
TASP VSIPL Core Plus

Randall Judd

Space and Naval Warfare Systems Center
San Diego
D857

This document is the work of a U.S. Government employee done as part of his official duties. No Copyright subsists herein.
Randall Judd’s work on VSIPL is released to the public (Distribution A).

For TASP VSIPL Documentation and Code neither the United States Government, the United States Navy, nor any of their
employees, makes any warranty, express or implied, including the warranties of merchantability and fitness for a particular
purpose, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This document is a description of, and a manual for, an implementation of the VSIPL
specification by the Tactical Advanced Signal Processing Common Operating Environmnet
working group. This work is supported by PEO (USW) PMS411, Clair Guthrie.

DRAFT
January 24, 2001

DRAFT

ii DRAFT TASP VSIPL Core Plus

DRAFT

TA
TABLE OF CONTENTS iii

Required Core Public Types . vii
Core Function List . ix

CHAPTER 1 1
Introduction To TASP VSIPL Core Plus Implementation

Introduction. 1
Code History . 1
TASP and the TASP COE . 1
The VSIP Library Effort and the VSIPL Forum. 2
The TASP VSIPL Demonstration Library . 2
The Core Profile . 3

VSIP Fundamentals . 3
VSIPL Initialization and Finalization . 3
VSIPL Objects and Data Types . 4

A Simple First Example . 5
Add two vectors example.. 5

List of Acronyms . 8

CHAPTER 2 9

Functions

Introduction. 9
Required Core Public Types . 11
Core Function List . 18

CHAPTER 3 97

Introduction to VSIPL Programming using the Core Lite Profile

Introduction. 97
Support Functions . 97
SP VSIPL Core Plus DRAFT iii

DRAFT
Block Creation . 97
Vector Creation. 97
Other methods of view creation and view modification. 98
Viewing the Real and Imaginary portions of a Complex Vector 100

VSIPL Input and Output Methods . 102
Rebinding user data to a user block . 103
I/O Example . 103
Complex User Data. 106

Scalar Functions . 107
VSIPL Elementwise Functions . 107

Random Number Generation . 107
Signal Processing Functions . 109

The Fourier Transform . 109
The Finite Impulse Response Filter . 114
Summary . 115

CHAPTER 4 121

Introduction to VSIPL Matrices

Introduction. 121
Matrix Fundamentals . 121

A Matrix . 121
Matrix Views . 122
Matrix Creation. 123
Extracting Vector views from Matrix Views . 124
Fundamental Matrix Calculation . 124

Simple Matrix Manipulations . 125
A Simple Print Function . 125
General Elementwise Matrix Operation Using Row or Column View 126

CHAPTER 5 133

Introduction to Vector Index Views, Boolean views, Gather,

Scatter, and Indexbool

Introduction. 133
Vector Index Views . 133
Vector Boolean Views . 133
A first example using the scalar vector index. 134

Boolean and Vector Index Views . 136
Gather and Scatter. 138
iv DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 6 141

Signal Processing Functionality in the VSIPL Core Profile

Introduction. 141
Window Creation . 141
Convolution, Correlation and FIR Filtering . 145

Correlation . 145
Convolution . 150

Fourier Transforms . 157
Wavenumber/Frequency plot . 157
Demonstration for . 157

CHAPTER 7 167

Linear Algebra Functionality in the VSIPL Core Profile

Introduction. 167
Simple Matrix-Matrix and Vector-Matrix Operations . 167
Simple Solvers . 168

Covariance Problem . 168
Linear Least Squares Problem . 168
Toeplitz System . 168

LU decomposition function set. 169
Cholesky Decomposition Function set . 171
QR Decomposition Function set. 171

The Q product function. 173
The R solver function . 176

Final Remarks for Linear Algebra. 177

INDEX 179

Appendix A
VSIPL Fundamentals
SP VSIPL Core Plus DRAFT v

DRAFT
vi DRAFT TASP VSIPL Core Plus

REQUIRED CORE PUBLIC TYPES

DRAFT

TA
alg_hint . 11
bias . 11
chol_attr . 11
cmplx_mem . 12
conv1d_attr . 12
corr1d_attr . 12
fir_attr . 12
fft_attr . 13
fft_dir . 13
fft_place . 13
fftm_attr . 13
lu_attr . 14
major . 14
mat_op . 14
mat_side . 14
mattr . 14
memory_hint 15
obj_state . 15
qrd_attr . 15
qrd_prob . 16
qrd_qopt . 16
support_region 16
symmetry . 16
vattr . 16
rng . 17
SP VSIPL Core Plus DRAFT vii

DRAFT
viii DRAFT TASP VSIPL Core Plus

CORE FUNCTION LIST

TASP VSIP

DRAFT
acos . 18
add. 18
alldestroy. 19
alltrue . 20
and. 20
anytrue. 20
arg . 20
asin . 21
atan . 21
atan2 . 21
bind . 21
blackman. 23
blockadmit. 23
blockbind. 23
blockcreate . 24
blockdestroy . 25
blockfind . 25
blockrebind . 26
blockrelease. 27
cheby . 28
chold . 28
cloneview . 29
cmplx. 30
clip. 30
cmagsq . 31
cmaxmgsq . 32
cmaxmagsqval. 32
cminmgsq . 32
cminmagsqval 33
copy. 33
colview . 34
conj . 34
convolve . 35
correlate. 36
cos . 38
covsol . 38
create . 38
cstorage . 39
destroy. 39
diagview . 40
div . 40
dot . 41
euler. 42

exp. 42
exp10. 42
expoavg . 43
fft. 43
fftm . 45
fill . 48
finalize. 48
fir. 49
gather. 50
gemp . 51
gems . 52
get . 52
getattrib . 53
getblock. 54
getcollength. 54
getcolstride . 54
getlength . 55
getoffset. 55
getrowlength . 55
getrowstride. 56
getstride. 56
hanning . 56
histo. 57
hypot . 57
imag. 57
imagview. 58
indexbool. 58
init . 58
invclip . 58
kaiser . 59
llsqsol . 60
log . 60
log10 . 60
logical . 60
lud . 62
mag . 63
matindex . 64
max . 64
maxmg. 65
maxmgval . 65
maxval. 65
meansqval . 65
meanval . 66
L Core Plus DRAFT ix

CORE FUNCTION LIST

DRAFT
mherm . 66
min . 66
minmg . 66
minmgval . 67
minval . 67
modulate . 67
mprod . 68
mtrans . 69
mul . 70
neg. 72
not . 73
or . 73
outer . 73
polar . 74
put . 74
putattrib . 75
putcollength. 76
putcolstride . 76
putoffset . 77
putrowlength . 77
putrowstride . 78
putstride. 78
putlength . 78
qrd . 79
ramp . 82
rand . 83
real. 84
realview. 85
recip. 85
rect. 85
rowview. 86
rsqrt . 86
scatter . 87
sin . 87
sq . 87
sqrt. 87
sub . 88
subview . 90
sumsqval . 91
sumval . 91
swap . 91
tan . 92
Ternary Functions 92

toepsol . 94
transview. 95
xor . 95
x DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 1 Introduction To TASP VSIPL Core
Plus Implementation

Introduction

This book describes the functionality of the TASP Core Plus implementation of the Vector/
Signal/Image processing (VSIP) Library (VSIPL) as developed by the TASP (Tactical
Advanced Signal Processing) COE (Common Operating Environment) effort.

The Core Plus implementation contains all the functionality of the VSIPL Core profile plus
other functionality of the VSIPL specification. It is not currently a complete implementation
of VSIPL but the goal is to one day have a complete library.

This book is not a copy of, nor a replacement for, the VSIPL specification.

Code History

The original code basis for the library was a pre-alpha (incomplete) version of the VSIPL Ref-
erence library produced by Hughes Research Laboratory of Malibu, California in December
of 1997. This library has been greatly reorganized and modified to fit a format more suitable to
the author’s vision of a VSIP library, and also the author’s programing ability. The original
December release was template based using m4 as a code generator. The author’s method was
to copy the generated C files and header files and modify them directly, instead of trying to
maintain a template method he did not understand. In addition many changes have been made
to the library to add performance, and to keep up with the changing VSIPL specification.

TASP and the TASP COE

The TASP group started out as an effort by NAVSEA PMS 428 (Now PMS 411) to do a pro-
curement of COTS signal processing hardware for DOD use similar to the TAC program. One
of the goals of the TASP group was to foster a Common Operating Environment (COE) for
signal processing. Without a COE for signal processing the software upkeep cost of COTS
signal processing hardware will be prohibitive.

In the last few years the methods used by DOD to procure hardware have changed, and even-
tually the TASP effort for hardware procurement was abandoned. However the COE effort is
still important and has survived. One of the elements of a COE for Signal Processing is a com-
mon signal processing library supported by multiple vendors. The TASP group has decided to
support the VSIP Library Forum effort to produce a de facto signal processing standard, and
eventually an actual standard, for a signal processing library. If successful VSIPL will be used
for the TASP COE signal processing library.
SP VSIPL Core Plus DRAFT 1

DRAFT
The VSIP Library Effort and the VSIPL Forum

The VSIP library (VSIPL) effort was initially funded by DARPA and headed by Hughes
Research Lab (HRL) (David Schwartz). HRL has changed their name and are now called
HRL Laboratories, LLC. HRL no longer stands for Hughes Research Lab.

The main goal of the VSIPL Forum is to produce a signal processing library specification suit-
able for a wide variety of embedded hardware. The specification will allow vendors to write
an efficient and fast library implementation for their product, and at the same time will allow
VSIPL application programers to write portable code which will run on a variety of VSIPL
compliant hardware without major porting efforts.

Many groups have participated in the VSIPL Forum. For a more complete list of participants
one should refer to the VSIPL specification Acknowledgment section.

The primary external funding for the forum was from DARPA, and from TASP; however most
companies participated with no external funding.

The TASP VSIPL Demonstration Library

It should be made clear that this document is a product of the TASP effort, and the associated
library is also a TASP effort. These products are considered to be separate from the VSIPL
effort. We are not trying to do a separate specification, of course, but just as vendors will write
their own VSIPL compliant library for their product as independent agents, without the desire
for, or need of, the VSIPL Forum telling them how to go about their business, so too this effort
is independent of the VSIPL forum.

Since the author is an active participant of the VSIPL Forum people may get the idea that this
document, or the associated library effort have somehow been blessed as part of the specifica-
tion. This is not the case. The author felt the need for a certain amount of independence in
developing this library in order to produce a product for demonstration purposes at the earliest
time. As such he felt it was necessary to make design decisions independent of any other
agent.

For this reason people should be cautious and view this library as what it is. The advantage of
being independent is the ability to get a lot of work done. The disadvantage is you may screw
up the implementation, and depart from the specification. This implementation is not well
tested. It attempts to be VSIPL compliant, but it may have some problems. Many functions
were completed with an eye toward getting something on the road versus writing a really good
function. Participants who find departures from the VSIPL specification within this document,
or within the library, or who find software or algorithm errors, are encouraged to contact the
author via email (judd@spawar.navy.mil).

As time goes by, if VSIPL is successful, the TASP VSIPL implementation may eventually
become very good; or if another better public domain VSIPL implementation becomes avail-
able, this library may become unused. In any case view the results of every function with a
certain amount of caution. No claims are made that the associated library, or this document,
are good for any purpose.
2 DRAFT TASP VSIPL Core Plus

DRAFT

TA
The Core Profile

The entire function list defined by the VSIPL specification is very large, and it would be pro-
hibitively expensive to produce optimized code on embedded hardware for the entire library.
Several of the signal processing hardware and software vendors proposed a profile of the
library that was very small and was, they felt, usable and relatively inexpensive to produce.
This profile, called Core Lite, has only 126 required functions. A somewhat larger profile
which includes 511 functions was also defined and has been called Core. This book covers the
TASP VSIPL implementation of the Core Profile. For readers who have read the Core Lite
Book the first two chapters of this book are very similar, except that chapter two will cover
many more function prototypes.

VSIP Fundamentals

A little background into the VSIP methods used for defining data types and functions is
needed before the function list and programing methods are introduced. Some of this informa-
tion is specific to the method used within the TASP VSIPL implementation, and it is not nec-
essarily true that other implementation would use the same method. The VSIPL specification
tries to abstract the method of achieving the end away from the end itself. As long as a vendor
uses the proper API and meets all the rules, the exact method for achieving the correct result is
not of concern to VSIPL. However talking in abstract terms sometimes leads to confusion, so
the author will be a little more direct in talking about how the TASP VSIPL implementation
achieved the desired result. This should make it easier for the user to understand the imple-
mentation and how to use VSIPL. After one library is learned, any other compliant libraries
used will be the same, no matter what internal (private) methods were used to define the
VSIPL objects.

One should not bring excess programing definitions to this document. VSIPL is an object
based method, but it is not object oriented in the strict sense. The author is not knowledgeable
of object oriented terminology or programing. The author knows how the forum uses certain
terms, and that there are regular discussions (or arguments) about using some terms improp-
erly. For the purpose of this document the author will attempt to explain how he is using the
term, and hopefully the reader will not be to critical.

VSIPL Initialization and Finalization

Late in the specification process it was decided to require that the VSIP library be initialized
before any VSIPL call is made in an application and that the VSIP library be finalized before
the application exits. The init/finalize is done with function calls vsip_init and
vsip_finalize.

Although these two calls are required at the begining and end of the application braketing the
VSIPL code, they may be used at any place in the application. There must be a finalize for
every initialization. This allows the application programer to write library functions using
VSIPL internally, but with no explicit external VSIPL requirement.

Note that the init/finalize requires that all VSIPL objects be destroyed before the finalize is
called. So as a practical matter all VSIPL objects created after a VSIP initialize within a par-
ticular code flow should be destroyed before the function exits. This is a new requirement.
SP VSIPL Core Plus DRAFT 3

DRAFT
Before init/finalize were included in the specification it was only recommended that all VSIPL
objects be destroyed before the application exited; however, to be compliant with the init/
finalize requirement all VSIPL objects must be destroyed before the final finalize call and the
application exits. This is an error in development mode.

For the TASP VSIPL implementation vsip_init and vsip_finalize don’t do anything. But
they must be included in a VSIPL compliant application. If a development mode library is
used then the application will break if the functions are not included.

VSIPL Objects and Data Types

Roughly speaking VSIPL has three basic types.

The first base type is a VSIPL scalar. Frequently these are just typedefs of ANSI C types to a
VSIPL naming convention. For instance vsip_scalar_f is an ANSI C float (float), and
vsip_scalar_i is an ANSI C integer (int). The author feels it is important that people use the
VSIPL types in their programing. Because every function within VSIPL is strongly typed this
will keep help keep you honest and will reduce errors. In addition if the need arises to port
some code from say a float library to a double library it simplifies the porting. This will
become more obvious as you learn more about the library. In VSIPL Core there are scalars of
type vector index, matrix index, boolean, float, integer, and complex float.

The next base type is a block. A block is equivalent to a memory storage area of a particular
data type and some size. The data is stored in sequential element locations, as far as the appli-
cation programer is concerned. In TASP VSIPL a block object is actually an abstract data type
(ADT) with variables to hold the block length, information about the block’s state (more about
this later) and a pointer to some physical memory. For complex blocks (in TASP VSIPL) there
are actually two pointers to two real blocks, and information concerning the data layout of
those blocks. All you need to know about blocks to program portable code is that from the
point of view of the VSIPL functions that work on blocks they are a chunk of sequential
VSIPL elements of a particular type, the first element location being at (zero) and the last

element being at where N is the size of the block. In TASP VSIPL Core there are
blocks of type float, complex float, integer, vector index, matrix index, and boolean.

The next, and final basic type, is a view. In TASP VSIPL Core, there are only views of type
vector and matrix float, vector and matrix complex float, vector integer, vector vector index,
vector matrix index, and vector boolean. The view, similar to the block, is an abstract data
type. The view holds all the information needed to access some particular portion of a blocks
data. For the TASP VSIPL implementation the view has a block pointer which is set equal to
the block whose data it references. All data is referenced through this block pointer. In addi-
tion the view holds an offset from the beginning of the block (starting at zero), a length or
lengths (of the vector or matrix) and a stride or strides (along the view dimensions) through
the block. The stride indicates the distance between consecutive view elements within the
block for a particular dimension. The stride, along with the offset is used in conjunction with
the vector or matrix indices to map the vector or matrix onto the block. A stride of 1 is every
element, a stride of -1 is also every element, but the view goes through the block in the oppo-
site direction. A stride of zero will select a particular element as a constant vector at the offset
location.

0

N 1–
4 DRAFT TASP VSIPL Core Plus

DRAFT

TA
In order to produce portable VSIPL application code the application programer must use only
VSIPL function calls to use or modify blocks or views. To enforce this all the abstract data
types used by VSIPL for its internal workings are created as incomplete data types. Because
of this, unless the private header files where the blocks and view data types are completed are
available, the user must use VSIPL function calls. The use of abstract data types and incom-
plete type definitions leads one to call views and blocks objects.

For more information on VSIPL design requirements see Appendix A, or obtain the VSIPL
specification .

A Simple First Example

Except for the list of functions in Chapter 2, and Appendices which may cover any topic, the
rest of this document will be done in a tutorial fashion. In general the method used will be to
produce a simple example with an exhaustive explanation. Within the explanation many
important principles for successful VSIPL programs will be explained. All examples in this
document will be limited to code that will compile on VSIPL libraries that conform to the
Core Profile

Add two vectors example.

If this were being done in Matlab this example would look as follows:

>> A=[0:7]
A =
 0 1 2 3 4 5 6 7
>> B(A+1)=5
B =
 5 5 5 5 5 5 5 5
>> C=A+B
C =
 5 6 7 8 9 10 11 12

Now lets do this in VSIPL Code:

Example 1
SP VSIPL Core Plus DRAFT 5

DRAFT
#include<stdio.h>
#include<vsip.h>
#define N 8 /* the length of the vector */

int main()
{ int init = vsip_init((void*)0);

void VU_vprint_f(vsip_vview_f*);
vsip_vview_f *A = vsip_vcreate_f(N,0),

*B = vsip_vcreate_f(N,0),
*C = vsip_vcreate_f(N,0);

vsip_vramp_f(0,1,A);
printf("A = \n");VU_vprint_f(A);

vsip_vfill_f(5,B);
printf("B = \n");VU_vprint_f(B);

vsip_vadd_f(A,B,C);
printf("C = \n");VU_vprint_f(C);

vsip_valldestroy_f(A);
vsip_valldestroy_f(B);
vsip_valldestroy_f(C);
vsip_finalize((void*)0);
return 1;

}

void VU_vprint_f(vsip_vview_f* a){
vsip_length i;
for(i=0; i<vsip_vgetlength_f(a); i++)
printf("%4.0f",vsip_vget_f(a,i));
printf("\n");
return;

}

 The above program produces the following output:

A =
 0 1 2 3 4 5 6 7
B =
 5 5 5 5 5 5 5 5
C =
 5 6 7 8 9 10 11 12

Let’s examine Example 1.

On line 2 we include the vsip.h header file. This will be needed in every program using
VSIPL code, and a compliant library is required to provide a header file called vsip.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
6 DRAFT TASP VSIPL Core Plus

DRAFT

TA
In lines 8-10 we create three vectors. Note that the VSIPL vector view objects A, B and C are
type defined to a pointer of type vsip_vview_f and then assigned a value by the function
vsip_vcreate_f.

 The create function is a convenience function, subsuming the block create and view bind
jobs into one function. The vsip_vcreate_f function will create a block of type real float
(with some state we talk about in chapter 3), create a data space of sufficient size to hold
real float values and then attaches this to the block, and creates a vector view of type real float
and binds the block to this view. The vector view (or just vector) is created with a length of N
elements, an offset of zero, and a stride of one, so that the vector is of an exact size to view the
entire block.

An important item to note here is that VSIPL has allocated space in memory for three items.
These are the space for the block object (block ADT), space for the data storage (the data
array) and space for the vector object (vector ADT). All of this memory must be destroyed,
when no longer needed, to prevent memory leaks.

Blocks and associated data arrays created by the VSIPL create functions are always created
and destroyed together. Whenever you do a block create and a block destroy the actions to cre-
ate the block, and its associated data, or destroy a block and its associated data happen
together. Generally we will only say we create a block of length N, or destroy a block.

We have also created a vector view. There may be many vector views associated with a block.
There are, of course, functions to destroy a vector view. These will generally not destroy the
block also. It is important that the application programer keep track of what views are attached
to a block and only destroy the block after all the views binding the block have been
destroyed.

Note that all VSIPL functions which allocate memory return a null pointer if the memory allo-
cation fails. We have not checked for an allocation failure in our example, but the check is rec-
ommended in high quality applications.

In our example above on lines 20-22 we see where the object destruction takes place. We
know, since this program is short and we kept track, that each block is bound by exactly one
view. To destroy our objects we use a convenience function which will destroy the view, the
block, and any VSIPL allocated data array associated with the block.

The other important items in our code reside on lines 11, 14, and 17. These are self explana-
tory as to function, but note that no stride, length or offset information are included in the
arguments to these functions. All this information resides in the vector. So, for instance, the
ramp function has a starting value of zero, an increment of one, but no stopping point. The
function just goes until the vector is full. Since we set the vector length to eight, we get a vec-
tor running from zero to seven.

In order to see our output we wrote a vector print function. For VSIPL user functions the
author uses a prefix of VU_ for VSIPL User. The print function starts at line 27.

We note that internal to the VSIPL library the author uses the prifix VI_ for VSIPL Implemen-
tor. No VI_ function should be used in any user code; however if your writing your own
library, or modifying the author’s, feel free.

N

SP VSIPL Core Plus DRAFT 7

DRAFT
List of Acronyms

1. TASP Tactical Advanced Signal Processing
2. COE Common Operating Environment
3. VSIPL Vector/Signal/Image Processing Library
4. COTS Commercial Of the Shelf
5. TAC Tactical Advanced Computer
6. API Application Program Interface
7. ADT Abstract Data Type
8. DOD Department of Defense
8 DRAFT TASP VSIPL Core Plus

DRAFT
CHAPTER 2 Functions

Introduction

The Core Plus VSIPL implementation includes many functions not in the Core Profile. The
author hopes to one day have protype listings for all functions in the implementation in this
chapter but currently they are not all here. The author recomends using the VSIPL specifica-
tion as needed for function ussage and definitions which is available on the VSIPL internet
site in acrobat reader format.

As a minimum this section includes an alphabetical listing of all VSIPL functionality included
with a minimal VISIPL Core Library, and a listing of all public type definitions (enumerated
types and structures available in the header file) needed by the core functions. Each function is
listed with a functionality statement, the function prototype, and a description of each function
argument. The author recommends only browsing this chapter lightly. Its purpose is as a refer-
ence. In the VSIPL specification many of the functions names have been generalized to
include all precisions. The names in this document are not generalized and reflect the TASP
VSIPL Core implementation of a minimal VSIPL Core profile encompassing ANSI C float
and int.

The TASP VSIPL core distribution includes additional functionality other than that required
by a minimal core distribution. Proper prototypes for much of the additional functionality may
be derived from the listed functionality by replacing the precision argument with the required
precision, for instance the _f goes to an _d when deriving the double function prototype from
the float function prototype.

In order to have some reasonable ordering of the functions the alphabetical listing is based
upon a root function name, not the actual vsip function. For instance the second function in
the list is the “add” function. There are several add functions in the Core profile. All of them
are placed together under add.

When a function requires a special object it needs support functions to create the object, and
destroy it, and perhaps query it for its attributes. For instance to do a discrete fourier transform
one needs a function to create an FFT object, a function to do the actual FFT using the FFT
object, and a function to destroy the FFT object when it is no longer needed. The author calls
functions which are designed to work together to do a single job function sets. Function sets
are placed together under a single heading. For instance all the functions involved with doing
an FFT are placed under the FFT heading.

In addition the Ternary functions included in the core profile (functions requiring three inputs)
are listed in a ternary functions section. The root names for ternary functions are not very
descriptive.
TASP VSIPL Core Plus DRAFT 9

DRAFT
No attempt is made to be exhaustive in the function descriptions. Those interested in more
detail are directed to the VSIPL specification document available on the internet site.
(www.vsipl.org) In addition various examples included in this document will provide more
detail on the use of some of the more complicated functions.
10 DRAFT TASP VSIPL Core Plus

DRAFT
Required Core Public Types

This section covers the enumerated types and special structures needed by the core functions.
These are defined in the public header file vsip.h.

alg_hint

typedef enum {
VSIP_ALG_TIME = 0,
VSIP_ALG_SPACE = 1,
VSIP_ALG_NOISE = 2

} vsip_alg_hint;

Algorithm hint used in create functions to indicate to the implementation how the user
would like the created object to be used. ALG_TIME would indicate a desire for the
fastest result, ALG_SPACE for the least memory usage, and ALG_NOISE for the
most accurate. Not required to be supported and not supported in TASP VSIPL. Any
valid hint may be used.

Function List where used
vsip_conv1d_create_f
vsip_corr1d_create_f
vsip_ccorr1d_create_f
vsip_ccfftop_create_f
vsip_ccfftip_create_f
vsip_rcfftop_create_f
vsip_crfftop_create_f
vsip_ccfftmop_create_f
vsip_ccfftmip_create_f
vsip_rcfftmop_create_f
vsip_crfftmop_create_f
vsip_fir_create_f
vsip_cfir_create_f

bias

typedef enum{
VSIP_BIASED = 0,
VSIP_UNBIASED = 1

} vsip_bias;

Flag to indicate whether a biased or unbiased result is desired.

Function List where used
vsip_correlate1d_f
vsip_ccorrelate1d_f

chol_attr

typedef struct{
vsip_mat_uplo uplo;
vsip_length n;

} vsip_chol_attr_f;
TASP VSIPL Core Plus DRAFT 11

DRAFT

TA
typedef struct{
vsip_mat_uplo uplo;
vsip_length n;

} vsip_cchol_attr_f;

Attributes structure for the Cholesky decomposition object. Used with the Cholesky
get attributes function.

cmplx_mem

typedef enum {
VSIP_CMPLX_INTERLEAVED,
VSIP_CMPLX_SPLIT,
VSIP_CMPLX_NONE

} vsip_cmplx_mem

Used to indicate the type of user complex data array is optimal for the implementation.
The NONE type indicates either interleaved or split work equally well. Used as a
return value for vsip_cstorage.

conv1d_attr

typedef struct {
vsip_length kernel_len;
vsip_symmetry symm;
vsip_length data_len;
vsip_support_region support;
vsip_length out_len;
vsip_length decimation;

} vsip_conv1d_attr_f;

Attributes structure for the convolution object. Used with the convolution get attributes
function.

corr1d_attr

typedef struct {
vsip_length ref_len;
vsip_length data_len;
vsip_support_region support;
vsip_length lag_len;

} vsip_corr1d_attr_f;

typedef struct {
vsip_length ref_len;
vsip_length data_len;
vsip_support_region support;
vsip_length lag_len;

} vsip_ccorr1d_attr_f;

Public attributes structure for the correlation object. Used with the correlation get
attributes function.

fir_attr

typedef struct {
vsip_scalar_vi kernel_len;
SP VSIPL Core Plus DRAFT 12

DRAFT
vsip_symmetry symm;
vsip_scalar_vi in_len;
vsip_scalar_vi out_len;
vsip_length decimation;
vsip_obj_state state;

} vsip_fir_attr_f;

typedef struct {
vsip_scalar_vi kernel_len;
vsip_symmetry symm;
vsip_scalar_vi in_len;
vsip_scalar_vi out_len;
vsip_length decimation;

} vsip_cfir_attr_f;

Public attributes structure for the FIR object. Used with the FIR get attributes function.

fft_attr

typedef struct {
vsip_scalar_vi input;
vsip_scalar_vi output;
vsip_fft_place place;
vsip_scalar_f scale;
vsip_fft_dir dir;

} vsip_fft_attr_f;

Public attributes structure for the FFT object. Used with the FFT get attributes func-
tion.

fft_dir

typedef enum {
VSIP_FFT_FWD = -1,
VSIP_FFT_INV = 1

} vsip_fft_dir;

Direction argument for the fft create functions used to indicate the direction of the
FFT.

