.  For arrays, objects are processed in
        array order, and for dicts, they are processed in key order.
    '''
    container = (PdfDict, PdfArray)

    # Allow passing a list of pages, or a dict
    if isinstance(source, PdfDict):
        source = [source]
    else:
        source = list(source)

    visited = set()
    source.reverse()
    while source:
        obj = source.pop()
        if not isinstance(obj, container):
            continue
        myid = id(obj)
        if myid in visited:
            continue
        visited.add(myid)
        if isinstance(obj, PdfDict):
            if obj.Type in valid_types and obj.Subtype in valid_subtypes:
                yield obj
            obj = [y for (x, y) in sorted(obj.iteritems())
                   if x not in no_follow]
        else:
            # TODO: This forces resolution of any indirect objects in
            # the array.  It may not be necessary.  Don't know if
            # reversed() does any voodoo underneath the hood.
            # It's cheap enough for now, but might be removeable.
            obj and obj[0]
        source.extend(reversed(obj))


def wrap_object(obj, width, margin):
    ''' Wrap an xobj in its own page object.
    '''
    fmt = 'q %s 0 0 %s %s %s cm /MyImage Do Q'
    contents = PdfDict(indirect=True)
    subtype = obj.Subtype
    if subtype == PdfName.Form:
        contents._stream = obj.stream
        contents.Length = obj.Length
        contents.Filter = obj.Filter
        contents.DecodeParms = obj.DecodeParms
        resources = obj.Resources
        mbox = obj.BBox
    elif subtype == PdfName.Image:  # Image
        xoffset = margin[0]
        yoffset = margin[1]
        cw = width - margin[0] - margin[2]
        iw, ih = float(obj.Width), float(obj.Height)
        ch = 1.0 * cw / iw * ih
        height = ch + margin[1] + margin[3]
        p = tuple(('%.9f' % x).rstrip('0').rstrip('.') for x in (cw, ch, xoffset, yoffset))
        contents.stream = fmt % p
        resources = PdfDict(XObject=PdfDict(MyImage=obj))
        mbox = PdfArray((0, 0, width, height))
    else:
        raise TypeError("Expected Form or Image XObject")

    return PdfDict(
        indirect=True,
        Type=PdfName.Page,
        MediaBox=mbox,
        Resources=resources,
        Contents=contents,
        )


def trivial_xobjs(maxignore=300):
    ''' Ignore XObjects that trivially contain other XObjects.
    '''
    ignore = set('q Q cm Do'.split())
    Image = PdfName.Image

    def check(obj):
        if obj.Subtype == Image:
            return False
        s = obj.stream
        if len(s) < maxignore:
            s = (x for x in s.split() if not x.startswith('/') and
                 x not in ignore)
            s = (x.replace('.', '').replace('-', '') for x in s)
            if not [x for x in s if not x.isdigit()]:
                return True
    return check


def page_per_xobj(xobj_iter, width=8.5 * 72, margin=0.0 * 72,
                  image_only=False, ignore=trivial_xobjs(),
                  wrap_object=wrap_object):
    ''' page_per_xobj wraps every XObj found
        in its own page object.
        width and margin are used to set image sizes.
    '''
    try:
        iter(margin)
    except:
        margin = [margin]
    while len(margin) < 4:
        margin *= 2

    if isinstance(xobj_iter, (list, dict)):
        xobj_iter = find_objects(xobj_iter)
    for obj in xobj_iter:
        if not ignore(obj):
            if not image_only or obj.Subtype == PdfName.IMage:
                yield wrap_object(obj, width, margin)







pdfrw-0.4/pdfrw/pagemerge.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
This module contains code to edit pages.  Sort of a canvas, I
suppose, but I wouldn't want to call it that and get people all
excited or anything.

No, this is just for doing basic things like merging/splitting
apart pages, watermarking, etc.  All it does is allow converting
pages (or parts of pages) into Form XObject rectangles, and then
plopping those down on new or pre-existing pages.
'''

from .objects import PdfDict, PdfArray, PdfName
from .buildxobj import pagexobj, ViewInfo

NullInfo = ViewInfo()


class RectXObj(PdfDict):
    ''' This class facilitates doing positioning (moving and scaling)
        of Form XObjects within their containing page, by modifying
        the Form XObject's transformation matrix.

        By default, this class keeps the aspect ratio locked.  For
        example, if your object is foo, you can write 'foo.w = 200',
        and it will scale in both the x and y directions.

        To unlock the aspect ration, you have to do a tiny bit of math
        and call the scale function.
    '''
    def __init__(self, page, viewinfo=NullInfo, **kw):
        ''' The page is a page returned by PdfReader.  It will be
            turned into a cached Form XObject (so that multiple
            rectangles can be extracted from it if desired), and then
            another Form XObject will be built using it and the viewinfo
            (which should be a ViewInfo class).  The viewinfo includes
            source coordinates (from the top/left) and rotation information.

            Once the object has been built, its destination coordinates
            may be examined and manipulated by using x, y, w, h, and
            scale.  The destination coordinates are in the normal
            PDF programmatic system (starting at bottom left).
        '''
        if kw:
            if viewinfo is not NullInfo:
                raise ValueError("Cannot modify preexisting ViewInfo")
            viewinfo = ViewInfo(**kw)
        viewinfo.cacheable = False
        base = pagexobj(page, viewinfo)
        self.update(base)
        self.indirect = True
        self.stream = base.stream
        private = self.private
        private._rect = [base.x, base.y, base.w, base.h]
        matrix = self.Matrix
        if matrix is None:
            matrix = self.Matrix = PdfArray((1, 0, 0, 1, 0, 0))
        private._matrix = matrix  # Lookup optimization
        # Default to lower-left corner
        self.x = 0
        self.y = 0

    @property
    def x(self):
        ''' X location (from left) of object in points
        '''
        return self._rect[0]

    @property
    def y(self):
        ''' Y location (from bottom) of object in points
        '''
        return self._rect[1]

    @property
    def w(self):
        ''' Width of object in points
        '''
        return self._rect[2]

    @property
    def h(self):
        ''' Height of object in points
        '''
        return self._rect[3]

    def __setattr__(self, name, value, next=PdfDict.__setattr__,
                    mine=set('x y w h'.split())):
        ''' The underlying __setitem__ won't let us use a property
            setter, so we have to fake one.
        '''
        if name not in mine:
            return next(self, name, value)
        if name in 'xy':
            r_index, m_index = (0, 4) if name == 'x' else (1, 5)
            self._rect[r_index], old = value, self._rect[r_index]
            self._matrix[m_index] += value - old
        else:
            index = 2 + (value == 'h')
            self.scale(value / self._rect[index])

    def scale(self, x_scale, y_scale=None):
        ''' Current scaling deals properly with things that
            have been rotated in 90 degree increments
            (via the ViewMerge object given when instantiating).
        '''
        if y_scale is None:
            y_scale = x_scale
        x, y, w, h = rect = self._rect
        ao, bo, co, do, eo, fo = matrix = self._matrix
        an = ao * x_scale
        bn = bo * y_scale
        cn = co * x_scale
        dn = do * y_scale
        en = x + (eo - x) * 1.0 * (an + cn) / (ao + co)
        fn = y + (fo - y) * 1.0 * (bn + dn) / (bo + do)
        matrix[:] = an, bn, cn, dn, en, fn
        rect[:] = x, y, w * x_scale, h * y_scale

    @property
    def box(self):
        ''' Return the bounding box for the object
        '''
        x, y, w, h = self._rect
        return PdfArray([x, y, x + w, y + h])


class PageMerge(list):
    ''' A PageMerge object can have 0 or 1 underlying pages
        (that get edited with the results of the merge)
        and 0-n RectXObjs that can be applied before or
        after the underlying page.
    '''
    page = None
    mbox = None
    cbox = None
    resources = None
    rotate = None
    contents = None

    def __init__(self, page=None):
        if page is not None:
            self.setpage(page)

    def setpage(self, page):
        if page.Type != PdfName.Page:
            raise TypeError("Expected page")
        self.append(None)  # Placeholder
        self.page = page
        inheritable = page.inheritable
        self.mbox = inheritable.MediaBox
        self.cbox = inheritable.CropBox
        self.resources = inheritable.Resources
        self.rotate = inheritable.Rotate
        self.contents = page.Contents

    def __add__(self, other):
        if isinstance(other, dict):
            other = [other]
        for other in other:
            self.add(other)
        return self

    def add(self, obj, prepend=False, **kw):
        if kw:
            obj = RectXObj(obj, **kw)
        elif obj.Type == PdfName.Page:
            obj = RectXObj(obj)
        if prepend:
            self.insert(0, obj)
        else:
            self.append(obj)
        return self

    def render(self):
        def do_xobjs(xobj_list, restore_first=False):
            content = ['Q'] if restore_first else []
            for obj in xobj_list:
                index = PdfName('pdfrw_%d' % (key_offset + len(xobjs)))
                if xobjs.setdefault(index, obj) is not obj:
                    raise KeyError("XObj key %s already in use" % index)
                content.append('%s Do' % index)
            return PdfDict(indirect=True, stream='\n'.join(content))

        mbox = self.mbox
        cbox = self.cbox
        page = self.page
        old_contents = self.contents
        resources = self.resources or PdfDict()

        key_offset = 0
        xobjs = resources.XObject
        if xobjs is None:
            xobjs = resources.XObject = PdfDict()
        else:
            allkeys = xobjs.keys()
            if allkeys:
                keys = (x for x in allkeys if x.startswith('/pdfrw_'))
                keys = (x for x in keys if x[7:].isdigit())
                keys = sorted(keys, key=lambda x: int(x[7:]))
                key_offset = (int(keys[-1][7:]) + 1) if keys else 0
                key_offset -= len(allkeys)

        if old_contents is None:
            new_contents = do_xobjs(self)
        else:
            isdict = isinstance(old_contents, PdfDict)
            old_contents = [old_contents] if isdict else old_contents
            new_contents = PdfArray()
            index = self.index(None)
            if index:
                new_contents.append(do_xobjs(self[:index]))

            index += 1
            if index < len(self):
                # There are elements to add after the original page contents,
                # so push the graphics state to the stack. Restored below.
                new_contents.append(PdfDict(indirect=True, stream='q'))

            new_contents.extend(old_contents)

            if index < len(self):
                # Restore graphics state and add other elements.
                new_contents.append(do_xobjs(self[index:], restore_first=True))

        if mbox is None:
            cbox = None
            mbox = self.xobj_box
            mbox[0] = min(0, mbox[0])
            mbox[1] = min(0, mbox[1])

        page = PdfDict(indirect=True) if page is None else page
        page.Type = PdfName.Page
        page.Resources = resources
        page.MediaBox = mbox
        page.CropBox = cbox
        page.Rotate = self.rotate
        page.Contents = new_contents
        return page

    @property
    def xobj_box(self):
        ''' Return the smallest box that encloses every object
            in the list.
        '''
        a, b, c, d = zip(*(xobj.box for xobj in self))
        return PdfArray((min(a), min(b), max(c), max(d)))







pdfrw-0.4/pdfrw/pdfreader.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# Copyright (C) 2012-2015 Nerijus Mika
# MIT license -- See LICENSE.txt for details

'''
The PdfReader class reads an entire PDF file into memory and
parses the top-level container objects.  (It does not parse
into streams.)  The object subclasses PdfDict, and the
document pages are stored in a list in the pages attribute
of the object.
'''
import gc
import binascii
import collections
import itertools

from .errors import PdfParseError, log
from .tokens import PdfTokens
from .objects import PdfDict, PdfArray, PdfName, PdfObject, PdfIndirect
from .uncompress import uncompress
from . import crypt
from .py23_diffs import convert_load, convert_store, iteritems


class PdfReader(PdfDict):

    def findindirect(self, objnum, gennum, PdfIndirect=PdfIndirect, int=int):
        ''' Return a previously loaded indirect object, or create
            a placeholder for it.
        '''
        key = int(objnum), int(gennum)
        result = self.indirect_objects.get(key)
        if result is None:
            self.indirect_objects[key] = result = PdfIndirect(key)
            self.deferred_objects.add(key)
            result._loader = self.loadindirect
        return result

    def readarray(self, source, PdfArray=PdfArray):
        ''' Found a [ token.  Parse the tokens after that.
        '''
        specialget = self.special.get
        result = []
        pop = result.pop
        append = result.append

        for value in source:
            if value in ']R':
                if value == ']':
                    break
                generation = pop()
                value = self.findindirect(pop(), generation)
            else:
                func = specialget(value)
                if func is not None:
                    value = func(source)
            append(value)
        return PdfArray(result)

    def readdict(self, source, PdfDict=PdfDict):
        ''' Found a << token.  Parse the tokens after that.
        '''
        specialget = self.special.get
        result = PdfDict()
        next = source.next

        tok = next()
        while tok != '>>':
            if not tok.startswith('/'):
                source.error('Expected PDF /name object')
                tok = next()
                continue
            key = tok
            value = next()
            func = specialget(value)
            if func is not None:
                value = func(source)
                tok = next()
            else:
                tok = next()
                if value.isdigit() and tok.isdigit():
                    tok2 = next()
                    if tok2 != 'R':
                        source.error('Expected "R" following two integers')
                        tok = tok2
                        continue
                    value = self.findindirect(value, tok)
                    tok = next()
            result[key] = value
        return result

    def empty_obj(self, source, PdfObject=PdfObject):
        ''' Some silly git put an empty object in the
            file.  Back up so the caller sees the endobj.
        '''
        source.floc = source.tokstart

    def badtoken(self, source):
        ''' Didn't see that coming.
        '''
        source.exception('Unexpected delimiter')

    def findstream(self, obj, tok, source, len=len):
        ''' Figure out if there is a content stream
            following an object, and return the start
            pointer to the content stream if so.

            (We can't read it yet, because we might not
            know how long it is, because Length might
            be an indirect object.)
        '''

        fdata = source.fdata
        startstream = source.tokstart + len(tok)
        gotcr = fdata[startstream] == '\r'
        startstream += gotcr
        gotlf = fdata[startstream] == '\n'
        startstream += gotlf
        if not gotlf:
            if not gotcr:
                source.error(r'stream keyword not followed by \n')
            else:
                source.warning(r"stream keyword terminated "
                               r"by \r without \n")
        return startstream

    def readstream(self, obj, startstream, source, exact_required=False,
                   streamending='endstream endobj'.split(), int=int):
        fdata = source.fdata
        length = int(obj.Length)
        source.floc = target_endstream = startstream + length
        endit = source.multiple(2)
        obj._stream = fdata[startstream:target_endstream]
        if endit == streamending:
            return

        if exact_required:
            source.exception('Expected endstream endobj')

        # The length attribute does not match the distance between the
        # stream and endstream keywords.

        # TODO:  Extract maxstream from dictionary of object offsets
        # and use rfind instead of find.
        maxstream = len(fdata) - 20
        endstream = fdata.find('endstream', startstream, maxstream)
        source.floc = startstream
        room = endstream - startstream
        if endstream < 0:
            source.error('Could not find endstream')
            return
        if (length == room + 1 and
                fdata[startstream - 2:startstream] == '\r\n'):
            source.warning(r"stream keyword terminated by \r without \n")
            obj._stream = fdata[startstream - 1:target_endstream - 1]
            return
        source.floc = endstream
        if length > room:
            source.error('stream /Length attribute (%d) appears to '
                         'be too big (size %d) -- adjusting',
                         length, room)
            obj.stream = fdata[startstream:endstream]
            return
        if fdata[target_endstream:endstream].rstrip():
            source.error('stream /Length attribute (%d) appears to '
                         'be too small (size %d) -- adjusting',
                         length, room)
            obj.stream = fdata[startstream:endstream]
            return
        endobj = fdata.find('endobj', endstream, maxstream)
        if endobj < 0:
            source.error('Could not find endobj after endstream')
            return
        if fdata[endstream:endobj].rstrip() != 'endstream':
            source.error('Unexpected data between endstream and endobj')
            return
        source.error('Illegal endstream/endobj combination')

    def loadindirect(self, key, PdfDict=PdfDict,
                     isinstance=isinstance):
        result = self.indirect_objects.get(key)
        if not isinstance(result, PdfIndirect):
            return result
        source = self.source
        offset = int(self.source.obj_offsets.get(key, '0'))
        if not offset:
            source.warning("Did not find PDF object %s", key)
            return None

        # Read the object header and validate it
        objnum, gennum = key
        source.floc = offset
        objid = source.multiple(3)
        ok = len(objid) == 3
        ok = ok and objid[0].isdigit() and int(objid[0]) == objnum
        ok = ok and objid[1].isdigit() and int(objid[1]) == gennum
        ok = ok and objid[2] == 'obj'
        if not ok:
            source.floc = offset
            source.next()
            objheader = '%d %d obj' % (objnum, gennum)
            fdata = source.fdata
            offset2 = (fdata.find('\n' + objheader) + 1 or
                       fdata.find('\r' + objheader) + 1)
            if (not offset2 or
                    fdata.find(fdata[offset2 - 1] + objheader, offset2) > 0):
                source.warning("Expected indirect object '%s'", objheader)
                return None
            source.warning("Indirect object %s found at incorrect "
                           "offset %d (expected offset %d)",
                           objheader, offset2, offset)
            source.floc = offset2 + len(objheader)

        # Read the object, and call special code if it starts
        # an array or dictionary
        obj = source.next()
        func = self.special.get(obj)
        if func is not None:
            obj = func(source)

        self.indirect_objects[key] = obj
        self.deferred_objects.remove(key)

        # Mark the object as indirect, and
        # just return it if it is a simple object.
        obj.indirect = key
        tok = source.next()
        if tok == 'endobj':
            return obj

        # Should be a stream.  Either that or it's broken.
        isdict = isinstance(obj, PdfDict)
        if isdict and tok == 'stream':
            self.readstream(obj, self.findstream(obj, tok, source), source)
            return obj

        # Houston, we have a problem, but let's see if it
        # is easily fixable.  Leaving out a space before endobj
        # is apparently an easy mistake to make on generation
        # (Because it won't be noticed unless you are specifically
        # generating an indirect object that doesn't end with any
        # sort of delimiter.)  It is so common that things like
        # okular just handle it.

        if isinstance(obj, PdfObject) and obj.endswith('endobj'):
            source.error('No space or delimiter before endobj')
            obj = PdfObject(obj[:-6])
        else:
            source.error("Expected 'endobj'%s token",
                         isdict and " or 'stream'" or '')
            obj = PdfObject('')

        obj.indirect = key
        self.indirect_objects[key] = obj
        return obj

    def read_all(self):
        deferred = self.deferred_objects
        prev = set()
        while 1:
            new = deferred - prev
            if not new:
                break
            prev |= deferred
            for key in new:
                self.loadindirect(key)

    def decrypt_all(self):
        self.read_all()

        if self.crypt_filters is not None:
            crypt.decrypt_objects(
                self.indirect_objects.values(), self.stream_crypt_filter,
                self.crypt_filters)

    def uncompress(self):
        self.read_all()

        uncompress(self.indirect_objects.values())

    def load_stream_objects(self, object_streams):
        # read object streams
        objs = []
        for num in object_streams:
            obj = self.findindirect(num, 0).real_value()
            assert obj.Type == '/ObjStm'
            objs.append(obj)

        # read objects from stream
        if objs:
            # Decrypt
            if self.crypt_filters is not None:
                crypt.decrypt_objects(
                    objs, self.stream_crypt_filter, self.crypt_filters)

            # Decompress
            uncompress(objs)

            for obj in objs:
                objsource = PdfTokens(obj.stream, 0, False)
                next = objsource.next
                offsets = []
                firstoffset = int(obj.First)
                while objsource.floc < firstoffset:
                    offsets.append((int(next()), firstoffset + int(next())))
                for num, offset in offsets:
                    # Read the object, and call special code if it starts
                    # an array or dictionary
                    objsource.floc = offset
                    sobj = next()
                    func = self.special.get(sobj)
                    if func is not None:
                        sobj = func(objsource)

                    key = (num, 0)
                    self.indirect_objects[key] = sobj
                    if key in self.deferred_objects:
                        self.deferred_objects.remove(key)

                    # Mark the object as indirect, and
                    # add it to the list of streams if it starts a stream
                    sobj.indirect = key

    def findxref(self, fdata):
        ''' Find the cross reference section at the end of a file
        '''
        startloc = fdata.rfind('startxref')
        if startloc < 0:
            raise PdfParseError('Did not find "startxref" at end of file')
        source = PdfTokens(fdata, startloc, False, self.verbose)
        tok = source.next()
        assert tok == 'startxref'  # (We just checked this...)
        tableloc = source.next_default()
        if not tableloc.isdigit():
            source.exception('Expected table location')
        if source.next_default().rstrip().lstrip('%') != 'EOF':
            source.exception('Expected %%EOF')
        return startloc, PdfTokens(fdata, int(tableloc), True, self.verbose)

    def parse_xref_stream(self, source, int=int, range=range,
                          enumerate=enumerate, islice=itertools.islice,
                          defaultdict=collections.defaultdict,
                          hexlify=binascii.hexlify):
        ''' Parse (one of) the cross-reference file section(s)
        '''

        def readint(s, lengths):
            offset = 0
            for length in itertools.cycle(lengths):
                next = offset + length
                yield int(hexlify(s[offset:next]), 16) if length else None
                offset = next

        setdefault = source.obj_offsets.setdefault
        next = source.next
        # check for xref stream object
        objid = source.multiple(3)
        ok = len(objid) == 3
        ok = ok and objid[0].isdigit()
        ok = ok and objid[1] == 'obj'
        ok = ok and objid[2] == '<<'
        if not ok:
            source.exception('Expected xref stream start')
        obj = self.readdict(source)
        if obj.Type != PdfName.XRef:
            source.exception('Expected dict type of /XRef')
        tok = next()
        self.readstream(obj, self.findstream(obj, tok, source), source, True)
        old_strm = obj.stream
        if not uncompress([obj], True):
            source.exception('Could not decompress Xref stream')
        stream = obj.stream
        # Fix for issue #76 -- goofy compressed xref stream
        # that is NOT ACTUALLY COMPRESSED
        stream = stream if stream is not old_strm else convert_store(old_strm)
        num_pairs = obj.Index or PdfArray(['0', obj.Size])
        num_pairs = [int(x) for x in num_pairs]
        num_pairs = zip(num_pairs[0::2], num_pairs[1::2])
        entry_sizes = [int(x) for x in obj.W]
        if len(entry_sizes) != 3:
            source.exception('Invalid entry size')
        object_streams = defaultdict(list)
        get = readint(stream, entry_sizes)
        for objnum, size in num_pairs:
            for cnt in range(size):
                xtype, p1, p2 = islice(get, 3)
                if xtype in (1, None):
                    if p1:
                        setdefault((objnum, p2 or 0), p1)
                elif xtype == 2:
                    object_streams[p1].append((objnum, p2))
                objnum += 1

        obj.private.object_streams = object_streams
        return obj

    def parse_xref_table(self, source, int=int, range=range):
        ''' Parse (one of) the cross-reference file section(s)
        '''
        setdefault = source.obj_offsets.setdefault
        next = source.next
        # plain xref table
        start = source.floc
        try:
            while 1:
                tok = next()
                if tok == 'trailer':
                    return
                startobj = int(tok)
                for objnum in range(startobj, startobj + int(next())):
                    offset = int(next())
                    generation = int(next())
                    inuse = next()
                    if inuse == 'n':
                        if offset != 0:
                            setdefault((objnum, generation), offset)
                    elif inuse != 'f':
                        raise ValueError
        except:
            pass
        try:
            # Table formatted incorrectly.
            # See if we can figure it out anyway.
            end = source.fdata.rindex('trailer', start)
            table = source.fdata[start:end].splitlines()
            for line in table:
                tokens = line.split()
                if len(tokens) == 2:
                    objnum = int(tokens[0])
                elif len(tokens) == 3:
                    offset, generation, inuse = (int(tokens[0]),
                                                 int(tokens[1]), tokens[2])
                    if offset != 0 and inuse == 'n':
                        setdefault((objnum, generation), offset)
                    objnum += 1
                elif tokens:
                    log.error('Invalid line in xref table: %s' %
                              repr(line))
                    raise ValueError
            log.warning('Badly formatted xref table')
            source.floc = end
            next()
        except:
            source.floc = start
            source.exception('Invalid table format')

    def parsexref(self, source):
        ''' Parse (one of) the cross-reference file section(s)
        '''
        next = source.next
        try:
            tok = next()
        except StopIteration:
            tok = ''
        if tok.isdigit():
            return self.parse_xref_stream(source), True
        elif tok == 'xref':
            self.parse_xref_table(source)
            tok = next()
            if tok != '<<':
                source.exception('Expected "<<" starting catalog')
            return self.readdict(source), False
        else:
            source.exception('Expected "xref" keyword or xref stream object')

    def readpages(self, node):
        pagename = PdfName.Page
        pagesname = PdfName.Pages
        catalogname = PdfName.Catalog
        typename = PdfName.Type
        kidname = PdfName.Kids

        try:
            result = []
            stack = [node]
            append = result.append
            pop = stack.pop
            while stack:
                node = pop()
                nodetype = node[typename]
                if nodetype == pagename:
                    append(node)
                elif nodetype == pagesname:
                    stack.extend(reversed(node[kidname]))
                elif nodetype == catalogname:
                    stack.append(node[pagesname])
                else:
                    log.error('Expected /Page or /Pages dictionary, got %s' %
                            repr(node))
            return result
        except (AttributeError, TypeError) as s:
            log.error('Invalid page tree: %s' % s)
            return []

    def _parse_encrypt_info(self, source, password, trailer):
        """Check password and initialize crypt filters."""
        # Create and check password key
        key = crypt.create_key(password, trailer)

        if not crypt.check_user_password(key, trailer):
            source.warning('User password does not validate')