Function List where used
vsip_ccfftop_create_f
vsip_ccfftip_create_f
vsip_ccfftmop_create_f
vsip_ccfftmip_create_f

fft_place

typedef enum {
VSIP_FFT_IP = 0,
VSIP_FFT_OP = 1

} vsip_fft_place;

fftm_attr

typedef struct {
vsip_scalar_vi input;
13 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_scalar_vi output;
vsip_fft_place place;
vsip_scalar_f scale;
vsip_fft_dir dir;
vsip_major major;

} vsip_fftm_attr_f;

Public attributes structure for the multiple FFT object. Used with the multiple FFT get
attributes function.

lu_attr

typedef struct {
vsip_length n;

} vsip_lu_attr_f;

typedef struct {
vsip_length n;

} vsip_clu_attr_f;

major

typedef enum{
VSIP_ROW = 0,
VSIP_COL = 1,

}vsip_major;

mat_op

typedef enum {
VSIP_MAT_NTRANS = 0,
VSIP_MAT_TRANS = 1,
VSIP_MAT_HERM = 2,
VSIP_MAT_CONJ = 3

}vsip_mat_op;

mat_side

typedef enum{
VSIP_MAT_LSIDE = 0,
VSIP_MAT_RSIDE =1

} vsip_mat_side;

mattr

typedef struct {
vsip_offset offset;
vsip_stride row_stride;
vsip_length row_length;
vsip_stride col_stride;
vsip_length col_length;
vsip_block_f* block;

} vsip_mattr_f;

typedef struct {
vsip_offset offset;
vsip_stride row_stride;
vsip_length row_length;
SP VSIPL Core Plus DRAFT 14

DRAFT
vsip_stride col_stride;
vsip_length col_length;
vsip_cblock_f* block;

} vsip_cmattr_f;

Public matrix attributes. Used by matrix get attributes to retrieve the attributes of a
matrix view and by put matrix attributes to set the attributes of a matrix. The block
attribute of a view may not be set, except at creation, and is ignored on a put.

memory_hint

typedef enum {
VSIP_MEM_NONE = 0,
VSIP_MEM_RDONLY = 1,
VSIP_MEM_CONST = 2,
VSIP_MEM_SHARED = 3,
VSIP_MEM_SHARED_RDONLY = 4,
VSIP_MEM_SHARED_CONST = 5

}vsip_memory_hint;

Enumerated typedef indicating what type of memory the user would like allocated by
VSIPL. The TASP VSIPL implementation of core does not use this memory hint for
anything. Note the use of the overloaded depth (d), shape (s), and precision (p) below
in the function list where used.

Function List where used
vsip_vcreate_blackman_f
vsip_vcreate_kaiser_f
vsip_vcreate_hanning_f
vsip_vcreate_cheyby_f
vsip_dblockcreate_p
vsip_dsviewcreate_p
vsip_dsblockbind_p

obj_state

Enumerated type indicating if an object which saves state information between calls
should save the state, or act as if it were freshly created at each call. Currently only
used for the FIR function set.

typedef enum {
VSIP_STATE_NO_SAVE = 1,
VSIP_STATE_SAVE = 2
} vsip_obj_state;

qrd_attr

Public QRD attribute object.

typedef struct {
vsip_length m;
vsip_length n;
vsip_qrd_opt Qopt;

} vsip_qrd_attr_f;
15 DRAFT TASP VSIPL Core Plus

DRAFT

TA
typedef struct {
vsip_length m;
vsip_length n;
vsip_qrd_opt Qopt;

} vsip_cqrd_attr_f;

qrd_prob

typedef enum{
VSIP_QRD_COV
VSIP_QRD_LLSQ

} vsip_qrd_prob

qrd_qopt

Enumerated typedef indicating what type of QRD information is saved in the QRD

object. For an where matrix then for option NOSAVEQ only the

information is saved, for option SAVEQ the entire is saved, and for option SAVEQ1

only the skinny which encompasses the range of is saved. Note although the

author has said that the is saved what is actually saved in the QRD object is vendor
dependent. Only the information necessary to do the calculations defined on the QRD
object need be saved. How this is done is vendor dependent.

typedef enum{
VSIP_QRD_NOSAVEQ = 0,
VSIP_QRD_SAVEQ = 1,
VSIP_QRD_SAVEQ1 = 2

} vsip_qrd_qopt

support_region

typedef enum {
VSIP_SUPPORT_FULL = 0,
VSIP_SUPPORT_SAME = 1,
VSIP_SUPPORT_MIN = 2

} vsip_support_region;

symmetry

typedef enum {
VSIP_NONSYM = 0,
VSIP_SYM_EVEN_LEN_ODD = 1,
VSIP_SYM_EVEN_LEN_EVEN = 2

} vsip_symmetry;

vattr

typedef struct {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_f* block;

} vsip_vattr_f;

m by n A QR= R

Q

Q1 A

Q

SP VSIPL Core Plus DRAFT 16

DRAFT
typedef struct {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_cblock_f* block;

} vsip_cvattr_f;

typedef struct {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_i* block;

} vsip_vattr_i;

typedef struct {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_vi* block;

} vsip_vattr_vi;

typedef struct {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_mi* block;

} vsip_vattr_mi;

typedef struct {
vsip_offset offset;
vsip_stride stride;
vsip_length length;
vsip_block_bl* block;

} vsip_vattr_bl;

Public vector attributes. Used by vector get attributes to retrieve the attributes of a vec-
tor and by put vector attributes to set the attributes of a vector. The block attribute may
not be set in a view, except on view create, and is ignored on a put.

rng

typedef enum {
VSIP_PRNG = 0,
VSIP_NPRNG = 1
} vsip_rng;

Indicates to the random create function whether an implementation dependent non-
portable random number generator (NPRNG), or the portable random number genera-
tor defined by the VSIPL specification (PRNG) is desired.
17 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Core Function List

acos

Inverse Cosine function.

void vsip_acos_f(
vsip_vview_f* a1,
vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector.

add

Add two scalars.

void vsip_CADD_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f* a3);

vsip_cscalar_f vsip_cadd_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2);

void vsip_RCADD_f(
vsip_scalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f* a3);

vsip_cscalar_f vsip_rcadd_f(
vsip_scalar_f a1,
vsip_cscalar_f a2);

Returns Sum of input scalars if not void.

Argument a1 Input scalar.

Argument a2 Input scalar.

Argument a3 Output scalar (pointer) for void functions.

Scalar vector add

void vsip_svadd_f(
vsip_scalar_f a1,
vsip_vview_f* a2,
vsip_vview_f* a3);

void vsip_csvadd_f(
vsip_cscalar_f a1,
vsip_cvview_f* a2,
vsip_cvview_f* a3);

void vsip_rscvadd_f(
vsip_scalar_f a1,
vsip_cvview_f* a2,
vsip_cvview_f* a3);
SP VSIPL Core Plus DRAFT 18

DRAFT
void vsip_svadd_i(
vsip_scalar_i a1,
vsip_vview_i* a2,
vsip_vview_i* a3);

Argument a1 Input scalar.

Argument a2 Input vector.

Argument a3 Sum of scalar and vector elementwise.

Add two vectors element by element.

void vsip_vadd_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_cvadd_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_rcvadd_f(
const vsip_vview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_vadd_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

Argument a1 Input vector

Argument a2 Input vector

Argument a3 Sum of input vectors

alldestroy

Function to destroy a view and its associated block. If the block is bound to a user data
array then the user data array is not destroyed.

void vsip_valldestroy_f(
vsip_vview_f* a1);

void vsip_cvalldestroy_f(
vsip_cvview_f* a1);

void vsip_valldestroy_i(
vsip_vview_i* a1);

void vsip_valldestroy_vi(
vsip_vview_vi* a1);

void vsip_valldestroy_mi(
vsip_vview_mi* a1);

void vsip_valldestroy_bl(
vsip_vview_bl* a1);

void vsip_malldestroy_f(
vsip_mview_f* a1);
19 DRAFT TASP VSIPL Core Plus

DRAFT

TA
void vsip_cmalldestroy_f(
vsip_cmview_f* a1);

Argument a1 The view to be destroyed.

alltrue

A boolean function returning true if all the elements in a boolean input view are true.

vsip_scalar_bl vsip_valltrue_bl(
const vsip_vview_bl* a1);

Returns False (0) if any of the elements in the input view are not false. Returns true (non-
zero) if all the elements of the input view are true.

Argument a1 Input view.

and

Performs a bitwise “AND” operation between two integer views, or a logical “AND”
between two boolean views.

void vsip_vand_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_vand_bl(
const vsip_vview_bl* a1,
const vsip_vview_bl* a2,
const vsip_vview_bl* a3);

Argument a1 Input view.

Argument a2 Input view.

Argument a3 Output view.

anytrue

A boolean function returning true if any of the elements in a boolean input view are
true.

vsip_scalar_bl vsip_vanytrue_bl(
const vsip_vview_bl* a1);

Returns False (0) if all the elements in the input view are false. Returns true (non-zero) if
any of the elements of the input view are true.

Argument a1 Input view.

arg

Scalar function to return the argument value (in radians) of a complex scalar.

vsip_scalar_f vsip_arg_f(
vsip_cscalar_f a1);

Returns The argument of the complex scalar.

Argument a1 Input complex scalar
SP VSIPL Core Plus DRAFT 20

DRAFT
asin

Inverse Sine function.

void vsip_asin_f(
vsip_vview_f* a1,
vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector.

atan

Elementwise arctangent of a vector. This performs elementwise the atan function. For
TASP this is just the ANSI C math functions, cast to the proper precision.

void vsip_vatan_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input vector of tangent values.

Argument a2 Output vector of arctangent values.

atan2

Elementwise arctangent of two vectors. For TASP VSIPL this is the same as the ANSI
C math function atan2 cast to the proper precision.

void vsip_vatan2_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector denominator

Argument a2 Input vector numerator

Argument a3 Output vector of arctangent values of the quotient in radians.

bind

Used to create a (vector or matrix) view object and bind it to a block.

vsip_vview_f* vsip_vbind_f(
const vsip_block_f *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4);

vsip_cvview_f* vsip_cvbind_f(
const vsip_cblock_f *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4);

vsip_vview_i* vsip_vbind_i(
const vsip_block_i *a1,
vsip_offset a2,
21 DRAFT TASP VSIPL Core Plus

DRAFT
vsip_stride a3,
vsip_length a4);

vsip_vview_vi* vsip_vbind_vi(
const vsip_block_vi *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4);

vsip_vview_mi* vsip_vbind_mi(
const vsip_block_mi *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4);

vsip_vview_bl* vsip_vbind_bl(
const vsip_block_bl *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4);

vsip_mview_f* vsip_mbind_f(
const vsip_block_f *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4,
vsip_stride a5,
vsip_length a6);

vsip_cmview_f* vsip_cmbind_f(
const vsip_cblock_f *a1,
vsip_offset a2,
vsip_stride a3,
vsip_length a4,
vsip_stride a5,
vsip_length a6);

Returns A pointer to the view object created. Returns null on creation failure.

Argument a1 The block bound.

Argument a2 The offset from the beginning of the block where the view starts. Offsets are zero
based and positive so that an offset of zero is the first element of the block.

Argument a3 A stride through the block. This indicates the number of elements in the block
between vector view elements, or between matrix view elements in a column. A
stride of zero will access only the element indicated by the offset, and a stride of
one will access consecutive elements. A stride of N will access every Nth ele-
ment. Strides may be negative indicating a direction of movement through the
block opposite to that of a positive stride.

Argument a4 The length of the vector view in terms of elements or the length of a column
(number of rows) in a matrix. The length is not zero based and a length of 1 indi-
cates 1 element, and a length of N indicates N elements. The length is always
greater than zero.

Argument a5 A stride through the block representing the row stride of a matrix. The row stride
is the distance between consecutive elements in a row.

Argument a6 The row length (number of columns) of the matrix.
22 DRAFT TASP VSIPL Core Plus

DRAFT
blackman

Create a unit stride zero offset floating point vector and fill it with a Blackman window
of chosen length.

vsip_vview_f* vsip_vcreate_blackman_f(
visp_length a1,
vsip_memory_hint hint);

Returns The created vector view filled with the window coefficients.

Argument a1 The number of window coefficients.

Argument a2 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

blockadmit

Admit a block connected to user data for use by VSIPL functions. This function is
used to change the state of a VSIPL user block from released to admitted.

int vsip_blockadmit_f(
vsip_block_f* a1,
vsip_scalar_bl a2);

int vsip_cblockadmit_f(
vsip_cblock_f* a1,
vsip_scalar_bl a2);

int vsip_blockadmit_i(
vsip_block_i* a1,
vsip_scalar_bl a2);

int vsip_blockadmit_vi(
vsip_block_vi* a1,
vsip_scalar_bl a2);

int vsip_blockadmit_mi(
vsip_block_mi* a1,
vsip_scalar_bl a2);

int vsip_blockadmit_bl(
vsip_block_bl* a1,
vsip_scalar_bl a2);

Returns If the block admission succeeds 0 (zero) is returned. A nonzero value indicates a
failure.

Argument a1 A block pointer for an instantiated (valid) block. The admission will fail if the
block is bound to a null data pointer.

Argument a2 A boolean flag. True indicates the value of the data must be maintained during
the state change.

blockbind

This function creates a block and binds it to a pointer to user allocated memory. The
pointer defines the beginning of some user defined data array. It is the responsibility of
the user to ensure the memory pointer has enough data allocated with it for the desired
number of block elements.
23 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_block_f* vsip_blockbind_f(
const vsip_scalar_f* a1,
vsip_length a3,
vsip_memory_hint a4);

vsip_cblock_f* vsip_cblockbind_f(
const vsip_scalar_f* a1,
const vsip_scalar_f* a2,
vsip_length a3,
vsip_memory_hint a4);

vsip_block_f* vsip_blockbind_i(
const vsip_scalar_i* a1,
vsip_length a3,
vsip_memory_hint a4,);

vsip_block_vi* vsip_blockbind_vi(
const vsip_scalar_vi* a1,
vsip_length a3,
vsip_memory_hint a4);

vsip_block_mi* vsip_blockbind_mi(
const vsip_scalar_vi* a1,
vsip_length a3,
vsip_memory_hint a4);

vsip_block_bl* vsip_blockbind_bl(
const vsip_scalar_bl* a1,
vsip_length a3,
vsip_memory_hint a4);

Returns Pointer to created block.

Argument a1 Pointer to user defined data array. For complex blocks this pointer will point
either to a single interleaved data array, or to the data array defined for real split
data. For blocks of type matrix index the user data array is of type vector index.
The matrix index is stored in an interleaved fashion, so the user data array has
twice the number of vector index elements as the matrix index block created. It is
permitted to bind to a NULL data pointer, but the block admission will fail until
the block is rebound to a data pointer which is not NULL.

Argument a2 Pointer to user defined data array for imaginary complex data, if the split format
is used, or to the null data pointer if interleaved complex is used.

Argument a3 Number of elements of the block type associated with the user data array(s).

Argument a4 This is ignored in TASP VSIPL implementation. Place a 0 (zero) here or use any
enumerated memory hint defined in VSIPL.

blockcreate

This function creates a block object. The block creation includes allocating memory
for the data associated with the block

vsip_block_f* vsip_blockcreate_f(
vsip_length a1,
vsip_memory_hint a2);
SP VSIPL Core Plus DRAFT 24

DRAFT
vsip_cblock_f* vsip_cblockcreate_f
vsip_length a1,
vsip_memory_hint a2);

vsip_block_f* vsip_blockcreate_i(
vsip_length a1,
vsip_memory_hint a2);

vsip_block_vi* vsip_blockcreate_vi(
vsip_length a1,
vsip_memory_hint a2);

vsip_block_mi* vsip_blockcreate_mi(
vsip_length a1,
vsip_memory_hint a2);

vsip_block_bl* vsip_blockcreate_bl(
vsip_length a1,
vsip_memory_hint a2);

Returns Pointer to created block.

Argument a1 Number of elements of the block type to be created and attached to the block.
This is the block size, or the length of the block.

Argument a2 This is ignored in TASP VSIPL implementation. Place a 0 (zero) here or use any
enumerated memory hint defined in VSIPL.

blockdestroy

Destroy a block and any data bound to the block which was allocated by VSIPL. User
data bound to the block is not destroyed.

void vsip_blockdestroy_f(
vsip_block_f* a1);

void vsip_cblockdestroy_f(
vsip_cblock_f* a1);

void vsip_blockdestroy_i(
vsip_block_i* a1);

void vsip_blockdestroy_vi(
vsip_block_vi* a1);

void vsip_blockdestroy_mi(
vsip_block_mi* a1);

void vsip_blockdestroy_bl(
vsip_block_bl* a1);

Argument a1 Block to be destroyed;

blockfind

Find the pointer to the user data bound to a VSIPL released block.

vsip_scalar_f* vsip_blockfind_f(
const vsip_block_f* a1);

void vsip_cblockfind_f(
const vsip_cblock_f* a1,
25 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_scalar_f* *a2,
vsip_scalar_f* *a3);

vsip_scalar_i* vsip_blockfind_i(
const vsip_block_i* a1);

vsip_scalar_vi* vsip_blockfind_vi(
const vsip_block_vi* a1);

vsip_scalar_mi* vsip_blockfind_mi(
const vsip_block_mi* a1);

vsip_scalar_bl* vsip_blockfind_bl(
const vsip_block_bl* a1);

Returns Pointer to the user data array bound to the block, or void for complex blocks. For
VSIPL blocks (blocks not bound to user data) NULL is returned.

Argument a1 User released block

Argument a2 For complex, the data pointer to the user real data if split, or to the complex data
if interleaved. For VSIPL complex blocks (blocks not bound to user data) NULL
is returned

Argument a3 For complex, NULL if the user complex data is interleaved, and a pointer to the
user imaginary data if split. For VSIPL complex blocks NULL is returned.

blockrebind

Bind an existing VSIPL user block to a new data array.

vsip_scalar_f* vsip_blockrebind_f(
vsip_block_f* a1,
const vsip_scalar_f* a2);

void vsip_cblockrebind_f(
vsip_cblock_f* a1,
const vsip_scalar_f* a2,
const vsip_scalar_f* a3,
vsip_scalar_f* *a4,
vsip_scalar_f* *a5);

vsip_scalar_i* vsip_blockrebind_i(
vsip_block_f* a1,
const vsip_scalar_f* a2);

vsip_scalar_vi* vsip_blockrebind_vi(
vsip_block_vi* a1,
const vsip_scalar_vi* a2);

vsip_scalar_vi* vsip_blockrebind_mi(
vsip_block_mi* a1,
const vsip_scalar_vi* a2)

vsip_scalar_bl* vsip_blockrebind_bl(
vsip_block_bl* a1,
const vsip_scalar_bl* a2);

Returns Except for complex, returns a pointer to the user data array bound to the block
before the rebind. Returns void if the block is complex. If the block is not bound
to a user data array, NULL is returned.
SP VSIPL Core Plus DRAFT 26

DRAFT
Argument a1 Pointer to block to be rebound.

Argument a2 Pointer to new data array to be bound to the user block. If the block is complex
this data array is the real part of the complex number if the layout to be bound is
split. Note that for blocks of type matrix index the data array is always inter-
leaved.

Argument a3 A null pointer if the user complex data layout is interleaved, or a pointer to a data
array encompassing the imaginary portion of the complex number if the data lay-
out is split

Argument a4 A pointer to the previous real complex data array if the previous user complex
data was split, or a pointer to the previous user interleaved complex data array. If
the complex block is not bound to a user data array, NULL is returned.

Argument a5 A null pointer if the previous user data array was interleaved, or a pointer to the
imaginary portion of the previous split complex user data array. If the complex
block is not bound to a user data array, NULL is returned.

blockrelease

Release a user block. This function is used to change the state of a VSIPL user block
from admitted to released.

vsip_scalar_f* vsip_blockrelease_f(
vsip_block_f* a1,
vsip_scalar_bl a2);

void vsip_cblockrelease_f(
vsip_cblock_f * a1,
vsip_scalar_bl a2,
vsip_scalar_f* *a3
vsip_scalar_f* *a4);

vsip_scalar_i* vsip_blockrelease_i(
vsip_block_i* a1,
vsip_scalar_bl a2);

vsip_scalar_vi* vsip_blockrelease_vi(
vsip_block_vi* a1,
vsip_scalar_bl a2);

vsip_scalar_vi* vsip_blockrelease_mi(
vsip_block_mi* a1,
vsip_scalar_bl a2);

vsip_scalar_bl* vsip_blockrelease_bl(
vsip_block_bl* a1,
vsip_scalar_bl a2);

Returns Pointer to public data array, or void for complex. If the block is not bound to a
user data array then NULL is returned.

Argument a1 Pointer to block to be released.

Argument a2 A boolean flag. True indicates the value of the data must be maintained during
the state change.

Argument a3 For complex user data a pointer to the interleaved user data, or to the real part of
the complex user data for split representation. If the block is not bound to a user
data array then NULL is returned.
27 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Argument a4 For complex a null data pointer for the interleaved representation, and a pointer
to the imaginary data array for split representation. If the block is not bound to a
user data array then NULL is returned.

cheby

Create a unit stride zero offset floating point vector and fill it with a Dolph-Chebyshev
window of chosen length.

vsip_vview_f* vsip_vcreate_cheby_f(
visp_length a1,
vsip_scalar_f a2,
vsip_memory_hint a3);

Returns The created vector view filled with the window coefficients.

Argument a1 The number of window coefficients.

Argument a2 The desired window ripple in decibels below the main lobe.

Argument a3 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

chold

Cholesky decomposition and solver for symmetric positive definite (SPD) linear sys-

tem of the form where is SPD and the set of vectors

 and are solved.

Create a CHOLD object.

vsip_chol_f* vsip_chold_create_f(
vsip_mat_uplo a1,
vsip_length a2);

vsip_cchol_f* vsip_cchold_create_f(
vsip_mat_uplo a1,
vsip_length a2);

Returns A CHOLD object for use by the Cholesky decomposition function set.

Argument a1 Since the matrix is symmetric only the upper or lower half need be referenced to
compute the decomposition. This flag defines which half must be used.

Argument a2 Specifies the size of the input matrix for which the object is created.

Compute a Cholesky decomposition and initialize the CHOLD object. The input
matrix is overwritten by the decomposition and associated with the CHOLD
object. The matrix must not be modified or destroyed until after the CHOLD object
is destroyed, or initialized with a different matrix.

int vsip_chold_f(
vsip_chol_f* a1,
const vsip_mview_f* a2);

int vsip_cchold_f(
vsip_cchol_f* a1,
const vsip_cmview_f* a2);

Axi bi= A

X x0 x1 … xm, , ,[]= B b0 b1 … bm, , ,[]=

N xN

A

SP VSIPL Core Plus DRAFT 28

DRAFT
Returns A zero (0) if successful.

Argument a1 The CHOLD object to be initialized for matrix .

Argument a2 The input matrix . The argument a2 is overwritten and bound to the CHOLD
object. It must not be modified until the decomposition is no longer needed.

Solve the SPD problem.

int vsip_cholsol_f(
const vsip_chol_f* a1,
const vsip_mview_f* a2);

int vsip_ccholsol_f(
const vsip_cchol_f* a1,
const vsip_cmview_f* a2);

Returns Zero (0) on success.

Argument a1 Initialized (for matrix) CHOLD object.

Argument a2 Input view of matrix , and output view of solution matrix .

Destroy the CHOLD object.

int vsip_chold_destroy_f(
vsip_chold_f* a1);

int vsip_cchold_destroy_f(
vsip_cchold_f* a1);

Returns Zero (0) on success.

Argument a1 CHOLD object to be destroyed.

Get public attributes of a CHOLD object.

void vsip_chold_getattr_f(
const vsip_chol_f* chold,
vsip_chol_f* attr);

void vsip_cchold_getattr_f(
const vsip_cchol_f* chold,
vsip_cchol_attr_f* attr);

Argument a1 Input CHOLD object.

Argument a2 Output CHOLD public attribute object.

cloneview

Creates a new view object with all the attributes of the parent object.

vsip_vview_f* vsip_vcloneview_f(
const vsip_vview_f* a1);

vsip_cvview_f* vsip_cvcloneview_f(
const vsip_cvview_f* a1);

vsip_vview_i* vsip_vcloneview_i(
const vsip_vview_i* a1);

A

A

A

B X
29 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_vview_vi* vsip_vcloneview_vi(
const vsip_vview_vi* a1);

vsip_vview_mi* vsip_vcloneview_mi(
const vsip_vview_mi* a1);

vsip_vview_bl* vsip_vcloneview_bl(
const vsip_vview_bl* a1);

vsip_mview_f* vsip_mcloneview_f(
const vsip_mview_f* a1);

vsip_cmview_f* vsip_cmcloneview_f(
const vsip_cmview_f* a1);

Returns A pointer to the new view.

Argument a1 The view to be cloned.

cmplx

Create a complex number or view from two real numbers or views.

Scalar complex.

vsip_cscalar_f vsip_cmplx_f(
vsip_scalar_f a1,
vsip_scalar_f a2);

void vsip_CMPLX_f(
vsip_scalar_f a1,
vsip_scalar_f a2,
vsip_scalar_f* a3);

Returns For non-void scalar the complex output scalar.

Argument a1 An input scalar representing the real part.

Argument a2 An input scalar representing the imaginary part.

Argument a3 For void scalar the complex output scalar.

Vector complex.

void vsip_vcmplx_f(
vsip_vview_f* a1,
vsip_vview_f* a2,
vsip_cvview_f* a3);

Argument a1 Input vector representing the real part

Argument a2 Input vector representing the imaginary part.

Argument a3 The complex output vector.

clip

Given upper and lower comparison threshold values, compare against a view element-
wise. If the view elements are not less than the upper threshold or greater than the
lower threshold output the view element. For view elements not greater than the lower
comparison threshold replace the output element with a lower threshold replacement
value, and if the view elements are greater than the upper comparison threshold
SP VSIPL Core Plus DRAFT 30

DRAFT
replace the view element with the upper replacement value. The order of comparison
is the value less than or equal to the lower comparison threshold, then is the value less
than the upper comparison value. If neither condition is met then the value is greater
than or equal to the upper comparison threshold value. Once a condition is met, the
rule is followed and no other comparisons are done. There is no requirement that the
upper values be greater than the lower values. The terms upper and lower only imply
the argument order and the comparison and replacement done.

void vsip_vclip_f(
const vsip_vview_f *a1,
vsip_scalar_f a2,
vsip_scalar_f a3,
vsip_scalar_f a4,
vsip_scalar_f a5,
const vsip_vview_f *a6);

void vsip_vclip_i(
const vsip_vview_i *a1,
vsip_scalar_i a2,
vsip_scalar_i a3,
vsip_scalar_i a4,
vsip_scalar_i a5,
const vsip_vview_i *a6);

Argument a1 Input vector.

Argument a2 Lower comparison threshold.

Argument a3 Upper comparison threshold.

Argument a4 Lower threshold replacement value.

Argument a5 Upper threshold replacement value.

Argument a6 Output vector.

cmagsq

Find the complex magnitude squared.

Scalar complex magnitude squared.

vsip_scalar_f vsip_cmagsq_f(
vsip_cscalar_f a1);

Returns Magnitude squared value of complex scalar.

Argument a1 Input complex scalar.

Vector complex magnitude squared. For a complex vector find the magnitude
squared value of each element.

a1 a2≤ a6⇒ a4=

else

a1 a3< a6⇒ a1=

else

a6 a5=
31 DRAFT TASP VSIPL Core Plus

DRAFT

TA
void vsip_vcmagsq_f(
const vsip_cvview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector.

cmaxmgsq

Complex maximum magnitude squared comparison. Compare the magnitude squared
values of two complex vectors elementwise and output the maximum magnitude
squared of each element comparison into an output vector.

void vsip_vcmaxmgsq_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector.

Argument a2 Input vector.

Argument a3 Output vector.

cmaxmagsqval

Maximum magnitude squared value of a complex vector. Find the maximum magni-
tude squared value among all the elements of a complex view.

vsip_scalar_f vsip_vcmaxmagsqval(
vsip_cvview_f* a1,
vsip_index a2);

Returns The maximum magnitude squared value.

Argument a1 The input vector.

Argument a2 The index (into the input vector) of the selected value with the maximum magni-
tude squared.

cminmgsq

Complex minimum magnitude squared comparison. Compare the magnitude squared
values of two complex vectors elementwise and output the minimum magnitude
squared of each element comparison into an output vector.

void vsip_vcminmgsq_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector.

Argument a2 Input vector.

Argument a3 Output vector.
SP VSIPL Core Plus DRAFT 32

DRAFT
cminmagsqval

Minimum magnitude squared value of a complex vector. Find the minimum magni-
tude squared value among all the elements of a complex view.

vsip_scalar_f vsip_vcminmagsqval(
vsip_cvview_f* a1,
vsip_index a2);

Returns The minimum magnitude squared value.

Argument a1 The input vector.

Argument a2 The index (into the input vector) of the selected value with the minimum magni-
tude squared.

copy

The copy function copies data from one view to another view. This function is also
used to convert data types, for instance from integer to float.

void vsip_vcopy_f_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

void vsip_vcopy_f_i(
const vsip_vview_f* a1,
const vsip_vview_i* a2);

void vsip_vcopy_i_f(
const vsip_vview_i* a1,
const vsip_vview_f* a2);

void vsip_cvcopy_f_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

void vsip_vcopy_i_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2);

void vsip_vcopy_vi_i(
const vsip_vview_vi* a1,
const vsip_vview_i* a2);

void vsip_vcopy_vi_vi(
const vsip_vview_vi* a1,
const vsip_vview_vi* a2);

void vsip_vcopy_i_vi(
const vsip_vview_i* a1,
const vsip_vview_vi* a2);

void vsip_vcopy_mi_mi(
const vsip_vview_mi* a1,
const vsip_vview_mi* a2);

void vsip_vcopy_bl_bl(
const vsip_vview_bl* a1,
const vsip_vview_bl* a2);
33 DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_vcopy_bl_f(
const vsip_vview_bl* a1,
const vsip_vview_f* a2);

void vsip_vcopy_f_bl(
const vsip_vview_f* a1,
const vsip_vview_bl* a2);

void vsip_mcopy_f_f(
const vsip_mview_f* a1,
const vsip_mview_f* a2);

void vsip_cmcopy_f_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2);

Argument a1 Input to be copied.

Argument a2 Output, a copy of the input with possibly a data type conversion. Note that when
copying boolean to float false values are copied as zero, and true values are cop-
ied as one.

colview

Create a vector view of a selected column of a matrix

vsip_vview_f* vsip_mcolview_f(
const vsip_mview_f* a1,
vsip_index a2);

vsip_cvview_f* vsip_cmcolview_f(
const vsip_cmview_f* a1,
vsip_index a2);

Returns A vector view of the selected column, or a NULL if the memory allocation for
the view object fails.

Argument a1 Input view.

Argument a2 Index of desired view. Indices are zero based so that the first (left most) column
of the matrix has index zero.

conj

Conjugate a complex scalar.

vsip_cscalar_f vsip_conj_f(
vsip_cscalar_f a1);

void vsip_CONJ_f(
vsip_cscalar_f a1,
vsip_cscalar_f* a2);

Conjugate a complex vector.

void vsip_cvconj_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Argument a1 Input.
34 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a2 Output.

convolve

Calculate a convolution of a filter kernel and a view.

Create a convolution object.

vsip_conv1d_f* vsip_conv1d_create_f(
const vsip_vview_f* a1,
vsip_symmetry a2,
vsip_length a3,
vsip_length a4,
vsip_support_region a5,
vsip_length a6,
vsip_alg_hint a7);

Returns A convolution object.

Argument a1 A view containing the kernel information. The view will either contain all the
kernel information, in which case the symmetry argument below is nonsym, or
only the non-redundant part of the kernel, in which case the symmetry argument
will determine the length of the kernel.

Argument a2 The symmetry argument. NONSYM implies that all the kernel coefficients are in
the kernel argument. SYM_EVEN_LEN_ODD implies the kernel is of odd

length and symmetric in which case the first half kernel coeffi-
cients are included in the kernel argument. If the symmetry argument is
SYM_EVEN_LEN_EVEN then the kernel is of even length and symmetric, and

only the first coefficients are included in the kernel argument.

Argument a3 The length of the input vector expected when convolving with the kernel.

Argument a4 A decimation factor.

Argument a5 The region of support of the output. For FULL support with decimation the

length of the output will be the where is the

length of the kernel and is the length of the input vector. For SAME support

the length will be , and for MIN support the length

will be .

Argument a6 Number of times the function will be called. This is not supported in TASP
VSIPL. Recommend placing a zero here, although any number will do.

Argument a7 VSIPL algorit.him hint. Not supported in TASP VSIPL. Recommend placing a
zero here, although any valid hint will do.

Calculate the convolution.

void vsip_convolve1d_f(
const vsip_conv1d_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Convolution argument.

N 1–() 2⁄ 1+

N 2⁄

D

floor N M 2–+() D⁄() 1+ M

N

floor N 1–() D⁄() 1+

floor N 1–() D⁄() floor M 1–() D⁄()–() 1+
35 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a2 Input view. The size of the input view must agree with the size given in the con-
volution object.

Argument a3 Output view. The size of the output view must agree with the required size given
the decimation factor, and the size of the kernel and the input vector. See argu-
ment a5 for the convolution creation function.

Destroy the convolution object.

int vsip_conv1d_destroy_f(
vsip_conv1d_f* conv1d);

Returns A zero on success, non-zero on failure.

Argument a1 Convolution object to be destroyed.

Get the attributes of the convolution object.

void vsip_conv1d_getattr_f(
const vsip_conv1d_f* a1,
vsip_conv1d_attr_f* a2);

Argument a1 Input convolution object.

Argument a2 The pointer to the attributes. The kernel_len is the total number of coefficients in
the input filter, the data_len is the length of the input vector, the out_len is the
length of the output vector.

correlate

Correlate two views.

Create correlation object.

vsip_corr1d_f* vsip_corr1d_create_f(
vsip_length a1,
vsip_length a2,
vsip_support_region a3,
vsip_length a4,
vsip_alg_hint a5);

vsip_ccorr1d_f* vsip_ccorr1d_create_f(
vsip_length a1,
vsip_length a2,
vsip_support_region a3,
vsip_length a4,
vsip_alg_hint a5);

Returns Correlation object.

Argument a1 Length of input reference view.

Argument a2 Length of input data view. Must be greater than or equal to the reference view
length.

Argument a3 Region of support. This works the same as the convolution except that there is no

decimation, so is one. The length of the reference view replaces the length of

the kernel. So for FULL the length is , for SAME the length is

and for MIN the length is .

D

N M 1–+ N

N M– 1+
36 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a4 Number of times the object is expected to be used. Not supported in TASP
VSIPL. Recommend placing a zero (0) here, although any number will work.

Argument a5 Algorithm hint. Not supported in TASP VSIPL. Recommend placing a zero here,
although any valid hint will work.

Correlate two views.

void vsip_correlate1d_f(
const vsip_corr1d_f* a1,
vsip_bias a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4,
const vsip_vview_f* a5);

void vsip_ccorrelate1d_f(
const vsip_ccorr1d_f* a1,
vsip_bias a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4,
const vsip_cvview_f* a5);

Argument a1 Correlation object.

Argument a2 Type of correlation, biased or unbiased. Biased implies the correlation is done
with no normalization factor. This means that the tails will be biased with respect
to the middle portion where the entire reference view is overlapped with the data
view. Unbiased implies that the length of the overlap of the calculated correlation
value for a particular lag will be used to normalize the value.

Argument a3 Input reference view.

Argument a4 Input data view.

Argument a5 Output view of correlation values.

Destroy correlation object

int vsip_corr1d_destroy_f(
vsip_corr1d_f* a1);

int vsip_ccorr1d_destroy_f(
vsip_ccorr1d_f* a1);

Returns Zero (0) on success, non-zero on failure.

Argument a1 Correlation object to be destroyed.

Get public attributes from a correlation object.

void vsip_corr1d_getattr_f(
vsip_corr1d_f* a1,
vsip_corr1d_attr_f* a2);

void vsip_ccorr1d_getattr_f(
vsip_ccorr1d_f* a1,
vvsip_ccorr1d_attr_f* a2);

Argument a1 Input correlation object.

Argument a2 Output attribute object. The ref_len, and the data_len are the reference view and
data view lengths respectively. The lag_len is the length of the output view.
37 DRAFT TASP VSIPL Core Plus

DRAFT
cos

Elementwise Cosine of a vector.

void vsip_vcos_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input vector of angles in radian format.

Argument a2 Output vector of Cosine values.

covsol

Covariance Solver. Solve a set of equations

for the input vector set and output vector set

int vsip_covsol_f(
const vsip_mview_f* a1,
const vsip_mview_f* a2);

int vsip_ccovsol_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2);

Returns Zero (0) on success, minus one (-1) on failure due to a memory allocation prob-
lem. Positive return indicates failure for some other reason.

Argument a1 Input matrix

Argument a2 Input matrix , output matrix .

create

Convenience function to create a view, the block and the data associated with the block
all at the same time. The created view accesses the entire block. For a vector view this
means an offset of zero, a stride of one, and a length equal to the block size. For a
matrix view the block size is the product of the row length and the column length. The
stride in the selected major direction will be one, and the stride in the other direction
will be equal to the length of the major direction axis. For instance a row major matrix
will have a row stride of one, and a column stride equal to the row length.

AT Axi bi=

or

AH Axi' bi=

B X

X xo x1 … xm, , ,[]=

B bo b1 … bm, , ,[]=

A

B X
38 DRAFT TASP VSIPL Core Plus

DRAFT
vsip_vview_f* vsip_vcreate_f(
vsip_length a1,
vsip_memory_hint a3);

vsip_cvview_f* vsip_cvcreate_f(
vsip_length a1,
vsip_memory_hint a3);

vsip_vview_i* vsip_vcreate_i(
vsip_length a1,
vsip_memory_hint a4);

vsip_vview_vi* vsip_vcreate_vi(
vsip_length a1,
vsip_memory_hint a4);

vsip_vview_mi* vsip_vcreate_mi(
vsip_length a1,
vsip_memory_hint a4);

vsip_vview_bl* vsip_vcreate_bl(
vsip_length a1,
vsip_memory_hint a4);

vsip_mview_f* vsip_mcreate_f(
vsip_length a1,
vsip_length a2,
vsip_major a3,
vsip_memory_hint a4);

vsip_cmview_f* vsip_cmcreate_f(
vsip_length a1,
vsip_length a2,
vsip_major a3,
vsip_memory_hint a4);

Returns Pointer to vector view requested.

Argument a1 Length of the vector or matrix major direction.

Argument a2 Length of the matrix minor direction.

Argument a3 Enumerated type indicating major direction.

Argument a4 This is ignored in TASP VSIPL implementation. Place a 0 (zero) here or use any
enumerated memory hint defined in VSIPL.

cstorage

Indicates the preferred method of complex storage for user data in a particular VSIPL
implementation.

vsip_cmplx_mem vsip_cstorage(
void);

Returns A value based on the enumerated typedef

destroy

Function to destroy a view.

vsip_block_f* vsip_vdestroy_f(
vsip_vview_f* a1);
39 DRAFT TASP VSIPL Core Plus

DRAFT
vsip_cblock_f* vsip_cvdestroy_f(
vsip_cvview_f* a1);

vsip_block_i* vsip_vdestroy_i(
vsip_vview_i* a1);

vsip_block_vi* vsip_vdestroy_vi(
vsip_vview_vi* a1);

vsip_block_mi* vsip_vdestroy_mi(
vsip_vview_mi* a1);

vsip_block_bl* vsip_vdestroy_bl(
vsip_vview_bl* a1);

vsip_block_f* vsip_mdestroy_f(
vsip_mview_f* a1);

vsip_cblock_f* vsip_cmdestroy_f(
vsip_cmview_f* a1);

Returns A pointer to the block the view was bound to.

Argument a1 The pointer to the view to be destroyed.

diagview

Create a view of a selected diagonal of a matrix.

vsip_vview_f* vsip_mdiagview_f(
const vsip_mview_f* a1,
vsip_stride a2);

vsip_cvview_f* vsip_cmdiagview_f(
const vsip_cmview_f* a1,
vsip_stride a2);

Returns A pointer to the view of the selected diagonal.

Argument a1 Input matrix view.

Argument a2 The index of the selected view. An index of zero is the main diagonal with the
first element of the created view being the first element in the input matrix. A
negative value selects, in order, the diagonals below the main diagonal, and a
positive value selects, in order, the diagonals above the main diagonal.The index
argument has a type of stride because the standard VSIPL index is some type of
unsigned int. VSIPL indices are zero based, so this is not an index in the standard
VSIPL sense, and is defined with a stride type to meet the requirements of a neg-
ative index.

div

Divide two scalars.

vsip_cscalar_f vsip_cdiv_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2);

vsip_cscalar_f vsip_crdiv_f(
vsip_csclar_f a1,
vsip_scalar_f a2);

void vsip_CDIV_f(
vsip_cscalar_f a1,
40 DRAFT TASP VSIPL Core Plus

DRAFT
vsip_cscalar_f a2,
vsip_cscalar_f *a3);

void vsip_CDIV_f(
vsip_cscalar_f a1,
vsip_scalar_f a2,
vsip_cscalar_f *a3);

Divide two vectors element by element.

void vsip_vdiv_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_cvdiv_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

Scalar vector divide.

void vsip_svdiv_f(
vsip_scalar_f a1,
vsip_vview_f* a2,
vsip_vview_f* a3);

Returns For non void scalar function the quotient.

Argument a1 The numerator input.

Argument a2 The denominator output.

Argument a3 The quotient output.

dot

Dot products. A dot product is an elementwise multiply of two vectors with a sum of
the resulting vector.

Real Dot Product

vsip_scalar_f vsip_vdot_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

Returns Dot Product value.

Argument a1 Real input vector.

Argument a2 Real input vector.

Complex Dot Product

vsip_cscalar_f vsip_cvdot_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Returns Dot Product value.

Argument a1 Complex input vector.

Argument a2 Complex input vector.
41 DRAFT TASP VSIPL Core Plus

DRAFT
Complex Conjugate Dot Product. The dot product here is done between the first input
vector and the complex conjugate of the second input vector.

vsip_cscalar_f vsip_cvjdot_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Returns Dot Product value.

Argument a1 Complex input vector.

Argument a2 Complex input vector.

euler

Euler function. Elementwise compute the Sine value and the Cosine value of an input
vector. Place the Cosine value in the real part of a complex output vector, and place the
Sine value in the imaginary part of a complex output vector

void vsip_veuler_f(
vsip_vview_f *a1,
vsip_cvview_f *a2);

Argument a1 Input vector.

Argument a2 Output vector.

exp

Natural (base) exponential functions

Scalar natural (base) exponential.

vsip_cscalar_f vsip_cexp_f(
vsip_cscalar_f a1);

void vsip_CEXP_f(
vsip_cscalar_f a1,
vsip_cscalar_f* a2);

Elementwise natural (base) exponential of a vector.

void vsip_vexp_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

void vsip_cvexp_v(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Returns For non void scalar the exponential of the argument.

Argument a1 Input

Argument a2 Output

exp10

Base 10 exponential functions.

e

e

e

42 DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_vexp10_f(
vsip_vview_f* a1,
vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector of base 10 exponentials.

expoavg

Exponential average function. Compute a weighted average elementwise of two vec-

tors.

void vsip_vexpoavg_f(
vsip_scalar_f a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_cvexpoavg_f(
vsip_scalar_f a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

Argument a1 Real input scalar weighting factor.

Argument a2 Input view.

Argument a3 Input and output view.

fft

Compute a Discrete Fourier Transform using FFT methods for radices of 2 and at least
one factor of 3 as a minimum. The current TASP VSIPL FFT uses building block fac-
tors of 2, 4, 8, 3, 5,and 7.

Create an FFT object. There is only one type of FFT object for one dimensional FFTs.
The FFT object maintains state information to determine which type FFT it is created
for. It is the responsibility of the user to keep track of type FFT the object was created
for.

Create an FFT object for doing a complex to complex out of place FFT.

vsip_fft_f* vsip_ccfftop_create_f(
vsip_length a1,
vsip_scalar_f a2,
vsip_fft_dir a3,
unsigned int a4,
vsip_alg_hint a5);

Create an FFT object for doing a complex to complex in place FFT.

vsip_fft_f* vsip_ccfftip_create_f(
vsip_length a1,
vsip_scalar_f a2,
vsip_fft_dir a3,

a3 a1a2 1 a1–()a3+=
TASP VSIPL Core Plus DRAFT 43

DRAFT
unsigned int a4,
vsip_alg_hint a5);

Create an FFT object for doing a real to complex out of place FFT. All real to com-
plex FFT objects are created to go in the forward direction.

vsip_fft_f* vsip_rcfftop_create_f(
vsip_length a1,
vsip_scalar_f a2,
unsigned int a4,
vsip_alg_hint a5);

Create an FFT object for doing a complex to real out of place FFT. All complex to
real FFT objects are created to go in the inverse direction.

vsip_fft_f* vsip_crfftop_create_f(
vsip_length a1,
vsip_scalar_f a2,
unsigned int a4,
vsip_alg_hint a5);

Returns FFT object useful for creating a (user selected direction) forward or inverse FFT,
or null on creation failure.

Argument a1 Length of FFT. Except for the complex to real FFT object this will be the length
of the input vector to the FFT. For the complex to real FFT object this is the
length of the output vector. For the real to complex and complex to real FFTs the
FFT length must be even.

Argument a2 A scale factor. If a scale factor of 1 is used for a forward FFT then a scale factor

of in the inverse FFT will get back the original vector.

Argument a3 An enumerated type defining the direction of the FFT. You may use
VSIP_FFT_FWD (-1) for the forward FFT and VSIP_FFT_INV (+1) for the
inverse FFT. The direction of the complex to real and real to complex FFT is hard
coded in the algorithm, and this argument is not included.

Argument a4 Estimated number of times the object will be used in an FFT call. This option is
not supported in TASP VSIPL. Recommend placing zero here, although any
number will work.

Argument a5 This option is not supported in TASP VSIPL. Recommend placing a zero here,
although any valid algorithm hint will work.

Do the FFT. The FFT object must be created with the proper creation function to
match the FFT function.

Complex to complex out of place FFT.

void vsip_ccfftop_f(
const vsip_fft_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

Complex to complex in place FFT.

1 a1()⁄
44 DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_ccfftip_f(
const vsip_fft_f* a1,
const vsip_cvview_f* a2);

Real to complex out of place FFT. The input vector of length must be even. The

complex output vector is of length .

void vsip_rcfftop_f(
const vsip_fft_f* a1,
const vsip_vview_f* a2,
const vsip_cvview_f* a3);

Complex to real out of place FFT. The output vector of length must be even.

The complex input vector is of length .

void vsip_crfftop_f(
const vsip_fft_f* a1,
const vsip_cvview_f* a2,
const vsip_vview_f* a3);

Argument a1 FFT object.

Argument a2 Input data, and output data for in place FFT.

Argument a3 Output data

Destroy an FFT object.

int vsip_fft_destroy_f(
vsip_fft_f* a1);

Returns zero on success.

Argument a1 FFT object to be destroyed.

Get the attributes of an FFT object. The attribute object contains the input data size,
the output data size, whether the object was created for in place or out of place use, the
scale factor, and the direction of the FFT object.

void vsip_fft_getattr_f(
const vsip_fft_f* a1,
vsip_fft_attr_f* a2);

Argument a1 FFT object.

Argument a2 FFT attribute object.

fftm

Compute a Discrete Fourier Transform Multiple times using FFT methods for radices
of 2 and at least one factor of 3 as a minimum. The current TASP VSIPL Multiple FFT
uses building block factors of 2, 4, 8, 3, 5,and 7.

Create a Multiple FFT object. There is only one type of Multiple FFT object for one
dimensional FFTs. The Multiple FFT object maintains state information to determine
which type Multiple FFT it is created for. It is the responsibility of the user to keep
track of the Multiple FFT function the object was created for.

N

N 2⁄ 1+

N

N 2⁄ 1+
45 DRAFT TASP VSIPL Core Plus

DRAFT
Create a Multiple FFT object for doing a complex to complex out of place FFT.

vsip_fftm_f* vsip_ccfftmop_create_f(
vsip_length a1,
vsip_length a2,
vsip_scalar_f a3,
vsip_fft_dir a4,
vsip_major a5
unsigned int a6,
vsip_alg_hint a7);

Create a Multiple FFT object for doing a complex to complex in place FFT.

vsip_fftm_f* vsip_ccfftmip_create_f(
vsip_length a1,
vsip_length a2,
vsip_scalar_f a3,
vsip_fft_dir a4,
vsip_major a5,
unsigned int a6
vsip_alg_hint a7);

Create a Multiple FFT object for doing a real to complex out of place FFT. All real
to complex Multiple FFT objects are created to go in the forward direction.

vsip_fftm_f* vsip_rcfftmop_create_f(
vsip_length a1,
vsip_length a2,
vsip_scalar_f a3,
vsip_major a5,
unsigned int a6,
vsip_alg_hint a7);

Create a Multiple FFT object for doing a complex to real out of place FFT. All
complex to real Multiple FFT objects are created to go in the inverse direction.

vsip_fftm_f* vsip_crfftmop_create_f(
vsip_length a1,
vsip_length a2,
vsip_scalar_f a3,
vsip_major a5,
unsigned int a6,
vsip_alg_hint a7);

Returns FFT Multiple object useful for creating a (user selected direction) forward or
inverse FFT, or null on creation failure.

Argument a1 If the selected direction for doing the FFT is along the column, then this is the
length of the FFT. For the complex to complex cases, and the real to complex
case this is the number of rows in the input matrix (column length). For the com-
plex to real FFT multiple object this is the length of the output matrix column.
For the real to complex and complex to real FFTs this value must be even if the
column direction is selected.
46 DRAFT TASP VSIPL Core Plus

DRAFT
If the selected direction for doing the FFT is along the row, then this is the num-
ber of FFTs to be done (the number of rows in the input matrix)

Argument a2 If the selected direction for doing the FFT is along the row, then this is the length
of the FFT. For the complex to complex cases, and the real to complex case this is
the number of columns in the input matrix (row length). For the complex to real
FFT Multiple object this is the length of the output matrix row. For the real to
complex and complex to real FFTs this value must be even if the row direction is
selected.

If the selected direction for doing the FFT is along the column, then this is the
number of FFTs to be done (the number of columns in the input matrix)

Argument a3 A scale factor. If a scale factor of 1 is used for a forward FFT then a scale factor

of in the inverse FFT will get back the original vector.

Argument a4 An enumerated type defining the direction of the FFT. You may use
VSIP_FFT_FWD (-1) for the forward FFT and VSIP_FFT_INV (+1) for the
inverse FFT. The direction of the complex to real and real to complex FFT is hard
coded in the algorithm, and this argument is not included.

Argument a5 The direction along which the FFT Multiple will be done. The length of the other
direction is the number of FFTs done.

Argument a6 Estimated number of times the object will be used in an FFT Multiple call. This
option is not supported in TASP VSIPL. Recommend placing zero here, although
any number will work.

Argument a7 This option is not supported in TASP VSIPL. Recommend placing a zero here,
although any valid algorithm hint will work.

Do the Multiple FFT. The FFT Multiple object must be created with the proper cre-
ation function to match the FFT Multiple function.

Complex to complex out of place Multiple FFT.

void vsip_ccfftmop_f(
const vsip_fftm_f* a1,
const vsip_cmview_f* a2,
const vsip_cmview_f* a3);

Complex to complex in place Multiple FFT.

void vsip_ccfftmip_f(
const vsip_fftm_f* a1,
const vsip_cmview_f* a2);

Real to complex out of place Multiple FFT. The input matrix must be even length
() along the major direction. The complex output matrix is of length
along the major direction.

void vsip_rcfftmop_f(
const vsip_fftm_f* a1,
const vsip_mview_f* a2,
const vsip_cmview_f* a3);

1 a1()⁄

L L 2⁄ 1+
TASP VSIPL Core Plus DRAFT 47

DRAFT
Complex to real out of place Multiple FFT. The output matrix must be even length
 along the major direction. The complex input vector is of length .

void vsip_crfftmop_f(
const vsip_fftm_f* a1,
const vsip_cmview_f* a2,
const vsip_mview_f* a3);

Argument a1 Multiple FFT object.

Argument a2 Input view for all Multiple FFTs, and output view for in place Multiple FFT.

Argument a3 Output view.

Destroy a Multiple FFT object.

int vsip_fftm_destroy_f(
vsip_fftm_f* a1);

Returns zero on success.

Argument a1 Multiple FFT object to be destroyed.

Get the attributes of a Multiple FFT object. The attribute object contains the input data
size, the output data size, whether the object was created for in place or out of place
use, the scale factor, the major direction, and the direction of the Multiple FFT object.

void vsip_fftm_getattr_f(
const vsip_fftm_f* a1,
vsip_fftm_attr_f* a2);

Argument a1 Multiple FFT object.

Argument a2 Multiple FFT attribute object.

fill

Fill a vector with a constant value.

void vsip_vfill_f(
vsip_scalar_f a1,
const vsip_vview_f* a2);

void vsip_cvfill_f(
vsip_cscalar_f a1,
const vsip_cvview_f* a2);

void vsip_vfill_i(
vsip_scalar_i a1,
const vsip_vview_i* a2);

Argument a1 Scalar value to fill output vector with.

Argument a2 Output vector

finalize

Finalize the VSIPL library. Finalize must be called before the application exits. It must
be called exactly once for each vsip_init call. The application must be designed so
that before the final call to vsip_finalize all VSIPL objects have been destroyed.

L L 2⁄ 1+
48 DRAFT TASP VSIPL Core Plus

DRAFT
int vsip_finalize(
void *a1);

Returns Zero if the initialization succeeded, and non-zero otherwise.

Argument a1 No argument other than (void*) 0 is defined at this time.

fir

Finite impulse response filter with decimation.

Finite impulse response filter object create.

vsip_fir_f* vsip_fir_create_f(
const vsip_vview_f* a1,
vsip_symmetry a2,
vsip_length a3,
vsip_length a4,
vsip_obj_state a5,
unsigned int a6,
vsip_alg_hint a7);

vsip_cfir_f* vsip_cfir_create_f(
const vsip_cvview_f* a1,
vsip_symmetry a2,
vsip_length a3,
vsip_length a4,
unsigned int a5,
vsip_alg_hint a6);

Returns Pointer to FIR object.

Argument a1 Vector view containing filter kernel. If a1 holds all the filter coefficients then
VSIP_NONYSM is proper for a2. If the filter coefficients are symmetric and the
number of coefficients is even then only the first half of the coefficients are neces-
sary in a1 and VSIP_SYM_EVEN_LEN_EVEN is proper for a2. If the filter coef-
ficients are symmetric and the number of coefficients is odd then only the first
half of the coefficients plus the center coefficient are necessary in a1 and
VSIP_SYM_EVEN_LEN_ODD is proper for a2.

Argument a2 Symmetry enumerated typedef associated with the selected kernel

Argument a3 Length of the data to be filtered at a time.

Argument a4 Decimation factor.

Argument a5 Enumerated type indicating if the object state should be saved between function
calls to vsip_firflt_f. To save state use VSIP_STATE_SAVE. To ignore
state use VSIP_STATE_NO_SAVE.

Argument a6 Estimated number of times the object will be used. Not implemented in TASP
VSIPL. Recommend placing a 0 (zero) in this spot.

Argument a7 Algorithm hint. Not implemented in TASP VSIPL. Recommend placing a 0
(zero) in this spot.

Finite impulse response filter function.

int vsip_firflt_f(
vsip_fir_f* a1,
TASP VSIPL Core Plus DRAFT 49

DRAFT
const vsip_vview_f* a2,
const vsip_vview_f* a3);

int vsip_cfirflt_f(
vsip_cfir_f* a1,
const vsip_cvview_f* a2,
const vsip_vview_f* a3);

Returns The number of output samples placed in argument a3.

Argument a1 A FIR filter object

Argument a2 The input vector to be filtered

Argument a3 The output vector. The length of the output vector must be the quotient of the
length of the input vector divided by the decimation. The quotient is rounded up
to give the ceiling of the division.

FIR filter object destruction function.

int vsip_fir_destroy_f(
vsip_fir_f* a1);

int vsip_cfir_destroy_f(
vsip_cfir_f* a1);

Returns Returns 0 (zero) on success.

Argument a1 The FIR filter object to be destroyed.