        # Create default crypt filters
        private = self.private
        crypt_filters = self.crypt_filters
        version = int(trailer.Encrypt.V or 0)
        if version in (1, 2):
            crypt_filter = crypt.RC4CryptFilter(key)
            private.stream_crypt_filter = crypt_filter
            private.string_crypt_filter = crypt_filter
        elif version == 4:
            if PdfName.CF in trailer.Encrypt:
                for name, params in iteritems(trailer.Encrypt.CF):
                    if name == PdfName.Identity:
                        continue

                    cfm = params.CFM
                    if cfm == PdfName.AESV2:
                        crypt_filters[name] = crypt.AESCryptFilter(key)
                    elif cfm == PdfName.V2:
                        crypt_filters[name] = crypt.RC4CryptFilter(key)
                    else:
                        source.warning(
                            'Unsupported crypt filter: {}, {}'.format(
                                name, cfm))

            # Read default stream filter
            if PdfName.StmF in trailer.Encrypt:
                name = trailer.Encrypt.StmF
                if name in crypt_filters:
                    private.stream_crypt_filter = crypt_filters[name]
                else:
                    source.warning(
                        'Invalid crypt filter name in /StmF:'
                        ' {}'.format(name))

            # Read default string filter
            if PdfName.StrF in trailer.Encrypt:
                name = trailer.Encrypt.StrF
                if name in crypt_filters:
                    private.string_crypt_filter = crypt_filters[name]
                else:
                    source.warning(
                        'Invalid crypt filter name in /StrF:'
                        ' {}'.format(name))
        else:
            source.warning(
                'Unsupported Encrypt version: {}'.format(version))

    def __init__(self, fname=None, fdata=None, decompress=False,
                 decrypt=False, password='', disable_gc=True, verbose=True):
        self.private.verbose = verbose

        # Runs a lot faster with GC off.
        disable_gc = disable_gc and gc.isenabled()
        if disable_gc:
            gc.disable()

        try:
            if fname is not None:
                assert fdata is None
                # Allow reading preexisting streams like pyPdf
                if hasattr(fname, 'read'):
                    fdata = fname.read()
                else:
                    try:
                        f = open(fname, 'rb')
                        fdata = f.read()
                        f.close()
                    except IOError:
                        raise PdfParseError('Could not read PDF file %s' %
                                            fname)

            assert fdata is not None
            fdata = convert_load(fdata)

            if not fdata.startswith('%PDF-'):
                startloc = fdata.find('%PDF-')
                if startloc >= 0:
                    log.warning('PDF header not at beginning of file')
                else:
                    lines = fdata.lstrip().splitlines()
                    if not lines:
                        raise PdfParseError('Empty PDF file!')
                    raise PdfParseError('Invalid PDF header: %s' %
                                        repr(lines[0]))

            self.private.version = fdata[5:8]

            endloc = fdata.rfind('%EOF')
            if endloc < 0:
                raise PdfParseError('EOF mark not found: %s' %
                                    repr(fdata[-20:]))
            endloc += 6
            junk = fdata[endloc:]
            fdata = fdata[:endloc]
            if junk.rstrip('\00').strip():
                log.warning('Extra data at end of file')

            private = self.private
            private.indirect_objects = {}
            private.deferred_objects = set()
            private.special = {'<<': self.readdict,
                               '[': self.readarray,
                               'endobj': self.empty_obj,
                               }
            for tok in r'\ ( ) < > { } ] >> %'.split():
                self.special[tok] = self.badtoken

            startloc, source = self.findxref(fdata)
            private.source = source

            # Find all the xref tables/streams, and
            # then deal with them backwards.
            xref_list = []
            while 1:
                source.obj_offsets = {}
                trailer, is_stream = self.parsexref(source)
                prev = trailer.Prev
                if prev is None:
                    token = source.next()
                    if token != 'startxref' and not xref_list:
                        source.warning('Expected "startxref" '
                                       'at end of xref table')
                    break
                xref_list.append((source.obj_offsets, trailer, is_stream))
                source.floc = int(prev)

            # Handle document encryption
            private.crypt_filters = None
            if decrypt and PdfName.Encrypt in trailer:
                identity_filter = crypt.IdentityCryptFilter()
                crypt_filters = {
                    PdfName.Identity: identity_filter
                }
                private.crypt_filters = crypt_filters
                private.stream_crypt_filter = identity_filter
                private.string_crypt_filter = identity_filter

                if not crypt.HAS_CRYPTO:
                    raise PdfParseError(
                        'Install PyCrypto to enable encryption support')

                self._parse_encrypt_info(source, password, trailer)

            if is_stream:
                self.load_stream_objects(trailer.object_streams)

            while xref_list:
                later_offsets, later_trailer, is_stream = xref_list.pop()
                source.obj_offsets.update(later_offsets)
                if is_stream:
                    trailer.update(later_trailer)
                    self.load_stream_objects(later_trailer.object_streams)
                else:
                    trailer = later_trailer

            trailer.Prev = None

            if (trailer.Version and
                    float(trailer.Version) > float(self.version)):
                self.private.version = trailer.Version

            if decrypt:
                self.decrypt_all()
                trailer.Encrypt = None

            if is_stream:
                self.Root = trailer.Root
                self.Info = trailer.Info
                self.ID = trailer.ID
                self.Size = trailer.Size
                self.Encrypt = trailer.Encrypt
            else:
                self.update(trailer)

            # self.read_all_indirect(source)
            private.pages = self.readpages(self.Root)
            if decompress:
                self.uncompress()

            # For compatibility with pyPdf
            private.numPages = len(self.pages)
        finally:
            if disable_gc:
                gc.enable()

    # For compatibility with pyPdf
    def getPage(self, pagenum):
        return self.pages[pagenum]







pdfrw-0.4/pdfrw/pdfwriter.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
The PdfWriter class writes an entire PDF file out to disk.

The writing process is not at all optimized or organized.

An instance of the PdfWriter class has two methods:
    addpage(page)
and
    write(fname)

addpage() assumes that the pages are part of a valid
tree/forest of PDF objects.
'''
import gc

from .objects import (PdfName, PdfArray, PdfDict, IndirectPdfDict,
                      PdfObject, PdfString)
from .compress import compress as do_compress
from .errors import PdfOutputError, log
from .py23_diffs import iteritems, convert_store

NullObject = PdfObject('null')
NullObject.indirect = True
NullObject.Type = 'Null object'


def user_fmt(obj, isinstance=isinstance, float=float, str=str,
             basestring=(type(u''), type(b'')), encode=PdfString.encode):
    ''' This function may be replaced by the user for
        specialized formatting requirements.
    '''

    if isinstance(obj, basestring):
        return encode(obj)

    # PDFs don't handle exponent notation
    if isinstance(obj, float):
            return ('%.9f' % obj).rstrip('0').rstrip('.')

    return str(obj)


def FormatObjects(f, trailer, version='1.3', compress=True, killobj=(),
                  user_fmt=user_fmt, do_compress=do_compress,
                  convert_store=convert_store, iteritems=iteritems,
                  id=id, isinstance=isinstance, getattr=getattr, len=len,
                  sum=sum, set=set, str=str, hasattr=hasattr, repr=repr,
                  enumerate=enumerate, list=list, dict=dict, tuple=tuple,
                  PdfArray=PdfArray, PdfDict=PdfDict, PdfObject=PdfObject):
    ''' FormatObjects performs the actual formatting and disk write.
        Should be a class, was a class, turned into nested functions
        for performace (to reduce attribute lookups).
    '''

    def f_write(s):
        f.write(convert_store(s))

    def add(obj):
        ''' Add an object to our list, if it's an indirect
            object.  Just format it if not.
        '''
        # Can't hash dicts, so just hash the object ID
        objid = id(obj)

        # Automatically set stream objects to indirect
        if isinstance(obj, PdfDict):
            indirect = obj.indirect or (obj.stream is not None)
        else:
            indirect = getattr(obj, 'indirect', False)

        if not indirect:
            if objid in visited:
                log.warning('Replicating direct %s object, '
                            'should be indirect for optimal file size' %
                            type(obj))
                obj = type(obj)(obj)
                objid = id(obj)
            visiting(objid)
            result = format_obj(obj)
            leaving(objid)
            return result

        objnum = indirect_dict_get(objid)

        # If we haven't seen the object yet, we need to
        # add it to the indirect object list.
        if objnum is None:
            swapped = swapobj(objid)
            if swapped is not None:
                old_id = objid
                obj = swapped
                objid = id(obj)
                objnum = indirect_dict_get(objid)
                if objnum is not None:
                    indirect_dict[old_id] = objnum
                    return '%s 0 R' % objnum
            objnum = len(objlist) + 1
            objlist_append(None)
            indirect_dict[objid] = objnum
            deferred.append((objnum - 1, obj))
        return '%s 0 R' % objnum

    def format_array(myarray, formatter):
        # Format array data into semi-readable ASCII
        if sum([len(x) for x in myarray]) <= 70:
            return formatter % space_join(myarray)
        return format_big(myarray, formatter)

    def format_big(myarray, formatter):
        bigarray = []
        count = 1000000
        for x in myarray:
            lenx = len(x) + 1
            count += lenx
            if count > 71:
                subarray = []
                bigarray.append(subarray)
                count = lenx
            subarray.append(x)
        return formatter % lf_join([space_join(x) for x in bigarray])

    def format_obj(obj):
        ''' format PDF object data into semi-readable ASCII.
            May mutually recurse with add() -- add() will
            return references for indirect objects, and add
            the indirect object to the list.
        '''
        while 1:
            if isinstance(obj, (list, dict, tuple)):
                if isinstance(obj, PdfArray):
                    myarray = [add(x) for x in obj]
                    return format_array(myarray, '[%s]')
                elif isinstance(obj, PdfDict):
                    if compress and obj.stream:
                        do_compress([obj])
                    pairs = sorted((getattr(x, 'encoded', None) or x, y)
                                   for (x, y) in obj.iteritems())
                    myarray = []
                    for key, value in pairs:
                        myarray.append(key)
                        myarray.append(add(value))
                    result = format_array(myarray, '<<%s>>')
                    stream = obj.stream
                    if stream is not None:
                        result = ('%s\nstream\n%s\nendstream' %
                                  (result, stream))
                    return result
                obj = (PdfArray, PdfDict)[isinstance(obj, dict)](obj)
                continue

            # We assume that an object with an indirect
            # attribute knows how to represent itself to us.
            if hasattr(obj, 'indirect'):
                return str(getattr(obj, 'encoded', None) or obj)
            return user_fmt(obj)

    def format_deferred():
        while deferred:
            index, obj = deferred.pop()
            objlist[index] = format_obj(obj)

    indirect_dict = {}
    indirect_dict_get = indirect_dict.get
    objlist = []
    objlist_append = objlist.append
    visited = set()
    visiting = visited.add
    leaving = visited.remove
    space_join = ' '.join
    lf_join = '\n  '.join

    deferred = []

    # Don't reference old catalog or pages objects --
    # swap references to new ones.
    type_remap = {PdfName.Catalog: trailer.Root,
               PdfName.Pages: trailer.Root.Pages, None: trailer}.get
    swapobj = [(objid, type_remap(obj.Type) if new_obj is None else new_obj)
               for objid, (obj, new_obj) in iteritems(killobj)]
    swapobj = dict((objid, obj is None and NullObject or obj)
                   for objid, obj in swapobj).get

    for objid in killobj:
        assert swapobj(objid) is not None

    # The first format of trailer gets all the information,
    # but we throw away the actual trailer formatting.
    format_obj(trailer)
    # Keep formatting until we're done.
    # (Used to recurse inside format_obj for this, but
    #  hit system limit.)
    format_deferred()
    # Now we know the size, so we update the trailer dict
    # and get the formatted data.
    trailer.Size = PdfObject(len(objlist) + 1)
    trailer = format_obj(trailer)

    # Now we have all the pieces to write out to the file.
    # Keep careful track of the counts while we do it so
    # we can correctly build the cross-reference.

    header = '%%PDF-%s\n%%\xe2\xe3\xcf\xd3\n' % version
    f_write(header)
    offset = len(header)
    offsets = [(0, 65535, 'f')]
    offsets_append = offsets.append

    for i, x in enumerate(objlist):
        objstr = '%s 0 obj\n%s\nendobj\n' % (i + 1, x)
        offsets_append((offset, 0, 'n'))
        offset += len(objstr)
        f_write(objstr)

    f_write('xref\n0 %s\n' % len(offsets))
    for x in offsets:
        f_write('%010d %05d %s\r\n' % x)
    f_write('trailer\n\n%s\nstartxref\n%s\n%%%%EOF\n' % (trailer, offset))


class PdfWriter(object):

    _trailer = None
    canonicalize = False
    fname = None

    def __init__(self, fname=None, version='1.3', compress=False, **kwargs):
        """
            Parameters:
                fname -- Output file name, or file-like binary object
                         with a write method
                version -- PDF version to target.  Currently only 1.3
                           supported.
                compress -- True to do compression on output.  Currently
                            compresses stream objects.
        """

        # Legacy support:  fname is new, was added in front
        if fname is not None:
            try:
                float(fname)
            except (ValueError, TypeError):
                pass
            else:
                if version != '1.3':
                    assert compress == False
                    compress = version
                version = fname
                fname = None

        self.fname = fname
        self.version = version
        self.compress = compress

        if kwargs:
            for name, value in iteritems(kwargs):
                if name not in self.replaceable:
                    raise ValueError("Cannot set attribute %s "
                                     "on PdfWriter instance" % name)
                setattr(self, name, value)

        self.pagearray = PdfArray()
        self.killobj = {}

    def addpage(self, page):
        self._trailer = None
        if page.Type != PdfName.Page:
            raise PdfOutputError('Bad /Type:  Expected %s, found %s'
                                 % (PdfName.Page, page.Type))
        inheritable = page.inheritable  # searches for resources
        self.pagearray.append(
            IndirectPdfDict(
                page,
                Resources=inheritable.Resources,
                MediaBox=inheritable.MediaBox,
                CropBox=inheritable.CropBox,
                Rotate=inheritable.Rotate,
            )
        )

        # Add parents in the hierarchy to objects we
        # don't want to output
        killobj = self.killobj
        obj, new_obj = page, self.pagearray[-1]
        while obj is not None:
            objid = id(obj)
            if objid in killobj:
                break
            killobj[objid] = obj, new_obj
            obj = obj.Parent
            new_obj = None
        return self

    addPage = addpage  # for compatibility with pyPdf

    def addpages(self, pagelist):
        for page in pagelist:
            self.addpage(page)
        return self

    def _get_trailer(self):
        trailer = self._trailer
        if trailer is not None:
            return trailer

        if self.canonicalize:
            self.make_canonical()

        # Create the basic object structure of the PDF file
        trailer = PdfDict(
            Root=IndirectPdfDict(
                Type=PdfName.Catalog,
                Pages=IndirectPdfDict(
                    Type=PdfName.Pages,
                    Count=PdfObject(len(self.pagearray)),
                    Kids=self.pagearray
                )
            )
        )
        # Make all the pages point back to the page dictionary and
        # ensure they are indirect references
        pagedict = trailer.Root.Pages
        for page in pagedict.Kids:
            page.Parent = pagedict
            page.indirect = True
        self._trailer = trailer
        return trailer

    def _set_trailer(self, trailer):
        self._trailer = trailer

    trailer = property(_get_trailer, _set_trailer)

    def write(self, fname=None, trailer=None, user_fmt=user_fmt,
              disable_gc=True):

        trailer = trailer or self.trailer

        # Support fname for legacy applications
        if (fname is not None) == (self.fname is not None):
            raise PdfOutputError(
                "PdfWriter fname must be specified exactly once")

        fname = fname or self.fname

        # Dump the data.  We either have a filename or a preexisting
        # file object.
        preexisting = hasattr(fname, 'write')
        f = preexisting and fname or open(fname, 'wb')
        if disable_gc:
            gc.disable()

        try:
            FormatObjects(f, trailer, self.version, self.compress,
                          self.killobj, user_fmt=user_fmt)
        finally:
            if not preexisting:
                f.close()
            if disable_gc:
                gc.enable()

    def make_canonical(self):
        ''' Canonicalizes a PDF.  Assumes everything
            is a Pdf object already.
        '''
        visited = set()
        workitems = list(self.pagearray)
        while workitems:
            obj = workitems.pop()
            objid = id(obj)
            if objid in visited:
                continue
            visited.add(objid)
            obj.indirect = False
            if isinstance(obj, (PdfArray, PdfDict)):
                obj.indirect = True
                if isinstance(obj, PdfArray):
                    workitems += obj
                else:
                    workitems += obj.values()

    replaceable = set(vars())






pdfrw-0.4/pdfrw/py23_diffs.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

# Deal with Python2/3 differences

try:
    import zlib
except ImportError:
    zlib = None

try:
    unicode = unicode
except NameError:

    def convert_load(s):
        if isinstance(s, bytes):
            return s.decode('Latin-1')
        return s

    def convert_store(s):
        return s.encode('Latin-1')

    def from_array(a):
        return a.tobytes()

else:

    def convert_load(s):
        return s

    def convert_store(s):
        return s

    def from_array(a):
        return a.tostring()

nextattr, = (x for x in dir(iter([])) if 'next' in x)

try:
    iteritems = dict.iteritems
except AttributeError:
    iteritems = dict.items

try:
    xrange = xrange
except NameError:
    xrange = range

try:
    intern = intern
except NameError:
    from sys import intern







pdfrw-0.4/pdfrw/tokens.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
A tokenizer for PDF streams.

In general, documentation used was "PDF reference",
sixth edition, for PDF version 1.7, dated November 2006.

'''

import re
import itertools
from .objects import PdfString, PdfObject
from .objects.pdfname import BasePdfName
from .errors import log, PdfParseError
from .py23_diffs import nextattr, intern


def linepos(fdata, loc):
    line = fdata.count('\n', 0, loc) + 1
    line += fdata.count('\r', 0, loc) - fdata.count('\r\n', 0, loc)
    col = loc - max(fdata.rfind('\n', 0, loc), fdata.rfind('\r', 0, loc))
    return line, col


class PdfTokens(object):

    # Table 3.1, page 50 of reference, defines whitespace
    eol = '\n\r'
    whitespace = '\x00 \t\f' + eol

    # Text on page 50 defines delimiter characters
    # Escape the ]
    delimiters = r'()<>{}[\]/%'

    # "normal" stuff is all but delimiters or whitespace.

    p_normal = r'(?:[^\\%s%s]+|\\[^%s])+' % (whitespace, delimiters,
                                             whitespace)

    p_comment = r'\%%[^%s]*' % eol

    # This will get the bulk of literal strings.
    p_literal_string = r'\((?:[^\\()]+|\\.)*[()]?'

    # This will get more pieces of literal strings
    # (Don't ask me why, but it hangs without the trailing ?.)
    p_literal_string_extend = r'(?:[^\\()]+|\\.)*[()]?'

    # A hex string.  This one's easy.
    p_hex_string = r'\<[%s0-9A-Fa-f]*\>' % whitespace

    p_dictdelim = r'\<\<|\>\>'
    p_name = r'/[^%s%s]*' % (delimiters, whitespace)

    p_catchall = '[^%s]' % whitespace

    pattern = '|'.join([p_normal, p_name, p_hex_string, p_dictdelim,
                        p_literal_string, p_comment, p_catchall])
    findtok = re.compile('(%s)[%s]*' % (pattern, whitespace),
                         re.DOTALL).finditer
    findparen = re.compile('(%s)[%s]*' % (p_literal_string_extend,
                                          whitespace), re.DOTALL).finditer

    def _gettoks(self, startloc, intern=intern,
                 delimiters=delimiters, findtok=findtok,
                 findparen=findparen, PdfString=PdfString,
                 PdfObject=PdfObject, BasePdfName=BasePdfName):
        ''' Given a source data string and a location inside it,
            gettoks generates tokens.  Each token is a tuple of the form:
             <starting file loc>, <ending file loc>, <token string>
            The ending file loc is past any trailing whitespace.

            The main complication here is the literal strings, which
            can contain nested parentheses.  In order to cope with these
            we can discard the current iterator and loop back to the
            top to get a fresh one.

            We could use re.search instead of re.finditer, but that's slower.
        '''
        fdata = self.fdata
        current = self.current = [(startloc, startloc)]
        cache = {}
        get_cache = cache.get
        while 1:
            for match in findtok(fdata, current[0][1]):
                current[0] = tokspan = match.span()
                token = match.group(1)
                firstch = token[0]
                toktype = intern
                if firstch not in delimiters:
                    toktype = PdfObject
                elif firstch in '/<(%':
                    if firstch == '/':
                        # PDF Name
                        toktype = BasePdfName
                    elif firstch == '<':
                        # << dict delim, or < hex string >
                        if token[1:2] != '<':
                            toktype = PdfString
                    elif firstch == '(':
                        # Literal string
                        # It's probably simple, but maybe not
                        # Nested parentheses are a bear, and if
                        # they are present, we exit the for loop
                        # and get back in with a new starting location.
                        ends = None  # For broken strings
                        if fdata[match.end(1) - 1] != ')':
                            nest = 2
                            m_start, loc = tokspan
                            for match in findparen(fdata, loc):
                                loc = match.end(1)
                                ending = fdata[loc - 1] == ')'
                                nest += 1 - ending * 2
                                if not nest:
                                    break
                                if ending and ends is None:
                                    ends = loc, match.end(), nest
                            token = fdata[m_start:loc]
                            current[0] = m_start, match.end()
                            if nest:
                                # There is one possible recoverable error
                                # seen in the wild -- some stupid generators
                                # don't escape (.  If this happens, just
                                # terminate on first unescaped ). The string
                                # won't be quite right, but that's a science
                                # fair project for another time.
                                (self.error, self.exception)[not ends](
                                    'Unterminated literal string')
                                loc, ends, nest = ends
                                token = fdata[m_start:loc] + ')' * nest
                                current[0] = m_start, ends
                        toktype = PdfString
                    elif firstch == '%':
                        # Comment
                        if self.strip_comments:
                            continue
                    else:
                        self.exception(('Tokenizer logic incorrect -- '
                                        'should never get here'))

                newtok = get_cache(token)
                if newtok is None:
                    newtok = cache[token] = toktype(token)
                yield newtok
                if current[0] is not tokspan:
                    break
            else:
                if self.strip_comments:
                    break
                raise StopIteration

    def __init__(self, fdata, startloc=0, strip_comments=True, verbose=True):
        self.fdata = fdata
        self.strip_comments = strip_comments
        self.iterator = iterator = self._gettoks(startloc)
        self.msgs_dumped = None if verbose else set()
        self.next = getattr(iterator, nextattr)
        self.current = [(startloc, startloc)]

    def setstart(self, startloc):
        ''' Change the starting location.
        '''
        current = self.current
        if startloc != current[0][1]:
            current[0] = startloc, startloc

    def floc(self):
        ''' Return the current file position
            (where the next token will be retrieved)
        '''
        return self.current[0][1]
    floc = property(floc, setstart)

    def tokstart(self):
        ''' Return the file position of the most
            recently retrieved token.
        '''
        return self.current[0][0]
    tokstart = property(tokstart, setstart)

    def __iter__(self):
        return self.iterator

    def multiple(self, count, islice=itertools.islice, list=list):
        ''' Retrieve multiple tokens
        '''
        return list(islice(self, count))

    def next_default(self, default='nope'):
        for result in self:
            return result
        return default

    def msg(self, msg, *arg):
        dumped = self.msgs_dumped
        if dumped is not None:
            if msg in dumped:
                return
            dumped.add(msg)
        if arg:
            msg %= arg
        fdata = self.fdata
        begin, end = self.current[0]
        if begin >= len(fdata):
            return '%s (filepos %s past EOF %s)' % (msg, begin, len(fdata))
        line, col = linepos(fdata, begin)
        if end > begin:
            tok = fdata[begin:end].rstrip()
            if len(tok) > 30:
                tok = tok[:26] + ' ...'
            return ('%s (line=%d, col=%d, token=%s)' %
                    (msg, line, col, repr(tok)))
        return '%s (line=%d, col=%d)' % (msg, line, col)

    def warning(self, *arg):
        s = self.msg(*arg)
        if s:
            log.warning(s)

    def error(self, *arg):
        s = self.msg(*arg)
        if s:
            log.error(s)

    def exception(self, *arg):
        raise PdfParseError(self.msg(*arg))







pdfrw-0.4/pdfrw/toreportlab.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
Converts pdfrw objects into reportlab objects.