FIR filter object get attributes function.

void vsip_fir_getattr_f(
const vsip_fir_f* a1,
vsip_fir_attr_f* a2);

void vsip_cfir_getattr_f(
const vsip_cfir_f* a1,
vsip_cfir_attr_f* a2);

Argument a1 The FIR filter object.

Argument a2 The FIR attribute object.

gather

A vector of indices is used elementwise to index an input view. The indexed values are
placed, elementwise, in an output vector view. The vector of indices, and the output
vector view have the same length, and are indexed the same. The only requirement on
the input view is that the index vector contain valid entrees to index the input view. For
the core profile only vector views are defined for input.

void vsip_vgather_f(
const vsip_vview_f* a1,
const vsip_vview_vi* a2,
const vsip_vview_f* a3);

void vsip_cvgather_f(
const vsip_cvview_f* a1,
const vsip_vview_vi* a2,
const vsip_cvview_f* a3);
50 DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_vgather_i(
const vsip_vview_i* a1,
const vsip_vview_vi* a2,
const vsip_vview_i* a3);

Argument a1 Input view.

Argument a2 Input vector view of indices (index vector).

Argument a3 Output vector view.

gemp

General matrix product. The general matrix product operates on three matrices

 and two scalars in conjunction with a enumerated type to indi-
cate matrix unary matrix operations (normal, transpose, hermitian or conjugation) on

input matrices to produce a general matrix product of the following form.

The size of the matrices must be such that the selected operations will work using nor-
mal linear algebra methods.

void vsip_gemp_f(
vsip_scalar_f a1,
const vsip_mview_f *a2,
vsip_mat_op a3,
const vsip_mview_f *a4,
vsip_mat_op a5,
vsip_scalar_f a6,
vsip_mview_f* a7);

void vsip_cgemp_f(
vsip_cscalar_f a1,
const vsip_cmview_f *a2,
vsip_mat_op a3,
const vsip_cmview_f *a4,
vsip_mat_op a5,
vsip_cscalar_f a6,
vsip_cmview_f* a7);

Argument a1 Scalar multiplier .

Argument a2 Input matrix .

Argument a3 Unary matrix operation on a2 before matrix multiply.

Argument a4 Input matrix

Argument a5 Unary matrix operation on a3 before matrix multiply.

Argument a6 Scalar multiplier .

Argument a7 Input/output matrix .

A B and C, , α and β

A and B

C αop A()op B() βC+=

α

A

B

β

C

51 DRAFT TASP VSIPL Core Plus

DRAFT
gems

General matrix sum. The general matrix sum operates on two matrices using

a unary matrix operator on matrix and multiplying matrix by scalars

 before summing the results.

The matrices must be sized properly so that the matrix sum may be done.

void vsip_gems_f(
vsip_scalar_f a1,
const vsip_mview_f *a2,
vsip_mat_op a3,
vsip_scalar_f a4,
const vsip_mview_f *a5);

void vsip_cgems_f(
vsip_cscalar_f a1,
const vsip_cmview_f *a2,
vsip_mat_op a3,
vsip_cscalar_f a4,
const vsip_cmview_f *a5);

Argument a1 Scalar multiplier .

Argument a2 Input matrix view .

Argument a3 Matrix operation to perform on a2.

Argument a4 Scalar multiplier .

Argument a5 Input/Output matrix view .

get

Get an element from a view

vsip_scalar_f vsip_vget_f(
const vsip_vview_f* a1,
vsip_scalar_vi a2);

vsip_cscalar_f vsip_cvget_f(
const vsip_cvview_f* a1,
vsip_scalar_vi a2);

vsip_scalar_i vsip_vget_i(
const vsip_vview_i* a1,
vsip_scalar_vi a2);

vsip_scalar_vi vsip_vget_vi(
const vsip_vview_vi* a1,
vsip_scalar_vi a2);

vsip_scalar_mi vsip_vget_mi(
const vsip_vview_mi* a1,
vsip_scalar_vi a2);

A and B

A A and B

α and β

B αop A() βB+=

A and B

α

A

β

B

52 DRAFT TASP VSIPL Core Plus

DRAFT
vsip_scalar_bl vsip_vget_bl(
const vsip_vview_bl* a1,
vsip_scalar_vi a2);

vsip_scalar_f vsip_mget_f(
const vsip_mview_f* a1,
vsip_scalar_vi a2,
vsip_scalar_vi a3);

vsip_cscalar_f vsip_cmget_f(
const vsip_cmview_f* a2,
vsip_scalar_vi a2,
vsip_scalar_vi a3);

Returns Value indexed by a2, and for matrices a3. For boolean the returned value will test
properly for true or false using standard ANSI C tests, but the actual value is
implementation dependent.

Argument a1 Vector view from which a value will be selected and returned.

Argument a2 Index value of desired element. The first element will have an index value of 0
(zero). For matrices this is the row index.

Argument a3 This is the column index for matrices. For instance (a2,a3) = (0,0) will be the first
element in the matrix, (a2,a3) = (0,1) will be the second element in the first row
and (a2,a3) = (1,0) will be the first element in the second row.

getattrib

Access function to retrieve a structure containing the attributes of a view object.

void vsip_vgetattrib_f(
const vsip_vview_f* a1,
vsip_vattr_f* a2);

void vsip_cvgetattrib_f(
const vsip_vview_f* a1,
vsip_cvattr_f* a2);

void vsip_vgetattrib_i(
const vsip_vview_i* a1,
vsip_vattr_i* a2);

void vsip_vgetattrib_vi(
const vsip_vview_vi* a1,
vsip_vattr_vi* a2);

void vsip_vgetattrib_mi(
const vsip_vview_mi* a1,
vsip_vattr_mi* a2);

void vsip_vgetattrib_bl(
const vsip_vview_vi* a1,
vsip_vattr_bl* a2);

void vsip_mgetattrib_f(
const vsip_mview_f* a1,
vsip_mattr_f* a2);

void vsip_cmgetattrib_f(
const vsip_cmview_f* a1,
vsip_cmattr_f* a2);
53 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a1 Input view whose attributes will be returned.

Argument a2 Attribute structure to be filled with public attributes of input view.

getblock

Access function to retrieve the block associated with a view object.

vsip_block_f* vsip_vgetblock_f(
const vsip_vview_f* a1);

vsip_cblock_f* vsip_cvgetblock_f(
const vsip_cvview_f* a1);

vsip_block_i* vsip_vgetblock_i(
const vsip_vview_i* a1);

vsip_block_vi* vsip_vgetblock_vi(
const vsip_vview_vi* a1);

vsip_block_mi* vsip_vgetblock_mi(
const vsip_vview_mi* a1);

vsip_block_bl* vsip_vgetblock_bl(
const vsip_vview_bl* a1);

vsip_block_f* vsip_mgetblock_f(
const vsip_mview_f* a1);

vsip_cblock_f* vsip_cmgetblock_f(
const vsip_cmview_f* a1);

Returns A block object pointer.

Argument a1 The view bound to the block object being returned.

getcollength

Access function to retrieve the column length of a matrix.

vsip_length vsip_mgetcollength_f(
const vsip_mview_f* a1);

vsip_length vsip_cmgetcollength_f(
const vsip_cmview_f* a1);

Returns Number of elements in the column of a matrix view.

Argument a1 Input matrix view.

getcolstride

Access function to retrieve the column stride of a matrix.

vsip_length vsip_mgetcolstride_f(
vsip_mview_f* a1);

vsip_length vsip_cmgetcolstride_f(
vsip_cmview_f* a1);

Returns Stride through the block between consecutive elements in a column.

Argument a1 Input matrix view.
54 DRAFT TASP VSIPL Core Plus

DRAFT
getlength

Access function to retrieve the row length of a vector.

vsip_length vsip_vgetlength_f(
vsip_vview_f* a1);

vsip_length vsip_cvgetrowlength_f(
vsip_cvview_f* a1);

vsip_length vsip_vgetlength_i(
vsip_vview_i* a1);

vsip_length vsip_vgetlength_vi(
vsip_vview_vi* a1);

vsip_length vsip_vgetlength_mi(
vsip_vview_mi* a1);

vsip_length vsip_vgetlength_bl(
vsip_vview_bl* a1);

Returns Number of elements in the vector view.

Argument a1 Input vector view.

getoffset

Access function to retrieve the offset from the beginning of the block associated with a
view to the first element in the view. The offset is zero based and positive so that an
offset of zero is the first element in the block.

vsip_offset vsip_vgetoffset_f(
const vsip_vview_f* a1);

vsip_offset vsip_cvgetoffset_f(
const vsip_cvview_f* a1);

vsip_offset vsip_vgetoffset_i(
const vsip_vview_i* a1);

vsip_offset vsip_vgetoffset_vi(
const vsip_vview_vi* a1);

vsip_offset vsip_vgetoffset_mi(
const vsip_vview_mi* a1);

vsip_offset vsip_vgetoffset_bl(
const vsip_vview_bl* a1);

vsip_offset vsip_mgetoffset_f(
const vsip_mview_f* a1);

vsip_offset vsip_cmgetoffset_f(
const vsip_cmview_f* a1);

Returns Offset of first element of view into block bound to view.

Argument a1 Input view.

getrowlength

Access function to retrieve the row length of a matrix.
TASP VSIPL Core Plus DRAFT 55

DRAFT
vsip_length vsip_mgetrowlength_f(
const vsip_mview_f* a1);

vsip_length vsip_cmgetrowlength_f(
const vsip_cmview_f* a1);

Returns Number of elements in the row of a matrix view.

Argument a1 Input matrix view.

getrowstride

Access function to retrieve the row stride of a matrix.

vsip_stride vsip_mgetrowstride_f(
const vsip_mview_f* a1);

vsip_stride vsip_cmgetrowstride_f(
const vsip_cmview_f* a1);

Returns Stride through the block between consecutive elements in a row.

Argument a1 Input matrix view.

getstride

Access function to retrieve the stride of a vector view.

vsip_stride vsip_vgetstride_f(
const vsip_vview_f* a1);

vsip_stride vsip_cvgetstride_f(
const vsip_cvview_f* a1);

vsip_stride vsip_vgetstride_i(
const vsip_vview_i* a1);

vsip_stride vsip_vgetstride_vi(
const vsip_vview_vi* a1);

vsip_stride vsip_vgetstride_mi(
const vsip_vview_mi* a1);

vsip_stride vsip_vgetstride_bl(
const vsip_vview_bl* a1);

Returns Stride of vector view through it’s asscoiated block.

Argument a1 Input vector view.

hanning

Create a unit stride zero offset floating point vector and fill it with a Hanning window
of chosen length.

vsip_vview_f* vsip_vcreate_hanning_f(
visp_length a1,
vsip_memory_hint hint);

Returns The created vector view filled with the window coefficients.

Argument a1 The number of window coefficients.

Argument a2 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.
56 DRAFT TASP VSIPL Core Plus

DRAFT
histo

Histogram function. This function uses a maximum value and a minimum value and
the length of the output vector to calculate the bin size. Input values less than the min-
imum value are counted as belonging in the first element of the output vector and input
values greater than the maximum value are counted as belonging in the last element of
the output vector. The bin size is distributed evenly for the other elements.

void vsip_vhisto_f(
const vsip_vview_f* a1,
vsip_scalar_f* a2,
vsip_scalar_f* a3,
const vsip_vview_f* a4);

Argument a1 Input vector of values for which a histogram is desired.

Argument a2 Minimum value for which elements less than are counted in the first output ele-
ment.

Argument a3 Maximum value for which elements greater than are counted in the last output
element

Argument a4 Output vector of histogram counts.

hypot

Hypotenuse. Compute elementwise the square root of the sum of the squares of two
input vectors.

void vsip_vhypot_f(
const vsip_vview_f *a1,
const vsip_vview_f *a2,
const vsip_vview_f *a3);

Argument a1 Input vector view.

Argument a2 Input vector view.

Argument a3 Output vector view.

imag

Copy the imaginary elements of a complex vector to a real vector.

Scalar imaginary part.

vsip_scalar_f vsip_imag_f(
vsip_csclar_f a1);

Returns The imaginary part.

Argument a1 The input complex scalar.

Vector imaginary part.

void vsip_vimag_f(
const vsip_cvview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input complex vector.
57 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a2 Output vector to contain the imaginary part of the complex input vector.

imagview

Create a real view of the imaginary portion of a complex view. This is not a copy.
Modifying elements in either the real view or the complex view will modify the corre-
sponding element in the other view. Attributes of the created view are vendor depen-
dent, and should be queried if needed.

vsip_vview_f* vsip_vimagview_f(
const vsip_cvview_f* a1);

vsip_mview_f* vsip_mimagview_f(
const vsip_cmview_f* a1);

Returns View of imaginary portion of the complex view a1.

Argument a1 Complex view from which the real view of the imaginary part will be derived.

indexbool

Find an index of true values in a boolean view, placing the indexes in an vector index
view.

vsip_length vsip_vindexbool(
const vsip_vview_bl *a1,
vsip_vview_vi *a2);

Returns Number of true elements in argument a1.

Argument a1 Input view of boolean.

Argument a2 Output vector of indices. The indices are ordered so that the smallest index with a
true value is first and the largest index with a true value is last. The length of the
vector index view is modified to the number of true values, or is unmodified if no
true values are found.

init

Initialize the VSIPL library. Init must be called before any VSIPL function is called. It
may be called as often as needed in order to ensure it has been called.

int vsip_init(
void *a1);

Returns Zero if the initialization succeeded, and non-zero otherwise.

Argument a1 No argument other than (void*) 0 is defined at this time.

invclip

Using three comparison threshold values and two replacement threshold values do an
elementwise clip using the following rules. Once a rule is met the condition is fol-
lowed and the following rules are ignored.
58 DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_vinvclip_f(
const vsip_vview_f *a1,
vsip_scalar_f a2,
vsip_scalar_f a3,
vsip_scalar_f a4,
vsip_scalar_f a5,
vsip_scalar_f a6,
const vsip_vview_f *a7);

void vsip_vinvclip_i(
const vsip_vview_i *a1,
vsip_scalar_i a2,
vsip_scalar_i a3,
vsip_scalar_i a4,
vsip_scalar_i a5,
vsip_scalar_i a6,
const vsip_vview_f *a7);

Argument a1 Input view.

Argument a2 Comparison threshold lower boundary.

Argument a3 Comparison threshold mid boundary.

Argument a4 Comparison threshold upper boundary.

Argument a5 Lower replacement value.

Argument a6 Upper replacement value.

Argument a7 Output view.

kaiser

Create a unit stride zero offset floating point vector and fill it with a Kaiser window of
chosen length.

vsip_vview_f* vsip_vcreate_kaiser_f(
visp_length a1,
vsip_scalar_f a2,
vsip_memory_hint a3);

Returns The created vector view filled with the window coefficients.

Argument a1 The number of window coefficients.

Argument a2 Coefficient determined by user to control sidelobe levels.

Argument a3 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

a1 a2< a7⇒ a1=

else

a1 a3< a7⇒ a5=

else

a1 a4≤ a7⇒ a6=

else

a7 a1=
59 DRAFT TASP VSIPL Core Plus

DRAFT
llsqsol

Linear Least Square Solver. Solve the linear least squares problem for

the set of vectors and .

int vsip_llsqsol_f(
const vsip_mview_f* a1,
const vsip_mview_f* a2);

int vsip_cllsqsol_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2);

Returns Zero (0) if successful, -1 if a memory allocation failure, positive if the input
matrix is not of full column rank.

Argument a1 Input matrix of size . The input matrix data is overwritten in the
solution process.

Argument a2 Input matrix of size , output matrix of solution . Note that the out-
put matrix is the same VSIPL object as the input matrix. The lengths of the solu-

tions will be , the row length of the input matrix . It is up to the user to reset

the column length of the matrix where the solutions reside to the proper size.
The solution columns will start at element zero of the input matrix column and so
only a column length adjustment is required. If the input output object will be
used repeatedly it may be desirable to have a second view with the proper
attributes for the output.

log

Elementwise natural (base) logarithm of a vector.

void vsip_vexp_log_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector.

log10

Elementwise base 10 logarithm of a vector.

void vsip_vlog10_f*(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector.

logical

Functions performing logical elementwise comparisons between two input vectors.

min Axi bi–

X xo x1 … xm, , ,[]= B bo b1 … bm, , ,[]=

A m by n

B m by k X

n A

B

e

60 DRAFT TASP VSIPL Core Plus

DRAFT
Logical Equal. Compare two vectors elementwise for equality.

void vsip_vleq_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_bl* a3);

Logical greater than or equal. Compare two vectors elementwise. If the element in
the first vector is greater than or equal to the element in the second input vector
then a true is placed in the output vector, otherwise a false.

void vsip_vlge_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_bl* a3);

Logical greater than. Compare two vectors elementwise. If the element in the first
vector is greater than the element in the second vector then a true is placed in the
output vector, otherwise a false.

void vsip_vlgt_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_bl* a3);

Logical less than or equal. Compare two vectors elementwise. If the element in the
first vector is less than or equal to the element in the second vector then a true is
placed in the output vector, otherwise a false.

void vsip_vlle_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_bl* a3);

Logical less than. Compare two vectors elementwise. If the element in the first
vector is less than the element in the second vector then a true is placed in the out-
put vector, otherwise a false.

void vsip_vllt_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_bl* a3);

Logical not equal. Compare two vectors elementwise. If the element in the first
vector is not equal to the element in the second vector then a true is placed in the
output vector, otherwise a false.

void vsip_vlle_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_bl* a3);

Argument a1 Input vector.

Argument a2 Input vector.
TASP VSIPL Core Plus DRAFT 61

DRAFT
Argument a3 Output boolean vector of true and false values.

lud

Matrix lower upper decomposition. Solve linear systems using a Gaussian decomposi-
tion of a square matrix.

Create an LUD object.

vsip_lu_f* vsip_lud_create_f(
vsip_length a1);

vsip_clu_f* vsip_clud_create_f(
vsip_length a1);

Returns The LUD object.

Argument a1 Number of rows (and columns) in the expected matrix decomposition.

Compute the LUD decomposition. The matrix decomposed is overwritten and
bound to the LUD object. This matrix must not be modified as long as the LUD
object is needed. The lud object is created using the create function above.

int vsip_lud_f(
vsip_lu_f* a1,
const vsip_mview_f* a2);

int vsip_clud_f(
vsip_clu_f* a1,
const vsip_cmview_f* a2);

Returns Zero (0) on success.

Argument a1 Input/Output LUD object.

Argument a2 Input matrix to be decomposed. The matrix is overwritten by the decomposition.

Solve a square linear system.

int vsip_lusol_f(
const vsip_lu_f* a1,
vsip_mat_op a2,
const vsip_mview_f* a3);

int vsip_clusol_f(
const vsip_lu_f* a1,
vsip_mat_op a2,
const vsip_mview_f* a3);

Returns Zero (0) on success.

op A()xi b=

X xo x1 … xm, , ,[]=

B bo b1 … bm, , ,[]=
62 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a1 Input LUD object which has been created using vsip_lud_create_f and a
decomposition matrix computed using vsip_lud_f. The LUD object contains

the decomposed matrix .

Argument a2 Matrix Operator flag. This flag operates on the matrix .

Argument a3 Input/Output matrix of Vectors to solve for so that is a3 on input, and is a3
on output.

Destroy LUD object.

int vsip_lud_destroy_f(
vsip_lu_f* a1);

int vsip_clud_destroy_f(
vsip_clu_f* a1);

Returns Zero on success.

Argument a1 LUD object to be destroyed. The matrix associated with the LUD object is not
destroyed here, and must be destroyed using the matrix destroy functions.

Get LUD attributes. The only public attribute is the matrix size .

void vsip_lud_gatattr_f(
const vsip_lu_f* a1,
vsip_lu_attr_f* a2);

void vsip_clud_getattr_f(
const vsip_clu_f* a1,
vsip_clu_attr_f* a2);

Argument a1 LUD object.

Argument a2 LUD attribute object.

mag

Magnitude.

Scalar Magnitude.

vsip_scalar_f vsip_cmag_f(
vsip_cscalar_f *a1);

Returns The magnitude of the input.

Argument a1 Input scalar value.

Elementwise find the magnitude of a vectors elements and place them in an output
vector.

void vsip_vmag_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

A

A

B X

A

N

TASP VSIPL Core Plus DRAFT 63

DRAFT
void vsip_cvmag_f(
const vsip_cvview_f* a1,
const vsip_vview_f* a2);

void vsip_vmag_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2);

Argument a1 Input vector.

Argument a2 Output vector of magnitudes.

matindex

Scalar function to create a scalar matrix index.

vsip_scalar_mi vsip_matindex(
vsip_scalar_vi a1,
vsip_scalar_vi a2);

void vsip_MATINDEX(
vsip_scalar_vi a1,
vsip_scalar_vi a2,
vsip_scalar_mi *a3);

Returns For non-void the scalar matrix index value.

Argument a1 Row index element for matrix index.

Argument a2 Column index element for matrix index.

Argument a3 For void scalar matrix index the scalar matrix index

Scalar functions to extract row index and column index from scalar matrix index.

vsip_scalar_vi vsip_rowindex(
vsip_scalar_mi a1);

vsip_scalar_vi vsip_colindex(
vsip_scalar_mi a1);

Returns Extracted row or column index.

Argument a1 Input matrix index.

max

Compare two vectors element by element and place the maximum value of each ele-
ment comparison in an output vector.

void vsip_vmax_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector.

Argument a2 Input vector.

Argument a3 Output vector.

a1 a2,()
64 DRAFT TASP VSIPL Core Plus

DRAFT
maxmg

Maximum magnitude selection. Compare two real vectors elementwise and output the
maximum magnitude into the output vector.

void vsip_vmaxmg_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector.

Argument a2 Input vector.

Argument a3 Output vector.

maxmgval

Find the maximum magnitude among all the values of a real vector.

vsip_scalar_f vsip_vmaxmgval_f(
const vsip_vview_f* a1,
vsip_index* a2);

Returns Maximum magnitude value of the vector.

Argument a1 Input vector.

Argument a2 Pointer to index (in input vector) of location of the maximum magnitude. If more
than one element has the maximum magnitude value then the index of the first
element is returned. If the pointer is a null value the index is ignored.

maxval

Find the maximum value of a vector and return it and it’s index.

vsip_scalar_f vsip_vmaxval_f(
const vsip_vview_f* a1,
vsip_scalar_vi* a2);

Returns Maximum value of the input vector

Argument a1 Input Vector.

Argument a2 If a2 is not a null value the index of the (first) maximum value is returned.

meansqval

Find the average of the magnitude squared elements of a view.

vsip_scalar_f vsip_vmeansqval_f(
const vsip_vview_f* a1);

vsip_scalar_f vsip_cvmeansqval_f(
const vsip_cvview_f* a1);

Returns The mean value of the magnitude squared values of the elements of the input.

Argument a1 The input view.
65 DRAFT TASP VSIPL Core Plus

DRAFT
meanval

Find the average of the elements of a view.

vsip_scalar_f vsip_vmeanval_f(
const vsip_vview_f* a1);

vsip_cscalar_f vsip_cvmeanval_f(
const vsip_cvview_f* a1);

Returns The mean value of the elements of the view.

Argument a1 Input view.

mherm

Matrix Hermitian. Do a conjugate transpose of a complex matrix. May be done in
place only if the input matrix is square.

void vsip_cmherm_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2);

Argument a1 Input matrix view.

Argument a2 Output matrix view.

min

Compare two vectors element by element and place the minimum value of each ele-
ment comparison in an output vector.

void vsip_vmin_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector

Argument a2 Input vector

Argument a3 Output vector

minmg

Minimum magnitude selection. Compare two real vectors elementwise and output the
minimum magnitude into the output vector.

void vsip_vminmg_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input vector.

Argument a2 Input vector.

Argument a3 Output vector.
66 DRAFT TASP VSIPL Core Plus

DRAFT
minmgval

Find the minimum magnitude among all the values of a real vector.

vsip_scalar_f vsip_vminmgval_f(
const vsip_vview_f* a1,
vsip_index* a2);

Argument a1 Input vector.

Argument a2 If not null, the index of the minimum magnitude is returned. If more than one ele-
ment equals the minimum magnitude then the index of the first equal element is
returned.

minval

Find the minimum value of a vector and return it and it’s index.

vsip_scalar_f vsip_vminval_f(
const vsip_vview_f* a1,
vsip_scalar_vi* a2);

Returns Minimum value of the input vector.

Argument a1 Input vector.

Argument a2 If a2 is not a null value then the index of the minimum value is returned. If more
than one element equals the minimum value then the index of the first minimum
value is returned

modulate

Modulate a vector by a specified frequency. Phase and information is passed to, and
returned from the modulate function to allow continuous modulation. The modulation
formula is

where is the element index and is the complex imaginary multiplier.

vsip_scalar_f vsip_vmodulate_f(
const vsip_vview_f* a1,
vsip_scalar_f a2,
vsip_scalar_f a3,
const vsip_cvview_f* a3);

vsip_scalar_f vsip_vmodulate_f(
const vsip_cvview_f* a1,
vsip_scalar_f a2,
vsip_scalar_f a3,
const vsip_cvview_f* a3);

Returns Next phase value.

Argument a1 Input vector view.

Argument a2 Input frequency value.

Argument a3 Input phase value.

a4 t a2() a3+[]cos j t a2() a3+[]sin+()a1=

t j
TASP VSIPL Core Plus DRAFT 67

DRAFT
Argument a4 Output complex vector view.

mprod

Matrix Products. These are standard linear algebra products of matrix views with vec-
tor or matrix views. Sizes of input and output views must match the standard linear
algebra definitions.

Matrix Product

void vsip_mprod_f(
const vsip_mview_f* a1,
const vsip_mview_f* a2,
const vsip_mview_f* a3);

void vsip_cmprod_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2,
const vsip_cmview_f* a3);

Argument a1 First input matrix.

Argument a2 Second input matrix.

Argument a3 Output matrix

Conjugate matrix product. Matrix multiply the first input matrix times the complex
conjugate of the second input matrix.

void vsip_cmprodj_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2,
const vsip_cmview_f* a3);

Argument a1 First input matrix.

Argument a2 Second input matrix.

Argument a3 Output matrix

Hermitian matrix product. Matrix multiply the first input matrix times the complex
conjugate transpose of the second input matrix.

void vsip_cmprodj_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2,
const vsip_cmview_f* a3);

Argument a1 First input matrix.

Argument a2 Second input matrix.

Argument a3 Output matrix

Vector matrix product.

void vsip_vmprod_f(
const vsip_vview_f* a1,
const vsip_mview_f* a2,
const vsip_vview_f* a3);
68 DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_cvmprod_f(
const vsip_cvview_f* a1,
const vsip_cmview_f* a2,
const vsip_cvview_f* a3);

Argument a1 Input vector view. The length of the vector view must match the number of rows
(column length) of argument a2.

Argument a2 Input matrix view.

Argument a3 Output vector view.

Matrix vector product.

void vsip_mvprod_f(
const vsip_mview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_cmvprod_f(
const vsip_cmview_f* a1,
const vsip_cvview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input matrix view.

Argument a2 The length of the vector view must match the number of columns (row length) of
argument a1.

Argument a3 Output vector view.

Matrix transpose product. Matrix product of the first input matrix with the trans-
pose of the second input matrix.

void vsip_mprodt_f(
const vsip_mview_f* a1,
const vsip_mview_f* a2,
const vsip_mview_f* a3);

void vsip_cmprodt_f(
const vsip_cmview_f* a1,
const vsip_cmview_f* a2,
const vsip_cmview_f* a3);

Argument a1 First input matrix of size .

Argument a2 Second input matrix of size

Argument a3 Output matrix of size

mtrans

Matrix transpose. May be done in place only if the matrix is square.

void vsip_mtrans_f(
const vsip_mview_f* a1,
const vsip_mview_f* a2);

M xP

N xP

M xN
TASP VSIPL Core Plus DRAFT 69

DRAFT
void vsip_cmtrans_f(
const vsip_cmview_f* a1,
const vsip_mview_f* a2);

Argument a1 Input matrix view.

Argument a2 Output matrix view

mul

Multiply two objects element by element.

Multiply two scalars.

vsip_cscalar_f vsip_cmul_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2);

vsip_cscalar_f vsip_rcmul_f(
vsip_scalar_f a1,
vsip_cscalar_f a2);

void vsip_CMUL_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f* a3);

void vsip_RCMUL_f(
vsip_scalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f *a3);

Returns For non void scalar functions the product of the arguments.

Argument a1 Input scalar

Argument a2 Input scalar

Argument a3 Pointer to output complex scalar.

Multiply two vectors elementwise.

void vsip_vmul_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_vmul_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_cvmul_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_rcvmul_f(
const vsip_vview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);
70 DRAFT TASP VSIPL Core Plus

DRAFT
Argument a1 Input vector view.

Argument a2 Input vector view.

Argument a3 Output vector view.

Multiply a scalar times a vector elementwise.

void vsip_svmul_f(
vsip_scalar_f a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_svmul_i(
vsip_scalar_i a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_csvmul_f(
vsip_cscalar_f a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_rscvmul_f(
vsip_scalar_f a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

Argument a1 Input scalar.

Argument a2 Input vector view.

Argument a3 Output vector view.

Complex conjugate multiply.

Scalar conjugate multiply. Multiply the first input scalar times the conjugate of the
second input scalar

vsip_cscalar_f vsip_cjmul_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2);

void vsip_CJMUL_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f* a3);

Returns For non void the product of the arguments.

Argument a1 First input scalar.

Argument a2 Second input scalar

Argument a3 Pointer to output complex scalar.

Elementwise multiply the first input times the conjugate of the second input.

void vsip_cvjmul_f(
vsip_cvview_f* a1,
vsip_cvview_f* a2,
vsip_cvview_f* a3);
TASP VSIPL Core Plus DRAFT 71

DRAFT

72
Argument a1 The first input vector view.

Argument a2 The second input vector view.

Argument a3 The output vector.

Vector Matrix elementwise multiply. Elementwise multiply the elements of a vector
times the elements of the rows or columns of a matrix. The length of the vector must
be the same length as the selected row or column direction.

void vsip_vmmul_f(
const vsip_vview_f *a1,
const vsip_mview_f *a2,
vsip_major major,
const vsip_mview_f *a3);

void vsip_cvmmul_f(
const vsip_cvview_f *a1,
const vsip_cmview_f *a2,
vsip_major major,
const vsip_cmview_f *a3);

void vsip_rvcmmul_f(
const vsip_vview_f *a1,
const vsip_cmview_f *a2,
vsip_major major,
const vsip_cmview_f *a3);

Argument a1 Input vector view.

Argument a2 Input matrix view.

Argument a3 Output matrix view.

neg

Perform an unary minus.

Scalar unary minus

vsip_cscalar_f vsip_cneg_f(
vsip_cscalar_f a1);

void vsip_CNEG_f(
vsip_cscalar_f a1,
vsip_cscalar_f* a1);

Returns For non void the negative of the argument.

Argument a1 Input scalar.

Argument a2 Pointer to output scalar.

Elementwise perform an unary minus on a view.

void vsip_vneg_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);
DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_cvneg_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

void vsip_vneg_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2);

Argument a1 Input vector

Argument a2 Output vector

not

Elementwise calculate the bitwise “NOT” for an integer view, or a logical “NOT” for
an boolean view.

void vsip_vnot_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2);

void vsip_vnot_bl(
const vsip_vview_bl* a1,
const vsip_vview_bl* a2);

Argument a1 Input view.

Argument a2 Output view.

or

Performs a bitwise “OR” operation between two integer views, or a logical “OR”
between two boolean views.

void vsip_vor_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_vor_bl(
const vsip_vview_bl* a1,
const vsip_vview_bl* a2,
const vsip_vview_bl* a3);

Argument a1 Input view.

Argument a2 Input view.

Argument a3 Output view.

outer

Compute a scaled outer product of two vectors.

void vsip_vouter_f(
const vsip_scalar_f a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3,
const vsip_mview_f* a4);

C α x y
T

=

TASP VSIPL Core Plus DRAFT 73

DRAFT

74
void vsip_cvouter_f(
const vsip_cscalar_f a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3,
const vsip_cmview_f* a4);

Argument a1 Scaling factor .

Argument a2 Input vector .

Argument a3 Input vector

Argument a4 Output matrix

polar

Convert complex rectangular to polar notation. All VSIPL complex numbers are in
rectangular notation. Conversion to polar requires output into two real objects.

Scalar functionality.

void vsip_polar_f(
vsip_cscalar_f a1,
vsip_scalar_f a2,
vsip_scalar_f a3);

Vector functionality.

void vsip_vpolar_f(
const vsip_cvview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

Argument a1 Input complex.

Argument a2 Output radius (square root of sum of squares of real and imaginary of input).

Argument a3 Output angle (atan2(real a1, imaginary a1)).

put

Put an element into a vector.

void vsip_vput_f(
const vsip_vview_f* a1,
vsip_scalar_vi a2,
vsip_scalar_f a4);

void vsip_cvput_f(
const vsip_vview_f* a1,
vsip_scalar_vi a2,
vsip_cscalar_f a4);

void vsip_vput_i(
const vsip_vview_f* a1,

α

x

y

C

DRAFT TASP VSIPL Core Plus

DRAFT
vsip_scalar_vi a2,
vsip_scalar_i a4);

void vsip_vput_vi(
const vsip_vview_vi* a1,
vsip_scalar_vi a2,
vsip_scalar_vi a4);

void vsip_vput_mi(
const vsip_vview_mi* a1,
vsip_scalar_vi a2,
vsip_scalar_mi a4);

void vsip_vput_bl(
const vsip_vview_bl* a1,
vsip_scalar_vi a2,
vsip_scalar_bl a4);

void vsip_mput_f(
const vsip_mview_f* a1,
vsip_scalar_vi a2,
vsip_scalar_vi a3
vsip_scalar_f a4);

void vsip_cmput_f(
const vsip_cmview_f* a1,
vsip_scalar_vi a2,
vsip_scalar_vi a3,
vsip_cscalar_f a4);

Argument a1 View into which an element will be placed.

Argument a2 Index value of desired element location. The first element in the view will have
an index value of 0 (zero). For matrix puts this is the row index.

Argument a3 Column index value for matrix put. The first element is 0.

Argument a4 Value to place in view.

putattrib

Access function to set the attributes of a view object using the public attributes object.

vsip_vview_f* vsip_vputattrib_f(
vsip_vview_f* a1,
const vsip_vattr_f* a2);

vsip_cvview_f* vsip_cvputattrib_f(
vsip_cvview_f* a1,
const vsip_cvattr_f* a2);

vsip_vview_i* vsip_vputattrib_i(
vsip_vview_i* a1,
const vsip_vattr_i* a2);

vsip_vview_vi* vsip_vputattrib_vi(
vsip_vview_vi* a1,
const vsip_vattr_vi* a2);
TASP VSIPL Core Plus DRAFT 75

DRAFT

76
vsip_vview_mi* vsip_vputattrib_mi(
vsip_vview_mi* a1,
const vsip_vattr_mi* a2);

vsip_vview_bl* vsip_vputattrib_bl(
vsip_vview_bl* a1,
const vsip_vattr_bl* a2);

vsip_mview_f* vsip_mputattrib_f(
vsip_mview_f* a1,
const vsip_mattr_f* a2);

vsip_cmview_f* vsip_cmputattrib_f(
vsip_cmview_f* a1,
const vsip_cmattr_f* a2);

Returns Pointer to input view as a convenience.

Argument a1 Input vector whose attributes will be modified.

Argument a2 Attribute structure to be filled with attributes of input vector. Note that the block
is ignored when putting an attribute.

putcollength

Replace the column length in a matrix view.

vsip_mview_f* vsip_mputcollength_f(
vsip_mview_f* a1,
vsip_length a3);

vsip_cmview_f* vsip_cmputcollength_f(
vsip_cmview_f* a1,
vsip_length a3);

Returns Pointer to input view as a convenience.

Argument a1 Input matrix whose column length will be modified.

Argument a2 New length.

putcolstride

Replace the column stride in a matrix view.

vsip_mview_f* vsip_mputcolstride_f(
vsip_mview_f* a1,
vsip_stride a3);

vsip_cmview_f* vsip_cmputcolstride_f(
vsip_cmview_f* a1,
vsip_stride a3);

Returns Pointer to input view as a convenience.

Argument a1 Input matrix whose column stride will be modified.

Argument a2 New stride.
DRAFT TASP VSIPL Core Plus

DRAFT
putoffset

Access function to set the offset of a view object

vsip_vview_f* vsip_vputoffset_f(
vsip_vview_f* a1,
vsip_offset a2);

vsip_cvview_f* vsip_cvputoffset_f(
vsip_cvview_f* a1,
vsip_offset a2);

vsip_vview_i* vsip_vputoffset_i(
vsip_vview_i* a1,
vsip_offset a2);

vsip_vview_vi* vsip_vputoffset_vi(
vsip_vview_vi* a1,
vsip_offset a2);

vsip_vview_mi* vsip_vputoffset_mi(
vsip_vview_mi* a1,
vsip_offset a2);

vsip_vview_bl* vsip_vputoffset_bl(
vsip_vview_bl* a1,
vsip_offset a2);

vsip_mview_f* vsip_mputoffset_f(
vsip_mview_f* a1,
vsip_offset a2);

vsip_cmview_f* vsip_cmputoffset_f(
vsip_cmview_f* a1,
vsip_offset a2);

Returns Pointer to input view as a convenience.

Argument a1 View whose offset is to be reset.

Argument a2 Offset value. An offset of 0 (zero) will place the offset at the first element of the
block.

putrowlength

Replace the row length in a matrix view.

vsip_mview_f* vsip_mputrowlength_f(
vsip_mview_f* a1,
vsip_length a3);

vsip_cmview_f* vsip_cmputrowlength_f(
vsip_cmview_f* a1,
vsip_length a3);

Returns Pointer to input view as a convenience.

Argument a1 Input matrix whose row length will be modified.

Argument a2 New length.
TASP VSIPL Core Plus DRAFT 77

DRAFT

78
putrowstride

Replace the row stride in a matrix view.

vsip_mview_f* vsip_mputrowstride_f(
vsip_mview_f* a1,
vsip_stride a3);

vsip_cmview_f* vsip_cmputrowstride_f(
vsip_cmview_f* a1,
vsip_stride a3);

Returns Pointer to input view as a convenience.

Argument a1 Input matrix whose row stride will be modified.

Argument a2 New stride.

putstride

Access function to set the stride of a vector view object.

vsip_vview_f* vsip_vputstride_f(
vsip_vview_f* a1,
vsip_stride a2);

vsip_cvview_f* vsip_cvputstride_f(
vsip_cvview_f* a1,
vsip_stride a2);

vsip_vview_i* vsip_vputstride_i(
vsip_vview_i* a1,
vsip_stride a2);

vsip_vview_vi* vsip_vputstride_vi(
vsip_vview_vi* a1,
vsip_stride a2);

vsip_vview_mi* vsip_vputstride_mi(
vsip_vview_mi* a1,
vsip_stride a2);

vsip_vview_bl* vsip_vputstride_bl(
vsip_vview_bl* a1,
vsip_stride a2);

Returns Pointer to input view as a convenience.

Argument a1 Vector view whose stride is to be reset.

Argument a2 Stride value. Strides may be positive, negative or zero.

putlength

Access function to set the length of a vector view object

vsip_vview_f* vsip_vputlength_f(
vsip_vview_f* a1,
vsip_length a2);
DRAFT TASP VSIPL Core Plus

DRAFT
vsip_cvview_f* vsip_cvputlength_f(
vsip_cvview_f* a1,
vsip_length a2);

vsip_vview_i* vsip_vputlength_i(
vsip_vview_i* a1,
vsip_length a2);

vsip_vview_vi* vsip_vputlength_vi(
vsip_vview_vi* a1,
vsip_length a2);

vsip_vview_mi* vsip_vputlength_mi(
vsip_vview_mi* a1,
vsip_length a2);

vsip_vview_bl* vsip_vputlength_bl(
vsip_vview_bl* a1,
vsip_length a2);

Returns Pointer to input view as a convenience.

Argument a1 Vector whose length is to be reset.

Argument a2 Length value.

qrd

Matrix decomposition using the QR method. This function set is used for solving lin-
ear systems, in particular over determined systems.

QRD create function. Create the QRD object.

vsip_qr_f* vsip_qrd_create_f(
vsip_length a1,
vsip_length a2,
vsip_qrd_qopt a3);

vsip_cqr_f* vsip_cqrd_create_f(
vsip_length a1,
vsip_length a2,
vsip_qrd_qopt a3);

Returns A QRD object.

Argument a1 Number of rows in the input matrix in the QRD decomposition func-
tion vsip_qrd_f or vsip_cqrd_f.

Argument a2 Number of columns in the input matrix in the QRD decomposition
function vsip_qrd_f or vsip_cqrd_f.

Argument a3 Enumerated type definition indicating what type of QRD informa-

tion is required in the matrix decomposition, either no , full , or

skinny .

Decompose the input matrix and bind the decomposition to the QRD object.

Note that the matrix is used in the decomposition, and should not be modified or

A

A

Q Q

Q

A

A

TASP VSIPL Core Plus DRAFT 79

DRAFT

80
destroyed until the QRD object is no longer needed. For the following the size of

 is .

int vsip_qrd_f(
vsip_qr_f* a1,
const vsip_mview_f* a2);

int vsip_cqrd_f(
vsip_cqr_f* a1,
const vsip_cmview_f* a2);

Returns Zero (0) on success.

Argument a1 Input QRD object which will contain the decomposition information.

Argument a2 Input matrix to be decomposed using QR methods.

Using the QRD object calculate the product of the matrix from the QR decom-

position of matrix where is of size and . To use this func-

tion the QRD object must have been created with one of the save Q options. If

VSIP_QRD_SAVEQ was specified the size of the implied matrix is . if

VSIP_QRD_SAVEQ1 was specified the size of the implied matrix is .

This function preforms the operation.

 or

Note that this matrix product is done in place and is of the form where

 is of size , is of size and is of size . Either matrix

or (depending upon the option selected) may be required to be in place with

since the may be either on the left or right. The output matrix may be the
same size as the input, or it may be larger or smaller than the input matrix, depend-

ing on the input sizes of and , and which input matrix represents the output
matrix. The following in-place rules are followed. (1) The elements of the input/
output matrices are arranged in there natural matrix element locations in the upper
left corner of the input/output matrix view. (2) The input/output matrix view will be
of the input. (3) If the output is larger than the input then the strides of the input
matrix must be sufficient so that the output data may be contained in the block.

int vsip_qrdprodq_f(
const vsip_qr_f* a1,
vsip_mat_op a2,
vsip_mat_side a3,
const vsip_mview_f* a4);

int vsip_cqrdprodq_f(
const vsip_cqr_f* a1,

A m by n

A

A

Q

A A ma by na ma na≥

Q ma by ma

Q ma by na

op Q() C⋅ C op Q()⋅

H K⋅ C=

H m by n K n by k C m by k

H K

C op Q()

H K
DRAFT TASP VSIPL Core Plus

DRAFT
vsip_mat_op a2,
vsip_mat_side a3,
const vsip_cmview_f* a4);

Returns Zero (0) on success.

Argument a1 Input QRD object.

Argument a2 Input Operator flag. For real case only the no transpose and transpose cases are
supported. For the complex case only the no transpose and hermitian transpose
case are supported.

Argument a3 Input flag to cause the matrix multiply to happen on the left or the right.

Argument a4 Input matrix to be multiplied with , and the output matrix of result. The
attributes of the input and output matrix are the same, and the row and column
lengths may need to be adjusted to fit the output matrix data space. Note that if
the input and output matrix are not the same size it may be convenient to define a
second view of a4 which describes the input or the output, whichever is smaller.

Solve linear system using QRD object. The solution is based on the matrix from
the QR decomposition, and the linear system solved is of the form

. The solution is done (in place) for a set of input vectors

 and output vectors .

int vsip_qrdsolr_f(
const vsip_qr_f* a1,
vsip_mat_op a2,
vsip_scalar_f a3,
const vsip_mview_f* a4);

int vsip_cqrdsolr_f(
const vsip_cqr_f* a1,
vsip_mat_op a2,
vsip_scalar_f a4,
const vsip_cmview_f* a4);

Returns Zero (0) on success.

Argument a1 Input QRD object.

Argument a2 Input operator flag to determine form of .

Argument a3 Input scale factor.

Argument a4 Input matrix and output matrix .

Solve a covariance or linear least square problem. The covariance problem solved

is of the form . The solution is done (in place) for a set of input vec-

tors and output vectors .

int vsip_qrsol_f(
vsip_qr_f* a1,

op Q()

R

op R()xi αbi=

B b0 b1 … bk, , ,[]= X x0 x1 … xk, , ,[]=

R

B X

AT Axi bi=

B b0 b1 … bk, , ,[]= X x0 x1 … xk, , ,[]=
TASP VSIPL Core Plus DRAFT 81

DRAFT

82
vsip_qrd_prob a2,
const vsip_mview_f *a3);

int vsip_cqrsol_f(
vsip_cqr_f* a1,
vsip_qrd_prob a2,
const vsip_cmview_f* a3);

Returns Zero (0) on success.

Argument a1 Input QRD object.

Argument a2 Flag to determine if the least squares problem is solved, or the covariance prob-
lem is solved.vsip_mrealview_f

Argument a3 Input view to solve for, and output view . Note that for the covariance prob-

lem and are of the same size, but for the least squares problem has a

column length greater than or equal to . The in-place rule is that the output
matrix goes in the upper left corner of the input matrix in natural order, and the
view attributes are unchanged for input and output. It may be convenient to
define a second view of a3 defining the output.

Get the attributes of a QRD object.

void vsip_qrd_getattr_f(
const vsip_qr_f *a1,
vsip_qrd_attr_f *a2);

void vsip_cqrd_getattr_f(
const vsip_cqr_f *a1,
vsip_cqrd_attr_f *a2);

Argument a1 QRD object whose attributes are being queried.

Argument a2 QRD attribute object.

Destroy a QRD object.

int vsip_qrd_destroy_f(
vsip_qr_f *a1);

int vsip_cqrd_destroy_f(
vsip_cqr_f *a2);

Argument a1 QRD object to be destroyed.

ramp

Fill a vector with an initial value plus some increment times the vector index.

void vsip_vramp_f(
vsip_scalar_f a1,
vsip_scalar_f a2,
const vsip_vview_f* a3);

void vsip_vramp_i(
vsip_scalar_i a1,
vsip_scalar_i a2,
const vsip_vview_i* a3);

B X

B X B

X

DRAFT TASP VSIPL Core Plus

DRAFT
Argument a1 Starting value of ramp.

Argument a2 Ramp increment value.

Argument a3 Output vector containing ramp values.

rand

Generate a uniform random sequence. The current non-portable sequence in the TASP
VSIPL implementation is based on the congruential sequence

.

The number produced is normalized to a float value between zero and one.

Create a random state object.

vsip_randstate* vsip_randcreate(
vsip_index a1,
vsip_index a2,
vsip_index a3,
vsip_rng a4);

Returns A random state object

Argument a1 The initial seed value for the random state object.

Argument a2 The total number of independent random state objects needed.

Argument a3 The particular random state object needed out of the number specified in argu-
ment a2. Numbering starts at 1. For instance if a2 is 3 then a3 will be 1, 2, or 3.

Argument a4 A flag to indicate whether the desired generator is the portable generator defined
in the VSIPL specification, or a non-portable generator which is implementation
dependent. The non-portable generator may be the same as the portable generator
(For TASP VSIPL they are not the same).

Create the next random number from random state object.

Scalar function for uniform random number generator. Generates uniformly dis-
tributed floats bounded by zero and one.

vsip_scalar_f vsip_randu_f(
vsip_randstate *a1);

vsip_cscalar_f vsip_crandu_f(
vsip_randstate *a1);

Scalar function for Gaussian random number generator.

vsip_scalar_f vsip_randn_f(
vsip_randstate *a1);

vsip_cscalar_f vsip_crandn_f(
vsip_randstate *a1);

Returns A random number

Argument a1 Random state object, created by randstate.

Create a vector of random numbers from the random state object.

X n 1664525()X n 1– 1013904223+[] mod 232()=

N 0 1,()
TASP VSIPL Core Plus DRAFT 83

DRAFT

84
Vector function for uniform random number generator. Generates uniformly dis-
tributed floats bounded by zero and one.

void vsip_vrandu_f(
vsip_randstate *a1,
const vsip_vview_f *a2);

void vsip_cvrandu_f(
vsip_randstate *a1,
const vsip_cvview_f *a2);

Vector function for Gaussian random number generator.

void vsip_vrandn_f(
vsip_randstate *a1,
const vsip_vview_f *a2);

void vsip_cvrandn_f(
vsip_randstate *a1,
const vsip_cvview_f *a2);

Argument a1 The random state operator

Argument a2 A vector view to be filled with sequential numbers from the generator specified
by the randstate object.

Destroy the random state object

int vsip_randdestroy(
vsip_randstate *a1);

Returns 0 on success.

Argument a1 The random state object to be destroyed.

real

Copy the imaginary elements of a complex vector to a real vector.

Scalar real part.

vsip_scalar_f vsip_real_f(
vsip_csclar_f a1);

Returns The real part.

Argument a1 The input complex scalar.

Vector real part.

void vsip_vreal_f(
const vsip_cvview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input complex vector.

Argument a2 Output vector to contain real part of input vector.

N 0 1,()
DRAFT TASP VSIPL Core Plus

DRAFT
realview

Create a real view of the real portion of a complex view. This is not a copy. Modifying
elements in either the real view or the complex view will modify the corresponding
element in the other view.

vsip_vview_f* vsip_vrealview_f(
const vsip_cvview_f* a1);

vsip_mview_f* vsip_mrealview_f(
const vsip_mview_f* a1);

Returns Vector view of the real portion of the complex view a1.

Argument a1 Complex vector view from which the real view of the real part will be derived.

recip

Find the reciprocal value.

Scalar Reciprocal

vsip_cscalar_f vsip_crecip_f(
vsip_cscalar_f a1);

void vsip_CRECIP_f(
vsip_cscalar_f a1,
vsip_cscalar_f *a2);

Returns For non void scalar the reciprocal of the argument.

Argument a1 Input scalar.

Argument a2 Output of the reciprical of the input for non-void scalar function.

Elementwise find the reciprocal of a vectors elements and place them in an output
vector.

void vsip_vrecip_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

void vsip_cvrecip_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Argument a1 Input vector

Argument a2 Output vector

rect

Convert rectangular notation to complex rectangular. VSIPL has no polar scalar stor-
age. Polar storage is in two real objects. Complex storage is always in rectangular
form.

Scalar rectangular. Convert two real scalars representing a number in polar nota-
tion to a complex number in rectangular notation.
TASP VSIPL Core Plus DRAFT 85

DRAFT

86
vsip_cscalar_f vsip_rect_f(
vsip_scalar_f a1,
vsip_scalar_f a2);

void vsip_RECT_f(
vsip_scalar_f a1,
vsip_scalar_f a2,
vsip_cscalar_f *a3);

Returns The rectangular notation complex scalar.

Argument a1 Magnitude (radius) of polar notation scalar.

Argument a2 Angle of radius vector of polar notation scalar.

Vector rectangular. Elementwise convert two real vectors representing (pairwise)
numbers in polar notation to a complex vector in rectangular notation.

void vsip_vrect_f(
vsip_vview_f* a1,
vsip_vview_f* a2,
vsip_cvview_f* a3);

Argument a1 Input vector representing magnitude of polar notation.

Argument a2 Input vector representing angle of polar notation.

Argument a3 Output complex vector in complex rectangular notation.

rowview

Create a vector view of a selected row of a matrix

vsip_vview_f* vsip_mrowview_f(
const vsip_mview_f* a1,
vsip_index a2);

vsip_cvview_f* vsip_cmrowview_f(
const vsip_cmview_f* a1,
vsip_index a2);

Returns A vector view of the selected row, or a NULL if the memory allocation for the
view object fails.

Argument a1 Input view.

Argument a2 Index of desired view. Indices are zero based so that the first (top) row of the
matrix has index zero.

rsqrt

Reciprocal square root. Find the reciprocal square root of the elements of a view.

void vsip_vrsqrt_f(
const vsip_vview_f *a1,
const vwip_vview_f *a2);

Argument a1 Input view.

Argument a2 Output view.
DRAFT TASP VSIPL Core Plus

DRAFT
scatter

An index vector and an input vector (of the same length) are indexed elementwise. The
input vector value is placed in an output view based on the index vector value. The
only requirement on the output view is that the index vector values are valid indices
into the output view. For the core profile only vector views are supported for the out-
put.

void vsip_vscatter_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_vi* a3);

void vsip_cvscatter_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_vview_vi* a3);

void vsip_vscatter_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_vi* a3);

Argument a1 Input vector view.

Argument a2 Output view.

Argument a3 Input vector view of indices (index vector).

sin

Elementwise Sine of a vector

void vsip_vsin_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

Argument a1 Input vector in radian format.

Argument a2 output vector of Sine values.

sq

Elementwise find the square of a vectors elements

void vsip_vsq_f(
const vsip_vview_f* a1,
cons vsip_vview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector of element squares from the input vector.

sqrt

Square Root

Scalar Square Root
TASP VSIPL Core Plus DRAFT 87

DRAFT

88
vsip_cscalar_f vsip_csqrt_f(
vsip_cscalar_f a1);

void vsip_CSQRT_f(
vsip_cscalar_f a1,
vsip_cscalar_f *a2);

Returns For non-void scalar the square root of the input.

Argument a1 Input value.

Argument a2 For void scalar the square root of the input.

Elementwise square root of a vector.

void vsip_vsqrt_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

void vsip_cvsqrt_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Argument a1 Input vector.

Argument a2 Output vector.

sub

Subtract the second input from the first input.

Scalar Subtraction

vsip_cscalar_f vsip_csub_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2);

vsip_cscalar_f vsip_rcsub_f(
vsip_scalar_f a1,
vsip_cscalar_f a2);

vsip_cscalar_f vsip_crsub_f(
vsip_cscalar_f a1,
vsip_scalar_f a2);

void vsip_CSUB_f(
vsip_cscalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f *a3);

void vsip_RCSUB_f(
vsip_scalar_f a1,
vsip_cscalar_f a2,
vsip_cscalar_f *a3);

void vsip_CRSUB_f(
vsip_cscalar_f a1,
vsip_scalar_f a2,
vsip_cscalar_f *a3);

Returns For non-void scalars the result of the second input subtracted from the first input.
DRAFT TASP VSIPL Core Plus

DRAFT
Argument a1 First input.

Argument a2 Second input

Argument a3 For void scalars the result of the second input subtracted from the first input.

Subtract a vector from a scalar

void vsip_svsub_f(
vsip_scalar_f a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_svsub_i(
vsip_scalar_i a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_csvsub_f(
vsip_cscalar_f a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_rscvsub_f(
vsip_scalar_f a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

Argument a1 Input scalar.

Argument a2 Input vector.

Argument a3 Output vector.

Subtract two vectors element by element

void vsip_vsub_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3);

void vsip_vsub_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_cvsub_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_rcvsub_f(
const vsip_vview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3);

void vsip_crvsub_f(
const vsip_cvview_f* a1,
const vsip_vview_f* a2,
const vsip_cvview_f* a3);

Argument a1 First input argument
TASP VSIPL Core Plus DRAFT 89

DRAFT

90
Argument a2 Second input argument, subtracted from a1.

Argument a3 Output vector.

subview

Creates a new view object from a parent object with a selected subset of the data of the
parent object accessed by the new view.

Vector Subviews.

vsip_vview_f* vsip_vsubview_f(
const vsip_vview_f* a1,
vsip_index a2,
vsip_length a3);

vsip_cvview_f* vsip_cvsubview_f(
const vsip_cvview_f* a1,
vsip_index a2,
vsip_length a3);

vsip_vview_i* vsip_vsubview_i(
const vsip_vview_i* a1,
vsip_index a2,
vsip_length a3);

vsip_vview_vi* vsip_vsubview_vi(
const vsip_vview_vi* a1,
vsip_index a2,
vsip_length a3);

vsip_vview_mi* vsip_vsubview_mi(
const vsip_vview_mi* a1,
vsip_index a2,
vsip_length a3);

vsip_vview_bl* vsip_vsubview_bl(
const vsip_vview_bl* a1,
vsip_index a2,
vsip_length a3);

Returns Pointer to the new vector view object

Argument a1 Input vector.

Argument a2 Index of element in a1 starting the new vector view. The first element is index 0
(zero).