Designed for and tested with rl 2.3.

Knows too much about reportlab internals.
What can you do?

The interface to this function is through the makerl() function.

Parameters:
        canv       - a reportlab "canvas" (also accepts a "document")
        pdfobj      - a pdfrw PDF object

Returns:
        A corresponding reportlab object, or if the
        object is a PDF Form XObject, the name to
        use with reportlab for the object.

        Will recursively convert all necessary objects.
        Be careful when converting a page -- if /Parent is set,
        will recursively convert all pages!

Notes:
    1) Original objects are annotated with a
        derived_rl_obj attribute which points to the
        reportlab object.  This keeps multiple reportlab
        objects from being generated for the same pdfobj
        via repeated calls to makerl.  This is great for
        not putting too many objects into the
        new PDF, but not so good if you are modifying
        objects for different pages.  Then you
        need to do your own deep copying (of circular
        structures).  You're on your own.

    2) ReportLab seems weird about FormXObjects.
       They pass around a partial name instead of the
       object or a reference to it.  So we have to
       reach into reportlab and get a number for
       a unique name.  I guess this is to make it
       where you can combine page streams with
       impunity, but that's just a guess.

    3) Updated 1/23/2010 to handle multipass documents
       (e.g. with a table of contents).  These have
       a different doc object on every pass.

'''

from reportlab.pdfbase import pdfdoc as rldocmodule
from .objects import PdfDict, PdfArray, PdfName
from .py23_diffs import convert_store

RLStream = rldocmodule.PDFStream
RLDict = rldocmodule.PDFDictionary
RLArray = rldocmodule.PDFArray


def _makedict(rldoc, pdfobj):
    rlobj = rldict = RLDict()
    if pdfobj.indirect:
        rlobj.__RefOnly__ = 1
        rlobj = rldoc.Reference(rlobj)
    pdfobj.derived_rl_obj[rldoc] = rlobj, None

    for key, value in pdfobj.iteritems():
        rldict[key[1:]] = makerl_recurse(rldoc, value)

    return rlobj


def _makestream(rldoc, pdfobj, xobjtype=PdfName.XObject):
    rldict = RLDict()
    rlobj = RLStream(rldict, convert_store(pdfobj.stream))

    if pdfobj.Type == xobjtype:
        shortname = 'pdfrw_%s' % (rldoc.objectcounter + 1)
        fullname = rldoc.getXObjectName(shortname)
    else:
        shortname = fullname = None
    result = rldoc.Reference(rlobj, fullname)
    pdfobj.derived_rl_obj[rldoc] = result, shortname

    for key, value in pdfobj.iteritems():
        rldict[key[1:]] = makerl_recurse(rldoc, value)

    return result


def _makearray(rldoc, pdfobj):
    rlobj = rlarray = RLArray([])
    if pdfobj.indirect:
        rlobj.__RefOnly__ = 1
        rlobj = rldoc.Reference(rlobj)
    pdfobj.derived_rl_obj[rldoc] = rlobj, None

    mylist = rlarray.sequence
    for value in pdfobj:
        mylist.append(makerl_recurse(rldoc, value))

    return rlobj


def _makestr(rldoc, pdfobj):
    assert isinstance(pdfobj, (float, int, str)), repr(pdfobj)
    # TODO: Add fix for float like in pdfwriter
    return str(getattr(pdfobj, 'encoded', None) or pdfobj)


def makerl_recurse(rldoc, pdfobj):
    docdict = getattr(pdfobj, 'derived_rl_obj', None)
    if docdict is not None:
        value = docdict.get(rldoc)
        if value is not None:
            return value[0]
    if isinstance(pdfobj, PdfDict):
        if pdfobj.stream is not None:
            func = _makestream
        else:
            func = _makedict
        if docdict is None:
            pdfobj.private.derived_rl_obj = {}
    elif isinstance(pdfobj, PdfArray):
        func = _makearray
        if docdict is None:
            pdfobj.derived_rl_obj = {}
    else:
        func = _makestr
    return func(rldoc, pdfobj)


def makerl(canv, pdfobj):
    try:
        rldoc = canv._doc
    except AttributeError:
        rldoc = canv
    rlobj = makerl_recurse(rldoc, pdfobj)
    try:
        name = pdfobj.derived_rl_obj[rldoc][1]
    except AttributeError:
        name = None
    return name or rlobj







pdfrw-0.4/pdfrw/uncompress.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# Copyright (C) 2012-2015 Nerijus Mika
# MIT license -- See LICENSE.txt for details
# Copyright (c) 2006, Mathieu Fenniak
# BSD license -- see LICENSE.txt for details
'''
A small subset of decompression filters.  Should add more later.

I believe, after looking at the code, that portions of the flate
PNG predictor were originally transcribed from PyPDF2, which is
probably an excellent source of additional filters.
'''
import array
from .objects import PdfDict, PdfName, PdfArray
from .errors import log
from .py23_diffs import zlib, xrange, from_array, convert_load, convert_store


def streamobjects(mylist, isinstance=isinstance, PdfDict=PdfDict):
    for obj in mylist:
        if isinstance(obj, PdfDict) and obj.stream is not None:
            yield obj

# Hack so we can import if zlib not available
decompressobj = zlib if zlib is None else zlib.decompressobj


def uncompress(mylist, leave_raw=False, warnings=set(),
               flate=PdfName.FlateDecode, decompress=decompressobj,
               isinstance=isinstance, list=list, len=len):
    ok = True
    for obj in streamobjects(mylist):
        ftype = obj.Filter
        if ftype is None:
            continue
        if isinstance(ftype, list) and len(ftype) == 1:
            # todo: multiple filters
            ftype = ftype[0]
        parms = obj.DecodeParms or obj.DP
        if ftype != flate:
            msg = ('Not decompressing: cannot use filter %s'
                   ' with parameters %s') % (repr(ftype), repr(parms))
            if msg not in warnings:
                warnings.add(msg)
                log.warning(msg)
            ok = False
        else:
            dco = decompress()
            try:
                data = dco.decompress(convert_store(obj.stream))
            except Exception as s:
                error = str(s)
            else:
                error = None
                if isinstance(parms, PdfArray):
                    oldparms = parms
                    parms = PdfDict()
                    for x in oldparms:
                        parms.update(x)
                if parms:
                    predictor = int(parms.Predictor or 1)
                    columns = int(parms.Columns or 1)
                    colors = int(parms.Colors or 1)
                    bpc = int(parms.BitsPerComponent or 8)
                    if 10 <= predictor <= 15:
                        data, error = flate_png(data, predictor, columns, colors, bpc)
                    elif predictor != 1:
                        error = ('Unsupported flatedecode predictor %s' %
                                 repr(predictor))
            if error is None:
                assert not dco.unconsumed_tail
                if dco.unused_data.strip():
                    error = ('Unconsumed compression data: %s' %
                             repr(dco.unused_data[:20]))
            if error is None:
                obj.Filter = None
                obj.stream = data if leave_raw else convert_load(data)
            else:
                log.error('%s %s' % (error, repr(obj.indirect)))
                ok = False
    return ok


def flate_png(data, predictor=1, columns=1, colors=1, bpc=8):
    ''' PNG prediction is used to make certain kinds of data
        more compressible.  Before the compression, each data
        byte is either left the same, or is set to be a delta
        from the previous byte, or is set to be a delta from
        the previous row.  This selection is done on a per-row
        basis, and is indicated by a compression type byte
        prepended to each row of data.

        Within more recent PDF files, it is normal to use
        this technique for Xref stream objects, which are
        quite regular.
    '''
    columnbytes = ((columns * colors * bpc) + 7) // 8
    data = array.array('B', data)
    rowlen = columnbytes + 1
    if predictor == 15:
        padding = (rowlen - len(data)) % rowlen
        data.extend([0] * padding)
    assert len(data) % rowlen == 0
    rows = xrange(0, len(data), rowlen)
    for row_index in rows:
        offset = data[row_index]
        if offset >= 2:
            if offset > 2:
                return None, 'Unsupported PNG filter %d' % offset
            offset = rowlen if row_index else 0
        if offset:
            for index in xrange(row_index + 1, row_index + rowlen):
                data[index] = (data[index] + data[index - offset]) % 256
    for row_index in reversed(rows):
        data.pop(row_index)
    return from_array(data), None







pdfrw-0.4/pdfrw.egg-info/PKG-INFO

Metadata-Version: 1.1
Name: pdfrw
Version: 0.4
Summary: PDF file reader/writer library
Home-page: https://github.com/pmaupin/pdfrw
Author: Patrick Maupin
Author-email: pmaupin@gmail.com
License: MIT
Description: ==================
        pdfrw 0.4
        ==================
        
        :Author: Patrick Maupin
        
        .. contents::
            :backlinks: none
        
        .. sectnum::
        
        Introduction
        ============
        
        **pdfrw** is a Python library and utility that reads and writes PDF files:
        
        * Version 0.4 is tested and works on Python 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6
        * Operations include subsetting, merging, rotating, modifying metadata, etc.
        * The fastest pure Python PDF parser available
        * Has been used for years by a printer in pre-press production
        * Can be used with rst2pdf to faithfully reproduce vector images
        * Can be used either standalone, or in conjunction with `reportlab`__
          to reuse existing PDFs in new ones
        * Permissively licensed
        
        __ http://www.reportlab.org/
        
        
        pdfrw will faithfully reproduce vector formats without
        rasterization, so the rst2pdf package has used pdfrw
        for PDF and SVG images by default since March 2010.
        
        pdfrw can also be used in conjunction with reportlab, in order
        to re-use portions of existing PDFs in new PDFs created with
        reportlab.
        
        
        Examples
        =========
        
        The library comes with several examples that show operation both with
        and without reportlab.
        
        
        All examples
        ------------------
        
        The examples directory has a few scripts which use the library.
        Note that if these examples do not work with your PDF, you should
        try to use pdftk to uncompress and/or unencrypt them first.
        
        * `4up.py`__ will shrink pages down and place 4 of them on
          each output page.
        * `alter.py`__ shows an example of modifying metadata, without
          altering the structure of the PDF.
        * `booklet.py`__ shows an example of creating a 2-up output
          suitable for printing and folding (e.g on tabloid size paper).
        * `cat.py`__ shows an example of concatenating multiple PDFs together.
        * `extract.py`__ will extract images and Form XObjects (embedded pages)
          from existing PDFs to make them easier to use and refer to from
          new PDFs (e.g. with reportlab or rst2pdf).
        * `poster.py`__ increases the size of a PDF so it can be printed
          as a poster.
        * `print_two.py`__ Allows creation of 8.5 X 5.5" booklets by slicing
          8.5 X 11" paper apart after printing.
        * `rotate.py`__ Rotates all or selected pages in a PDF.
        * `subset.py`__ Creates a new PDF with only a subset of pages from the
          original.
        * `unspread.py`__ Takes a 2-up PDF, and splits out pages.
        * `watermark.py`__ Adds a watermark PDF image over or under all the pages
          of a PDF.
        * `rl1/4up.py`__ Another 4up example, using reportlab canvas for output.
        * `rl1/booklet.py`__ Another booklet example, using reportlab canvas for
          output.
        * `rl1/subset.py`__ Another subsetting example, using reportlab canvas for
          output.
        * `rl1/platypus_pdf_template.py`__ Another watermarking example, using
          reportlab canvas and generated output for the document.  Contributed
          by user asannes.
        * `rl2`__ Experimental code for parsing graphics.  Needs work.
        * `subset_booklets.py`__ shows an example of creating a full printable pdf
          version in a more professional and pratical way ( take a look at
          http://www.wikihow.com/Bind-a-Book )
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/4up.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/extract.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/poster.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rotate.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/subset.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/unspread.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/watermark.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/4up.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/booklet.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/subset.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/platypus_pdf_template.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/subset_booklets.py
        
        Notes on selected examples
        ------------------------------------
        
        Reorganizing pages and placing them two-up
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 A printer with a fancy printer and/or a full-up copy of Acrobat can
 easily turn your small PDF into a little booklet (for example, print 4
 letter-sized pages on a single 11" x 17").

 But that assumes several things, including that the personnel know how
 to operate the hardware and software. `booklet.py`__ lets you turn your PDF
 into a preformatted booklet, to give them fewer chances to mess it up.

 __ https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py

 Adding or modifying metadata
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        
        The `cat.py`__ example will accept multiple input files on the command
        line, concatenate them and output them to output.pdf, after adding some
        nonsensical metadata to the output PDF file.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py
        
        The `alter.py`__ example alters a single metadata item in a PDF,
        and writes the result to a new PDF.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py
        
        
        One difference is that, since **cat** is creating a new PDF structure,
        and **alter** is attempting to modify an existing PDF structure, the
        PDF produced by alter (and also by watermark.py) *should* be
        more faithful to the original (except for the desired changes).
        
        For example, the alter.py navigation should be left intact, whereas with
        cat.py it will be stripped.
        
        
        Rotating and doubling
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 If you ever want to print something that is like a small booklet, but
 needs to be spiral bound, you either have to do some fancy rearranging,
 or just waste half your paper.

 The `print_two.py`__ example program will, for example, make two side-by-side
 copies each page of of your PDF on a each output sheet.

 __ https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py

 But, every other page is flipped, so that you can print double-sided and
 the pages will line up properly and be pre-collated.

 Graphics stream parsing proof of concept
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        
        The `copy.py`__ script shows a simple example of reading in a PDF, and
        using the decodegraphics.py module to try to write the same information
        out to a new PDF through a reportlab canvas. (If you know about reportlab,
        you know that if you can faithfully render a PDF to a reportlab canvas, you
        can do pretty much anything else with that PDF you want.) This kind of
        low level manipulation should be done only if you really need to.
        decodegraphics is really more than a proof of concept than anything
        else. For most cases, just use the Form XObject capability, as shown in
        the examples/rl1/booklet.py demo.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/copy.py
        
        pdfrw philosophy
        ==================
        
        Core library
        -------------
        
        The philosophy of the library portion of pdfrw is to provide intuitive
        functions to read, manipulate, and write PDF files.  There should be
        minimal leakage between abstraction layers, although getting useful
        work done makes "pure" functionality separation difficult.
        
        A key concept supported by the library is the use of Form XObjects,
        which allow easy embedding of pieces of one PDF into another.
        
        Addition of core support to the library is typically done carefully
        and thoughtfully, so as not to clutter it up with too many special
        cases.
        
        There are a lot of incorrectly formatted PDFs floating around; support
        for these is added in some cases.  The decision is often based on what
        acroread and okular do with the PDFs; if they can display them properly,
        then eventually pdfrw should, too, if it is not too difficult or costly.
        
        Contributions are welcome; one user has contributed some decompression
        filters and the ability to process PDF 1.5 stream objects.  Additional
        functionality that would obviously be useful includes additional
        decompression filters, the ability to process password-protected PDFs,
        and the ability to output linearized PDFs.
        
        Examples
        --------
        
        The philosophy of the examples is to provide small, easily-understood
        examples that showcase pdfrw functionality.
        
        
        PDF files and Python
        ======================
        
        Introduction
        ------------
        
        In general, PDF files conceptually map quite well to Python. The major
        objects to think about are:
        
        -  **strings**. Most things are strings. These also often decompose
           naturally into
        -  **lists of tokens**. Tokens can be combined to create higher-level
           objects like
        -  **arrays** and
        -  **dictionaries** and
        -  **Contents streams** (which can be more streams of tokens)
        
        Difficulties
        ------------
        
        The apparent primary difficulty in mapping PDF files to Python is the
        PDF file concept of "indirect objects."  Indirect objects provide
        the efficiency of allowing a single piece of data to be referred to
        from more than one containing object, but probably more importantly,
        indirect objects provide a way to get around the chicken and egg
        problem of circular object references when mapping arbitrary data
        structures to files. To flatten out a circular reference, an indirect
        object is *referred to* instead of being *directly included* in another
        object. PDF files have a global mechanism for locating indirect objects,
        and they all have two reference numbers (a reference number and a
        "generation" number, in case you wanted to append to the PDF file
        rather than just rewriting the whole thing).
        
        pdfrw automatically handles indirect references on reading in a PDF
        file. When pdfrw encounters an indirect PDF file object, the
        corresponding Python object it creates will have an 'indirect' attribute
        with a value of True. When writing a PDF file, if you have created
        arbitrary data, you just need to make sure that circular references are
        broken up by putting an attribute named 'indirect' which evaluates to
        True on at least one object in every cycle.
        
        Another PDF file concept that doesn't quite map to regular Python is a
        "stream". Streams are dictionaries which each have an associated
        unformatted data block. pdfrw handles streams by placing a special
        attribute on a subclassed dictionary.
        
        Usage Model
        -----------
        
        The usage model for pdfrw treats most objects as strings (it takes their
        string representation when writing them to a file). The two main
        exceptions are the PdfArray object and the PdfDict object.
        
        PdfArray is a subclass of list with two special features.  First,
        an 'indirect' attribute allows a PdfArray to be written out as
        an indirect PDF object.  Second, pdfrw reads files lazily, so
        PdfArray knows about, and resolves references to other indirect
        objects on an as-needed basis.
        
        PdfDict is a subclass of dict that also has an indirect attribute
        and lazy reference resolution as well.  (And the subclassed
        IndirectPdfDict has indirect automatically set True).
        
        But PdfDict also has an optional associated stream. The stream object
        defaults to None, but if you assign a stream to the dict, it will
        automatically set the PDF /Length attribute for the dictionary.
        
        Finally, since PdfDict instances are indexed by PdfName objects (which
        always start with a /) and since most (all?) standard Adobe PdfName
        objects use names formatted like "/CamelCase", it makes sense to allow
        access to dictionary elements via object attribute accesses as well as
        object index accesses. So usage of PdfDict objects is normally via
        attribute access, although non-standard names (though still with a
        leading slash) can be accessed via dictionary index lookup.
        
        Reading PDFs
        ~~~~~~~~~~~~~~~

 The PdfReader object is a subclass of PdfDict, which allows easy access
 to an entire document::

 >>> from pdfrw import PdfReader
 >>> x = PdfReader('source.pdf')
 >>> x.keys()
 ['/Info', '/Size', '/Root']
 >>> x.Info
 {'/Producer': '(cairo 1.8.6 (http://cairographics.org))',
 '/Creator': '(cairo 1.8.6 (http://cairographics.org))'}
 >>> x.Root.keys()
 ['/Type', '/Pages']

 Info, Size, and Root are retrieved from the trailer of the PDF file.

 In addition to the tree structure, pdfrw creates a special attribute
 named *pages*, that is a list of all the pages in the document. pdfrw
 creates the *pages* attribute as a simplification for the user, because
 the PDF format allows arbitrarily complicated nested dictionaries to
 describe the page order. Each entry in the *pages* list is the PdfDict
 object for one of the pages in the file, in order.

 ::

 >>> len(x.pages)
 1
 >>> x.pages[0]
 {'/Parent': {'/Kids': [{...}], '/Type': '/Pages', '/Count': '1'},
 '/Contents': {'/Length': '11260', '/Filter': None},
 '/Resources': ... (Lots more stuff snipped)
 >>> x.pages[0].Contents
 {'/Length': '11260', '/Filter': None}
 >>> x.pages[0].Contents.stream
 'q\n1 1 1 rg /a0 gs\n0 0 0 RG 0.657436
 w\n0 J\n0 j\n[] 0.0 d\n4 M q' ... (Lots more stuff snipped)

 Writing PDFs
        ~~~~~~~~~~~~~~~
        
        As you can see, it is quite easy to dig down into a PDF document. But
        what about when it's time to write it out?
        
        ::
        
            >>> from pdfrw import PdfWriter
            >>> y = PdfWriter()
            >>> y.addpage(x.pages[0])
            >>> y.write('result.pdf')
        
        That's all it takes to create a new PDF. You may still need to read the
        `Adobe PDF reference manual`__ to figure out what needs to go *into*
        the PDF, but at least you don't have to sweat actually building it
        and getting the file offsets right.
        
        __ http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
        
        Manipulating PDFs in memory
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 For the most part, pdfrw tries to be agnostic about the contents of
 PDF files, and support them as containers, but to do useful work,
 something a little higher-level is required, so pdfrw works to
 understand a bit about the contents of the containers. For example:

 - PDF pages. pdfrw knows enough to find the pages in PDF files you read
 in, and to write a set of pages back out to a new PDF file.
 - Form XObjects. pdfrw can take any page or rectangle on a page, and
 convert it to a Form XObject, suitable for use inside another PDF
 file. It knows enough about these to perform scaling, rotation,
 and positioning.
 - reportlab objects. pdfrw can recursively create a set of reportlab
 objects from its internal object format. This allows, for example,
 Form XObjects to be used inside reportlab, so that you can reuse
 content from an existing PDF file when building a new PDF with
 reportlab.

 There are several examples that demonstrate these features in
 the example code directory.

 Missing features
        ~~~~~~~~~~~~~~~~~~~~~~~
        
        Even as a pure PDF container library, pdfrw comes up a bit short. It
        does not currently support:
        
        -  Most compression/decompression filters
        -  encryption
        
        `pdftk`__ is a wonderful command-line
        tool that can convert your PDFs to remove encryption and compression.
        However, in most cases, you can do a lot of useful work with PDFs
        without actually removing compression, because only certain elements
        inside PDFs are actually compressed.
        
        __ https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
        
        Library internals
        ==================
        
        Introduction
        ------------
        
        **pdfrw** currently consists of 19 modules organized into a main
        package and one sub-package.
        
        The `__init.py__`__ module does the usual thing of importing a few
        major attributes from some of the submodules, and the `errors.py`__
        module supports logging and exception generation.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/__init__.py
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/errors.py
        
        
        PDF object model support
        --------------------------
        
        The `objects`__ sub-package contains one module for each of the
        internal representations of the kinds of basic objects that exist
        in a PDF file, with the `objects/__init__.py`__ module in that
        package simply gathering them up and making them available to the
        main pdfrw package.
        
        One feature that all the PDF object classes have in common is the
        inclusion of an 'indirect' attribute. If 'indirect' exists and evaluates
        to True, then when the object is written out, it is written out as an
        indirect object. That is to say, it is addressable in the PDF file, and
        could be referenced by any number (including zero) of container objects.
        This indirect object capability saves space in PDF files by allowing
        objects such as fonts to be referenced from multiple pages, and also
        allows PDF files to contain internal circular references.  This latter
        capability is used, for example, when each page object has a "parent"
        object in its dictionary.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/__init__.py
        
        Ordinary objects
        ~~~~~~~~~~~~~~~~

 The `objects/pdfobject.py`__ module contains the PdfObject class, which is
 a subclass of str, and is the catch-all object for any PDF file elements
 that are not explicitly represented by other objects, as described below.

 __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfobject.py

 Name objects
        ~~~~~~~~~~~~
        
        The `objects/pdfname.py`__ module contains the PdfName singleton object,
        which will convert a string into a PDF name by prepending a slash. It can
        be used either by calling it or getting an attribute, e.g.::
        
            PdfName.Rotate == PdfName('Rotate') == PdfObject('/Rotate')
        
        In the example above, there is a slight difference between the objects
        returned from PdfName, and the object returned from PdfObject.  The
        PdfName objects are actually objects of class "BasePdfName".  This
        is important, because only these may be used as keys in PdfDict objects.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfname.py
        
        String objects
        ~~~~~~~~~~~~~~

 The `objects/pdfstring.py`__
 module contains the PdfString class, which is a subclass of str that is
 used to represent encoded strings in a PDF file. The class has encode
 and decode methods for the strings.

 __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfstring.py

 Array objects
        ~~~~~~~~~~~~~
        
        The `objects/pdfarray.py`__
        module contains the PdfArray class, which is a subclass of list that is
        used to represent arrays in a PDF file. A regular list could be used
        instead, but use of the PdfArray class allows for an indirect attribute
        to be set, and also allows for proxying of unresolved indirect objects
        (that haven't been read in yet) in a manner that is transparent to pdfrw
        clients.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfarray.py
        
        Dict objects
        ~~~~~~~~~~~~

 The `objects/pdfdict.py`__
 module contains the PdfDict class, which is a subclass of dict that is
 used to represent dictionaries in a PDF file. A regular dict could be
 used instead, but the PdfDict class matches the requirements of PDF
 files more closely:

 * Transparent (from the library client's viewpoint) proxying
 of unresolved indirect objects
 * Return of None for non-existent keys (like dict.get)
 * Mapping of attribute accesses to the dict itself
 (pdfdict.Foo == pdfdict[NameObject('Foo')])
 * Automatic management of following stream and /Length attributes
 for content dictionaries
 * Indirect attribute
 * Other attributes may be set for private internal use of the
 library and/or its clients.
 * Support for searching parent dictionaries for PDF "inheritable"
 attributes.

 __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfdict.py

 If a PdfDict has an associated data stream in the PDF file, the stream
 is accessed via the 'stream' (all lower-case) attribute. Setting the
 stream attribute on the PdfDict will automatically set the /Length attribute
 as well. If that is not what is desired (for example if the the stream
 is compressed), then _stream (same name with an underscore) may be used
 to associate the stream with the PdfDict without setting the length.

 To set private attributes (that will not be written out to a new PDF
 file) on a dictionary, use the 'private' attribute::

 mydict.private.foo = 1

 Once the attribute is set, it may be accessed directly as an attribute
 of the dictionary::

 foo = mydict.foo

 Some attributes of PDF pages are "inheritable." That is, they may
 belong to a parent dictionary (or a parent of a parent dictionary, etc.)
 The "inheritable" attribute allows for easy discovery of these::

 mediabox = mypage.inheritable.MediaBox

 Proxy objects
        ~~~~~~~~~~~~~
        
        The `objects/pdfindirect.py`__
        module contains the PdfIndirect class, which is a non-transparent proxy
        object for PDF objects that have not yet been read in and resolved from
        a file. Although these are non-transparent inside the library, client code
        should never see one of these -- they exist inside the PdfArray and PdfDict
        container types, but are resolved before being returned to a client of
        those types.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfindirect.py
        
        
        File reading, tokenization and parsing
        --------------------------------------
        
        `pdfreader.py`__
        contains the PdfReader class, which can read a PDF file (or be passed a
        file object or already read string) and parse it. It uses the PdfTokens
        class in `tokens.py`__  for low-level tokenization.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfreader.py
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/tokens.py
        
        
        The PdfReader class does not, in general, parse into containers (e.g.
        inside the content streams). There is a proof of concept for doing that
        inside the examples/rl2 subdirectory, but that is slow and not well-developed,
        and not useful for most applications.
        
        An instance of the PdfReader class is an instance of a PdfDict -- the
        trailer dictionary of the PDF file, to be exact.  It will have a private
        attribute set on it that is named 'pages' that is a list containing all
        the pages in the file.
        
        When instantiating a PdfReader object, there are options available
        for decompressing all the objects in the file.  pdfrw does not currently
        have very many options for decompression, so this is not all that useful,
        except in the specific case of compressed object streams.
        
        Also, there are no options for decryption yet.  If you have PDF files
        that are encrypted or heavily compressed, you may find that using another
        program like pdftk on them can make them readable by pdfrw.
        
        In general, the objects are read from the file lazily, but this is not
        currently true with compressed object streams -- all of these are decompressed
        and read in when the PdfReader is instantiated.
        
        
        File output
        -----------
        
        `pdfwriter.py`__
        contains the PdfWriter class, which can create and output a PDF file.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfwriter.py
        
        There are a few options available when creating and using this class.
        
        In the simplest case, an instance of PdfWriter is instantiated, and
        then pages are added to it from one or more source files (or created
        programmatically), and then the write method is called to dump the
        results out to a file.
        
        If you have a source PDF and do not want to disturb the structure
        of it too badly, then you may pass its trailer directly to PdfWriter
        rather than letting PdfWriter construct one for you.  There is an
        example of this (alter.py) in the examples directory.
        
        
        Advanced features
        -----------------
        
        `buildxobj.py`__
        contains functions to build Form XObjects out of pages or rectangles on
        pages.  These may be reused in new PDFs essentially as if they were images.
        
        buildxobj is careful to cache any page used so that it only appears in
        the output once.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/buildxobj.py
        
        
        `toreportlab.py`__
        provides the makerl function, which will translate pdfrw objects into a
        format which can be used with `reportlab <http://www.reportlab.org/>`__.
        It is normally used in conjunction with buildxobj, to be able to reuse
        parts of existing PDFs when using reportlab.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/toreportlab.py
        
        
        `pagemerge.py`__ builds on the foundation laid by buildxobj.  It
        contains classes to create a new page (or overlay an existing page)
        using one or more rectangles from other pages.  There are examples
        showing its use for watermarking, scaling, 4-up output, splitting
        each page in 2, etc.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pagemerge.py
        
        `findobjs.py`__ contains code that can find specific kinds of objects
        inside a PDF file.  The extract.py example uses this module to create
        a new PDF that places each image and Form XObject from a source PDF onto
        its own page, e.g. for easy reuse with some of the other examples or
        with reportlab.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/findobjs.py
        
        
        Miscellaneous
        ----------------
        
        `compress.py`__ and `uncompress.py`__
        contains compression and decompression functions. Very few filters are
        currently supported, so an external tool like pdftk might be good if you
        require the ability to decompress (or, for that matter, decrypt) PDF
        files.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/compress.py
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/uncompress.py
        
        
        `py23_diffs.py`__ contains code to help manage the differences between
        Python 2 and Python 3.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/py23_diffs.py
        
        Testing
        ===============
        
        The tests associated with pdfrw require a large number of PDFs,
        which are not distributed with the library.
        
        To run the tests:
        
        * Download or clone the full package from github.com/pmaupin/pdfrw
        * cd into the tests directory, and then clone the package
          github.com/pmaupin/static_pdfs into a subdirectory (also named
          static_pdfs).
        * Now the tests may be run from that directory using unittest, or
          py.test, or nose.
        * travisci is used at github, and runs the tests with py.test
        
        Other libraries
        =====================
        
        Pure Python
        -----------
        
        -  `reportlab <http://www.reportlab.org/>`__
        
            reportlab is must-have software if you want to programmatically
            generate arbitrary PDFs.
        
        -  `pyPdf <https://github.com/mstamy2/PyPDF2>`__
        
            pyPdf is, in some ways, very full-featured. It can do decompression
            and decryption and seems to know a lot about items inside at least
            some kinds of PDF files. In comparison, pdfrw knows less about
            specific PDF file features (such as metadata), but focuses on trying
            to have a more Pythonic API for mapping the PDF file container
            syntax to Python, and (IMO) has a simpler and better PDF file
            parser.  The Form XObject capability of pdfrw means that, in many
            cases, it does not actually need to decompress objects -- they
            can be left compressed.
        
        -  `pdftools <http://www.boddie.org.uk/david/Projects/Python/pdftools/index.html>`__
        
            pdftools feels large and I fell asleep trying to figure out how it
            all fit together, but many others have done useful things with it.
        
        -  `pagecatcher <http://www.reportlab.com/docs/pagecatcher-ds.pdf>`__
        
            My understanding is that pagecatcher would have done exactly what I
            wanted when I built pdfrw. But I was on a zero budget, so I've never
            had the pleasure of experiencing pagecatcher. I do, however, use and
            like `reportlab <http://www.reportlab.org/>`__ (open source, from
            the people who make pagecatcher) so I'm sure pagecatcher is great,
            better documented and much more full-featured than pdfrw.
        
        -  `pdfminer <http://www.unixuser.org/~euske/python/pdfminer/index.html>`__
        
            This looks like a useful, actively-developed program. It is quite
            large, but then, it is trying to actively comprehend a full PDF
            document. From the website:
        
            "PDFMiner is a suite of programs that help extracting and analyzing
            text data of PDF documents. Unlike other PDF-related tools, it
            allows to obtain the exact location of texts in a page, as well as
            other extra information such as font information or ruled lines. It
            includes a PDF converter that can transform PDF files into other
            text formats (such as HTML). It has an extensible PDF parser that
            can be used for other purposes instead of text analysis."
        
        non-pure-Python libraries
        -------------------------
        
        -  `pyPoppler <https://launchpad.net/poppler-python/>`__ can read PDF
           files.
        -  `pycairo <http://www.cairographics.org/pycairo/>`__ can write PDF
           files.
        -  `PyMuPDF <https://github.com/rk700/PyMuPDF>`_ high performance rendering
           of PDF, (Open)XPS, CBZ and EPUB
        
        Other tools
        -----------
        
        -  `pdftk <https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/>`__ is a wonderful command
           line tool for basic PDF manipulation. It complements pdfrw extremely
           well, supporting many operations such as decryption and decompression
           that pdfrw cannot do.
        -  `MuPDF <http://www.mupdf.com/>`_ is a free top performance PDF, (Open)XPS, CBZ and EPUB rendering library
           that also comes with some command line tools. One of those, ``mutool``, has big overlaps with pdftk's - 
           except it is up to 10 times faster.
        
        Release information
        =======================
        
        Revisions:
        
        0.4 -- Released 18 September, 2017
        
            - Python 3.6 added to test matrix
            - Proper unicode support for text strings in PDFs added
            - buildxobj fixes allow better support creating form XObjects
              out of compressed pages in some cases
            - Compression fixes for Python 3+
            - New subset_booklets.py example
            - Bug with non-compressed indices into compressed object streams fixed
            - Bug with distinguishing compressed object stream first objects fixed
            - Better error reporting added for some invalid PDFs (e.g. when reading
              past the end of file)
            - Better scrubbing of old bookmark information when writing PDFs, to
              remove dangling references
            - Refactoring of pdfwriter, including updating API, to allow future
              enhancements for things like incremental writing
            - Minor tokenizer speedup
            - Some flate decompressor bugs fixed
            - Compression and decompression tests added
            - Tests for new unicode handling added
            - PdfReader.readpages() recursion error (issue #92) fixed.
            - Initial crypt filter support added
        
        
        0.3 -- Released 19 October, 2016.
        
            - Python 3.5 added to test matrix
            - Better support under Python 3.x for in-memory PDF file-like objects
            - Some pagemerge and Unicode patches added
            - Changes to logging allow better coexistence with other packages
            - Fix for "from pdfrw import \*"
            - New fancy_watermark.py example shows off capabilities of pagemerge.py
            - metadata.py example renamed to cat.py
        
        
        0.2 -- Released 21 June, 2015.  Supports Python 2.6, 2.7, 3.3, and 3.4.
        
            - Several bugs have been fixed
            - New regression test functionally tests core with dozens of
              PDFs, and also tests examples.
            - Core has been ported and tested on Python3 by round-tripping
              several difficult files and observing binary matching results
              across the different Python versions.
            - Still only minimal support for compression and no support
              for encryption or newer PDF features.  (pdftk is useful
              to put PDFs in a form that pdfrw can use.)
        
        0.1 -- Released to PyPI in 2012.  Supports Python 2.5 - 2.7
        
        
Keywords: pdf vector graphics PDF nup watermark split join merge
Platform: Independent
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Multimedia :: Graphics :: Graphics Conversion
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Text Processing
Classifier: Topic :: Printing
Classifier: Topic :: Utilities







pdfrw-0.4/pdfrw.egg-info/SOURCES.txt

.gitignore
.travis.yml
LICENSE.txt
MANIFEST.in
README.rst
releasing.txt
setup.cfg
setup.py
examples/4up.py
examples/README.txt
examples/alter.py
examples/booklet.py
examples/cat.py
examples/extract.py
examples/fancy_watermark.py
examples/poster.py
examples/print_two.py
examples/rotate.py
examples/subset.py
examples/subset_booklets.py
examples/unspread.py
examples/watermark.py
examples/rl1/4up.py
examples/rl1/README.txt
examples/rl1/booklet.py
examples/rl1/platypus_pdf_template.py
examples/rl1/subset.py
examples/rl2/README.txt
examples/rl2/copy.py
examples/rl2/decodegraphics.py
pdfrw/__init__.py
pdfrw/buildxobj.py
pdfrw/compress.py
pdfrw/crypt.py
pdfrw/errors.py
pdfrw/findobjs.py
pdfrw/pagemerge.py
pdfrw/pdfreader.py
pdfrw/pdfwriter.py
pdfrw/py23_diffs.py
pdfrw/tokens.py
pdfrw/toreportlab.py
pdfrw/uncompress.py
pdfrw.egg-info/PKG-INFO
pdfrw.egg-info/SOURCES.txt
pdfrw.egg-info/dependency_links.txt
pdfrw.egg-info/top_level.txt
pdfrw.egg-info/zip-safe
pdfrw/objects/__init__.py
pdfrw/objects/pdfarray.py
pdfrw/objects/pdfdict.py
pdfrw/objects/pdfindirect.py
pdfrw/objects/pdfname.py
pdfrw/objects/pdfobject.py
pdfrw/objects/pdfstring.py
tests/__init__.py
tests/checkdiffs.py
tests/expected.py
tests/expected.txt
tests/myprofile.py
tests/test_examples.py
tests/test_pdfdict.py
tests/test_pdfreader_init.py
tests/test_pdfstring.py
tests/test_roundtrip.py
tests/update_expected.py
tests/static_pdfs/__init__.py
tests/static_pdfs/__main__.py






pdfrw-0.4/pdfrw.egg-info/dependency_links.txt









pdfrw-0.4/pdfrw.egg-info/top_level.txt

pdfrw







pdfrw-0.4/pdfrw.egg-info/zip-safe









pdfrw-0.4/tests/static_pdfs/__init__.py

'''
Static PDFs are maintained by MD5

You may have local-only PDFs in the
local subdirectory, or global PDFs in
the global subdirectory.  Only the
global ones are stored at github.

Part of github.com/pmaupin/static_pdfs.

'''

import os

rootdir = os.path.abspath(os.path.dirname(__file__))

# GLOBAL IS ASSUMED TO BE FIRST!!!

pdfpaths = 'global', 'local'

pdfpaths = [os.path.join(rootdir, x) for x in pdfpaths]

pdffiles = [[os.path.join(x, y) for y in os.listdir(x)]
            for x in pdfpaths if os.path.exists(x)]

allpdfs = sum(pdffiles, [])








pdfrw-0.4/tests/static_pdfs/__main__.py

#! /usr/bin/env python

'''
Static PDFs are maintained by MD5

You may have local-only PDFs in the
local subdirectory, or global PDFs in
the global subdirectory.  Only the
global ones are stored at github.

Part of github.com/pmaupin/static_pdfs.

'''

import sys
import os
import collections
import hashlib
import static_pdfs

params = sys.argv[1:]

destroy = params == ['destroy']
if params and not destroy:
    raise SystemExit('''

usage: static_pdfs [destroy]

Without the parameter, static_pdfs will only report on the
state of the files in the global and local subdirectories.

With the destroy parameter, static_pdfs will de-duplicate
and rename files so that the filename of the PDF is its
md5.
''')


found = collections.defaultdict(list)

sys.stdout.write('\n\nReading PDFs:\n\n')

for filelist in static_pdfs.pdffiles:
    for fname in filelist:
        sys.stdout.write('  %s\r' % fname)
        with open(fname, 'rb') as f:
            data = f.read()
        hexname = hashlib.md5(data).hexdigest()
        found[hexname].append(fname)
sys.stdout.write('\n\n')

for key, values in found.items():
    if len(values) > 1:
        sys.stdout.write('\n\nDuplicates%s:\n    %s' % (
            ' (destroying)' if destroy else '', '\n    '.join(values)))
        if destroy:
            while len(values) > 1:
                os.remove(values.pop())
    key = os.path.join(os.path.dirname(values[0]), key + '.pdf')
    if values[0] != key:
        sys.stdout.write('\n\nBad name for %s%s:\n    %s' % (
            key, ' (renaming)' if destroy else '', values[0]))
        if destroy:
            os.rename(values[0], key)
sys.stdout.write('\n\n')







pdfrw-0.4/tests/__init__.py

# This file intentionally left blank.







pdfrw-0.4/tests/checkdiffs.py

#! /usr/bin/env python2

import sys
import os
import subprocess
import hashlib

import expected
import static_pdfs

source_pdfs = static_pdfs.pdffiles[0]
source_pdfs = dict((os.path.basename(x), x) for x in source_pdfs)

result_dir = expected.result_dir

for subdir in sorted(os.listdir(result_dir)):
    dstd = os.path.join(result_dir, subdir)
    if not os.path.isdir(dstd):
        continue
    for pdffile in sorted(os.listdir(dstd)):
        testname = '%s/%s' % (subdir, pdffile)
        srcf = source_pdfs.get(pdffile)
        dstf = os.path.join(dstd, pdffile)
        if pdffile not in source_pdfs:
            print('\n Skipping %s -- source not found' % testname)
            continue

        with open(dstf, 'rb') as f:
            data = f.read()
        hash = hashlib.md5(data).hexdigest()
        skipset = set((hash, 'skip', 'xfail', 'fail', '!' + hash))
        if expected.results[testname] & skipset:
            print('\n Skipping %s -- marked done' % testname)
            continue
        if os.path.exists('foobar.pdf'):
            os.remove('foobar.pdf')
        builtdiff = False
        while 1:
            sys.stdout.write('''
                Test case %s

                c = compare using imagemagick and okular
                f = display foobar.pdf (result from comparison)
                o = display results with okular
                a = display results with acrobat

                s = mark 'skip' and go to next PDF
                g = mark as good and go to next PDF
                b = mark as bad and go to next PDF
                n = next pdf without marking
                q = quit
-->  ''' % testname)
            sel = raw_input()
            if sel == 'q':
                raise SystemExit(0)
            if sel == 'n':
                break
            if sel == 'c':
                subprocess.call(('compare', '-verbose', srcf, dstf,
                                 'foobar.pdf'))
                builtdiff = True
                continue
            if sel == 'f':
                subprocess.call(('okular', 'foobar.pdf'))
                continue
            if sel == 'o':
                subprocess.call(('okular', srcf, dstf))
                continue
            if sel == 'a':
                if builtdiff:
                    subprocess.call(('acroread', srcf, dstf, 'foobar.pdf'))
                else:
                    subprocess.call(('acroread', srcf, dstf))
                continue

            if sel in 'sgb':
                results = (hash if sel == 'g' else
                           '    skip' if sel == 's' else '!'+hash)
                with open(expected.expectedf, 'a') as f:
                    f.write('%s %s\n' % (testname, results))
                break







pdfrw-0.4/tests/expected.py

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
    Read expected.txt, which should be in the format:

       testname/srcname.pdf validhash

    More than one validhash is allowed (on separate lines),
    and hash-delimited comments are allowed.
'''

import os
import collections
from pdfrw.py23_diffs import convert_load

root_dir = os.path.dirname(__file__)
result_dir = 'tmp_results'
if os.path.exists('ramdisk'):
    result_dir = os.path.join('ramdisk', result_dir)
result_dir = os.path.join(root_dir, result_dir)

for sourcef in ('mytests.txt', 'expected.txt'):
    expectedf = os.path.join(root_dir, sourcef)
    if os.path.exists(expectedf):
        break


def results():
    results = collections.defaultdict(set)
    with open(expectedf, 'rb') as f:
        for line in f:
            line = convert_load(line)
            line = line.split('#', 1)[0].split()
            if not line:
                continue
            key, value = line
            results[key].add(value)
    return results
results = results()







pdfrw-0.4/tests/expected.txt

# Example programs

examples/4up_b1c400de699af29ea3f1983bb26870ab               1b73c612c40b5082d955ed72f63644bd
examples/alter_b1c400de699af29ea3f1983bb26870ab             3c3ee465f45a685ba7098691be05a5ab
examples/booklet_b1c400de699af29ea3f1983bb26870ab           d711b74110eefb4e9e6bf1a5bea16bfe
examples/extract_1975ef8db7355b1d691bc79d0749574b           b4f5ee36a288da970ed040a9a733c8b0
examples/extract_c5c895deecf7a7565393587e0d61be2b           539aad09ef80907bb396c3260eb87d7b
examples/extract_d711b74110eefb4e9e6bf1a5bea16bfe           26ddfd09c6e6002228f06782c8544ac4
examples/print_two_b1c400de699af29ea3f1983bb26870ab         73c8a16aba44548c2c06dae6e2551961
examples/subset_b1c400de699af29ea3f1983bb26870ab_1-3_5      880a9578197130273ccb51265af08029
examples/unspread_d711b74110eefb4e9e6bf1a5bea16bfe          780a9abe26a9de0b5b95ee22c4835e4b

examples/cat_b1c400de699af29ea3f1983bb26870ab_06c86654f9a77e82f9adaa0086fc391c          62bb9b746ff5932d3f1b88942d36a81d
examples/rotate_707e3e2d17cbe9ec2273414b3b63f333_270_1-4_7-8_10-50_52-56                7633ba56641115050ba098ecbef8d331
examples/watermark_b1c400de699af29ea3f1983bb26870ab_06c86654f9a77e82f9adaa0086fc391c    fe2330d42b3bfc06212415f295752f0e
examples/watermark_b1c400de699af29ea3f1983bb26870ab_06c86654f9a77e82f9adaa0086fc391c_-u e43e3ac0afe1cc242549424755dbf612

# All these are in the poster test
examples/subset_1975ef8db7355b1d691bc79d0749574b_21     5057f345f1a1109a0e54276a68e8f8df
examples/rotate_5057f345f1a1109a0e54276a68e8f8df_90_1   881f4dc8dcf069e707bf61af95492d86
examples/poster_881f4dc8dcf069e707bf61af95492d86        a34be06d22105b6c02394a9f278fec0d

examples/rl1/4up_b1c400de699af29ea3f1983bb26870ab                   e21dfdd9ae56ddb261dc3d02bf6da198
examples/rl1/booklet_b1c400de699af29ea3f1983bb26870ab               410063b7fbae1c6d5af33758e2b43450
examples/rl1/subset_b1c400de699af29ea3f1983bb26870ab_3_5            745f1ac31a18d86afb294a449b72cb98
examples/rl1/platypus_pdf_template_b1c400de699af29ea3f1983bb26870ab 88bd087c4dc039ced05faea3920cbec5

# List things that need work here (typically cause exceptions)

# Bad info dict -- works otherwise

simple/b1c400de699af29ea3f1983bb26870ab.pdf         ecf2e28de18a724b53670c0d5637ec28
repaginate/b1c400de699af29ea3f1983bb26870ab.pdf     4d7d6c5f6e14c6eac1dfc055cebfa499