Argument a3 Length of new output vector view.

Matrix subviews.

vsip_mview_f* vsip_msubview_f(
const vsip_mview_f* a1,
vsip_index a2,
vsip_index a3,
vsip_length a4,
vsip_length a5);
DRAFT TASP VSIPL Core Plus

DRAFT
vsip_cmview_f* vsip_cmsubview_f(
const vsip_cmview_f* a1,
vsip_index a2,
vsip_index a3,
vsip_length a4,
vsip_length a5);

Returns Pointer to new matrix view object.

Argument a1 Input parent view.

Argument a2 Row index of parent view for first element in child view.

Argument a3 Column index of parent view for first element in child view.

Argument a4 Length of column (number of rows) of child view.

Argument a5 Length of row (number of columns) of child view.

sumsqval

Sum all the squares of the elements of a vector and return the sum.

vsip_scalar_f* vsip_sumsqval_f(
const vsip_vview_f* a1);

Returns Input vector elements squared and summed.

Argument a1 Input vector

sumval

Sum all the elements of a vector and return the sum. For boolean the number of true
values is returned.

vsip_scalar_f* vsip_vsumval_f(
const vsip_vview_f* a1);

vsip_scalar_vi* vsip_vsumval_bl(
const vsip_vview_bl* a1);

Returns Sum of input vector values. For boolean the number of true values is returned.

Argument a1 Input Vector.

swap

Exchange the elements of two vectors.

void vsip_vswap_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2);

void vsip_cvswap_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2);

Argument a1 Input and output vector.

Argument a2 Input and output vector.
TASP VSIPL Core Plus DRAFT 91

DRAFT

92
tan

Tangent function.

vsip_vview_f* vsip_vtan_f(
vsip_vview_f* a1,
vsip_vview_f* a2);

Argument a1 Input view.

Argument a2 Output view of Tangent values.

Ternary Functions

These functions involve two operations, and three inputs. The operations are a combi-
nation of add, multiply and subtract.

Vector vector add and vector multiply. Add two vectors elementwise and then mul-
tiply the result elementwise times a third vector.

void vsip_vam_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

void vsip_cvam_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Vector vector multiply and vector add. Multiply two vectors elementwise and then
add the result elementwise to a third vector.

void vsip_vma_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

void vsip_cvma_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Vector vector multiply and scalar add. Multiply two vectors elementwise and then
add the result elementwise to a scalar.

void vsip_vmsa_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_scalar_f* a3,
const vsip_vview_f* a4);
DRAFT TASP VSIPL Core Plus

DRAFT
void vsip_cvmsa_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cscalar_f* a3,
const vsip_cvview_f* a4);

Vector vector multiply and vector subtract. Multiply two vectors elementwise and
then subtract elementwise from the result a third vector.

void vsip_vmsb_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

void vsip_cvmsb_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Vector scalar add and vector multiply. Add a scalar to a vector elementwise and
then multiply the result elementwise times a third vector.

void vsip_vsam_f(
const vsip_vview_f* a1,
const vsip_scalar_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

void vsip_cvsam_f(
const vsip_cvview_f* a1,
const vsip_cscalar_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Vector vector subtract and vector multiply. Subtract the second input vector from
the first input vector multiply the result times a third input vector elementwise.

 void vsip_vsbm_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

void vsip_cvsbm_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Vector scalar multiply and vector add. Multiply a scalar times a vector and subtract
a third vector from the result.

void vsip_vsma_f(
const vsip_vview_f* a1,
TASP VSIPL Core Plus DRAFT 93

DRAFT

94
const vsip_scalar_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

void vsip_cvsma_f(
const vsip_cvview_f* a1,
const vsip_cscalar_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Vector scalar multiply and scalar add. Multiply a scalar times a vector and then add
a scalar to the result.

void vsip_vsmsa_f(
const vsip_vview_f* a1,
const vsip_scalar_f* a2,
const vsip_scalar_f* a3,
const vsip_vview_f* a4);

void vsip_cvsmsa_f(
const vsip_cvview_f* a1,
const vsip_cscalar_f* a2,
const vsip_cscalar_f* a3,
const vsip_cvview_f* a4);

Argument a1 First input vector view.

Argument a2 Second input vector view or scalar.

Argument a3 Third input vector view or scalar.

Argument a4 Output vector view.

toepsol

Solve a Toeplitz linear system. The Toeplitz matrix must be symmetric if real or Her-
mitian if complex and positive definite. The matrix is square, and we solve a system of

the form . Since the Toeplitz matrix is completely determined by its first row,
then only a vector view containing the elements of the first row is required for matrix
input.

int vsip_toepsol_f(
const vsip_vview_f* a1,
const vsip_vview_f* a2,
const vsip_vview_f* a3,
const vsip_vview_f* a4);

int vsip_ctoepsol_f(
const vsip_cvview_f* a1,
const vsip_cvview_f* a2,
const vsip_cvview_f* a3,
const vsip_cvview_f* a4);

Returns Zero if successful, -1 if memory allocation failure, positive if the Toeplitz matrix
is not positive definite.

Argument a1 Input vector containing first row of Toeplitz matrix. This vector may not overlap
w any other vector in the work space.

T x y=
DRAFT TASP VSIPL Core Plus

DRAFT
Argument a2 Input vector containing . This vector may not overlap any other vector in the
work space. This vector may be overwritten during the calculation.

Argument a3 Vector, the same length as a2, for scratch space. The data elements of the vector
on input and output are not defined, and may be any value. This vector may not
overlap any other vector in the work space.

Argument a4 Output solution vector . This vector may not overlap any other vector in the
work space.

transview

Create a view of the transpose of a matrix.

vsip_mview_f* vsip_mtransview_f(
vsip_mview_f* a1);

vsip_cmview_f* vsip_cmtransview_f(
vsip_cmview_f* a1);

Returns Pointer to created view, or NULL if the view creation failed.

Argument a1 Input matrix view.

xor

Performs a bitwise “exclusive OR” (“XOR”) operation between two integer views, or
a logical “XOR” between two boolean views.

void vsip_vxor_i(
const vsip_vview_i* a1,
const vsip_vview_i* a2,
const vsip_vview_i* a3);

void vsip_vxor_bl(
const vsip_vview_bl* a1,
const vsip_vview_bl* a2,
const vsip_vview_bl* a3);

Argument a1 Input view.

Argument a2 Input view.

Argument a3 Output view.

y

x

TASP VSIPL Core Plus DRAFT 95

DRAFT

96 DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 3 Introduction to VSIPL Programming
using the Core Lite Profile

Introduction

This chapter introduces programing methods using VSIPL in general, and the VSIPL Core
Lite function set in particular. Although this chapter is written for the VSIPL Core Lite profile
it works just as well as an introduction for any VSIPL implementation. The examples are sim-
ple. Explanatory text accompanies each example.

Support Functions

The support functions are those functions used to make or destroy VSIPL objects, copy data,
modify object properties (such as stride, length and offset) or do input and output from
VSIPL. The input and output functionality of VSIPL will be handled in its own section since it
is a complicated topic.

Block Creation

The base method for block creation is the function blockcreate. This function takes a size
argument, which indicates how many elements of the block type to create, and a VSIPL mem-
ory hint indicating how the data will be used by the program. TASP VSIPL just uses normal
ANSI C memory allocation methods and so this hint is unused.

Generally examples will have a zero for creation hints since they are unused by the TASP
implementation of the library; however if the programer expects to develop code using TASP
VSIPL on a workstation and then compile the workstation code on an embedded product, then
it is recommended the programer use a VSIPL hint if it is supported by the embedded product.
All VSIPL implementations are required to ignore the hint if it is not supported, so using an
unsupported hint is harmless.

Vector Creation

The base method for vector creation is the bind function. This function creates a vector
object, binds a block to the vector, and sets the stride, offset, and length of the vector to view
the required data within the block. Example 2 below is a code segment to create a real float
block and a complex float block and attach a vector to each block.
SP VSIPL Core Plus DRAFT 97

DRAFT
 Example 2

/* Create a block and bind a vector to it */
vsip_block_f *a = vsip_blockcreate_f(10,0);
vsip_cblock_f *b = vsip_cblockcreate_f(10,0);
vsip_vview_f *v_a = vsip_vbind_f(a,0,1,10);
vsip_cvview_f *cv_b = vsip_cvbind_f(b,0,1,10);

Notice that we create a block in lines 2 and 3 each of size 10 elements, but the elements of
block a are real and the elements of block b are complex. In lines 4 and 5 we define a real
view v_a and a complex view cv_b. The view is created with the bind function, and we set the
offset to zero, the stride to one, and the length to ten. Notice that the vectors we create here
encompass the entire block, and could just as well have been created with the convenience
create function used in Example 1.

Examination of the type definitions used for the block and vector views, and the function
name of the blockcreate functions is worthwhile in order to develop an understanding of the
VSIPL naming convention. The precision of the data here is float and is indicated with an _f

prefix. The depth of the data is either real (understood in the name) or complex, indicated with
a c prefix on the root name.

Other methods of view creation and view modification.

There are several methods of view creation. We will cover some of these in this section, and
also some methods for view modification. It is frequently preferable to modify a view since no
create needs to take place.

A new view of a block may always be created using the bind function. Each time this is done
memory allocation takes place and the new view must be destroyed when no longer needed.
Example 3 is how to use a current view and vector bind to create a new view. Lets say we want
a vector view of every other element (element 0, 2, 4, etc.) of an available view.

 Example 3

{
 vsip_vattr_f attr;
 vsip_vview_f *b;
 vsip_vgetattrib_f(a,&attr);
 b = vsip_vbind_f(attr.block,
 attr.offset,2 * attr.stride,attr.length/2));
 /* do something with b */
 vsip_vdestroy_f(b);
}

We note that the vector view a resides outside the curly brackets. Since we don’t know the
stride and length of a we use the getattrib function in line 4 to retrieve that information. In
addition to offset, stride, and length getting the attribute structure also gets the block object.
The bind function creates a view and binds the block to it. We set the offset to the same offset
as a; however we only want every other point of the vector a so we set the stride to double the

1
2
3
4
5

1
2
3
4
5
6
7
8
9

98 DRAFT TASP VSIPL Core Plus

DRAFT

TA
stride of a. Note that if we just set the stride to two we would get every other point in the block
a was attached to, and not every other point of a (unless a happens to have a stride of one).
Finally we set the length of the vector. We do not know if the length of a is even or odd, but
length is some sort of unsigned integer, so division by 2 will result in an unsigned integer of
the floor of the division, which is the number we need.

There are several ways to accomplish the same thing we accomplished in example 3. For
instance in example 4 we demonstrate the same affect, but use cloneview instead of bind and
for a change of pace we make the vector a complex.

 Example 4

{
 vsip_cvattr_f attr;
 vsip_cvview_f *b = vsip_cvcloneview_f(a);
 vsip_cvgetattrib_f(a,&attr);
 attr.stride *= 2;
 attr.length /=2;
 vsip_cvputattrib_f(b,&attr);
 /* do something with b */
 vsip_cvdestroy_f(b);
}

Now we notice two things here. The first is VSIPL strides and offsets are in terms of the block
element type. There is no difference in calculating the length and stride for this new complex
view than there was in the real view of example 3. We also see a new function putattrib in
line 7. Note that putting an attribute is the opposite of getting an attribute, except that the
block value of the attribute is ignored. The block of the view object is set on view creation in
line 3. The block attribute of a view is always set when the view is created, and it is not possi-
ble to reset the views block attribute. Also notice that the attribute is passed by reference (a
pointer), both for getting, and putting, the attribute.

Another method to create a view is the subview function. The subview function takes an
index into the parent view of the first element of the child view, and a length. Note that indexes
are into vectors, not blocks. The stride is inherited from the original view, and there is no argu-
ment to allow resetting the stride in the subview function. In example 5 below we do example
4 again using a subview. This time we assume we know the stride and length of the vector a,
and have stored them in variable a_stride and a_length respectively.

 Example 5

{
 vsip_cvview_f *b = vsip_vsubview_f(a,0,a_length/2);
 vsip_vputstride_f(b,a_stride * 2);
 /* do something with b */
 vsip_cvdestroy_f(b);
}

1
2
3
4
5
6
7
8
10
11

1
2
3
4
5
6

SP VSIPL Core Plus DRAFT 99

DRAFT
Example 5 is shorter than example 4, but that is mostly because we already know the stride
and length of the input vector. The new function to note here, besides subview, is the put-

stride function on line 3. The Core Lite profile does not support any of the get attribute func-
tions except getattrib, but it does support all the put attribute functions, including
putlength and putoffset.

The final methods we will discuss to make views are realview and imagview. These two
functions are so important that we will discuss them in their own section below.

Viewing the Real and Imaginary portions of a Complex Vector

In the elementwise function set there are two functions vsip_vreal_f and vsip_vimag_f

which will copy the real or imaginary portion of a complex vector to a real vector, and another
function vsip_vcmplx_f which will copy two real vector, one designated as real and one as
imaginary, to a complex vector. Frequently it is desirable to operate on a complex vectors real
or imaginary portions separately, but using the above function set is a lot of copying and
requires extra memory allocation to allow room for the copies. What is really desirable is to be
able to produce a real and imaginary view of the two parts of a complex vector in-place with
no copies.

Functions in VSIPL allow one to create real and imaginary views of a complex vector. The
functions are vsip_vimagview_f and vsip_vrealview_f. Producing a view of the real or
imaginary part of a complex view is more involved than one might at first think. We will only
look at one of the issues here. The problem is that these function create a vector view of type
vsip_vview_f, a real vector view. This type view must be attached to a block of type
vsip_block_f; however the complex view that the real views for the imaginary part and real
part are derived from is bound to a complex block of type vsip_cblock_f. The first thing that
must be done (by the implementation) is that a real block must be derived from the complex
block which represents the data of the real or imaginary portion of the complex block. This
block is termed a derived block.

A derived block is of the same data type as any other real block. Whether or not a block is
derived from a complex block is a part of the state information kept by the block object.
Derived blocks may not be destroyed. The derived block is destroyed when the complex block
it is derived from is destroyed. The derived views are destroyed in the normal manner using
vsip_vdestroy_f.

The only way to get a derived block is to derive a view (a derived view) using the imagview or
realview functions. The method VSIPL uses to create the derived block is implementation
dependent. These functions create a real view, bind the real view to the derived block, and set
the offset, strides and lengths of the real view to view the required real or imaginary portion of
the parent complex view. Although the length of the new view will be the same as the parent
view, the stride and offset are implementation dependent. If these are needed for some reason
the derived view must be queried.

Derived blocks may not be destroyed directly, they are destroyed when the parent complex
block is destroyed. Derived blocks may be bound to new vector views. It is recommended that
new views bound to derived blocks stay within the data space spanned by the original derived
view.
100 DRAFT TASP VSIPL Core Plus

DRAFT

TA
There are some other subtle issues which we can ignore most of the time, and will ignore for
this introduction. Lets do a couple of simple examples.

We may want to initialize a complex vector to zero. In the Core Lite profile there is no com-
plex fill operation, only a real fill. Example 6 shows a method to fill a complex vector with a
zero. Assume we have already produced the complex vector a outside the brackets.

 Example 6

{ /* replacement for vsip_cvfill_f */
 vsip_vview_f *b = vsip_vrealview_f(a);
 vsip_vfill_f(b,0.0);
 vsip_vdestroy_f(b);
 b = vsip_vimagview_f(a);
 vsip_vfill_f(b,0.0);
 vsip_vdestroy_f(b);
}

It is important to notice that we destroy vector b twice, once on line 4 and again on line 7.
This is required. When we define the vector b on line 2 we actually define a pointer of type
real vector view. When we destroy the vector view in line 4 we don’t destroy the pointer, just
what the pointer was pointed to which is the vector view created in line 2. We then create a
new vector view in line 5 and store the pointer in b. If we had not destroyed the object pointed
to by b in line 4 then in line 5 we would have replaced the view object pointer and leaked the
memory allocated for the real view object in line 2.

If this is clear, great. If not think about it this way. One wouldn’t want to do

/* bad code */
float *b;
b = (float)malloc(N * sizeof(float));/* allocate memory */
b = (float)malloc(N * sizeof(float));/* leak above memory */
free((void *) b);

This is equivalent to what happens if you don’t destroy a vector view before assigning a new
vector view. Of course this is also true for blocks. With (VSIPL) blocks not destroyed properly
you also leak the memory associated with the data array.

Another function that is not included with the Core Lite profile is the Euler function. Euler
takes an input vector of angles (in radians) and outputs a complex vector of cosine values in
the real part and sine values in the imaginary part. Example 7 shows us how to do that, and
will also demonstrate some of the in-place functionality of VSIPL. In-place means to replace
the input with the output. Most elementwise functions support in-place, but not all functions
do. See the VSIPL specification for more details of in-place.

1
2
3
4
5
6
7
8

SP VSIPL Core Plus DRAFT 101

DRAFT
 Example 7

vsip_cvview_f *v = vsip_cvcreate_f(N,0);
{/* do euler */
 vsip_vview_f *v_r = vsip_vrealview_f(v);
 vsip_vview_f *v_i = vsip_vimagview_f(v);
 vsip_vramp_f(0,ft_f_2PI/(vsip_scalar_f)N,v_r);
 vsip_vsin_f(v_r,v_i);
 vsip_vcos_f(v_r,v_r);
 vsip_vdestroy_f(v_r);
 vsip_vdestroy_f(v_i)
}

In line 1 of example 7 we create a complex vector of length N. We want to perform an Euler
operation to fill this vector with sine and cosine values of angle arguments equally distributed
between zero and . In this example the input vector will stop just one increment short of

. In lines 3 and 4 we produce views of the real and imaginary portion of the complex vec-
tor. In line 5 we fill the real part of the vector v with angles starting at zero and incrementing
by until the last value of the vector v_r is . In line 6 we place the
sine of the real part values into the imaginary part of vector v. In line 7 we replace the angles
in the real part of the vector v with their cosine values. Line 7 is the in-place operation. In line
8 and 9 we destroy the views created in lines 3 and 4 since they are no longer needed. Note
that destroying these views does not destroy the data. The data is stored in the complex block
and is still viewed by the complex vector v.

VSIPL Input and Output Methods

Since VSIPL blocks are created using incomplete type definitions it is not possible to manipu-
late the data array directly. There is no method within VSIPL to retrieve a pointer to any data
memory which was created using create or blockcreate.Blocks created by these functions
are termed VSIPL blocks.

It is important to get data into or out of VSIPL in order to communicate with other processes
or to manipulate the data directly for some purpose. VSIPL has an understanding of owning
the data it operates on. Now VSIPL blocks are always owned by VSIPL and are said to be in
the admitted state. It is not possible to remove VSIPL blocks from the admitted state. It is pos-
sible to create a block and bind it to memory allocated by the application external to VSIPL.
This type memory, and block, are termed user data arrays, and user blocks. A user block is
created using the blockbind function. It is created in a released state. It is an error to use any
VSIPL function which will read or write the data array of a released block.

When a user block is to be used by VSIPL It must first be admitted to VSIPL using the block-
admit function. When the application needs to access the data of an admitted user block
directly the block must first be released using the blockrelease function.

1
2
3
4
5
6
7
8
9
10

2π
2π

2π() N⁄ N 1–() N⁄()2π
102 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Note the following. A user block and a VSIPL block of the same type and precision have the
same type definition. All of the information as to whether a block is a user block, a VSIPL
block, or is released or admitted is maintained by the block object as state information. A
VSIPL block is always admitted, and may not be released. A user block is created as released
and may be admitted or released as required.

Rebinding user data to a user block

In a situation where input and output (I/O) is continuous, sometimes called data streaming, it
would be bad resource management to destroy and allocate new user blocks continuously
where it is desirable to have multiple data buffers used for essentially the same thing. In addi-
tion the view setup on a user block would also need to be destroyed and reconstructed every
time a new buffer is admitted to VSIPL and an old buffer is released. To get around this prob-
lem a function was defined in VSIPL that allows one to rebind a new buffer to a block. The
new buffer has the same features as the old buffer. This way, for instance, while the second
buffer is being filled VSIPL can be operating on data from the first buffer. When VSIPL is
done the user block is released, and when the second buffer is filled it is bound to the user
block using rebind, and the first buffer unbound from the block is free to accept new data
from the user process while the user block is admitted to VSIPL for data manipulation.

I/O Example

In example 8 we assume we need an elementwise vector cosh function. In the VSIPL standard
there is a general function for doing elementwise operations like this; however it is not
included in the Core profile. For this example we would like to manipulate the elements
directly and then import them into VSIPL. We will do this in-place.

Now we examine Example 8 below. Note the use of the capital IP in the vector cosh function
name to denote in-place is the author’s notation, not VSIPL’s.
SP VSIPL Core Plus DRAFT 103

DRAFT
 Example 8

#include<vsip.h>
/* return 1 on failure, 0 on success */
int VU_vcoshIP_f(vsip_vview_f *a)
{ vsip_vattr_f attr;
 vsip_vview_f *b = a;
 vsip_scalar_f *buff;
 vsip_length n;
 vsip_block_f *B;
 vsip_vgetattrib_f(a, &attr);
 B = attr.block; n = attr.length;

if ((buff = vsip_blockrelease_f(B,VSIP_TRUE)) == NULL){
 buff=(vsip_scalar_f *)malloc(
 n * sizeof(vsip_scalar_f));
 if(buff != NULL){/* create a user block */
 if((B = vsip_blockbind_f(buff,n,0)) == NULL){
 free((void*)buff);
 return 1;/* user block create failed */
 }
 }else{
 return 1;/* buff create failed */
 }
 vsip_blockadmit_f(B,VSIP_FALSE);
 if((b = vsip_vbind_f(B,0,1,n)) == NULL){
 vsip_blockdestroy_f(B);
 free((void*)buff);
 return 1;/* view create failed */
 }
 vsip_vcopy_f_f(a,b);
 vsip_blockrelease_f(B,VSIP_TRUE);
 }
 while(n-- >0){/* Do the work */
 *buff = cosh(*buff);
 buff++;
 }
 buff = vsip_blockfind_f(B);
 vsip_blockadmit_f(B,VSIP_TRUE);
 if(a != b){
 vsip_vcopy_f_f(b,a);
 vsip_valldestroy_f(b);
 free((void *) buff);
 }return 0;
}

Example 8 (Continued)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
104 DRAFT TASP VSIPL Core Plus

DRAFT

TA
void VU_vprint_f(vsip_vview_f* a){
 int i;
 vsip_vattr_f attr;
 vsip_vgetattrib_f(a,&attr);
 for(i=0; i<attr.length; i++)
 printf("%6.4f ",vsip_vget_f(a,i));
 printf("\n");
 return;
}
int main()
{ int init = vsip_init((void*)0);
 int VU_vcoshIP_f(vsip_vview_f *);
 void VU_vprint_f(vsip_vview_f *);
 vsip_vview_f *A = vsip_vcreate_f(8,0);
 vsip_vramp_f(0,.2,A);
 printf("A = \n");VU_vprint_f(A);
 VU_vcoshIP_f(A);
 printf("cosh(A) = \n");VU_vprint_f(A);
 vsip_valldestroy_f(A);
 vsip_finalize((void*0);
 return 1;
}

In line 11 we attempt to release the block attached to vector a.

If the block releases we go to lines 31-34 where the buffer returned from the blockrelease is
used directly to calculate an in place cosh. We then readmit the block in line 36 and return a 0
for successful in line 42. Note we set vector b equal to a in line 5 so line 37 is false and we fall
through to the return statement.

If the blockrelease returns a null pointer at line 11 then we know that the input vector a is
not a user vector. In this case we create a buffer of the proper size to hold the number of
vsip_scalar_f elements in vector a. We check to make sure we were successful at allocating
memory for a block, and return one if not successful. In line 15 we create a block and bind the
buffer to it. In line 22 we admit the block to VSIPL. In line 28 we copy the input vector a to
the user vector b. Note that pointer b was set to a in line 5, but was reset in line 23 to the newly
created user vector b. We now release the block B and go into the loop at line 31 to calculate
the cosh vector.

Note that we had to admit the block B before copying the input vector to the user vector, and
then we had to release the block B before using the buffer directly. We now reset the buff
pointer to its original value, and then admit B at line 36. Note that when we reset the pointer
with blockfind on line 35 we must do it before the block is admitted. An admitted block will
not return the public buffer. If the pointer a is not equal to the pointer b then it has been reset.
We enter the if code (at line 37) which copies the result of the cosh to the vector a, where we
want it, and then on line 30, destroy the vector b, the block B, and any memory allocated by
VSIPL. Note that the buffer buff was not allocated by VSIPL, but by the application. The
application is responsible for cleaning that up. On line 31 we free this memory.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
SP VSIPL Core Plus DRAFT 105

DRAFT
Note that the admission on line 22 has a VSIP_FALSE as the second argument. This equates to
false in VSIPL and tells VSIPL that we are not interested in what the buffer contains. Note
that the release in lines 11 and 29 and the admit in line 36 have VSIP_TRUE for this argument.
This equates to a true in VSIPL and indicates that the buffer contains data that we are inter-
ested in maintaining during the change of state of the block.

To test our code we do a simple program starting on line 54. In Matlab our program (main)
looks like.

a = [0:.2:1.4]
 a =
 0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000
 a = cosh(a)
a =
 1.0000 1.0201 1.0811 1.1855 1.3374 1.5431 1.8107 2.1509

The output of Example 8 is

A =
0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000
cosh(A) =
1.0000 1.0201 1.0811 1.1855 1.3374 1.5431 1.8107 2.1509

Here we elected to use a VSIPL vector for our input to our cosh function; however we could
have used a user vector and avoided the creates and destroys in the function.

Complex User Data

Most user data will be an array of vsip scalars of the type of the block the user array will be
bound to. There are a few exceptions in VSIPL and only one exception in VSIPL Core Lite.
This exception is an array of complex.

For user data, complex is not an array of type vsip_cscalar_f. For a complex user data array of
size the memory allocated is of type vsip_scalar_f, and is either two arrays of equal size

or a single array of size . The first case of two arrays is termed split data, and the second
case of a single array is termed interleaved data. For interleaved data the elements are orga-
nized consecutively as real, imaginary, real, imaginary, etcetera. For split data one array is
real, the other imaginary. Examination of vsip_cblockbind_f will show how the two cases
are handled in the function call.

Note that because of the possibility of split user data, requiring two data pointers, the I/O sup-
port functions for complex release, admit, and rebind, are slightly more complicated than
their real counterparts. Examination of the prototypes in chapter two should make the differ-
ences clear.

There are many intricacies to I/O in VSIPL that were not covered in this section; however the
author does not want to get bogged down in an introductory section with a lot of details. There
is a great deal of information available in Appendix A, VSIPL fundamentals which deals with
user blocks and data in some depth.

N N

2 N×
106 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Scalar Functions

The Core Lite profile only defines four scalar functions. Three of these are vsip_real_f,
vsip_imag_f, and vsip_cmplx_f. There is also a function vsip_CMPLX_f which is included
to allow the vendors to include a macro for creating complex numbers. The TASP VSIPL
Core Lite profile has not implemented CMPLX as a macro, and just calls the cmplx function
within CMPLX.

The functions real, imag and cmplx are important for manipulating complex scalars. For
example vsip_cvget_f returns a scalar of type vsip_cscalar_f. To extract the real or
imaginary portion of this scalar you would use vsip_real_f or vsip_imag_f. To make a
complex number you would use vsip_cmplx_f. For instance:

/* put a complex number (a,b) at */
/* element number 6 (index #5) in a vector */
vsip_vput_f(complex_vector,5,vsip_cmplx_f(a,b));

Or to print the real and imaginary portions of a complex number:

vsip_cscalar_f a;
/* some code */
a = vsip_cvget_f(complex_vector,5);
print(“%f + %fi ”,vsip_real_f(a),vsip_imag_f(a));

VSIPL Elementwise Functions

Most elementwise functions are straightforward. Generally these functions take one or more
input vector views, or a scalar and a vector view, and do an element by element calculation
outputting the result in an output vector. A few of the elementwise functions, such as sumval
and dot calculate some value based on an elementwise operation and accumulate. Finally we
have ramp, fill, and random numbers. These functions generate data and fill a vector based
on some formula, element by element. The functions ramp and fill have been used in previ-
ous examples and are easy to understand based on their prototype definition; however random
number generation is more complicated and requires some explanation.