# 07b0ba4 is missing an object.  Best we can do is report it
# (and we do)

repaginate/07b0ba4cff1c6ff73fd468b04b013457.pdf     993c763e085bce7ecc941ba104f4c892
simple/07b0ba4cff1c6ff73fd468b04b013457.pdf         499b9c1b1e1c76b7c5c0d5e3b62889e3

#b107 has a single page, but with an empty contents dict.

repaginate/b107669d1dd69eabb89765fabb2cb321.pdf     0652d2da25b50cad75863d0e2bbaa878
simple/b107669d1dd69eabb89765fabb2cb321.pdf         56025c06ab8633575ddc6c6990d2fbf1

# Encrypted files

repaginate/0ae80b493bc21e6de99f2ff6bbb8bc2c.pdf     skip
repaginate/6e122f618c27f3aa9a689423e3be6b8d.pdf     skip
repaginate/7dc787639aa6765214e9ff5494d231ed.pdf     skip
repaginate/b4b27aaa1f9c7c524298e98be279bebb.pdf     skip
repaginate/b5b6c6405d7b48418bccf97277957664.pdf     skip
repaginate/bd0ef57aec16ded45bd89d61b54af0be.pdf     skip
repaginate/dbb807a878ac1da6b91ac15c9de4e209.pdf     skip
simple/0ae80b493bc21e6de99f2ff6bbb8bc2c.pdf         skip
simple/6e122f618c27f3aa9a689423e3be6b8d.pdf         skip
simple/7dc787639aa6765214e9ff5494d231ed.pdf         skip
simple/b4b27aaa1f9c7c524298e98be279bebb.pdf         skip
simple/b5b6c6405d7b48418bccf97277957664.pdf         skip
simple/bd0ef57aec16ded45bd89d61b54af0be.pdf         skip
simple/dbb807a878ac1da6b91ac15c9de4e209.pdf         skip



# List good hashes for round-trips here.

repaginate/06c86654f9a77e82f9adaa0086fc391c.pdf 848966fe40a1e3de842f82700dc6d67b
repaginate/08f69084d72dabc5dfdcf5c1ff2a719f.pdf b8c60878b0e0ce81cb6e8777038166b1
repaginate/09715ec1a7b0f3a7ae02b3046f627b9f.pdf daf7cff9c0a15bbb347489f9fbda25f8
repaginate/0a61de50b5ee0ea4d5d69c95dab817a3.pdf c6cd38b1131c4b856f60ebfcf51da6f5
repaginate/1975ef8db7355b1d691bc79d0749574b.pdf 43433398ccb1edaaee734f4949a5cc3c
repaginate/1c2af1d2b0db6cac3c8e558a26efd38b.pdf 20dc3be2affe9082564c01b1146d7598
repaginate/1f5dd128c3757420a881a155f2f8ace3.pdf 7130f1568526247895856806b3879db4
repaginate/22628a7ed578b622520325673ab2a4f2.pdf e312c9c588a5ccdb1a11ac37149b178b
repaginate/2ac7c68e26a8ef797aead15e4875cc6d.pdf e7344551183415d6257e2cab2aef4a61
repaginate/295d26e61a85635433f8e4b768953f60.pdf a89a9fa39812ecd9fa5d6b9e785f389d
repaginate/2d31f356c37dadd04b83ecc4e9a739a0.pdf bc04b61b41cb51f6a1c1da79fb387795
repaginate/2fac0d9a189ca5fcef8626153d050be8.pdf 95fe3d9258ace5bdccb95a55c2c8cb22
repaginate/319c998910453bc44d40c7748cd2cb79.pdf c0da6bf6db273bdb1385f408dcf063d0
repaginate/35df0b8cff4afec0c08f08c6a5bc9857.pdf 3568e1c885a461b350c790ec5b729af3
repaginate/365b9c95574ee8944370fe286905d0e8.pdf 84e5fc0d4f30ff8db05780fd244d9cf0
repaginate/4805fdcd7e142e8df3c04c6ba06025af.pdf 3b5b8254dc99c2f0f62fe2afa42fad4e
repaginate/49e31fd074eca6af981d78d42d0078ec.pdf 77fd3fa86c7c0166a373b66cfef357d2
repaginate/536dfc6fbadd87c03eb59375d091eb53.pdf afc90878b1306483dbde37c3a50b6a45
repaginate/569f8094597bbe5b58efc3a7c6e14e87.pdf 894bf526c0a73ab70ebfd9bf3d614315
repaginate/5f0cff36d0ad74536a6513a98a755016.pdf 3298a3a13439764102395a34d571ff69
repaginate/5f265db2736850782aeaba2571a3c749.pdf 2e3046813ce6e40a39bd759a3c8a3c8c
repaginate/6a42c8c79b807bf164d31071749e07b0.pdf bf00d5e44869ae59eb859860d7d5373f
repaginate/6f3a4de5c68ba3b5093e9b54b7c4e9f4.pdf 612cdd84eeac797a1c42fc91756b6d9e
repaginate/7037a992b80b60f0294016037baa9292.pdf dd41b0104f185206b51e7ffe5b07d261
repaginate/707e3e2d17cbe9ec2273414b3b63f333.pdf df4d756e2230c333f0c58ad354b5b51c
repaginate/71a751ce2d93a6a5d6ff21735b701fb7.pdf a825f06c934319b93474902fcf300cd2
repaginate/72eb207b8f882618899aa7a65d3cecda.pdf 0b64f19a8a39fadfa2a3eec3f1a01233
repaginate/97ba0a239cefa0dc727c2f1be050ec6c.pdf a94fe7183ce8979174b2ac16dcd9b1ea
repaginate/9d8626d18b1d8807d271e6ffc409446a.pdf cdfcf8add1af9e612ba1a2ee06a6a273
repaginate/9f98322c243fe67726d56ccfa8e0885b.pdf 69503ac140a1e4f1322f9350646e3dae
repaginate/c55eb9a13859a7fbddd8af9c16eba3a7.pdf 8cddb0f9741f7515107b1bce5dc90c83
repaginate/c5c895deecf7a7565393587e0d61be2b.pdf 59e350c6f7d7b89fab36a4019bb526fd
repaginate/d2f0b2086160d4f3d325c79a5dc1fb4d.pdf 3623b7f200818c63cb6838f9678a4840
repaginate/d6fd9567078b48c86710e9c49173781f.pdf 874b532f61139261f71afb5987dd2a68
repaginate/e9ab02aa769f4c040a6fa52f00d6e3f0.pdf 7d3c3ae13cc7d53e7fa6ef046e15dbaa
repaginate/ec00d5825f47b9d0faa953b1709163c3.pdf 8e6a481476c2b3bdd64ce8e36f8fe273
repaginate/ed81787b83cc317c9f049643b853bea3.pdf 4636b68f294302417b81aaaadde1c73d


simple/06c86654f9a77e82f9adaa0086fc391c.pdf 6e2a2e063de895d28dfea9aacb9fe469
simple/08f69084d72dabc5dfdcf5c1ff2a719f.pdf 5a41601f6033356539e623091a3f79ef
simple/0a61de50b5ee0ea4d5d69c95dab817a3.pdf 182712dd5be8aebd29decb57cf530334
simple/09715ec1a7b0f3a7ae02b3046f627b9f.pdf c4e4b3b725bd5fc3b008f1ac6251ad1c
simple/1975ef8db7355b1d691bc79d0749574b.pdf 475c28c9588f3a7f6110d30f391758c4
simple/1c2af1d2b0db6cac3c8e558a26efd38b.pdf 3f17f19fd92adf01998bb13a0ee52b92
simple/1f5dd128c3757420a881a155f2f8ace3.pdf b0d01f9d6ac156326aeb14b940aa73e7
simple/22628a7ed578b622520325673ab2a4f2.pdf 1163cec415728899e997a29be465d02d
simple/295d26e61a85635433f8e4b768953f60.pdf fe3b8960c7f877db05c7cd12c9c6e097
simple/2ac7c68e26a8ef797aead15e4875cc6d.pdf 2623eae06eada9587574f8ddd7fc80fa
simple/2d31f356c37dadd04b83ecc4e9a739a0.pdf 9af4794d366fbd5840836e6612ceedd2
simple/2fac0d9a189ca5fcef8626153d050be8.pdf 458501ecda909b00262b9654f0b09ebf
simple/319c998910453bc44d40c7748cd2cb79.pdf 8c84e36ec1db8c1dbfaa312646e000b4
simple/35df0b8cff4afec0c08f08c6a5bc9857.pdf 0a2926c23ad916c449d5dadcfa9d38ef
simple/365b9c95574ee8944370fe286905d0e8.pdf cf3bfac41f410bf5bd657e3f906dfbc6
simple/4805fdcd7e142e8df3c04c6ba06025af.pdf 3b5b8254dc99c2f0f62fe2afa42fad4e
simple/49e31fd074eca6af981d78d42d0078ec.pdf 2c316537a5b0917634cbbdc5b91511df
simple/536dfc6fbadd87c03eb59375d091eb53.pdf 319851765c70ba103c4191f7ec2148db
simple/569f8094597bbe5b58efc3a7c6e14e87.pdf 025f1bf95cc537c36b8c3a044758b86c
simple/5f0cff36d0ad74536a6513a98a755016.pdf 8476fd75e75394fcbbe02816d0640e7d
simple/5f265db2736850782aeaba2571a3c749.pdf d4d2e93ab22e866c86e32da84421f6f9
simple/6a42c8c79b807bf164d31071749e07b0.pdf 221fec351c925a43f5f409fe03d90013
simple/6f3a4de5c68ba3b5093e9b54b7c4e9f4.pdf fe8dd16dd7fef40338140e0610d0cbbf
simple/7037a992b80b60f0294016037baa9292.pdf 6a2ef24e5f74dd74969ff8cefdfc6a05
simple/707e3e2d17cbe9ec2273414b3b63f333.pdf fb6a8eb3cdc2fbef125babe8815f3b70
simple/71a751ce2d93a6a5d6ff21735b701fb7.pdf a825f06c934319b93474902fcf300cd2
simple/72eb207b8f882618899aa7a65d3cecda.pdf 4ce7ff29531cc417c26389af28dc1c5e
simple/97ba0a239cefa0dc727c2f1be050ec6c.pdf c24873bab85b8ecc7c5433d8d802bceb
simple/9d8626d18b1d8807d271e6ffc409446a.pdf 2358d654bf20d2b9d179ab009a615c4e
simple/9f98322c243fe67726d56ccfa8e0885b.pdf 9290b4c32f005e1e4c7f431955246c4c
simple/c55eb9a13859a7fbddd8af9c16eba3a7.pdf 6b406128e0ed1ac23dc5a0ee34d1f717
simple/c5c895deecf7a7565393587e0d61be2b.pdf 2cc3c75e56d5dd562ca5b1f994bd9d5c
simple/d2f0b2086160d4f3d325c79a5dc1fb4d.pdf 2083f0e55cf06d88df02956a21bfef23
simple/d6fd9567078b48c86710e9c49173781f.pdf 77464ec5cfdacb61a73b506bc4945631
simple/e9ab02aa769f4c040a6fa52f00d6e3f0.pdf 5bc96989bc4f4b6438da953443336124
simple/ec00d5825f47b9d0faa953b1709163c3.pdf 708f66049169c28ac39b0553908dc318
simple/ed81787b83cc317c9f049643b853bea3.pdf c227d627217dc6808c50e80063734d27


decompress/06c86654f9a77e82f9adaa0086fc391c.pdf 6e2a2e063de895d28dfea9aacb9fe469
decompress/07b0ba4cff1c6ff73fd468b04b013457.pdf 499b9c1b1e1c76b7c5c0d5e3b62889e3
decompress/08f69084d72dabc5dfdcf5c1ff2a719f.pdf ccadb859eff77d525bf86f6d821ccf1b
decompress/09715ec1a7b0f3a7ae02b3046f627b9f.pdf 2b9c8b26a92c7645cfefa1bfa8a8ab36
decompress/0a61de50b5ee0ea4d5d69c95dab817a3.pdf 182712dd5be8aebd29decb57cf530334
decompress/1975ef8db7355b1d691bc79d0749574b.pdf a7d5eaf0a4259352898047f284e20b90
decompress/1c2af1d2b0db6cac3c8e558a26efd38b.pdf 40d1cc7e26213510319b519032aff637
decompress/1f5dd128c3757420a881a155f2f8ace3.pdf b0d01f9d6ac156326aeb14b940aa73e7
decompress/22628a7ed578b622520325673ab2a4f2.pdf b68c7bf46ad4b70addc3369ba669dc7b
decompress/295d26e61a85635433f8e4b768953f60.pdf 6f2ae8fb0ff853ed63537d8767ce13ad
decompress/2ac7c68e26a8ef797aead15e4875cc6d.pdf d8d5589991ce15c834f35b340e7147a9
decompress/2d31f356c37dadd04b83ecc4e9a739a0.pdf 5a6b732690c42f07ae6a41c37cf28ff3
decompress/2fac0d9a189ca5fcef8626153d050be8.pdf 998366ad30becd31bed711ba78c59a7f
decompress/319c998910453bc44d40c7748cd2cb79.pdf 7933a591caf3d49e45a42733bc48f99e
decompress/35df0b8cff4afec0c08f08c6a5bc9857.pdf e339ae7747898d2faba270473171692a
decompress/365b9c95574ee8944370fe286905d0e8.pdf 9da0100b5844c86e93093d0fbc78b3f6
decompress/4805fdcd7e142e8df3c04c6ba06025af.pdf 3b5b8254dc99c2f0f62fe2afa42fad4e
decompress/49e31fd074eca6af981d78d42d0078ec.pdf 4e9bf31753ff7232de4c612a31bd21fc
decompress/536dfc6fbadd87c03eb59375d091eb53.pdf f755d2ef6052270121168d2341ad04b6
decompress/569f8094597bbe5b58efc3a7c6e14e87.pdf aa782a7d553ec767ab61517996337f58
decompress/5f0cff36d0ad74536a6513a98a755016.pdf 9caae4e3a21eba9e4aa76620e7508d56
decompress/5f265db2736850782aeaba2571a3c749.pdf 836abcf6e6e1d39ad96481eb20e9b149
decompress/6a42c8c79b807bf164d31071749e07b0.pdf 221fec351c925a43f5f409fe03d90013
decompress/6f3a4de5c68ba3b5093e9b54b7c4e9f4.pdf 226773cac79e1a5fed1379a0501a5df0
decompress/7037a992b80b60f0294016037baa9292.pdf c9a3602b26d82ae145d9f5822125a158
decompress/707e3e2d17cbe9ec2273414b3b63f333.pdf 3250a56e14a9855eccd67bb347808d24
decompress/71a751ce2d93a6a5d6ff21735b701fb7.pdf a825f06c934319b93474902fcf300cd2
decompress/72eb207b8f882618899aa7a65d3cecda.pdf a4366874fb6db1d9a0c998361ea32b8d
decompress/97ba0a239cefa0dc727c2f1be050ec6c.pdf c24873bab85b8ecc7c5433d8d802bceb
decompress/9d8626d18b1d8807d271e6ffc409446a.pdf 6498bd354bb221516517a4c49bcb94f6
decompress/9f98322c243fe67726d56ccfa8e0885b.pdf 4b53b63b0779b81d8f9569e66ca3d8ee
decompress/b107669d1dd69eabb89765fabb2cb321.pdf 56025c06ab8633575ddc6c6990d2fbf1
decompress/b1c400de699af29ea3f1983bb26870ab.pdf 08a5de62129a96d8d9a8f27052bfb227
decompress/c55eb9a13859a7fbddd8af9c16eba3a7.pdf 8e0eb14c12fc89e7cbb4001861d7198f
decompress/c5c895deecf7a7565393587e0d61be2b.pdf 2cc3c75e56d5dd562ca5b1f994bd9d5c
decompress/d2f0b2086160d4f3d325c79a5dc1fb4d.pdf aaed7215c60dbf19bb4fefe88602196a
decompress/d6fd9567078b48c86710e9c49173781f.pdf 1fd1b4bc184e64ea6260c30261adf9c4
decompress/e9ab02aa769f4c040a6fa52f00d6e3f0.pdf 62b87ec47f1b93d75c32d0c78b6c2380
decompress/ec00d5825f47b9d0faa953b1709163c3.pdf 708f66049169c28ac39b0553908dc318
decompress/ed81787b83cc317c9f049643b853bea3.pdf 5c0a3bc5b19d58d48767bff8f31daae0

compress/06c86654f9a77e82f9adaa0086fc391c.pdf b6fb771b49971f2b63a197f3ef1531aa
compress/07b0ba4cff1c6ff73fd468b04b013457.pdf 499b9c1b1e1c76b7c5c0d5e3b62889e3
compress/08f69084d72dabc5dfdcf5c1ff2a719f.pdf 3e7e53a92f96d52bbffe3ffa03d7b11e
compress/09715ec1a7b0f3a7ae02b3046f627b9f.pdf 563ffde527978517393d9166b02c17d3
compress/0a61de50b5ee0ea4d5d69c95dab817a3.pdf 182712dd5be8aebd29decb57cf530334
compress/1975ef8db7355b1d691bc79d0749574b.pdf d505caa75f8becea1a1c810f4a143976
compress/1c2af1d2b0db6cac3c8e558a26efd38b.pdf b78f4e45aef4149a068a0225ea1be88c
compress/1f5dd128c3757420a881a155f2f8ace3.pdf 22148c2a65129f936b8e8c67397e5bf6
compress/22628a7ed578b622520325673ab2a4f2.pdf 54ec1fa64e64bfd146f13001444346f4
compress/295d26e61a85635433f8e4b768953f60.pdf 2ed8eb04a8c66138883a43917cd9c0c5
compress/2ac7c68e26a8ef797aead15e4875cc6d.pdf efe942d1e5b9f2f139c7e1f2e46ced24
compress/2d31f356c37dadd04b83ecc4e9a739a0.pdf eedc938e6782e1d15755b5c54fffc17c
compress/2fac0d9a189ca5fcef8626153d050be8.pdf 2d1b8e82cdc82c82bec3969acf026d30
compress/319c998910453bc44d40c7748cd2cb79.pdf 5b9ca8444a17db8cb6fa427da7a89e44
compress/35df0b8cff4afec0c08f08c6a5bc9857.pdf 07c064df0fc0fd0c80c4a196b4c38403
compress/365b9c95574ee8944370fe286905d0e8.pdf 1b98e92f74c2f5324cce5fc8fbe46c15
compress/4805fdcd7e142e8df3c04c6ba06025af.pdf 4aa2e922739ba865da30a9917ddffe8e
compress/49e31fd074eca6af981d78d42d0078ec.pdf 7422b3d205650552ff81bc06c89c13ba
compress/536dfc6fbadd87c03eb59375d091eb53.pdf c18b0f0f8e633fe15b17772c701a76a9
compress/569f8094597bbe5b58efc3a7c6e14e87.pdf 3ee711f7fc678787346dca5d06ee5192
compress/5f0cff36d0ad74536a6513a98a755016.pdf bd2a1edf6299d5dc2e1ad6b5fc8bcc20
compress/5f265db2736850782aeaba2571a3c749.pdf bb4898beac50171de7502f13925af80c
compress/6a42c8c79b807bf164d31071749e07b0.pdf 221fec351c925a43f5f409fe03d90013
compress/6f3a4de5c68ba3b5093e9b54b7c4e9f4.pdf 1c3fbae41e7cad7deca13fab93514bc7
compress/7037a992b80b60f0294016037baa9292.pdf 9182a9765544e4a91404db65a6f951d7
compress/707e3e2d17cbe9ec2273414b3b63f333.pdf 0e75dda73bf18d9968499277ab1a367e
compress/71a751ce2d93a6a5d6ff21735b701fb7.pdf faa7eb31789a3789f65de30a4e58e594
compress/72eb207b8f882618899aa7a65d3cecda.pdf 0155549fc04357220cc6be541dda7bc1
compress/97ba0a239cefa0dc727c2f1be050ec6c.pdf 067bfee3b2bd9c250e7c4157ff543a81
compress/9d8626d18b1d8807d271e6ffc409446a.pdf 7c124d2d0b0c7b21cce91740dfb2a8fd
compress/9f98322c243fe67726d56ccfa8e0885b.pdf 3167fa11a3f1f4a06f90294b21e101b7
compress/b107669d1dd69eabb89765fabb2cb321.pdf 56025c06ab8633575ddc6c6990d2fbf1
compress/b1c400de699af29ea3f1983bb26870ab.pdf 6eaeef32b0e28959e7681c8b02d8814f
compress/c55eb9a13859a7fbddd8af9c16eba3a7.pdf 6ef82921011eb79a9d860214e213c868
compress/c5c895deecf7a7565393587e0d61be2b.pdf 30d87ac6aa59d65169c389ee3badbca8
compress/d2f0b2086160d4f3d325c79a5dc1fb4d.pdf e4c768be930e9980c970d51d5f447e24
compress/d6fd9567078b48c86710e9c49173781f.pdf cbc8922b8bea08928463b287767ec229
compress/e9ab02aa769f4c040a6fa52f00d6e3f0.pdf e893e407b3c2366d4ca822ce80b45c2c
compress/ec00d5825f47b9d0faa953b1709163c3.pdf 9ba3db0dedec74c3d2a6f033f1b22a81
compress/ed81787b83cc317c9f049643b853bea3.pdf 2ceda401f68a44a3fb1da4e0f9dfc578







pdfrw-0.4/tests/myprofile.py

import cProfile
import unittest
import test_roundtrip

cProfile.run('unittest.main(test_roundtrip)')







pdfrw-0.4/tests/test_examples.py

#! /usr/bin/env python

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
Run from the directory above like so:

   python -m tests.test_examples

A PDF that has been determined to be good or bad
should be added to expected.txt with either a good
checksum, or just the word "fail".

These tests are incomplete, but they allow us to try
out various PDFs.  There is a collection of difficult
PDFs available on github.

In order to use them:

  1) Insure that github.com/pmaupin/static_pdfs is on your path.

  2) Use the imagemagick compare program to look at differences
     between the static_pdfs/global directory and the tmp_results
     directory after you run this.