Except for random number generators no specific example of elementwise functions will be
included; however almost all of the examples include elementwise operations.

Random Number Generation

The VSIPL random number generator is a more complicated function, actually a set of func-
tions, than the other elementwise functions. The function set includes a create function which
is used to create a random number state object, a destroy function to destroy the random state
object when we are done with it, and a vector random generator function. For VSIPL Core
Lite only the uniform generator for real vectors is part of the profile. The function generates a
uniform random number between zero and 1.

The vector random number is simple, just filling a vector with uniform random numbers from
the sequence, and updating the state object each time.
SP VSIPL Core Plus DRAFT 107

DRAFT
The random number state creation is a little more complicated than the generator function. To
understand it first one must understand the expectation that VSIPL programs will be run in
multiple processor environments, and it is desirable to be able to calculate independent ran-
dom number sequences on the different processes based on a single seed value. To this end the
randcreate function has an argument which indicates the total number of processes that will
be calculating random sequences, and an argument that indicates which process the state
object is being created for. Having the value of the total number of processes allows the create
function to subset the random number sequence into the proper number, and having the num-
ber of the process allows the create to initialize the state object for the process to the correct
subset.

The random state creation also allows one to chose either the required portable random num-
ber generator (portable because all implementations use the same generator, defined by
VSIPL), or a non-portable generator of the implementors choosing. There is no requirement
for an implementation to support its own generator, and the non-portable generator may
default to the portable version.

Below find Example 9 demonstrating the randu function set. In this example create two sepa-
rate vectors full of independent random numbers. The random number generator is also used
in Examples 10 and 11 to make some data to work with.

 Example 9

/* Create two independent random sequences */
#include<stdio.h>
#include<vsip.h>
#define TYPE VSIP_NPRNG /* non portable generator flag*/
#define N 1024 /* length of random vector */
#define init 17 /* random initialization */

int main()
{ int vsip_init((void*)0);
 vsip_vview_f *ran1 = vsip_vcreate_f(N,0),
 *ran2 = vsip_vcreate_f(N,0);
 vsip_randstate *state1 =
 vsip_randcreate(init,2,1,NPRNG);
 vsip_randstate *state2 =
 vsip_randcreate(init,2,2,NPRNG);
 vsip_vrandu_f(state1,ran1);
 vsip_vrandu_f(state2,ran2);
/* do something with ran1 and ran2 */
 vsip_randdestroy(state1);
 vsip_randdestroy(state2);
 vsip_valldestroy_f(ran1);
 vsip_valldestroy_f(ran2);
 vsip_finalize((void*)0);return 1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
108 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Example 9 is very simple and does not do anything interesting. In lines 10 and 11 we create
two vectors to hold our random sequences. In lines 12 and 14 we create two random state
objects. Argument two of rand create tells the randcreate function we want a state object suit-
able for two independent random number generators. Argument 3 of line 12 says to create the
state object for the first process. Argument 3 of line 14 says to create the state object for the
second process. In lines 16 and 17 we generate the random numbers and fill the two vectors
created to hold them. Lines 19 through 22 clean up all the objects created by VSIPL.

Signal Processing Functions

The Core Lite profile supports a histogram function, a complex to complex out of place Fou-
rier transform, a real to complex, and a complex to real Fourier transform, and a finite impulse
response (FIR) filter with desampling.

The Fourier Transform

The fourier transform function set for Core Lite includes three discrete fourier transforms
(DFT), three corresponding create functions to create the fourier transform object, and a
destroy function to destroy the fourier transform object. There is only one data type for the
fourier transform object, and so only one destroy function is required. The type of fourier
transform object created (for ccfftop, rcfftop or crfftop) is kept as state information by
the fourier transform object.

The ccfftop_create function will create an fft for either a forward or inverse DFT. It is
assumed that rcfftop and crfftop are done in the forward and inverse directions respec-
tively, so there is no direction arguments in rcfftop_create and crfftop_create. Within
the header file vsip.h resides an enumerated type definition which may be used for the direc-
tion argument.

 typedef enum{
 VSIP_FFT_FWD = -1,
 VSIP_FFT_INV = 1
 } vsip_fft_dir;

VSIPL requires an FFT (Fast Fourier Transform) algorithm for a radix of two with one radix
of 3 if necessary. Any length DFT is required to be supported, but a fast transform is only

required for lengths of where is either or . The TASP VSIPL Core Lite

FFT base algorithm actually supports where is either or

and is some integer greater than or equal to zero. In the TASP VSIPL implementation if N

is not factorable as above then the last factor (which is not factorable by 2, 4, 8, 3, 5, or 7) is
used as a final factor and a DFT is done for that stage.

The functions rcfftop and crfftop require that the data be even, and only half the transform
is returned. So for rcfftop the input real vector is of length and the output complex vector

is of length . The inverse is true for crfftop.

N 2n3m= m 0 1

N 2
m0

4
m1

8
n0

3
n1

5
n2

7
n3= mi 0 1

ni

N

N 2⁄ 1+
SP VSIPL Core Plus DRAFT 109

DRAFT
So far we have done a few meaningless examples to illustrate VSIPL. This example will be
just as meaningless. Lets find the FFT of a real vector of random numbers using rcfftop,
extend the FFT to full length and find its inverse using ccfftop. We will then subtract the
input vector from the output vector and find the mean square value of the result, which should
be close to zero.
110 DRAFT TASP VSIPL Core Plus

DRAFT

TA
SP VSIPL Core Plus DRAFT 111

DRAFT
 Example 10

#include<stdio.h>
#include<vsip.h>
#define RNL 1024 /* length of random vector */
#define RNS 17 /* random number seed */
#define RNT VSIP_PRNG /* random number type */
int main(){int vsip_init((void*)0);
 vsip_cvview_f *fft = vsip_cvcreate_f(RNL, 0),
 *invfft = vsip_cvcreate_f(RNL, 0);

vsip_randstate *state = vsip_randcreate(RNS,1,1,RNT);
 vsip_vview_f *input = vsip_vcreate_f(RNL, 0);

vsip_fft_f *rcfft = vsip_rcfftop_create_f(RNL,1,0,0);
 vsip_fft_f *ccfftI = vsip_ccfftop_create_f(
 RNL, 1.0/RNL, VSIP_FFT_INV,0,0);
 vsip_vrandu_f(state,input);
 vsip_cvputlength_f(fft,RNL/2+1);
 vsip_rcfftop_f(rcfft, input, fft);
 vsip_cvputoffset_f(fft, 1);
 vsip_cvputlength_f(fft, RNL/2-1);
 { /* fill out the forward fft to full length */
 vsip_cvview_f *temp = vsip_cvcloneview_f(fft);
 vsip_cvattr_f at; vsip_cvgetattrib_f(temp,&at);
 at.offset = RNL - 1; at.stride = - 1;
 vsip_cvputattrib_f(temp,&at);
 vsip_cvconj_f(fft,temp); vsip_cvdestroy_f(temp);
 }
 vsip_cvputoffset_f(fft,0);
 vsip_cvputlength_f(fft,RNL);
 vsip_ccfftop_f(ccfftI,fft,invfft);
 { /* compare results */
 vsip_vview_f *real = vsip_vrealview_f(invfft);
 vsip_vview_f *result = vsip_vimagview_f(invfft);
 vsip_vsub_f(input,real,result);
 printf(“%f\n”,vsip_vsumsqval_f(result)/RNL);
 vsip_vdestroy_f(real); vsip_vdestroy_f(result);
 }
 vsip_fft_destroy_f(rcfft);
 vsip_fft_destroy_f(ccfftI);
 vsip_randdestroy(state);
 vsip_cvalldestroy_f(fft);
 vsip_cvalldestroy_f(invfft);
 vsip_valldestroy_f(input);
 vsip_finalize((void*)0;return 1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
112 DRAFT TASP VSIPL Core Plus

DRAFT

TA
In Example 10 we create the data space with create functions. We modify the stride, length
and offset attributes with full knowledge of the initial attributes of the views. For this reason
we don’t need to get the attributes first. We do need to keep track as we move through the code
however.

In line 4 we define a constant for initializing the random number state created in line 9. In line
14 we use the random number generator to initialize a real input vector of random values. In
line 7 and 8 we create two complex vectors of length , the first (fft) to hold the trans-
form of the random input vector, and the second (invfft) to hold the inverse transform of
fft.

We want to do the forward transform using vsip_rcfftop_f. We made fft of length
since we plan on filling out the vector to a full length fft for use in vsip_ccfftop_f for
doing the inverse transform; however rcfftop requires a vector of length so we

set this length in line 25. We create the fft object in line 11 for a length of and a scale

factor of . The last two arguments of the create are not used in TASP VSIPL so we set them
to zero.

In line 16 we do the Fourier transform on input placing the result in fft. Now we need to
select the redundant portion of fft in preparation for filling out the fft vector to full length. In
line 17 we set the offset of fft to 1 (the second element), since the first element is the DC
value of the transform and is unique. The last value of the transform is also unique since the
input real vector was even, so we set the length of fft to . Now we enter a section
of code between lines 19 and 25 where we copy the conjugate of the redundant section in
reverse order to the end of the final transform vector. In line 20 we create a clone of fft
which sets the length of the vector properly. This is the vector we are going to copy into, and
the first element of fft (as the view is currently defined) must copy to the first element of
temp. We want this to be the last element of the block, so we set the offset of temp to the end
of the block at offset . We want temp to travel backward through the block so we set

the stride of temp to . We now do the copy and conjugation in one step using cvconj in
line 24, and then destroy the temp vector in line 24. In line 26 and 27 we restore the fft view
to the entire block. What we have done between lines 17 and 27 would look in Matlab, for
Matlab vector a of length , as

>> a(end:-1:RNL/2+2) = conj(a(2:RNL/2));

In line 12 we create an fft object for use in ccfftop to do an inverse Fourier transform of
length and with a scale factor of . Notice that ccfftop_create has an argu-
ment for forward or inverse transform, but rcfftop_create does not have the argument and
always goes in the forward direction. The last two arguments are not implemented in the
TASP implementation of core lite and so are set to zero. We now find the inverse of fft in line
28.

In lines 29 through 35 we subtract the input from the real output and examine the mean
square value of the result. This should be very close to zero as the input and output should
be the same.

RNL

RNL

RNL 2⁄ 1+

RNL

1

RNL 2⁄ 1–

RNL 1–

1–

RNL

RNL 1 RNL⁄
SP VSIPL Core Plus DRAFT 113

DRAFT
The Finite Impulse Response Filter

The FIR (finite impulse response) function set is designed to allow for continuous filtering
with desampling. The filter object saves state information from the previous filter operation
allowing for continuous filtering of vector segments of a data stream. When desampling the
number of returned filtered elements may vary depending upon the state of the filter object.
For this reason the FIR filter function returns an integer which is equal to the number of ele-
ments in the output vector from the filter operation. Since a filter object is created there is a fil-
ter destroy function available for destroying the filter object.

The FIR filter create requires an input of a filter kernel, filter symmetry information, the length
of the input vector to be filtered, and a desampling factor. The final two arguments are
included to allow the vendor to optimize his routine for various common filter operations. Nei-
ther arguments are implemented in TASP VSIPL and so a zero will normally be placed here
when using TASP VSIPL. For application programmers who are developing on TASP VSIPL
for other hardware it is recommended to use the proper values for that hardware. TASP VSIPL
ignores these values and will work fine for any information inserted.

The filter kernel and the symmetry argument vary depending upon the type of filter coeffi-
cients. For TASP VSIPL including all of the filter coefficients with a VSIP_NONSYM sym-
metry argument will always work. If the filter coefficients are symmetric and there are an even
number then using the first half of the filter coefficients as the kernel and the
VSIP_SYM_EVEN_LEN_EVEN argument will work. If the filter coefficients are symmetric
and there are an odd number then using the first half of the filter coefficients plus the middle
point () as the kernel and the VSIP_SYM_EVEN_LEN_ODD argument will
work. TASP VSIPL always expands the filter coefficients to full length and does the same fil-
ter for all three cases, so the author recommends always using the VSIP_NONSYM version
kernel, unless developing for another platform. Note that the kernel is simply a vector of filter
coefficients as described above. Also be aware that the current FIR filter in TASP VSIPL is
not a fast fir, and is not optimized in any way. For some operations it may be desirable to do
the FIR filter directly using other VSIPL operations.

The FIR filter function requires a FIR filter object, an input vector of length N, and an output
vector which has a length equal to the input vector length divided by the desampling factor
rounded up to the nearest integer. This is commonly called the ceiling of where is the

input vector length and is the desampling factor.

The FIR is demonstrated in Example 11. The filter coefficients are in lines 21 through 29 and
are input to a user data array. In line 31 we create a block and bind the coefficients to it using
blockbind, and then bind the block to a vector view at line 32. Since this is a user block in
line 34 we admit it to VSIPL so we can use any vector views binding the block in our func-
tions.

We then create the FIR object in line 35. Notice that we included the entire set of filter coeffi-
cients and so we create the object as VSIP_NONSYM. The actual filter coefficients are odd
symmetric so we could have created the filter object as just the first 22 (of 43) coefficients and
passed a symmetry argument of VSIP_SYM_EVEN_LEN_ODD. We then destroy the kernel
since we no longer need it after the filter object is created. Notice we use alldestroy so that

N 1–() 2⁄ 1+

N D⁄ N

D

114 DRAFT TASP VSIPL Core Plus

DRAFT

TA
both the vector view and the block is destroyed. The kernel data is not destroyed because the
blocks user state is set, and the destroy function knows to not destroy the user data array.

For the example we set a decimation factor , average avg, and base length in lines 3
through 5. In line 6 we set a constant to initialize the random number generator.

We create an input vector of length in line 12. This ensures the output from the FIR fil-

ter will be of length . In line 41 we fill the input vector with uniform random numbers

between 0 and 1. In line 42 we do a negative DC offset of our input vector by and in line
43 we filter the input vector into the output vector. In line 44 and 45 we do an FFT estimate of
the spectrum. Note power normalization is not done and is not important to the example. In
line 46 we do a running sum of the spectrums. In line 4 we define avg, the number of sums,
and in line 48 we normalize our sum by the avg number. We then print out the result using a
print subroutine VU_vprint_f contained at the end of the example. Note that line 49 allows the
output to be brought into Matlab and plotted by piping standard out into a “.m” file and exe-
cuting the file in Matlab. (The author knows there are better ways to get data into Matlab, but
he is too lazy to figure them out.)

In Figure 1 we note the frequency response of the filter coefficients as the bottom plot of the
figure. Matlab code to generate this plot, and the filter coefficients for the example, were
obtained from an internet site at Rice University
(http://jazz.rice.edu/software/RU-FILTER/cpm/)
There is a paper describing the method for calculating the coefficients by I. W. Selesnick and
C. S. Burrus,
“Exchange Algorithms that Complement the Parks-McClellan Algorithm for Linear-Phase
FIR Filter Design”.
I. W. Selesnick appears to be the author of the Matlab code.

Summary

In this chapter we have quickly covered the functionality of the Core Lite profile and given
examples on its use. We cover methods for creating and destroying blocks and views, and for
obtaining views of the real and imaginary portions of complex views. User data and methods
to get data in and out of VSIPL are discussed. Finally we do examples illustrating the use of
the random number generator, Fourier transform, and the FIR filter.

D N

D N×
N

0.5
SP VSIPL Core Plus DRAFT 115

DRAFT
 Example 11 (Page 1 of 2)

#include<stdio.h>
#include<vsip.h>
#define N 1024
#define avg 1000
#define D 2
#define RNS 17 /* Random Number Seed */
#define RNT VSIP_PRNG /* Random Number Type */
void VU_vprint_f(vsip_vview_f*);
int main()
{
 int i, init = vsip_init((void*)0);
 vsip_vview_f *dataIn = vsip_vcreate_f(D * N,0);
 vsip_cvview_f *dataFFT = vsip_cvcreate_f(N/2 + 1,0);
 vsip_vview_f *dataOut = vsip_vcreate_f(N,0);
 vsip_vview_f *spect_avg = vsip_vcreate_f(N/2 + 1.0,0);
 vsip_vview_f *spect_new = vsip_vcreate_f(N/2 + 1.0,0);
 vsip_randstate *state = vsip_randcreate(RNS,1,1,RNT);
 vsip_fir_f *fir;
 vsip_fft_f *fft = vsip_rcfftop_create_f(N,1,0,0);
 vsip_scalar_f b[] =
 {0.0234, -0.0094, -0.0180, -0.0129, 0.0037,
 0.0110, -0.0026, -0.0195, -0.0136, 0.0122,
 0.0232, -0.0007, -0.0314, -0.0223, 0.0250,
 0.0483, -0.0002, -0.0746, -0.0619, 0.0930,
 0.3023, 0.3999, 0.3023, 0.0930, -0.0619,
 -0.0746, -0.0002, 0.0483, 0.0250, -0.0223,
 -0.0314, -0.0007, 0.0232, 0.0122, -0.0136,
 -0.0195, -0.0026, 0.0110, 0.0037, -0.0129,
 -0.0180 ,-0.0094, 0.0234};
 {
 vsip_block_f *kblock = vsip_blockbind_f(b,43,0);
 vsip_vview_f *kernel =
 vsip_vbind_f(kblock,0,1,43);
 vsip_blockadmit_f(kblock,1);
 fir = vsip_fir_create_f(kernel, VSIP_NONSYM,
 D * N, D,VSIP_STATE_SAVE, 0, 0);
 vsip_valldestroy_f(kernel);
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
116 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 11 (Page 2 of 2)

 vsip_vfill_f(0,spect_avg);
 for(i=0; i<avg; i++){
 vsip_vrandu_f(state,dataIn);
 vsip_svadd_f(-.5,dataIn,dataIn);
 vsip_firflt_f(fir,dataIn,dataOut);
 vsip_rcfftop_f(fft,dataOut,dataFFT);
 vsip_vcmagsq_f(dataFFT,spect_new);
 vsip_vadd_f(spect_new,spect_avg,spect_avg);
 }
 vsip_svmul_f(1.0/avg,spect_avg,spect_avg);
 printf(“spect_avg =”);VU_vprint_f(spect_avg);

 vsip_valldestroy_f(dataIn);
 vsip_valldestroy_f(spect_avg);
 vsip_valldestroy_f(spect_new);
 vsip_cvalldestroy_f(dataFFT);
 vsip_valldestroy_f(dataOut);
 vsip_randdestroy(state);
 vsip_fft_destroy_f(fft);
 vsip_fir_destroy_f(fir);
 return 1;
}

void VU_vprint_f(vsip_vview_f *a)
{
 vsip_vattr_f attr;
 vsip_index i;
 vsip_vgetattrib_f(a,&attr);
 printf(“[“);
 for(i=0; i<attr.length-1; i++)
 printf(“%7.4f;\n”,vsip_vget_f(a,i));
 printf(“%7.4f];\n”, vsip_vget_f(a,i));
 vsip_finalize((void*)0);
 return;
}

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
SP VSIPL Core Plus DRAFT 117

DRAFT
 Figure 1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
N

ot
 N

or
m

al
iz

ed

Decimation 1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

N
ot

 N
or

m
al

iz
ed

Decimation 2

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

w/pi

H

Frequency Response Amplitude

The figures above are related to Example 11. The bottom plot is the frequency response
related to the kernel in lines 20 through 29 of the example. Matlab code available at internet
site jazz.rice.edu/software/RU-FILTER/cpm/ was used to generate the plot and the filter
coefficients, and is directly from the first Example referenced on that web page. The plots
Decimation 1 and 2 are the result of Example 11 for the stated decimation factors.
118 DRAFT TASP VSIPL Core Plus

DRAFT

TA
SP VSIPL Core Plus DRAFT 119

DRAFT
120 DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 4 Introduction to VSIPL Matrices

Introduction

In the previous chapter VSIPL programing was introduced using the Core Lite profile. One of
the main differences between the Core Lite profile and the Core profile is the addition of
matrix functionality in Core. This chapter will introduce VSIPL matrices.

Matrix Fundamentals

Although matrices are probably well understood by most readers the VSIPL forum had many,
sometimes heated, discussions on how best to describe them within the VSIPL framework.
Most of these discussions boiled down to terminology, and what is standard. In addition there
were efforts to generalize matrices so the terminology would fit with higher order views so
that the VSIPL terminology would be the same for three dimensional views as for two dimen-
sional, or even one dimensional view.

Since the VSIPL Core Profile has no dimensions above two the author will stick with standard
linear algebra matrix terminology. First we define some of the “standard terminology” as the
author has found that not all people agree on what it is. Readers may not agree that this is stan-
dard terminology, but at least they will know what the author thinks.

Some of the following may seem a bit fundamental. However it is important that we under-
stand how matrices are described on a block, and how to manipulate the matrix view attributes
properly. Without agreeing on the fundamentals it is easy to become confused, and the author
remembers being very confused a few times.

A Matrix

A matrix is a set of data elements described by two indices. The first index is called a row
index, and the second index is called a column index. When the elements of the matrix are
placed on a piece of paper so that all the elements with the same row index go across the paper
(in a row), and all the elements with the same column index go down the paper (in a column)
and the rows with the smaller index values are above the rows with the higher index value (in
order) and similar for the columns, then we have written the matrix down. VSIPL defines
index values as starting at zero so that the matrix index of the very first element located at the
top left of the matrix will be at .

The size of a matrix is usually described as where is the number of rows and is
the number of columns. Here is where confusion can begin. The number of rows in a matrix is
also the number of elements in a column. The number of columns in a matrix is also the num-

0 0,()

m by n m n
SP VSIPL Core Plus DRAFT 121

DRAFT
ber of elements in a row. So a matrix size of , is also a matrix size of

.

In general the author will generally speak of a matrix as having a certain column length and
row length. The row length (number of elements in a row), and the column length (number of
elements in a column) are two of the attributes of a matrix view used to define the matrix lay-
out on a block. The following example of a matrix of size may help.

Matrix Views

The underlying block containing data associated with a matrix view is the same type block as
that associated with a vector view. The view on the block is what makes the object a vector or
a matrix.

For a vector view the data is described using an offset from the beginning of the block to the
first element of the vector, a stride through the block between elements in the vector, and a
vector length which is the number of elements in the vector.

A matrix view is similar to a vector view except there are now two strides, and two lengths.
The two strides are a row stride specifying the distance through the block between consecutive
elements of a row, and a column stride specifying the distance through the block between con-
secutive elements in a column. The two lengths are a row length specifying the number of ele-
ments in a row of the matrix, and a column length specifying the number of elements in a
column of a matrix. There is also an offset specifying the number of elements from the begin-
ning of the block to the first element in the matrix.

The following may help in understanding how a matrix view maps the elements of a block
into a matrix. For this example lets map a block of length 12 into a matrix of size 3,4. This is a
dense mapping so that every element of the block is mapped into the matrix. We will do the
first mapping so that the row stride is one, and the second mapping so that the column stride is
one. The dimension with the smallest stride is called the major direction. We have the matrix

.

For this matrix we know the row length is 4 and the column length is 3. Note that the row

m rows, ncolumns[]
column length m , row length n[]

4 by 3()

0 0,() 0 1,() 0 2,()
1 0,() 1 1,() 1 2,()
2 0,() 2 1,() 2 2,()
3 0,() 3 1,() 3 2,()

Row 0

Row 3

Column 0 Column 2

Row Length 3

Column
 Length
 4

a0 0, a0 1, a0 2, a0 3,

a1 0, a1 1, a1 2, a1 3,

a2 0, a2 1, a2 2, a2 3,
122 DRAFT TASP VSIPL Core Plus

DRAFT

TA
length and the column length are properties of the matrix definition. These two attributes
define the size and shape of the matrix. They come from a linear algebra point of view, and
are important when doing matrix operations. Except for defining the minimum block size that
a matrix will fit into and the minimum stride between elements in the non-major (minor)
direction matrix lengths are not important when mapping a matrix on a block.

For the case of a row stride of one (row major) we have the following consecutive elements in
the block.

The offset and stride attributes define the location of the matrix in the block. They have noth-
ing to do with a matrix from a algebra point of view, and are not needed when thinking about
how matrices combine when doing matrix math. We note that since the matrix is dense the
column stride is the row length. In the case above this is four. We can get this by counting the
number of elements between and .

Now lets consider the case of column major. For this case the column stride will be one and
(in consecutive block locations starting at zero) the matrix layout will be

.

Once again the matrix is dense so the row stride is the column length which is three.

We do one more case with this example for a block size of 18. We designate elements in the
block which are not mapped by the matrix with an . The matrix is row major, with a row

stride of one, a column stride of five, and an offset of two. The matrix is not dense. The map-
ping looks as follows.

Matrix Creation

There are two fundamental methods for creating a matrix. The most fundamental method is to
obtain a block object, either by creating it or by using one already created, of sufficient size to
hold the matrix. Then a matrix is defined on the block using the matrix bind function
(vsip_mbind_f). This looks like the following.

/* create a block and bind a matrix to it of size
 M rows by N columns */
vsip_block_f *block = vsip_blockcreate_f(M * N, VSIP_MEM_NONE);
vsip_mview_f *matrix =
 vsip_mbind_f(block,offset,
 col_stride,col_length,
 row_stride,row_length);

In the code segment above we have created a block exactly the size needed for a matrix of size
. This means that (in order for the matrix to fit in the block and make sense) the offset

must be zero and either the column stride must be one and the row stride must be the column
length, or the row stride must be one and the column stride must be the row length. A better

a0 0, a0 1, a0 2, a0 3, a1 0, a1 1, a1 2, a1 3, a2 0, a2 1, a2 2, a2 3,, , , , , , , , , , ,

ao o, a1 0,

a0 0, a1 0, a2 0, a0 1, a1 1, a2 1, a0 2, a1 2, a2 2, a0 3, a1 3, a2 3,, , , , , , , , , , ,

ei

e0 e1 a0 0, a0 1, a0 2, a0 3, e6 a1 0, a1 1, a1 2, a1 3, e11 a2 0, a2 1, a2 2, a2 3, e16 e17, , , , , , , , , , , , , , , , ,

M N,
SP VSIPL Core Plus DRAFT 123

DRAFT
way to create a dense matrix of this type is to use the matrix create function. This looks like
the following.

/* Create a dense row major matrix of size M rows by
 N columns */
vsip_mview_f *matrix = vsip_mcreate_f(M,N,
 VSIP_ROW,VSIP_MEM_NONE);

It is also possible to create a new matrix view from an existing matrix view using the matrix
subview function. For complex matrices a real matrix view of the real or imaginary part of the
complex view may be created using the matrix real view and imaginary view functions.

Extracting Vector views from Matrix Views

The ability to obtain a vector view of a row, column, or diagonal of a matrix is an important
feature of VSIPL. The view can be created directly by using the bind function to create and
bind a vector view to the same block the matrix is bound to, and then setting the attributes of
the vector view to map the proper portion of the matrix view into the vector view, or it can be
done with vector view create functions designed for this purpose. For example to obtain a vec-
tor view of the second row of a matrix would look as follows.

/* Create a dense column major matrix of size 5,4
 and then create a vector view of the second row
 of the matrix. */
vsip_mview_f *matrix = vsip_mcreate_f(5,4,
 VSIP_COL,VSIP_MEM_NONE);
vsip_vview_f *vview = vsip_mrowview_f(matrix,1);

To obtain a view of the first diagonal above the main diagonal of the matrix would look as fol-
lows.

/* Create a dense column major matrix of size 5,4
 and then create a vector view of the first upper diagonal
 of the matrix. */
vsip_mview_f *matrix = vsip_mcreate_f(5,4,
 VSIP_COL,VSIP_MEM_NONE)
vsip_vview_f *vview = vsip_mdiagview_f(matrix,1);

Note that the index for the diagonal view is positive for diagonals above the main diagonal,
and negative for diagonals below the main diagonal. The index data type for VSIPL is some
type of unsigned integer and all indices start at zero and increase so this is a small problem.
For this reason the data type for the diagonal index argument of the diagonal view function is
a stride type, not an index type.

Fundamental Matrix Calculation

The author defines the fundamental matrix calculation as the calculation necessary to find the
block location of any element in a matrix given the matrix index of the element and the stride
and offset attributes of the matrix view. Given a matrix index where is the row and

5 4,

r c,() r c
124 DRAFT TASP VSIPL Core Plus

DRAFT

TA
is the column, and matrix attributes where is the offset in the block to matrix ele-

ment , is the row stride, and is the column stride we calculate the element offset in

the block, designated , using the following formula.