'''
import sys
import os
import hashlib
import subprocess
import static_pdfs
import expected

from pdfrw.py23_diffs import convert_store
from pdfrw import PdfReader, PdfWriter

try:
    import unittest2 as unittest
except ImportError:
    import unittest


prog_dir = os.path.join(expected.root_dir, '..', 'examples', '%s.py')
prog_dir = os.path.abspath(prog_dir)
dstdir = os.path.join(expected.result_dir, 'examples')
hashfile = os.path.join(expected.result_dir, 'hashes.txt')

lookup = static_pdfs.pdffiles[0]
lookup = dict((os.path.basename(x)[:-4], x) for x in lookup)


class TestOnePdf(unittest.TestCase):

    def do_test(self, params, prev_results=[''], scrub=False):
        params = params.split()
        hashkey = 'examples/%s' % '_'.join(params)
        params = [lookup.get(x, x) for x in params]
        progname = params[0]
        params[0] = prog_dir % progname
        srcf = params[1]
        params.insert(0, sys.executable)
        subdir, progname = os.path.split(progname)
        subdir = os.path.join(dstdir, subdir)
        if not os.path.exists(subdir):
            os.makedirs(subdir)
        os.chdir(subdir)
        dstf = '%s.%s' % (progname, os.path.basename(srcf))
        scrub = scrub and dstf
        dstf = dstf if not scrub else 'final.%s' % dstf
        hash = '------no-file-generated---------'
        expects = expected.results[hashkey]

        # If the test has been deliberately skipped,
        # we are done.  Otherwise, execute it even
        # if we don't know about it yet, so we have
        # results to compare.

        result = 'fail'
        size = 0
        try:
            if 'skip' in expects:
                result = 'skip requested'
                return self.skipTest(result)
            elif 'xfail' in expects:
                result = 'xfail requested'
                return self.fail(result)

            exists = os.path.exists(dstf)
            if expects or not exists:
                if exists:
                    os.remove(dstf)
                if scrub and os.path.exists(scrub):
                    os.remove(scrub)
                subprocess.call(params)
                if scrub:
                    PdfWriter(dstf).addpages(PdfReader(scrub).pages).write()
            with open(dstf, 'rb') as f:
                data = f.read()
            size = len(data)
            if data:
                hash = hashlib.md5(data).hexdigest()
                lookup[hash] = dstf
                prev_results[0] = hash
            else:
                os.remove(dstf)
            if expects:
                if len(expects) == 1:
                    expects, = expects
                    self.assertEqual(hash, expects)
                else:
                    self.assertIn(hash, expects)
                result = 'pass'
            else:
                result = 'skip'
                self.skipTest('No hash available')
        finally:
            result = '%8d %-20s %s %s\n' % (size, result, hashkey, hash)
            with open(hashfile, 'ab') as f:
                f.write(convert_store(result))

    def test_4up(self):
        self.do_test('4up b1c400de699af29ea3f1983bb26870ab')

    def test_booklet_unspread(self):
        prev = [None]
        self.do_test('booklet b1c400de699af29ea3f1983bb26870ab', prev)
        if prev[0] is not None:
            self.do_test('unspread ' + prev[0])
            self.do_test('extract  ' + prev[0])

    def test_print_two(self):
        self.do_test('print_two b1c400de699af29ea3f1983bb26870ab')

    def test_watermarks(self):
        self.do_test('watermark b1c400de699af29ea3f1983bb26870ab '
                     '06c86654f9a77e82f9adaa0086fc391c')
        self.do_test('watermark b1c400de699af29ea3f1983bb26870ab '
                     '06c86654f9a77e82f9adaa0086fc391c -u')

    def test_subset(self):
        self.do_test('subset b1c400de699af29ea3f1983bb26870ab 1-3 5')

    def test_alter(self):
        self.do_test('alter b1c400de699af29ea3f1983bb26870ab')

    def test_cat(self):
        self.do_test('cat b1c400de699af29ea3f1983bb26870ab '
                     '06c86654f9a77e82f9adaa0086fc391c')

    def test_rotate(self):
        self.do_test('rotate 707e3e2d17cbe9ec2273414b3b63f333 '
                     '270 1-4 7-8 10-50 52-56')

    def test_poster(self):
        prev = [None]
        self.do_test('subset 1975ef8db7355b1d691bc79d0749574b 21', prev)
        self.do_test('rotate %s 90 1' % prev[0], prev)
        self.do_test('poster %s' % prev[0], prev)

    def test_extract(self):
        self.do_test('extract 1975ef8db7355b1d691bc79d0749574b')
        self.do_test('extract c5c895deecf7a7565393587e0d61be2b')

    def test_rl1_4up(self):
        if sys.version_info < (2, 7):
            return
        self.do_test('rl1/4up     b1c400de699af29ea3f1983bb26870ab',
                     scrub=True)

    def test_rl1_booklet(self):
        if sys.version_info < (2, 7):
            return
        self.do_test('rl1/booklet b1c400de699af29ea3f1983bb26870ab',
                     scrub=True)

    def test_rl1_subset(self):
        if sys.version_info < (2, 7):
            return
        self.do_test('rl1/subset  b1c400de699af29ea3f1983bb26870ab 3 5',
                     scrub=True)

    def test_rl1_platypus(self):
        if sys.version_info < (2, 7):
            return
        self.do_test('rl1/platypus_pdf_template b1c400de699af29ea3f1983bb26870ab',
                     scrub=True)

def main():
    unittest.main()

if __name__ == '__main__':
    main()







pdfrw-0.4/tests/test_pdfdict.py

#! /usr/bin/env python
# encoding: utf-8
# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2017 Patrick Maupin, Austin, Texas
#                    2016 James Laird-Wah, Sydney, Australia
# MIT license -- See LICENSE.txt for details

'''
Run from the directory above like so:
python -m tests.test_pdfstring
'''


from pdfrw import PdfDict, PdfName
from pdfrw.objects import PdfIndirect

import unittest


class TestPdfDicts(unittest.TestCase):
    
    def test_indirect_set_get(self):
        io = PdfIndirect((1,2,3))
        io.value = 42
        d = PdfDict()
        d.Name = io
        test, = (x for x in dict.values(d))
        self.assertEqual(test, io)
        v = d['/Name']
        self.assertEqual(v, io.value)
        test, = d
        self.assertEqual(type(test), type(PdfName.Name))

def main():
    unittest.main()


if __name__ == '__main__':
    main()







pdfrw-0.4/tests/test_pdfreader_init.py

#! /usr/bin/env python
import static_pdfs

from pdfrw import PdfReader

try:
    import unittest2 as unittest
except ImportError:
    import unittest


class TestPdfReaderInit(unittest.TestCase):

    def test_fname_binary_filelike(self):
        with open(static_pdfs.pdffiles[0][0], 'rb') as pdf_file:
            PdfReader(pdf_file)

    def test_fdata_binary(self):
        with open(static_pdfs.pdffiles[0][0], 'rb') as pdf_file:
            pdf_bytes = pdf_file.read()
            PdfReader(fdata=pdf_bytes)


def main():
    unittest.main()

if __name__ == '__main__':
    main()







pdfrw-0.4/tests/test_pdfstring.py

#! /usr/bin/env python
# encoding: utf-8
# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2006-2017 Patrick Maupin, Austin, Texas
#                    2016 James Laird-Wah, Sydney, Australia
# MIT license -- See LICENSE.txt for details

'''
Run from the directory above like so:
python -m tests.test_pdfstring
'''


from pdfrw import PdfString
from pdfrw.py23_diffs import convert_store

import unittest


class TestBaseEncoding(unittest.TestCase):

    def encode(self, value):
        x = PdfString.encode(value)
        if isinstance(value, type(u'')):
            y = PdfString.from_unicode(value)
        else:
            y = PdfString.from_bytes(value)
        self.assertEqual(x, y)
        return x

    def decode(self, value):
        s = PdfString(value)
        x = s.to_unicode()
        y = s.decode()
        self.assertEqual(x, y)
        return x

    def decode_bytes(self, decode_this, expected):
        """ Decode to bytes"""
        self.assertEqual(PdfString(decode_this).to_bytes(),
                         convert_store(expected))

    def roundtrip(self, value, expected=None):
        result = self.encode(value)
        self.assertEqual(value, self.decode(result))
        if expected is not None:
            self.assertEqual(result, expected)
        return result

    def test_doubleslash(self):
        self.roundtrip('\\')
        self.roundtrip(r'\\')

    def test_unicode_encoding(self):
        # These chars are in PdfDocEncoding
        self.assertEqual(self.roundtrip(u'PDF™©®')[0], '(')
        # These chars are not in PdfDocEncoding
        self.assertEqual(self.roundtrip(u'δΩσ')[0], '<')
        # Check that we're doing a reasonable encoding
        # Might want to change this later if we change the definition of reasonable
        self.roundtrip(u'(\n\u00FF', '(\\(\n\xff)')
        self.roundtrip(u'(\n\u0101', '<FEFF0028000A0101>')


    def test_constructor(self):
        obj = PdfString('hello')

    def test_continuation(self):
        # See PDF 1.7 ref section 3.2 page 55
        s1 = PdfString('(These two strings are the same.)')
        self.assertEqual(s1.decode(), s1[1:-1])
        s2 = PdfString('(These \\\ntwo strings \\\nare the same.)')
        self.assertEqual(s1.decode(), s2.decode())
        s2 = PdfString(s2.replace('\n', '\r'))
        self.assertEqual(s1.decode(), s2.decode())
        s2 = PdfString(s2.replace('\r', '\r\n'))
        self.assertEqual(s1.decode(), s2.decode())

    def test_hex_whitespace(self):
        # See PDF 1.7 ref section 3.2 page 56
        self.assertEqual(self.decode('<41 \n\r\t\f\v42>'), 'AB')

    def test_unicode_escaped_decode(self):
        # Some PDF producers happily put unicode strings in PdfDocEncoding,
        # because the Unicode BOM and \0 are valid code points
        decoded = self.decode('(\xfe\xff\0h\0e\0l\0l\0o)')
        self.assertEqual(decoded, "hello")


    def test_unescaping(self):
        self.decode_bytes(r'( \( \) \\ \n \t \f \r \r\n \\n)',
                           ' ( ) \\ \n \t \f \r \r\n \\n')

        self.decode_bytes(r'(\b\010\10)', '\b\b\b')
        self.decode_bytes('(\\n\n\\r\r\\t\t\\b\b\\f\f()\\1\\23\\0143)',
                          '\n\n\r\r\t\t\b\b\f\f()\001\023\f3')
        self.decode_bytes(r'(\\\nabc)', '\\\nabc')
        self.decode_bytes(r'(\ )', ' ')

    def test_BOM_variants(self):
        self.roundtrip(u'\ufeff', '<FEFFFEFF>')
        self.roundtrip(u'\ufffe', '<FEFFFFFE>')
        self.roundtrip(u'\xfe\xff', '<FEFF00FE00FF>')
        self.roundtrip(u'\xff\xfe', '(\xff\xfe)')
        self.assertRaises(UnicodeError, PdfString.from_unicode,
                          u'þÿ blah', text_encoding='pdfdocencoding')

    def test_byte_encode(self):
        self.assertEqual(self.encode(b'ABC'), '(ABC)')

    def test_nullstring(self):
        self.assertEqual(PdfString('<>').to_bytes(), b'')
        self.assertEqual(PdfString('()').to_bytes(), b'')

def main():
    unittest.main()


if __name__ == '__main__':
    main()







pdfrw-0.4/tests/test_roundtrip.py

#! /usr/bin/env python

# A part of pdfrw (https://github.com/pmaupin/pdfrw)
# Copyright (C) 2015 Patrick Maupin, Austin, Texas
# MIT license -- See LICENSE.txt for details

'''
Run from the directory above like so:

   python -m tests.test_roundtrip

A PDF that has been determined to be good or bad
should be added to expected.txt with either a good
checksum, or just the word "fail".

These tests are incomplete, but they allow us to try
out various PDFs.  There is a collection of difficult
PDFs available on github.

In order to use them:

  1) Insure that github.com/pmaupin/static_pdfs is on your path.

  2) Use the imagemagick compare program to look at differences
     between the static_pdfs/global directory and the tmp_results
     directory after you run this.


'''
import os
import hashlib
import pdfrw
import static_pdfs
import expected

from pdfrw.py23_diffs import convert_store

try:
    import unittest2 as unittest
except ImportError:
    import unittest


class TestOnePdf(unittest.TestCase):

    def roundtrip(self, testname, basename, srcf, decompress=False,
                  compress=False, repaginate=False):
        dstd = os.path.join(expected.result_dir, testname)
        if not os.path.exists(dstd):
            os.makedirs(dstd)
        dstf = os.path.join(dstd, basename)
        hashfile = os.path.join(expected.result_dir, 'hashes.txt')
        hashkey = '%s/%s' % (testname, basename)
        hash = '------no-file-generated---------'
        expects = expected.results[hashkey]

        # If the test has been deliberately skipped,
        # we are done.  Otherwise, execute it even
        # if we don't know about it yet, so we have
        # results to compare.

        result = 'fail'
        size = 0
        try:
            if 'skip' in expects:
                result = 'skip requested'
                return self.skipTest(result)
            elif 'xfail' in expects:
                result = 'xfail requested'
                return self.fail(result)

            exists = os.path.exists(dstf)
            if expects or not exists:
                if exists:
                    os.remove(dstf)
                trailer = pdfrw.PdfReader(srcf, decompress=decompress,
                                          verbose=False)
                if trailer.Encrypt:
                    result = 'skip -- encrypt'
                    hash = '------skip-encrypt-no-file------'
                    return self.skipTest('File encrypted')
                writer = pdfrw.PdfWriter(dstf, compress=compress)
                if repaginate:
                    writer.addpages(trailer.pages)
                else:
                    writer.trailer = trailer
                writer.write()
            with open(dstf, 'rb') as f:
                data = f.read()
            size = len(data)
            if data:
                hash = hashlib.md5(data).hexdigest()
            else:
                os.remove(dstf)
            if expects:
                if len(expects) == 1:
                    expects, = expects
                    self.assertEqual(hash, expects)
                else:
                    self.assertIn(hash, expects)
                result = 'pass'
            else:
                result = 'skip'
                self.skipTest('No hash available')
        finally:
            result = '%8d %-20s %s %s\n' % (size, result, hashkey, hash)
            with open(hashfile, 'ab') as f:
                f.write(convert_store(result))


def build_tests():
    def test_closure(*args, **kw):
        def test(self):
            self.roundtrip(*args, **kw)
        return test
    for mytest, repaginate, decompress, compress in (
            ('simple', False, False, False),
            ('repaginate', True, False, False),
            ('decompress', False, True, False),
            ('compress', False, True, True),
            ):
        for srcf in static_pdfs.pdffiles[0]:
            basename = os.path.basename(srcf)
            test_name = 'test_%s_%s' % (mytest, basename)
            test = test_closure(mytest, basename, srcf,
                                repaginate=repaginate,
                                decompress=decompress,
                                compress=compress,
                                )
            setattr(TestOnePdf, test_name, test)
build_tests()


def main():
    unittest.main()

if __name__ == '__main__':
    main()







pdfrw-0.4/tests/update_expected.py

#! /usr/bin/env python2
"""
Put old (good) results in ramdisk/reference,
then generate new (unknown) test results in ramdisk/tmp_results,
THEN SWITCH BACK TO KNOWN GOOD SYSTEM, and finally:

run this to update any checksums in expected.txt where both versions
parse to same PDFs.
"""

import os
import hashlib
from pdfrw import PdfReader, PdfWriter, PdfArray, PdfDict, PdfObject


def make_canonical(trailer):
    ''' Canonicalizes a PDF.  Assumes everything
        is a Pdf object already.
    '''
    visited = set()
    workitems = list(trailer.values())
    while workitems:
        obj = workitems.pop()
        objid = id(obj)
        if objid in visited:
            continue
        visited.add(objid)
        obj.indirect = True
        if isinstance(obj, (PdfArray, PdfDict)):
            if isinstance(obj, PdfArray):
                workitems += obj
            else:
                workitems += obj.values()
    return trailer

with open('expected.txt', 'rb') as f:
    expected = f.read()

def get_digest(fname):
        with open(fname, 'rb') as f:
            data = f.read()
        if data:
            return hashlib.md5(data).hexdigest()

tmp = '_temp.pdf'
count = 0
goodcount = 0

changes = []
for (srcpath, _, filenames) in os.walk('ramdisk/reference'):
    for name in filenames:
        if not name.endswith('.pdf'):
            continue
        src = os.path.join(srcpath, name)
        dst = src.replace('/reference/', '/tmp_results/')
        if not os.path.exists(dst):
            continue
        src_digest = get_digest(src)
        if not src_digest or src_digest not in expected:
            continue
        print src
        count += 1
        trailer = make_canonical(PdfReader(src))
        out = PdfWriter(tmp)
        out.write(trailer=trailer)
        match_digest = get_digest(tmp)
        if not match_digest:
            continue
        trailer = make_canonical(PdfReader(dst))
        out = PdfWriter(tmp)
        out.write(trailer=trailer)
        if get_digest(tmp) != match_digest:
            continue
        goodcount += 1
        print "OK"
        changes.append((src_digest, get_digest(dst)))

print count, goodcount

for stuff in changes:
    expected = expected.replace(*stuff)

with open('expected.txt', 'wb') as f:
    f.write(expected)







pdfrw-0.4/.gitignore

# OSX
.DS_Store
.AppleDouble
.LSOverride
Icon

# Thumbnails
._*

# Files that might appear on external disk
.Spotlight-V100
.Trashes


# Development artifacts
diffs.txt
examples/*.pdf
examples/rl*/*.pdf
tests/*.pdf
examples/pdfrw
examples/rl*/pdfrw
tests/pdfrw
tests/static_pdfs
tests/ramdisk
tests/saved_results
tests/tmp_results
wiki/


# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

# Distribution / packaging
.Python
env/
bin/
build/
develop-eggs/
dist/
eggs/
lib/
lib64/
lib64
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg
pyvenv.cfg
pip-selfcheck.json

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.cache
nosetests.xml
coverage.xml

# Sphinx documentation
docs/_build/







pdfrw-0.4/.travis.yml

language: python
python:
  - "2.6"
  - "2.7"
  - "3.3"
  - "3.4"
  - "3.5"
  - "3.6"
  - "nightly"
# command to install dependencies
before_install:
  - "git clone https://github.com/pmaupin/static_pdfs tests/static_pdfs"
install:
  - "pip install ."
  - "pip install reportlab || true"
  - "pip install PyCrypto || true"
  - "pip install zlib || true"
  - "pip install unittest2 || true"
# command to run tests
script: "cd tests; /usr/bin/env PYTHONPATH=. py.test"







pdfrw-0.4/LICENSE.txt

pdfrw (github.com/pmaupin/pdfrw)

The majority of pdfrw was written by Patrick Maupin and is licensed
under the MIT license (reproduced below).  Other contributors include
Attila Tajti and Nerijus Mika.  It appears that some of the decompression
code was based on the decompressor from PyPDF2, which was written by
Mathieu Fenniak and licensed under the BSD license (also reproduced below).

Please add any missing authors here:

Copyright (c) 2006-2017  Patrick Maupin. All rights reserved.
Copyright (c) 2006       Mathieu Fenniak. All rights reserved.
Copyright (c) 2010       Attila Tajti. All rights reserved.
Copyright (c) 2012       Nerijus Mika. All rights reserved.
Copyright (c) 2015       Bastien Gandouet. All rights reserved.
Copyright (c) 2015       Tzerjen Wei. All rights reserved.
Copyright (c) 2015       Jorj X. McKie. All rights reserved.
Copyright (c) 2015       Nicholas Devenish. All rights reserved.
Copyright (c) 2015-2016  Jonatan Dellagostin. All rights reserved.
Copyright (c) 2016-2017  Thomas Kluyver. All rights reserved.
Copyright (c) 2016       James Laird-Wah. All rights reserved.
Copyright (c) 2016       Marcus Brinkmann. All rights reserved.
Copyright (c) 2016       Edward Betts. All rights reserved.
Copyright (c) 2016       Patrick Mazulo. All rights reserved.
Copyright (c) 2017       Haochen Wu. All rights reserved.
Copyright (c) 2017       Jon Lund Steffensen. All rights reserved.


MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.


BSD License:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright notice,
  this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.
* The name of the author may not be used to endorse or promote products
  derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.







pdfrw-0.4/MANIFEST.in

include *.txt *.in *.rst
recursive-include examples *.txt *.py
recursive-include tests *.py







pdfrw-0.4/README.rst

==================
pdfrw 0.4
==================

:Author: Patrick Maupin

.. contents::
    :backlinks: none

.. sectnum::

Introduction
============

**pdfrw** is a Python library and utility that reads and writes PDF files:

* Version 0.4 is tested and works on Python 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6
* Operations include subsetting, merging, rotating, modifying metadata, etc.
* The fastest pure Python PDF parser available
* Has been used for years by a printer in pre-press production
* Can be used with rst2pdf to faithfully reproduce vector images
* Can be used either standalone, or in conjunction with `reportlab`__
  to reuse existing PDFs in new ones
* Permissively licensed

__ http://www.reportlab.org/


pdfrw will faithfully reproduce vector formats without
rasterization, so the rst2pdf package has used pdfrw
for PDF and SVG images by default since March 2010.

pdfrw can also be used in conjunction with reportlab, in order
to re-use portions of existing PDFs in new PDFs created with
reportlab.


Examples
=========

The library comes with several examples that show operation both with
and without reportlab.


All examples
------------------

The examples directory has a few scripts which use the library.
Note that if these examples do not work with your PDF, you should
try to use pdftk to uncompress and/or unencrypt them first.

* `4up.py`__ will shrink pages down and place 4 of them on
  each output page.
* `alter.py`__ shows an example of modifying metadata, without
  altering the structure of the PDF.
* `booklet.py`__ shows an example of creating a 2-up output
  suitable for printing and folding (e.g on tabloid size paper).
* `cat.py`__ shows an example of concatenating multiple PDFs together.
* `extract.py`__ will extract images and Form XObjects (embedded pages)
  from existing PDFs to make them easier to use and refer to from
  new PDFs (e.g. with reportlab or rst2pdf).
* `poster.py`__ increases the size of a PDF so it can be printed
  as a poster.
* `print_two.py`__ Allows creation of 8.5 X 5.5" booklets by slicing
  8.5 X 11" paper apart after printing.
* `rotate.py`__ Rotates all or selected pages in a PDF.
* `subset.py`__ Creates a new PDF with only a subset of pages from the
  original.
* `unspread.py`__ Takes a 2-up PDF, and splits out pages.
* `watermark.py`__ Adds a watermark PDF image over or under all the pages
  of a PDF.
* `rl1/4up.py`__ Another 4up example, using reportlab canvas for output.
* `rl1/booklet.py`__ Another booklet example, using reportlab canvas for
  output.
* `rl1/subset.py`__ Another subsetting example, using reportlab canvas for
  output.
* `rl1/platypus_pdf_template.py`__ Another watermarking example, using
  reportlab canvas and generated output for the document.  Contributed
  by user asannes.
* `rl2`__ Experimental code for parsing graphics.  Needs work.
* `subset_booklets.py`__ shows an example of creating a full printable pdf
  version in a more professional and pratical way ( take a look at
  http://www.wikihow.com/Bind-a-Book )

__ https://github.com/pmaupin/pdfrw/tree/master/examples/4up.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/extract.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/poster.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/rotate.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/subset.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/unspread.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/watermark.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/4up.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/booklet.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/subset.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/platypus_pdf_template.py
__ https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/
__ https://github.com/pmaupin/pdfrw/tree/master/examples/subset_booklets.py

Notes on selected examples
------------------------------------

Reorganizing pages and placing them two-up
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A printer with a fancy printer and/or a full-up copy of Acrobat can
easily turn your small PDF into a little booklet (for example, print 4
letter-sized pages on a single 11" x 17").

But that assumes several things, including that the personnel know how
to operate the hardware and software. `booklet.py`__ lets you turn your PDF
into a preformatted booklet, to give them fewer chances to mess it up.

__ https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py

Adding or modifying metadata
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The `cat.py`__ example will accept multiple input files on the command
line, concatenate them and output them to output.pdf, after adding some
nonsensical metadata to the output PDF file.

__ https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py

The `alter.py`__ example alters a single metadata item in a PDF,
and writes the result to a new PDF.

__ https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py


One difference is that, since **cat** is creating a new PDF structure,
and **alter** is attempting to modify an existing PDF structure, the
PDF produced by alter (and also by watermark.py) *should* be
more faithful to the original (except for the desired changes).

For example, the alter.py navigation should be left intact, whereas with
cat.py it will be stripped.


Rotating and doubling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you ever want to print something that is like a small booklet, but
needs to be spiral bound, you either have to do some fancy rearranging,
or just waste half your paper.

The `print_two.py`__ example program will, for example, make two side-by-side
copies each page of of your PDF on a each output sheet.

__ https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py

But, every other page is flipped, so that you can print double-sided and
the pages will line up properly and be pre-collated.

Graphics stream parsing proof of concept
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The `copy.py`__ script shows a simple example of reading in a PDF, and
using the decodegraphics.py module to try to write the same information
out to a new PDF through a reportlab canvas. (If you know about reportlab,
you know that if you can faithfully render a PDF to a reportlab canvas, you
can do pretty much anything else with that PDF you want.) This kind of
low level manipulation should be done only if you really need to.
decodegraphics is really more than a proof of concept than anything
else. For most cases, just use the Form XObject capability, as shown in
the examples/rl1/booklet.py demo.

__ https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/copy.py

pdfrw philosophy
==================

Core library
-------------

The philosophy of the library portion of pdfrw is to provide intuitive
functions to read, manipulate, and write PDF files.  There should be
minimal leakage between abstraction layers, although getting useful
work done makes "pure" functionality separation difficult.

A key concept supported by the library is the use of Form XObjects,
which allow easy embedding of pieces of one PDF into another.

Addition of core support to the library is typically done carefully
and thoughtfully, so as not to clutter it up with too many special
cases.

There are a lot of incorrectly formatted PDFs floating around; support
for these is added in some cases.  The decision is often based on what
acroread and okular do with the PDFs; if they can display them properly,
then eventually pdfrw should, too, if it is not too difficult or costly.

Contributions are welcome; one user has contributed some decompression
filters and the ability to process PDF 1.5 stream objects.  Additional
functionality that would obviously be useful includes additional
decompression filters, the ability to process password-protected PDFs,
and the ability to output linearized PDFs.

Examples
--------

The philosophy of the examples is to provide small, easily-understood
examples that showcase pdfrw functionality.


PDF files and Python
======================

Introduction
------------

In general, PDF files conceptually map quite well to Python. The major
objects to think about are:

-  **strings**. Most things are strings. These also often decompose
   naturally into
-  **lists of tokens**. Tokens can be combined to create higher-level
   objects like
-  **arrays** and
-  **dictionaries** and
-  **Contents streams** (which can be more streams of tokens)

Difficulties
------------

The apparent primary difficulty in mapping PDF files to Python is the
PDF file concept of "indirect objects."  Indirect objects provide
the efficiency of allowing a single piece of data to be referred to
from more than one containing object, but probably more importantly,
indirect objects provide a way to get around the chicken and egg
problem of circular object references when mapping arbitrary data
structures to files. To flatten out a circular reference, an indirect
object is *referred to* instead of being *directly included* in another
object. PDF files have a global mechanism for locating indirect objects,
and they all have two reference numbers (a reference number and a
"generation" number, in case you wanted to append to the PDF file
rather than just rewriting the whole thing).

pdfrw automatically handles indirect references on reading in a PDF
file. When pdfrw encounters an indirect PDF file object, the
corresponding Python object it creates will have an 'indirect' attribute
with a value of True. When writing a PDF file, if you have created
arbitrary data, you just need to make sure that circular references are
broken up by putting an attribute named 'indirect' which evaluates to
True on at least one object in every cycle.

Another PDF file concept that doesn't quite map to regular Python is a
"stream". Streams are dictionaries which each have an associated
unformatted data block. pdfrw handles streams by placing a special
attribute on a subclassed dictionary.

Usage Model
-----------

The usage model for pdfrw treats most objects as strings (it takes their
string representation when writing them to a file). The two main
exceptions are the PdfArray object and the PdfDict object.

PdfArray is a subclass of list with two special features.  First,
an 'indirect' attribute allows a PdfArray to be written out as
an indirect PDF object.  Second, pdfrw reads files lazily, so
PdfArray knows about, and resolves references to other indirect
objects on an as-needed basis.

PdfDict is a subclass of dict that also has an indirect attribute
and lazy reference resolution as well.  (And the subclassed
IndirectPdfDict has indirect automatically set True).

But PdfDict also has an optional associated stream. The stream object
defaults to None, but if you assign a stream to the dict, it will
automatically set the PDF /Length attribute for the dictionary.

Finally, since PdfDict instances are indexed by PdfName objects (which
always start with a /) and since most (all?) standard Adobe PdfName
objects use names formatted like "/CamelCase", it makes sense to allow
access to dictionary elements via object attribute accesses as well as
object index accesses. So usage of PdfDict objects is normally via
attribute access, although non-standard names (though still with a
leading slash) can be accessed via dictionary index lookup.

Reading PDFs
~~~~~~~~~~~~~~~

The PdfReader object is a subclass of PdfDict, which allows easy access
to an entire document::

 >>> from pdfrw import PdfReader
 >>> x = PdfReader('source.pdf')
 >>> x.keys()
 ['/Info', '/Size', '/Root']
 >>> x.Info
 {'/Producer': '(cairo 1.8.6 (http://cairographics.org))',
 '/Creator': '(cairo 1.8.6 (http://cairographics.org))'}
 >>> x.Root.keys()
 ['/Type', '/Pages']

Info, Size, and Root are retrieved from the trailer of the PDF file.

In addition to the tree structure, pdfrw creates a special attribute
named *pages*, that is a list of all the pages in the document. pdfrw
creates the *pages* attribute as a simplification for the user, because
the PDF format allows arbitrarily complicated nested dictionaries to
describe the page order. Each entry in the *pages* list is the PdfDict
object for one of the pages in the file, in order.

::

 >>> len(x.pages)
 1
 >>> x.pages[0]
 {'/Parent': {'/Kids': [{...}], '/Type': '/Pages', '/Count': '1'},
 '/Contents': {'/Length': '11260', '/Filter': None},
 '/Resources': ... (Lots more stuff snipped)
 >>> x.pages[0].Contents
 {'/Length': '11260', '/Filter': None}
 >>> x.pages[0].Contents.stream
 'q\n1 1 1 rg /a0 gs\n0 0 0 RG 0.657436
 w\n0 J\n0 j\n[] 0.0 d\n4 M q' ... (Lots more stuff snipped)

Writing PDFs
~~~~~~~~~~~~~~~

As you can see, it is quite easy to dig down into a PDF document. But
what about when it's time to write it out?

::

    >>> from pdfrw import PdfWriter
    >>> y = PdfWriter()
    >>> y.addpage(x.pages[0])
    >>> y.write('result.pdf')

That's all it takes to create a new PDF. You may still need to read the
`Adobe PDF reference manual`__ to figure out what needs to go *into*
the PDF, but at least you don't have to sweat actually building it
and getting the file offsets right.

__ http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

Manipulating PDFs in memory
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For the most part, pdfrw tries to be agnostic about the contents of
PDF files, and support them as containers, but to do useful work,
something a little higher-level is required, so pdfrw works to
understand a bit about the contents of the containers. For example:

- PDF pages. pdfrw knows enough to find the pages in PDF files you read
 in, and to write a set of pages back out to a new PDF file.
- Form XObjects. pdfrw can take any page or rectangle on a page, and
 convert it to a Form XObject, suitable for use inside another PDF
 file. It knows enough about these to perform scaling, rotation,
 and positioning.
- reportlab objects. pdfrw can recursively create a set of reportlab
 objects from its internal object format. This allows, for example,
 Form XObjects to be used inside reportlab, so that you can reuse
 content from an existing PDF file when building a new PDF with
 reportlab.

There are several examples that demonstrate these features in
the example code directory.

Missing features
~~~~~~~~~~~~~~~~~~~~~~~

Even as a pure PDF container library, pdfrw comes up a bit short. It
does not currently support:

-  Most compression/decompression filters
-  encryption

`pdftk`__ is a wonderful command-line
tool that can convert your PDFs to remove encryption and compression.
However, in most cases, you can do a lot of useful work with PDFs
without actually removing compression, because only certain elements
inside PDFs are actually compressed.

__ https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

Library internals
==================

Introduction
------------

**pdfrw** currently consists of 19 modules organized into a main
package and one sub-package.

The `__init.py__`__ module does the usual thing of importing a few
major attributes from some of the submodules, and the `errors.py`__
module supports logging and exception generation.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/__init__.py
__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/errors.py


PDF object model support
--------------------------

The `objects`__ sub-package contains one module for each of the
internal representations of the kinds of basic objects that exist
in a PDF file, with the `objects/__init__.py`__ module in that
package simply gathering them up and making them available to the
main pdfrw package.

One feature that all the PDF object classes have in common is the
inclusion of an 'indirect' attribute. If 'indirect' exists and evaluates
to True, then when the object is written out, it is written out as an
indirect object. That is to say, it is addressable in the PDF file, and
could be referenced by any number (including zero) of container objects.
This indirect object capability saves space in PDF files by allowing
objects such as fonts to be referenced from multiple pages, and also
allows PDF files to contain internal circular references.  This latter
capability is used, for example, when each page object has a "parent"
object in its dictionary.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/
__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/__init__.py

Ordinary objects
~~~~~~~~~~~~~~~~

The `objects/pdfobject.py`__ module contains the PdfObject class, which is
a subclass of str, and is the catch-all object for any PDF file elements
that are not explicitly represented by other objects, as described below.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfobject.py

Name objects
~~~~~~~~~~~~

The `objects/pdfname.py`__ module contains the PdfName singleton object,
which will convert a string into a PDF name by prepending a slash. It can
be used either by calling it or getting an attribute, e.g.::

    PdfName.Rotate == PdfName('Rotate') == PdfObject('/Rotate')

In the example above, there is a slight difference between the objects
returned from PdfName, and the object returned from PdfObject.  The
PdfName objects are actually objects of class "BasePdfName".  This
is important, because only these may be used as keys in PdfDict objects.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfname.py

String objects
~~~~~~~~~~~~~~

The `objects/pdfstring.py`__
module contains the PdfString class, which is a subclass of str that is
used to represent encoded strings in a PDF file. The class has encode
and decode methods for the strings.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfstring.py

Array objects
~~~~~~~~~~~~~

The `objects/pdfarray.py`__
module contains the PdfArray class, which is a subclass of list that is
used to represent arrays in a PDF file. A regular list could be used
instead, but use of the PdfArray class allows for an indirect attribute
to be set, and also allows for proxying of unresolved indirect objects
(that haven't been read in yet) in a manner that is transparent to pdfrw
clients.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfarray.py

Dict objects
~~~~~~~~~~~~

The `objects/pdfdict.py`__
module contains the PdfDict class, which is a subclass of dict that is
used to represent dictionaries in a PDF file. A regular dict could be
used instead, but the PdfDict class matches the requirements of PDF
files more closely:

* Transparent (from the library client's viewpoint) proxying
 of unresolved indirect objects
* Return of None for non-existent keys (like dict.get)
* Mapping of attribute accesses to the dict itself
 (pdfdict.Foo == pdfdict[NameObject('Foo')])
* Automatic management of following stream and /Length attributes
 for content dictionaries
* Indirect attribute
* Other attributes may be set for private internal use of the
 library and/or its clients.
* Support for searching parent dictionaries for PDF "inheritable"
 attributes.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfdict.py

If a PdfDict has an associated data stream in the PDF file, the stream
is accessed via the 'stream' (all lower-case) attribute. Setting the
stream attribute on the PdfDict will automatically set the /Length attribute
as well. If that is not what is desired (for example if the the stream
is compressed), then _stream (same name with an underscore) may be used
to associate the stream with the PdfDict without setting the length.

To set private attributes (that will not be written out to a new PDF
file) on a dictionary, use the 'private' attribute::

 mydict.private.foo = 1

Once the attribute is set, it may be accessed directly as an attribute
of the dictionary::

 foo = mydict.foo

Some attributes of PDF pages are "inheritable." That is, they may
belong to a parent dictionary (or a parent of a parent dictionary, etc.)
The "inheritable" attribute allows for easy discovery of these::

 mediabox = mypage.inheritable.MediaBox

Proxy objects
~~~~~~~~~~~~~

The `objects/pdfindirect.py`__
module contains the PdfIndirect class, which is a non-transparent proxy
object for PDF objects that have not yet been read in and resolved from
a file. Although these are non-transparent inside the library, client code
should never see one of these -- they exist inside the PdfArray and PdfDict
container types, but are resolved before being returned to a client of
those types.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfindirect.py


File reading, tokenization and parsing
--------------------------------------

`pdfreader.py`__
contains the PdfReader class, which can read a PDF file (or be passed a
file object or already read string) and parse it. It uses the PdfTokens
class in `tokens.py`__  for low-level tokenization.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfreader.py
__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/tokens.py


The PdfReader class does not, in general, parse into containers (e.g.
inside the content streams). There is a proof of concept for doing that
inside the examples/rl2 subdirectory, but that is slow and not well-developed,
and not useful for most applications.

An instance of the PdfReader class is an instance of a PdfDict -- the
trailer dictionary of the PDF file, to be exact.  It will have a private
attribute set on it that is named 'pages' that is a list containing all
the pages in the file.

When instantiating a PdfReader object, there are options available
for decompressing all the objects in the file.  pdfrw does not currently
have very many options for decompression, so this is not all that useful,
except in the specific case of compressed object streams.

Also, there are no options for decryption yet.  If you have PDF files
that are encrypted or heavily compressed, you may find that using another
program like pdftk on them can make them readable by pdfrw.

In general, the objects are read from the file lazily, but this is not
currently true with compressed object streams -- all of these are decompressed
and read in when the PdfReader is instantiated.


File output
-----------

`pdfwriter.py`__
contains the PdfWriter class, which can create and output a PDF file.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfwriter.py

There are a few options available when creating and using this class.

In the simplest case, an instance of PdfWriter is instantiated, and
then pages are added to it from one or more source files (or created
programmatically), and then the write method is called to dump the
results out to a file.

If you have a source PDF and do not want to disturb the structure
of it too badly, then you may pass its trailer directly to PdfWriter
rather than letting PdfWriter construct one for you.  There is an
example of this (alter.py) in the examples directory.


Advanced features
-----------------

`buildxobj.py`__
contains functions to build Form XObjects out of pages or rectangles on
pages.  These may be reused in new PDFs essentially as if they were images.

buildxobj is careful to cache any page used so that it only appears in
the output once.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/buildxobj.py


`toreportlab.py`__
provides the makerl function, which will translate pdfrw objects into a
format which can be used with `reportlab <http://www.reportlab.org/>`__.
It is normally used in conjunction with buildxobj, to be able to reuse
parts of existing PDFs when using reportlab.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/toreportlab.py


`pagemerge.py`__ builds on the foundation laid by buildxobj.  It
contains classes to create a new page (or overlay an existing page)
using one or more rectangles from other pages.  There are examples
showing its use for watermarking, scaling, 4-up output, splitting
each page in 2, etc.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pagemerge.py

`findobjs.py`__ contains code that can find specific kinds of objects
inside a PDF file.  The extract.py example uses this module to create
a new PDF that places each image and Form XObject from a source PDF onto
its own page, e.g. for easy reuse with some of the other examples or
with reportlab.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/findobjs.py


Miscellaneous
----------------

`compress.py`__ and `uncompress.py`__
contains compression and decompression functions. Very few filters are
currently supported, so an external tool like pdftk might be good if you
require the ability to decompress (or, for that matter, decrypt) PDF
files.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/compress.py
__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/uncompress.py


`py23_diffs.py`__ contains code to help manage the differences between
Python 2 and Python 3.

__ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/py23_diffs.py

Testing
===============

The tests associated with pdfrw require a large number of PDFs,
which are not distributed with the library.

To run the tests:

* Download or clone the full package from github.com/pmaupin/pdfrw
* cd into the tests directory, and then clone the package
  github.com/pmaupin/static_pdfs into a subdirectory (also named
  static_pdfs).
* Now the tests may be run from that directory using unittest, or
  py.test, or nose.
* travisci is used at github, and runs the tests with py.test

Other libraries
=====================

Pure Python
-----------

-  `reportlab <http://www.reportlab.org/>`__

    reportlab is must-have software if you want to programmatically
    generate arbitrary PDFs.

-  `pyPdf <https://github.com/mstamy2/PyPDF2>`__

    pyPdf is, in some ways, very full-featured. It can do decompression
    and decryption and seems to know a lot about items inside at least
    some kinds of PDF files. In comparison, pdfrw knows less about
    specific PDF file features (such as metadata), but focuses on trying
    to have a more Pythonic API for mapping the PDF file container
    syntax to Python, and (IMO) has a simpler and better PDF file
    parser.  The Form XObject capability of pdfrw means that, in many
    cases, it does not actually need to decompress objects -- they
    can be left compressed.

-  `pdftools <http://www.boddie.org.uk/david/Projects/Python/pdftools/index.html>`__

    pdftools feels large and I fell asleep trying to figure out how it
    all fit together, but many others have done useful things with it.

-  `pagecatcher <http://www.reportlab.com/docs/pagecatcher-ds.pdf>`__

    My understanding is that pagecatcher would have done exactly what I
    wanted when I built pdfrw. But I was on a zero budget, so I've never
    had the pleasure of experiencing pagecatcher. I do, however, use and
    like `reportlab <http://www.reportlab.org/>`__ (open source, from
    the people who make pagecatcher) so I'm sure pagecatcher is great,
    better documented and much more full-featured than pdfrw.

-  `pdfminer <http://www.unixuser.org/~euske/python/pdfminer/index.html>`__

    This looks like a useful, actively-developed program. It is quite
    large, but then, it is trying to actively comprehend a full PDF
    document. From the website:

    "PDFMiner is a suite of programs that help extracting and analyzing
    text data of PDF documents. Unlike other PDF-related tools, it
    allows to obtain the exact location of texts in a page, as well as
    other extra information such as font information or ruled lines. It
    includes a PDF converter that can transform PDF files into other
    text formats (such as HTML). It has an extensible PDF parser that
    can be used for other purposes instead of text analysis."

non-pure-Python libraries
-------------------------

-  `pyPoppler <https://launchpad.net/poppler-python/>`__ can read PDF
   files.
-  `pycairo <http://www.cairographics.org/pycairo/>`__ can write PDF
   files.
-  `PyMuPDF <https://github.com/rk700/PyMuPDF>`_ high performance rendering
   of PDF, (Open)XPS, CBZ and EPUB

Other tools
-----------

-  `pdftk <https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/>`__ is a wonderful command
   line tool for basic PDF manipulation. It complements pdfrw extremely
   well, supporting many operations such as decryption and decompression
   that pdfrw cannot do.
-  `MuPDF <http://www.mupdf.com/>`_ is a free top performance PDF, (Open)XPS, CBZ and EPUB rendering library
   that also comes with some command line tools. One of those, ``mutool``, has big overlaps with pdftk's - 
   except it is up to 10 times faster.

Release information
=======================

Revisions:

0.4 -- Released 18 September, 2017

    - Python 3.6 added to test matrix
    - Proper unicode support for text strings in PDFs added
    - buildxobj fixes allow better support creating form XObjects
      out of compressed pages in some cases
    - Compression fixes for Python 3+
    - New subset_booklets.py example
    - Bug with non-compressed indices into compressed object streams fixed
    - Bug with distinguishing compressed object stream first objects fixed
    - Better error reporting added for some invalid PDFs (e.g. when reading
      past the end of file)
    - Better scrubbing of old bookmark information when writing PDFs, to
      remove dangling references
    - Refactoring of pdfwriter, including updating API, to allow future
      enhancements for things like incremental writing
    - Minor tokenizer speedup
    - Some flate decompressor bugs fixed
    - Compression and decompression tests added
    - Tests for new unicode handling added
    - PdfReader.readpages() recursion error (issue #92) fixed.
    - Initial crypt filter support added


0.3 -- Released 19 October, 2016.

    - Python 3.5 added to test matrix
    - Better support under Python 3.x for in-memory PDF file-like objects
    - Some pagemerge and Unicode patches added
    - Changes to logging allow better coexistence with other packages
    - Fix for "from pdfrw import \*"
    - New fancy_watermark.py example shows off capabilities of pagemerge.py
    - metadata.py example renamed to cat.py


0.2 -- Released 21 June, 2015.  Supports Python 2.6, 2.7, 3.3, and 3.4.

    - Several bugs have been fixed
    - New regression test functionally tests core with dozens of
      PDFs, and also tests examples.
    - Core has been ported and tested on Python3 by round-tripping
      several difficult files and observing binary matching results
      across the different Python versions.
    - Still only minimal support for compression and no support
      for encryption or newer PDF features.  (pdftk is useful
      to put PDFs in a form that pdfrw can use.)

0.1 -- Released to PyPI in 2012.  Supports Python 2.5 - 2.7








pdfrw-0.4/releasing.txt

Notes on releasing, which is not yet fully automated:

1) Update version number in pdfrw/__init__.py

2) Use pyroma

3) https://packaging.python.org/en/latest/distributing.html

a) python setup.py sdist bdist_wheel
b) twine upload dist/*







pdfrw-0.4/setup.cfg

[bdist_wheel]
universal = 1

[egg_info]
tag_build = 
tag_date = 0








pdfrw-0.4/setup.py

#!/usr/bin/env python

from setuptools import setup
from pdfrw import __version__ as version
from pdfrw.py23_diffs import convert_load

setup(
    name='pdfrw',
    version=version,
    description='PDF file reader/writer library',
    long_description=convert_load(open("README.rst", 'rb').read()),
    author='Patrick Maupin',
    author_email='pmaupin@gmail.com',
    platforms='Independent',
    url='https://github.com/pmaupin/pdfrw',
    packages=['pdfrw', 'pdfrw.objects'],
    license='MIT',
    classifiers=[
        'Development Status :: 4 - Beta',
        'Intended Audience :: Developers',
        'License :: OSI Approved :: MIT License',
        'Operating System :: OS Independent',
        'Programming Language :: Python',
        'Programming Language :: Python :: 2',
        'Programming Language :: Python :: 2.6',
        'Programming Language :: Python :: 2.7',
        'Programming Language :: Python :: 3',
        'Programming Language :: Python :: 3.3',
        'Programming Language :: Python :: 3.4',
        'Programming Language :: Python :: 3.5',
        'Programming Language :: Python :: 3.6',
        'Topic :: Multimedia :: Graphics :: Graphics Conversion',
        'Topic :: Software Development :: Libraries',
        'Topic :: Text Processing',
        'Topic :: Printing',
        'Topic :: Utilities',
    ],
    keywords='pdf vector graphics PDF nup watermark split join merge',
    zip_safe=True,
)







pdfrw-0.4/PKG-INFO

Metadata-Version: 1.1
Name: pdfrw
Version: 0.4
Summary: PDF file reader/writer library
Home-page: https://github.com/pmaupin/pdfrw
Author: Patrick Maupin
Author-email: pmaupin@gmail.com
License: MIT
Description: ==================
        pdfrw 0.4
        ==================
        
        :Author: Patrick Maupin
        
        .. contents::
            :backlinks: none
        
        .. sectnum::
        
        Introduction
        ============
        
        **pdfrw** is a Python library and utility that reads and writes PDF files:
        
        * Version 0.4 is tested and works on Python 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6
        * Operations include subsetting, merging, rotating, modifying metadata, etc.
        * The fastest pure Python PDF parser available
        * Has been used for years by a printer in pre-press production
        * Can be used with rst2pdf to faithfully reproduce vector images
        * Can be used either standalone, or in conjunction with `reportlab`__
          to reuse existing PDFs in new ones
        * Permissively licensed
        
        __ http://www.reportlab.org/
        
        
        pdfrw will faithfully reproduce vector formats without
        rasterization, so the rst2pdf package has used pdfrw
        for PDF and SVG images by default since March 2010.
        
        pdfrw can also be used in conjunction with reportlab, in order
        to re-use portions of existing PDFs in new PDFs created with
        reportlab.
        
        
        Examples
        =========
        
        The library comes with several examples that show operation both with
        and without reportlab.
        
        
        All examples
        ------------------
        
        The examples directory has a few scripts which use the library.
        Note that if these examples do not work with your PDF, you should
        try to use pdftk to uncompress and/or unencrypt them first.
        
        * `4up.py`__ will shrink pages down and place 4 of them on
          each output page.
        * `alter.py`__ shows an example of modifying metadata, without
          altering the structure of the PDF.
        * `booklet.py`__ shows an example of creating a 2-up output
          suitable for printing and folding (e.g on tabloid size paper).
        * `cat.py`__ shows an example of concatenating multiple PDFs together.
        * `extract.py`__ will extract images and Form XObjects (embedded pages)
          from existing PDFs to make them easier to use and refer to from
          new PDFs (e.g. with reportlab or rst2pdf).
        * `poster.py`__ increases the size of a PDF so it can be printed
          as a poster.
        * `print_two.py`__ Allows creation of 8.5 X 5.5" booklets by slicing
          8.5 X 11" paper apart after printing.
        * `rotate.py`__ Rotates all or selected pages in a PDF.
        * `subset.py`__ Creates a new PDF with only a subset of pages from the
          original.
        * `unspread.py`__ Takes a 2-up PDF, and splits out pages.
        * `watermark.py`__ Adds a watermark PDF image over or under all the pages
          of a PDF.
        * `rl1/4up.py`__ Another 4up example, using reportlab canvas for output.
        * `rl1/booklet.py`__ Another booklet example, using reportlab canvas for
          output.
        * `rl1/subset.py`__ Another subsetting example, using reportlab canvas for
          output.
        * `rl1/platypus_pdf_template.py`__ Another watermarking example, using
          reportlab canvas and generated output for the document.  Contributed
          by user asannes.
        * `rl2`__ Experimental code for parsing graphics.  Needs work.
        * `subset_booklets.py`__ shows an example of creating a full printable pdf
          version in a more professional and pratical way ( take a look at
          http://www.wikihow.com/Bind-a-Book )
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/4up.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/extract.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/poster.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rotate.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/subset.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/unspread.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/watermark.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/4up.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/booklet.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/subset.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl1/platypus_pdf_template.py
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/subset_booklets.py
        
        Notes on selected examples
        ------------------------------------
        
        Reorganizing pages and placing them two-up
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 A printer with a fancy printer and/or a full-up copy of Acrobat can
 easily turn your small PDF into a little booklet (for example, print 4
 letter-sized pages on a single 11" x 17").

 But that assumes several things, including that the personnel know how
 to operate the hardware and software. `booklet.py`__ lets you turn your PDF
 into a preformatted booklet, to give them fewer chances to mess it up.

 __ https://github.com/pmaupin/pdfrw/tree/master/examples/booklet.py

 Adding or modifying metadata
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        
        The `cat.py`__ example will accept multiple input files on the command
        line, concatenate them and output them to output.pdf, after adding some
        nonsensical metadata to the output PDF file.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/cat.py
        
        The `alter.py`__ example alters a single metadata item in a PDF,
        and writes the result to a new PDF.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/alter.py
        
        
        One difference is that, since **cat** is creating a new PDF structure,
        and **alter** is attempting to modify an existing PDF structure, the
        PDF produced by alter (and also by watermark.py) *should* be
        more faithful to the original (except for the desired changes).
        
        For example, the alter.py navigation should be left intact, whereas with
        cat.py it will be stripped.
        
        
        Rotating and doubling
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 If you ever want to print something that is like a small booklet, but
 needs to be spiral bound, you either have to do some fancy rearranging,
 or just waste half your paper.

 The `print_two.py`__ example program will, for example, make two side-by-side
 copies each page of of your PDF on a each output sheet.

 __ https://github.com/pmaupin/pdfrw/tree/master/examples/print_two.py

 But, every other page is flipped, so that you can print double-sided and
 the pages will line up properly and be pre-collated.

 Graphics stream parsing proof of concept
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        
        The `copy.py`__ script shows a simple example of reading in a PDF, and
        using the decodegraphics.py module to try to write the same information
        out to a new PDF through a reportlab canvas. (If you know about reportlab,
        you know that if you can faithfully render a PDF to a reportlab canvas, you
        can do pretty much anything else with that PDF you want.) This kind of
        low level manipulation should be done only if you really need to.
        decodegraphics is really more than a proof of concept than anything
        else. For most cases, just use the Form XObject capability, as shown in
        the examples/rl1/booklet.py demo.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/examples/rl2/copy.py
        
        pdfrw philosophy
        ==================
        
        Core library
        -------------
        
        The philosophy of the library portion of pdfrw is to provide intuitive
        functions to read, manipulate, and write PDF files.  There should be
        minimal leakage between abstraction layers, although getting useful
        work done makes "pure" functionality separation difficult.
        
        A key concept supported by the library is the use of Form XObjects,
        which allow easy embedding of pieces of one PDF into another.
        
        Addition of core support to the library is typically done carefully
        and thoughtfully, so as not to clutter it up with too many special
        cases.
        
        There are a lot of incorrectly formatted PDFs floating around; support
        for these is added in some cases.  The decision is often based on what
        acroread and okular do with the PDFs; if they can display them properly,
        then eventually pdfrw should, too, if it is not too difficult or costly.
        
        Contributions are welcome; one user has contributed some decompression
        filters and the ability to process PDF 1.5 stream objects.  Additional
        functionality that would obviously be useful includes additional
        decompression filters, the ability to process password-protected PDFs,
        and the ability to output linearized PDFs.
        
        Examples
        --------
        
        The philosophy of the examples is to provide small, easily-understood
        examples that showcase pdfrw functionality.
        
        
        PDF files and Python
        ======================
        
        Introduction
        ------------
        
        In general, PDF files conceptually map quite well to Python. The major
        objects to think about are:
        
        -  **strings**. Most things are strings. These also often decompose
           naturally into
        -  **lists of tokens**. Tokens can be combined to create higher-level
           objects like
        -  **arrays** and
        -  **dictionaries** and
        -  **Contents streams** (which can be more streams of tokens)
        
        Difficulties
        ------------
        
        The apparent primary difficulty in mapping PDF files to Python is the
        PDF file concept of "indirect objects."  Indirect objects provide
        the efficiency of allowing a single piece of data to be referred to
        from more than one containing object, but probably more importantly,
        indirect objects provide a way to get around the chicken and egg
        problem of circular object references when mapping arbitrary data
        structures to files. To flatten out a circular reference, an indirect
        object is *referred to* instead of being *directly included* in another
        object. PDF files have a global mechanism for locating indirect objects,
        and they all have two reference numbers (a reference number and a
        "generation" number, in case you wanted to append to the PDF file
        rather than just rewriting the whole thing).
        
        pdfrw automatically handles indirect references on reading in a PDF
        file. When pdfrw encounters an indirect PDF file object, the
        corresponding Python object it creates will have an 'indirect' attribute
        with a value of True. When writing a PDF file, if you have created
        arbitrary data, you just need to make sure that circular references are
        broken up by putting an attribute named 'indirect' which evaluates to
        True on at least one object in every cycle.
        
        Another PDF file concept that doesn't quite map to regular Python is a
        "stream". Streams are dictionaries which each have an associated
        unformatted data block. pdfrw handles streams by placing a special
        attribute on a subclassed dictionary.
        
        Usage Model
        -----------
        
        The usage model for pdfrw treats most objects as strings (it takes their
        string representation when writing them to a file). The two main
        exceptions are the PdfArray object and the PdfDict object.
        
        PdfArray is a subclass of list with two special features.  First,
        an 'indirect' attribute allows a PdfArray to be written out as
        an indirect PDF object.  Second, pdfrw reads files lazily, so
        PdfArray knows about, and resolves references to other indirect
        objects on an as-needed basis.
        
        PdfDict is a subclass of dict that also has an indirect attribute
        and lazy reference resolution as well.  (And the subclassed
        IndirectPdfDict has indirect automatically set True).
        
        But PdfDict also has an optional associated stream. The stream object
        defaults to None, but if you assign a stream to the dict, it will
        automatically set the PDF /Length attribute for the dictionary.
        
        Finally, since PdfDict instances are indexed by PdfName objects (which
        always start with a /) and since most (all?) standard Adobe PdfName
        objects use names formatted like "/CamelCase", it makes sense to allow
        access to dictionary elements via object attribute accesses as well as
        object index accesses. So usage of PdfDict objects is normally via
        attribute access, although non-standard names (though still with a
        leading slash) can be accessed via dictionary index lookup.
        
        Reading PDFs
        ~~~~~~~~~~~~~~~

 The PdfReader object is a subclass of PdfDict, which allows easy access
 to an entire document::

 >>> from pdfrw import PdfReader
 >>> x = PdfReader('source.pdf')
 >>> x.keys()
 ['/Info', '/Size', '/Root']
 >>> x.Info
 {'/Producer': '(cairo 1.8.6 (http://cairographics.org))',
 '/Creator': '(cairo 1.8.6 (http://cairographics.org))'}
 >>> x.Root.keys()
 ['/Type', '/Pages']

 Info, Size, and Root are retrieved from the trailer of the PDF file.

 In addition to the tree structure, pdfrw creates a special attribute
 named *pages*, that is a list of all the pages in the document. pdfrw
 creates the *pages* attribute as a simplification for the user, because
 the PDF format allows arbitrarily complicated nested dictionaries to
 describe the page order. Each entry in the *pages* list is the PdfDict
 object for one of the pages in the file, in order.

 ::

 >>> len(x.pages)
 1
 >>> x.pages[0]
 {'/Parent': {'/Kids': [{...}], '/Type': '/Pages', '/Count': '1'},
 '/Contents': {'/Length': '11260', '/Filter': None},
 '/Resources': ... (Lots more stuff snipped)
 >>> x.pages[0].Contents
 {'/Length': '11260', '/Filter': None}
 >>> x.pages[0].Contents.stream
 'q\n1 1 1 rg /a0 gs\n0 0 0 RG 0.657436
 w\n0 J\n0 j\n[] 0.0 d\n4 M q' ... (Lots more stuff snipped)

 Writing PDFs
        ~~~~~~~~~~~~~~~
        
        As you can see, it is quite easy to dig down into a PDF document. But
        what about when it's time to write it out?
        
        ::
        
            >>> from pdfrw import PdfWriter
            >>> y = PdfWriter()
            >>> y.addpage(x.pages[0])
            >>> y.write('result.pdf')
        
        That's all it takes to create a new PDF. You may still need to read the
        `Adobe PDF reference manual`__ to figure out what needs to go *into*
        the PDF, but at least you don't have to sweat actually building it
        and getting the file offsets right.
        
        __ http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
        
        Manipulating PDFs in memory
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 For the most part, pdfrw tries to be agnostic about the contents of
 PDF files, and support them as containers, but to do useful work,
 something a little higher-level is required, so pdfrw works to
 understand a bit about the contents of the containers. For example:

 - PDF pages. pdfrw knows enough to find the pages in PDF files you read
 in, and to write a set of pages back out to a new PDF file.
 - Form XObjects. pdfrw can take any page or rectangle on a page, and
 convert it to a Form XObject, suitable for use inside another PDF
 file. It knows enough about these to perform scaling, rotation,
 and positioning.
 - reportlab objects. pdfrw can recursively create a set of reportlab
 objects from its internal object format. This allows, for example,
 Form XObjects to be used inside reportlab, so that you can reuse
 content from an existing PDF file when building a new PDF with
 reportlab.

 There are several examples that demonstrate these features in
 the example code directory.

 Missing features
        ~~~~~~~~~~~~~~~~~~~~~~~
        
        Even as a pure PDF container library, pdfrw comes up a bit short. It
        does not currently support:
        
        -  Most compression/decompression filters
        -  encryption
        
        `pdftk`__ is a wonderful command-line
        tool that can convert your PDFs to remove encryption and compression.
        However, in most cases, you can do a lot of useful work with PDFs
        without actually removing compression, because only certain elements
        inside PDFs are actually compressed.
        
        __ https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
        
        Library internals
        ==================
        
        Introduction
        ------------
        
        **pdfrw** currently consists of 19 modules organized into a main
        package and one sub-package.
        
        The `__init.py__`__ module does the usual thing of importing a few
        major attributes from some of the submodules, and the `errors.py`__
        module supports logging and exception generation.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/__init__.py
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/errors.py
        
        
        PDF object model support
        --------------------------
        
        The `objects`__ sub-package contains one module for each of the
        internal representations of the kinds of basic objects that exist
        in a PDF file, with the `objects/__init__.py`__ module in that
        package simply gathering them up and making them available to the
        main pdfrw package.
        
        One feature that all the PDF object classes have in common is the
        inclusion of an 'indirect' attribute. If 'indirect' exists and evaluates
        to True, then when the object is written out, it is written out as an
        indirect object. That is to say, it is addressable in the PDF file, and
        could be referenced by any number (including zero) of container objects.
        This indirect object capability saves space in PDF files by allowing
        objects such as fonts to be referenced from multiple pages, and also
        allows PDF files to contain internal circular references.  This latter
        capability is used, for example, when each page object has a "parent"
        object in its dictionary.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/__init__.py
        
        Ordinary objects
        ~~~~~~~~~~~~~~~~

 The `objects/pdfobject.py`__ module contains the PdfObject class, which is
 a subclass of str, and is the catch-all object for any PDF file elements
 that are not explicitly represented by other objects, as described below.

 __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfobject.py

 Name objects
        ~~~~~~~~~~~~
        
        The `objects/pdfname.py`__ module contains the PdfName singleton object,
        which will convert a string into a PDF name by prepending a slash. It can
        be used either by calling it or getting an attribute, e.g.::
        
            PdfName.Rotate == PdfName('Rotate') == PdfObject('/Rotate')
        
        In the example above, there is a slight difference between the objects
        returned from PdfName, and the object returned from PdfObject.  The
        PdfName objects are actually objects of class "BasePdfName".  This
        is important, because only these may be used as keys in PdfDict objects.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfname.py
        
        String objects
        ~~~~~~~~~~~~~~

 The `objects/pdfstring.py`__
 module contains the PdfString class, which is a subclass of str that is
 used to represent encoded strings in a PDF file. The class has encode
 and decode methods for the strings.

 __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfstring.py

 Array objects
        ~~~~~~~~~~~~~
        
        The `objects/pdfarray.py`__
        module contains the PdfArray class, which is a subclass of list that is
        used to represent arrays in a PDF file. A regular list could be used
        instead, but use of the PdfArray class allows for an indirect attribute
        to be set, and also allows for proxying of unresolved indirect objects
        (that haven't been read in yet) in a manner that is transparent to pdfrw
        clients.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfarray.py
        
        Dict objects
        ~~~~~~~~~~~~

 The `objects/pdfdict.py`__
 module contains the PdfDict class, which is a subclass of dict that is
 used to represent dictionaries in a PDF file. A regular dict could be
 used instead, but the PdfDict class matches the requirements of PDF
 files more closely:

 * Transparent (from the library client's viewpoint) proxying
 of unresolved indirect objects
 * Return of None for non-existent keys (like dict.get)
 * Mapping of attribute accesses to the dict itself
 (pdfdict.Foo == pdfdict[NameObject('Foo')])
 * Automatic management of following stream and /Length attributes
 for content dictionaries
 * Indirect attribute
 * Other attributes may be set for private internal use of the
 library and/or its clients.
 * Support for searching parent dictionaries for PDF "inheritable"
 attributes.

 __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfdict.py

 If a PdfDict has an associated data stream in the PDF file, the stream
 is accessed via the 'stream' (all lower-case) attribute. Setting the
 stream attribute on the PdfDict will automatically set the /Length attribute
 as well. If that is not what is desired (for example if the the stream
 is compressed), then _stream (same name with an underscore) may be used
 to associate the stream with the PdfDict without setting the length.

 To set private attributes (that will not be written out to a new PDF
 file) on a dictionary, use the 'private' attribute::

 mydict.private.foo = 1

 Once the attribute is set, it may be accessed directly as an attribute
 of the dictionary::

 foo = mydict.foo

 Some attributes of PDF pages are "inheritable." That is, they may
 belong to a parent dictionary (or a parent of a parent dictionary, etc.)
 The "inheritable" attribute allows for easy discovery of these::

 mediabox = mypage.inheritable.MediaBox

 Proxy objects
        ~~~~~~~~~~~~~
        
        The `objects/pdfindirect.py`__
        module contains the PdfIndirect class, which is a non-transparent proxy
        object for PDF objects that have not yet been read in and resolved from
        a file. Although these are non-transparent inside the library, client code
        should never see one of these -- they exist inside the PdfArray and PdfDict
        container types, but are resolved before being returned to a client of
        those types.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/objects/pdfindirect.py
        
        
        File reading, tokenization and parsing
        --------------------------------------
        
        `pdfreader.py`__
        contains the PdfReader class, which can read a PDF file (or be passed a
        file object or already read string) and parse it. It uses the PdfTokens
        class in `tokens.py`__  for low-level tokenization.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfreader.py
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/tokens.py
        
        
        The PdfReader class does not, in general, parse into containers (e.g.
        inside the content streams). There is a proof of concept for doing that
        inside the examples/rl2 subdirectory, but that is slow and not well-developed,
        and not useful for most applications.
        
        An instance of the PdfReader class is an instance of a PdfDict -- the
        trailer dictionary of the PDF file, to be exact.  It will have a private
        attribute set on it that is named 'pages' that is a list containing all
        the pages in the file.
        
        When instantiating a PdfReader object, there are options available
        for decompressing all the objects in the file.  pdfrw does not currently
        have very many options for decompression, so this is not all that useful,
        except in the specific case of compressed object streams.
        
        Also, there are no options for decryption yet.  If you have PDF files
        that are encrypted or heavily compressed, you may find that using another
        program like pdftk on them can make them readable by pdfrw.
        
        In general, the objects are read from the file lazily, but this is not
        currently true with compressed object streams -- all of these are decompressed
        and read in when the PdfReader is instantiated.
        
        
        File output
        -----------
        
        `pdfwriter.py`__
        contains the PdfWriter class, which can create and output a PDF file.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pdfwriter.py
        
        There are a few options available when creating and using this class.
        
        In the simplest case, an instance of PdfWriter is instantiated, and
        then pages are added to it from one or more source files (or created
        programmatically), and then the write method is called to dump the
        results out to a file.
        
        If you have a source PDF and do not want to disturb the structure
        of it too badly, then you may pass its trailer directly to PdfWriter
        rather than letting PdfWriter construct one for you.  There is an
        example of this (alter.py) in the examples directory.
        
        
        Advanced features
        -----------------
        
        `buildxobj.py`__
        contains functions to build Form XObjects out of pages or rectangles on
        pages.  These may be reused in new PDFs essentially as if they were images.
        
        buildxobj is careful to cache any page used so that it only appears in
        the output once.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/buildxobj.py
        
        
        `toreportlab.py`__
        provides the makerl function, which will translate pdfrw objects into a
        format which can be used with `reportlab <http://www.reportlab.org/>`__.
        It is normally used in conjunction with buildxobj, to be able to reuse
        parts of existing PDFs when using reportlab.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/toreportlab.py
        
        
        `pagemerge.py`__ builds on the foundation laid by buildxobj.  It
        contains classes to create a new page (or overlay an existing page)
        using one or more rectangles from other pages.  There are examples
        showing its use for watermarking, scaling, 4-up output, splitting
        each page in 2, etc.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/pagemerge.py
        
        `findobjs.py`__ contains code that can find specific kinds of objects
        inside a PDF file.  The extract.py example uses this module to create
        a new PDF that places each image and Form XObject from a source PDF onto
        its own page, e.g. for easy reuse with some of the other examples or
        with reportlab.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/findobjs.py
        
        
        Miscellaneous
        ----------------
        
        `compress.py`__ and `uncompress.py`__
        contains compression and decompression functions. Very few filters are
        currently supported, so an external tool like pdftk might be good if you
        require the ability to decompress (or, for that matter, decrypt) PDF
        files.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/compress.py
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/uncompress.py
        
        
        `py23_diffs.py`__ contains code to help manage the differences between
        Python 2 and Python 3.
        
        __ https://github.com/pmaupin/pdfrw/tree/master/pdfrw/py23_diffs.py
        
        Testing
        ===============
        
        The tests associated with pdfrw require a large number of PDFs,
        which are not distributed with the library.
        
        To run the tests:
        
        * Download or clone the full package from github.com/pmaupin/pdfrw
        * cd into the tests directory, and then clone the package
          github.com/pmaupin/static_pdfs into a subdirectory (also named
          static_pdfs).
        * Now the tests may be run from that directory using unittest, or
          py.test, or nose.
        * travisci is used at github, and runs the tests with py.test
        
        Other libraries
        =====================
        
        Pure Python
        -----------
        
        -  `reportlab <http://www.reportlab.org/>`__
        
            reportlab is must-have software if you want to programmatically
            generate arbitrary PDFs.
        
        -  `pyPdf <https://github.com/mstamy2/PyPDF2>`__
        
            pyPdf is, in some ways, very full-featured. It can do decompression
            and decryption and seems to know a lot about items inside at least
            some kinds of PDF files. In comparison, pdfrw knows less about
            specific PDF file features (such as metadata), but focuses on trying
            to have a more Pythonic API for mapping the PDF file container
            syntax to Python, and (IMO) has a simpler and better PDF file
            parser.  The Form XObject capability of pdfrw means that, in many
            cases, it does not actually need to decompress objects -- they
            can be left compressed.
        
        -  `pdftools <http://www.boddie.org.uk/david/Projects/Python/pdftools/index.html>`__
        
            pdftools feels large and I fell asleep trying to figure out how it
            all fit together, but many others have done useful things with it.
        
        -  `pagecatcher <http://www.reportlab.com/docs/pagecatcher-ds.pdf>`__
        
            My understanding is that pagecatcher would have done exactly what I
            wanted when I built pdfrw. But I was on a zero budget, so I've never
            had the pleasure of experiencing pagecatcher. I do, however, use and
            like `reportlab <http://www.reportlab.org/>`__ (open source, from
            the people who make pagecatcher) so I'm sure pagecatcher is great,
            better documented and much more full-featured than pdfrw.
        
        -  `pdfminer <http://www.unixuser.org/~euske/python/pdfminer/index.html>`__
        
            This looks like a useful, actively-developed program. It is quite
            large, but then, it is trying to actively comprehend a full PDF
            document. From the website:
        
            "PDFMiner is a suite of programs that help extracting and analyzing
            text data of PDF documents. Unlike other PDF-related tools, it
            allows to obtain the exact location of texts in a page, as well as
            other extra information such as font information or ruled lines. It
            includes a PDF converter that can transform PDF files into other
            text formats (such as HTML). It has an extensible PDF parser that
            can be used for other purposes instead of text analysis."
        
        non-pure-Python libraries
        -------------------------
        
        -  `pyPoppler <https://launchpad.net/poppler-python/>`__ can read PDF
           files.
        -  `pycairo <http://www.cairographics.org/pycairo/>`__ can write PDF
           files.
        -  `PyMuPDF <https://github.com/rk700/PyMuPDF>`_ high performance rendering
           of PDF, (Open)XPS, CBZ and EPUB
        
        Other tools
        -----------
        
        -  `pdftk <https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/>`__ is a wonderful command
           line tool for basic PDF manipulation. It complements pdfrw extremely
           well, supporting many operations such as decryption and decompression
           that pdfrw cannot do.
        -  `MuPDF <http://www.mupdf.com/>`_ is a free top performance PDF, (Open)XPS, CBZ and EPUB rendering library
           that also comes with some command line tools. One of those, ``mutool``, has big overlaps with pdftk's - 
           except it is up to 10 times faster.
        
        Release information
        =======================
        
        Revisions:
        
        0.4 -- Released 18 September, 2017
        
            - Python 3.6 added to test matrix
            - Proper unicode support for text strings in PDFs added
            - buildxobj fixes allow better support creating form XObjects
              out of compressed pages in some cases
            - Compression fixes for Python 3+
            - New subset_booklets.py example
            - Bug with non-compressed indices into compressed object streams fixed
            - Bug with distinguishing compressed object stream first objects fixed
            - Better error reporting added for some invalid PDFs (e.g. when reading
              past the end of file)
            - Better scrubbing of old bookmark information when writing PDFs, to
              remove dangling references
            - Refactoring of pdfwriter, including updating API, to allow future
              enhancements for things like incremental writing
            - Minor tokenizer speedup
            - Some flate decompressor bugs fixed
            - Compression and decompression tests added
            - Tests for new unicode handling added
            - PdfReader.readpages() recursion error (issue #92) fixed.
            - Initial crypt filter support added
        
        
        0.3 -- Released 19 October, 2016.
        
            - Python 3.5 added to test matrix
            - Better support under Python 3.x for in-memory PDF file-like objects
            - Some pagemerge and Unicode patches added
            - Changes to logging allow better coexistence with other packages
            - Fix for "from pdfrw import \*"
            - New fancy_watermark.py example shows off capabilities of pagemerge.py
            - metadata.py example renamed to cat.py
        
        
        0.2 -- Released 21 June, 2015.  Supports Python 2.6, 2.7, 3.3, and 3.4.
        
            - Several bugs have been fixed
            - New regression test functionally tests core with dozens of
              PDFs, and also tests examples.
            - Core has been ported and tested on Python3 by round-tripping
              several difficult files and observing binary matching results
              across the different Python versions.
            - Still only minimal support for compression and no support
              for encryption or newer PDF features.  (pdftk is useful
              to put PDFs in a form that pdfrw can use.)
        
        0.1 -- Released to PyPI in 2012.  Supports Python 2.5 - 2.7
        
        
Keywords: pdf vector graphics PDF nup watermark split join merge
Platform: Independent
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Multimedia :: Graphics :: Graphics Conversion
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Text Processing
Classifier: Topic :: Printing
Classifier: Topic :: Utilities