For the case of a dense matrix with stride in the major direction of one, then the stride in the
minor direction will be equal to the length along the major direction. For other cases the nec-
essary stride in the minor direction is not obvious. The following formula will give the mini-
mum stride length in the minor direction to give a usable matrix. Let be the row length and

 be the column length. For row major we calculate the minimum using

and for column major we calculate the minimum using

.

Note that is the largest possible index in a row, and is the largest possible

index in a column.

Simple Matrix Manipulations

The VSIPL core profile has many support functions for creating various sub views of a matrix,
either a matrix subview or a vector view. Although these functions are easy to use, they may
not be the most efficient means to an end. In addition VSIPL core does not support matrix ele-
mentwise functions. One could always do elementwise calculations using the element get
(vsip_mget_f) and the element put (vsip_mput_f). This is very inefficient and is not a good
way to do elementwise calculations. It is better to find vector views that view all or part of a
matrix views data and then do the elementwise calculations using vector elementwise func-
tions. In this section we explore some of the possibilities. We will use vsip_vadd_f as an
example of an elementwise operation, but any elementwise function could be substituted.

A Simple Print Function

In order to make the examples usable we need to print the results. Below is a simple print util-
ity which will allow printing (small) matrices in a format suitable for pasting into Matlab. We
use this function (or a similar function) in examples below. Note in lines 3 and 4 the use of the
support functions to get the row or column length of a matrix, and in line 10 the method to get
a matrix element.

o rs cs, , o

0 0,() rs cs

Eo r c,()

Eo r c,() o r() cs() c() rs()+ +=

rl

cl cs

csmin rl 1–()rs 1+=

rs

rsmin cl 1–()cs 1+=

rl 1–() cl 1–()
SP VSIPL Core Plus DRAFT 125

DRAFT
#include<vsip.h>
void VU_mprintm_f(char format[],vsip_mview_f *X)
{ vsip_length RL = vsip_mgetrowlength_f(X),
 CL = vsip_mgetcollength_f(X),
 row,col;
 vsip_scalar_f x;
 printf("[\n");
 for(row=0; row<CL; row++){
 for(col=0; col<RL; col++){
 x=vsip_mget_f(X,row,col);
 printf(format,x,((col==(RL-1)) ? ";" : " "));
 } printf("\n");
 }printf("];\n");
 return;
}

General Elementwise Matrix Operation Using Row or Column View

Using the vsip_mrowview_f or vsip_mcolview_f functions it is easy to get a vector view
corresponding to any row or column of a matrix. By incrementing through all the rows or col-
umns of matrices of the same size and using an appropriate vector elementwise function it is
easy to do elementwise operations on any matrix. In example 12 below we do this in a
straightforward way without manipulating any attributes. In lines 2 through 20 we write a
simple elementwise matrix add function. In lines 22 through 40 we write a program to test the
matrix add program.

Note that the matrix add function does not do any error checking and makes the assumption
that the input matrices are all the same size, and that the view creates all work and have no
allocation failure. To make the function more robust these errors should be checked for, and
the function should return an error code instead of being void.

For this example we have arbitrarily decided to do the addition using column views. We could
also have used row views. We start in line 5 by getting the row length. Since the row length is
the number of columns in the matrix this is the information necessary to calculate the number
of columns we need to add over. In lines 7 through 9 we obtain a vector view of the first col-
umn of each matrix. We then add these columns in the proper order using vadd in line 10. In
lines 11 through 16 we iterate through all the rest of the columns and add them. Note that we
must destroy a view before we can reassign it, and in lines 17 and 18 we destroy the views
before returning from the function.

In main we create 3 vectors in lines 23 through 25 and fill them with some data using vramp in
line 30. These steps are just to give us some blocks with some simple to understand data in it.
We don’t fill the output vector. Since we only place data in it there is no need to initialize it.

In lines 26 through 29 we create some matrix views on the blocks created when we created the
data vectors in lines 23 through 25. For this example we create simple row major matrices
with column length of 3 and row length of 4.

The output of example 12 is below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
126 DRAFT TASP VSIPL Core Plus

DRAFT

TA
A =
[
 0.00 0.01 0.02 0.03
 0.04 0.05 0.06 0.07
 0.08 0.09 0.10 0.11
];
B =
[
 0.00 1.00 2.00 3.00
 4.00 5.00 6.00 7.00
 8.00 9.00 10.00 11.00
];
A + B = C =
[
 0.00 1.01 2.02 3.03
 4.04 5.05 6.06 7.07
 8.08 9.09 10.10 11.11
];

We note that using colview as the vector direction in example 12 is probably not the most effi-
cient method since the vectors sent to the add function will not have the minimum stride. we
also see that it is possible in this example to define single vectors of length 12 which included
all the elements of each matrix and therefore would only require one call to the add function.
In addition the view creates and destroys are very inefficient. In Example 13 we try to do a
more efficient version of the matrix add function in Example 12.
SP VSIPL Core Plus DRAFT 127

DRAFT
 Example 12

#include<vsip.h>
void VU_madd_f(vsip_mview_f* A,
 vsip_mview_f* B,
 vsip_mview_f* C){
 vsip_length L = vsip_mgetrowlength_f(A);
 vsip_index i;
 vsip_vview_f *a = vsip_mcolview_f(A,0),
 *b = vsip_mcolview_f(B,0),
 *c = vsip_mcolview_f(C,0);
 vsip_vadd_f(a,b,c);
 for(i=1; i<L; i++){
 vsip_vdestroy_f(a); a = vsip_mcolview_f(A,i);
 vsip_vdestroy_f(b); b = vsip_mcolview_f(B,i);
 vsip_vdestroy_f(c); c = vsip_mcolview_f(C,i);
 vsip_vadd_f(a,b,c);
 }
 vsip_vdestroy_f(a);vsip_vdestroy_f(b);
 vsip_vdestroy_f(c);
 return;
}

int main()
{ vsip_vview_f *a = vsip_vcreate_f(50,0),
 *b = vsip_vcreate_f(50,0),
 *c = vsip_vcreate_f(50,0);
 vsip_mview_f
 *A = vsip_mbind_f(vsip_vgetblock_f(a),0,4,3,1,4),
 *B = vsip_mbind_f(vsip_vgetblock_f(b),0,4,3,1,4),
 *C = vsip_mbind_f(vsip_vgetblock_f(c),0,4,3,1,4);
 vsip_vramp_f(0.0,.01,a); vsip_vramp_f(0.0,1.0,b);
 VU_madd_f(A,B,C);
 printf("A = \n");VU_mprintm_f("%5.2f ",A);
 printf("B = \n");VU_mprintm_f("%5.2f ",B);
 printf("A + B = C = \n");VU_mprintm_f("%5.2f ",C);
 vsip_mdestroy_f(A); vsip_mdestroy_f(B);
 vsip_mdestroy_f(C);
 vsip_valldestroy_f(a); vsip_valldestroy_f(b);
 vsip_valldestroy_f(c);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
128 DRAFT TASP VSIPL Core Plus

DRAFT

TA
In example 13 we make a decision to use one of two methods to do the elementwise calcula-
tion. We use method one if the input matrices data may be represented as a single vector. For
this method to work all three matrices must each be representable by a single vector. Other-
wise we use method two which is the same as example 12 except we iterate the columns by
resetting offset of the column vectors.

In lines 7 and 8 we retrieve the attributes of each matrix. In line 6 we set a check to false. In
lines 9 through 26 we find out if the matrices may all be represented using a single vector. To
use a single vector all the matrices must have the same major direction, so we check this first
in lines 10-13. We then find the difference for row major (column major) between the offset of
the last element of a row (column) and the first element of the next row (column). By compar-
ing this difference with the major direction stride to check for equality we set the check value
to true if the matrices data may be represented by a vector.

If the check value is true we create a view along the major direction in lines 28 through 33. In
line 34 we find the number of elements in the matrix and reset each vector length to that value.
We then add the vectors in line 37, destroy the vector views (38,39), and exit the subroutine.
The matrix add is done. It is important that the initial view be at index zero along the major
direction for the proper stride and offset.

If the check is false then we do the addition using column views starting at index zero (42-43).
In lines 45-47 we store the initial offset of these column views. We note that for index zero
this is the same offset as the parent matrix. In line 48 we add the first set of columns. In lines
49-55 we iterate through the rest of the columns. We first reset the vector view offset to the
next column by adding the row stride (50-53). We then add the vectors in line 54. After com-
pletion we are done adding so we destroy the vector views and return.

The main program starting in line 63 tests the matrix add subroutine we have written. Note
that this is basically the same main as example 12, except the attributes for the matrix bind
function are set to different values, and we also do two matrix adds, once for method one and
once for method two. Note that the ramp function filling the and matrices are set up so

that the block elements are numbered through for and through for . This
makes it easy to keep track of what portion of the block is referenced by the matrix view given
a particular set of attributes in the matrix bind function. The reader is encouraged to try chang-
ing the arguments in the bind functions to become familiar with how matrices are accessed on
a block given a particular view.

As a side note it would be easy to modify example 13 to do any elementwise function with
two matrices as input and a matrix as output by passing in the vector elementwise function as
a pointer, and replacing vector add with the function pointer.

A B

0.00 0.49 A 0 49 B
SP VSIPL Core Plus DRAFT 129

DRAFT
 Example 13 (Page 1 of 2)

#include<vsip.h>
void VU_madd_f(vsip_mview_f* A,
 vsip_mview_f* B,
 vsip_mview_f* C){
 vsip_mattr_f Aa,Ba,Ca; /* Matrix attributes */
 int c_bl = 0;
 vsip_mgetattrib_f(A,&Aa); vsip_mgetattrib_f(B,&Ba);
 vsip_mgetattrib_f(C,&Ca);
 { /* decide if it can be done with one vector */
 int check = (Aa.row_stride < Aa.col_stride) ? 1 : 0;
 check += (Ba.row_stride < Ba.col_stride) ? 1 : 0;
 check += (Ca.row_stride < Ca.col_stride) ? 1 : 0;
 if((check != 3) && (check != 0)){ c_bl = 0;
 } else { vsip_stride A_c, B_c, C_c;
 if(check){

A_c=Aa.col_stride-Aa.row_stride*(Aa.row_length-1);
B_c=Ba.col_stride-Ba.row_stride*(Ba.row_length-1);
C_c=Ca.col_stride-Ca.row_stride*(Ca.row_length-1);

 if((A_c==Aa.row_stride)&&(B_c==Ba.row_stride)
 &&(C_c == Ca.row_stride)) c_bl=1;
 }else{

A_c=Aa.row_stride-Aa.col_stride*(Aa.col_length-1);
B_c=Ba.row_stride-Ba.col_stride*(Ba.col_length-1);
C_c=Ca.row_stride-Ca.col_stride*(Ca.col_length-1);

 if((A_c==Aa.col_stride) && (B_c==Ba.col_stride)
 &&(C_c==Ca.col_stride)) c_bl=1;}
 }
 }if(c_bl){ /* everything can be made into a vector */
 vsip_vview_f *a=(Aa.row_stride < Aa.col_stride) ?
 vsip_mrowview_f(A,0) : vsip_mcolview_f(A,0),
 *b=(Ba.row_stride < Ba.col_stride) ?
 vsip_mrowview_f(B,0) : vsip_mcolview_f(B,0),
 *c=(Ca.row_stride < Ca.col_stride) ?
 vsip_mrowview_f(C,0) : vsip_mcolview_f(C,0);
 vsip_length Nlen=Aa.row_length*Aa.col_length;
 vsip_vputlength_f(a,Nlen);vsip_vputlength_f(b,Nlen);
 vsip_vputlength_f(c,Nlen); vsip_vadd_f(a,b,c);
 vsip_vdestroy_f(a);vsip_vdestroy_f(b);
 vsip_vdestroy_f(c); printf("method 1\n");
}else{/* add by columns */
 vsip_index i;
 vsip_vview_f *a = vsip_mcolview_f(A,0),
 *b = vsip_mcolview_f(B,0),
 *c = vsip_mcolview_f(C,0);

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
130 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 13 (Page 2 of 2

 vsip_offset a_o = Aa.offset,
 b_o = Ba.offset,
 c_o = Ca.offset;
 vsip_vadd_f(a,b,c);
 for(i=1; i<Aa.row_length; i++){
 a_o += Aa.row_stride; b_o += Ba.row_stride;
 c_o += Ca.row_stride;
 vsip_vputoffset_f(a,a_o);vsip_vputoffset_f(b,b_o);
 vsip_vputoffset_f(c,c_o);
 vsip_vadd_f(a,b,c);
 }
 vsip_vdestroy_f(a);vsip_vdestroy_f(b);
 vsip_vdestroy_f(c);
 printf("method 2\n");
 }
 return;
}
int main()
{ vsip_vview_f *a = vsip_vcreate_f(50,0),
 *b = vsip_vcreate_f(50,0),
 *c = vsip_vcreate_f(50,0);
 vsip_mview_f
 *A = vsip_mbind_f(vsip_vgetblock_f(a),3,10,3,3,4),
 *B = vsip_mbind_f(vsip_vgetblock_f(b),0,8,3,2,4),
 *C = vsip_mbind_f(vsip_vgetblock_f(c),10,4,3,1,4);
 vsip_vramp_f(0.0,.01,a); vsip_vramp_f(0.0,1.0,b);
 VU_madd_f(A,B,C);
 printf("A = \n");VU_mprintm_f("%5.2f ",A);
 printf("B = \n");VU_mprintm_f("%5.2f ",B);
 printf("A + B = C = \n");VU_mprintm_f("%5.2f ",C);
 vsip_mdestroy_f(A);vsip_mdestroy_f(B);
 vsip_mdestroy_f(C);
 A = vsip_mbind_f(vsip_vgetblock_f(a),3,8,3,2,4),
 B = vsip_mbind_f(vsip_vgetblock_f(b),0,4,3,1,4),
 C = vsip_mbind_f(vsip_vgetblock_f(c),10,4,3,1,4);
 VU_madd_f(A,B,C);
 printf("A = \n");VU_mprintm_f("%5.2f ",A);
 printf("B = \n");VU_mprintm_f("%5.2f ",B);
 printf("A + B = C = \n");VU_mprintm_f("%5.2f ",C);
 vsip_mdestroy_f(A); vsip_mdestroy_f(B);
 vsip_mdestroy_f(C);
 A = vsip_mbind_f(vsip_vgetblock_f(a),3,10,3,3,4),
 vsip_valldestroy_f(a); vsip_valldestroy_f(b);

vsip_valldestroy_f(c);return 0;}

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
SP VSIPL Core Plus DRAFT 131

DRAFT
132 DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 5 Introduction to Vector Index Views,
Boolean views, Gather, Scatter, and
Indexbool

Introduction

The VSIPL specification supports vectors which contain index values. Only vectors are sup-
ported for this purpose and there are no matrix data types which may contain index values. For
the VSIPL Core profile there are vectors and matrices, so the core profile supports vector
views of type vector index and vector views of type matrix index. In this chapter we will
spend most of our time on vector views of type vector index which we term vector index view.

In addition the VSIPL Core profile requires support for boolean vector views. A vector bool-
ean view may be used to create a vector index view using the vsip_vindexbool function.

Vector Index Views

By this stage in the book the reader should be fairly comfortable with manipulating vector
views of type float. There are no differences with a vector index view. The data type stored in
the vector index is of type vsip_scalar_vi. This type is an unsigned integer of sufficient size
to index any possible vector for the implementation.

There are few elementwise functions in VSIPL Core which operate on vector index views.
You may retrieve or put an index in a vector using the standard get or put, and you may copy
an index using the copy functions. It is also possible to define a user data array of type vector
index (vsip_scalar_vi index[size_of_user_data_array]) and then bind the user data to
a block of type vector index (vsip_block_vi). Vector index views (vsip_vview_vi) may
then be bound to the user block. After manipulating the user data array using normal ANSI C
methods the block may be admitted to VSIPL (or released as required) and views (user data)
bound to the block may be used in the normal manner.

The main method to set vector index views are to use boolean vector views created using a
logical function, and then use the index boolean function to fill the index vector using the
boolean vector. The index vector created may then be used to select values from a vector asso-
ciated with the logical operation and place the values in another vector using a gather or scat-
ter.

Vector Boolean Views

All of the standard vector manipulation methods supplied with the support functions, includ-
ing user data arrays defined as type vsip_scalar_bl which may be used with boolean vector
SP VSIPL Core Plus DRAFT 133

DRAFT
views using the standard VSIPL block bind, block admit and block release methods. A bool-
ean internal to VSIPL is vendor dependent. Only the interface to boolean is defined. We will
try to cover most of those interface properties here.

For get functions a zero will be returned if the indexed value is false, and a non-zero will be
returned if the indexed value is true (the exact returned value for boolean get for true is vendor
dependent). For put a zero is put as false and a non-zero is put as true.

For a copy of a boolean to a float vector a true is copied as and a false as . For a copy
of a float vector to a boolean a 0.0 is copied as a false and everything else is copied as true.
Since it is difficult to get exactly 0.0 for float values using standard calculations users are cau-
tioned about copying float vectors to boolean.

Any function which returns a boolean of type vsip_scalar_bl is required to test true for
VSIP_TRUE and false for VSIP_FALSE using standard ANSI C tests. The values VSIP_TRUE
and VSIP_FALSE are defined in the VSIP header file (vsip.h).

A first example using the scalar vector index

Before exploring vector index using vector index views lets do a simple example program
using the scalar vector index. In example 14 we do a simple sort subroutine.

Note that VSIPL includes a type definition vsip_index which is the same as
vsip_scaclar_vi. in line 5 we set the index value. Many value selection functions return as
an argument the index of the value selected. Since we want our sort function to start at mini-
mum values and go to maximum we use the minimum value function to retrieve the minimum
value in the array. We clone the input array in line 4 since we want to change attributes in it.
Note that “bullet proof code” would check for NULL here and return an error if there is no
room to create the view. We could also save the attributes and restore them at the end. For this
example the author uses individual get attribute functions, but an attribute structure could have
been used as well.

The actual sorting is done in lines 9 - 17. The value stored at index zero is saved to a tempo-
rary storage. The minimum value is then found in lines 11-12 and stored in the zero index
location. When the minimum value is found it’s original location is returned in the index.

The value in the temporary location is stored in line 13 where the minimum value was. We
now have the minimum value in the array stored in location zero. We then reduce the length of
the array by one, and increase the offset so that the cloned array zero location points to the
second location of the original array. We do the algorithm again to find the minimum value
and store it in the first location of the new array. When the length (decremented in line 9)
reaches one we know the array has been sorted. We destroy the cloned view in line 18 and
return.

The program used to test the example in lines 21 through 38 makes an arbitrary float user data
array, binds it to a block, binds the block to a view, prints the input data, admits the block,
sorts the vector view, releases the block, and finally prints the output user data. The program
output is:

input 5.0 -3.0 3.0 2.0 1.0 9.0 8.5 11.5 9.0
output -3.0 1.0 2.0 3.0 5.0 8.5 9.0 9.0 11.5

1.0 0.0
134 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 14

#include<vsip.h>
void VU_vsort_f(vsip_vview_f *x){ /* do this in place */
 vsip_scalar_f temp; /* need to store some temp data */
 vsip_vview_f *x_clone = vsip_vcloneview_f(x);
 vsip_index index;
 vsip_length x_length = vsip_vgetlength_f(x);
 vsip_offset x_offset = vsip_vgetoffset_f(x);
 vsip_stride x_stride = vsip_vgetstride_f(x);
 while(x_length-- >1){
 temp = vsip_vget_f(x_clone,0);
 vsip_vput_f(x_clone,0,
 vsip_vminval_f(x_clone,&index));
 vsip_vput_f(x_clone,index,temp);
 x_offset += x_stride;
 vsip_vputlength_f(x_clone,x_length);
 vsip_vputoffset_f(x_clone,x_offset);
 }
 vsip_vdestroy_f(x_clone);
 return;
}
int main(){
 int init = vsip_init((void*)0);
vsip_scalar_f u_data[] = {5.0, -3.0, 3.0, 2.0, 1.0, 9.0,

 8.5, 11.5, 9.0};
 vsip_block_f *u_block = vsip_blockbind_f(u_data,9,0);
 vsip_vview_f *u_view = vsip_vbind_f(u_block,0,1,9);
 printf("input\n");
{int i; for(i=0; i<9; i++) printf("%5.1f\n",u_data[i]);}

 vsip_blockadmit_f(u_block, VSIP_TRUE);
 VU_vsort_f(u_view);
 vsip_blockrelease_f(u_block,VSIP_TRUE);
 printf("output\n");
{int i; for(i=0; i<9; i++) printf("%5.1f\n",u_data[i]);}

 vsip_valldestroy_f(u_view);
 vsip_finalize((void*)0);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
38
SP VSIPL Core Plus DRAFT 135

DRAFT
Boolean and Vector Index Views

Example 15 demonstrates the use and creation of Boolean and Vector index views. In this
example we create two vector views and determine all locations where the views are equal. In
lines 12-13 we create one ramp increasing and one ramp decreasing. They cross at zero so
there is exactly one time where the two ramps are equal.

In lines 7 and 8 we create a boolean vector and a vector index view of size equal to the size of
the data vectors. In line 20 we do a vector logical equal to compare the values of the input vec-
tors elementwise. The output (true or false) is placed in the boolean vector ab_bl.

In line 22 we check to see if there are any true values in the boolean output of the logical
equal. If there are we do vsip_vindexbool to extract the index values of the true locations
into the index vector. The index vector must be of sufficient size to hold all the possible true
indices. The number of true values are returned, and the length of the index vector is reset to
the actual number of indices input into it.

We finish by printing out all the indices where the elements of the input vectors to logical
equal are equal.

Note that the index vector must be large enough to hold all the indices returned by
vsip_vindexbool. Since the index vector length is reset to the actual number returned, then
the length of the input vector index view must be reset before it is used again.

The output of example 15 follows.

index A B
 0 -2.0 2.0
 1 -1.0 1.0
 2 0.0 0.0
 3 1.0 -1.0
 4 2.0 -2.0
 5 3.0 -3.0
 6 4.0 -4.0
 7 5.0 -5.0
 8 6.0 -6.0
A = B at index 2
136 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 15

#include<vsip.h>
#define L 9 /* length */
int main(){
 int init = vsip_init((void*)0);
 vsip_vview_f *a = vsip_vcreate_f(L,0),
 *b = vsip_vcreate_f(L,0);
 vsip_vview_bl *ab_bl = vsip_vcreate_bl(L,0);
 vsip_vview_vi *ab_vi = vsip_vcreate_vi(L,0);
 vsip_length numTrue = 0;
 int i = 0;
 /* Make up some data */
 vsip_vramp_f(-2.0, 1 , a);
 vsip_vramp_f(2.0, -1 , b);
 printf("index A B\n");
 for(i = 0; i<L; i++)
 printf("%3i %7.1f %7.1f \n", i,
 vsip_vget_f(a,i),
 vsip_vget_f(b,i));

 vsip_vleq_f(a,b,ab_bl);

 if(vsip_vanytrue_bl(ab_bl)){
 numTrue = vsip_vindexbool(ab_bl,ab_vi);
 for(i = 0; i < numTrue; i++)
 printf("A = B at index %3i\n",
 (int)vsip_vget_vi(ab_vi,i));
 }
 else{
 printf("No true cases\n");
 }
 vsip_valldestroy_f(a);
 vsip_valldestroy_f(b);
 vsip_valldestroy_bl(ab_bl);
 vsip_valldestroy_vi(ab_vi);
 vsip_finalize((void*)0);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
SP VSIPL Core Plus DRAFT 137

DRAFT
Gather and Scatter

To finish this chapter we demonstrate the use of gather and scatter using a couple of simple
examples.

In example 16 we create a vector and find all the values greater than zero. We then place these
values in a vector and print them.

In lines 5-8 we make the data space and vectors we plan to use. In lines12-13 we create a
cosine wave for angles between zero and two . We then fill a zero vector to compare the
cosine vector with in line 15. Note we could use a vector with zero stride here and save some
space, but we need this vector anyway to copy output data to.

In line 16 we compare the cosine to the zero vector and output a boolean vector set to true
where the cosine vector is greater than zero.

In line 18 we recover the index values where the cosine vector is greater than zero and place
them in the index vector. Note we check the return value to ensure that there were some values
greater than zero.

We then use the gather function to collect the cosine values greater than zero and place them
into the zero vector in line 21. Note that we first reset the vector length of the zero vector to be
equal to the number of true values returned in line 18 by vsip_vindexbool. Since the vector
put length function returns a pointer to the vector view we can use it directly in the
vsip_vindexbool function.In a gather the input vector index view is read in order. The
index read is used to read the input data vector. The result is used in order and placed in the
output vector. So for a gather the input vector index view and the output data view are indexed
the same. The output data view length must be set to the same length as the vector index view
before gather is used. The input data view is indexed using the value read from the input vec-
tor index view.

Finally we print the results, destroy the data space and exit.

For example 17 we use both gather and scatter. For this example we create a clipped cosine
wave.

In example 17 lines 5 - 26 we simply do what was done in example 16. At line 27 we fill the
original cosine view with the clip value, which for this case is zero. Then in line 28 we replace
the cosine values above the clip value using a scatter function. In a gather the input vector
index view’s values are used to find data in the input data vector. In a scatter the input vector
index view’s values are used to place data in the output vector. For the scatter case the index
vector view and the input data vector are indexed the same (in order). So the data gathered in
the first part of the code is now scattered back to its proper location. The result is a clipped
cosine.

Note one would normally do a clip using the clip function. This example is to demonstrate
scatter, not to demonstrate how to clip data.

As a final comment we note that for a scatter the index vector may contain duplicate entries.
For duplicate entries the final value stored in the output vector is vendor dependent.

π

138 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 16

#include<vsip.h>
#define L 20 /* A length*/
int main()
{ int init = vsip_init((void*)0);
 vsip_vview_f* a = vsip_vcreate_f(L,0);
 vsip_vview_f* b = vsip_vcreate_f(L,0);
 vsip_vview_vi* ab_vi = vsip_vcreate_vi(L,0);
 vsip_vview_bl* ab_bl= vsip_vcreate_bl(L,0);
 int i;
 vsip_length N;
 /* make up some data */
 vsip_vramp_f(0,2 * M_PI/(L-1),a);
 vsip_vcos_f(a,b);
 /* find out where b is greater than zero */
 vsip_vfill_f(0,a);
 vsip_vlgt_f(b,a,ab_bl);
 /* find the index where b is greater than zero */
 if((N = vsip_vindexbool(ab_bl,ab_vi))){
 /* make a vector of those points where b
 is greater than zero*/
 vsip_vgather_f(b,ab_vi,vsip_vputlength_f(a,N));
 /*print out the results */
 printf("Index Value\n");
 for(i=0; i<N; i++)
 printf("%li %6.3f\n",
 vsip_vget_vi(ab_vi,i),
 vsip_vget_f(a,i));
 }
 else{ printf("Zero Length Index");
 }
 vsip_valldestroy_f(a);
 vsip_valldestroy_f(b);
 vsip_valldestroy_vi(ab_vi);
 vsip_valldestroy_bl(ab_bl);
 vsip_finalize((void*)0);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
SP VSIPL Core Plus DRAFT 139

DRAFT
 Example 17

#include<vsip.h>
#define L 50 /* A length*/
int main()
{ int init = vsip_init((void*)0);
 vsip_vview_f *a = vsip_vcreate_f(L,0),
 *b = vsip_vcreate_f(L,0);
 vsip_vview_vi *ab_vi = vsip_vcreate_vi(L,0);
 vsip_vview_bl *ab_bl= vsip_vcreate_bl(L,0);
 int i;
 vsip_length N;
 /* make up some data */
 vsip_vramp_f(0,2 * M_PI/(L-1),a);
 vsip_vcos_f(a,b);
 /* find out where b is greater than zero */
 vsip_vfill_f(0,a);
 vsip_vlgt_f(b,a,ab_bl);
 /* find the index where b is greater than zero */
 if((N = vsip_vindexbool(ab_bl,ab_vi))){
 /* make a vector of those points where b
 is greater than zero*/
 vsip_vgather_f(b,ab_vi,vsip_vputlength_f(a,N));
 }
 else{
 printf("Zero Length ab_vi");
 exit(0);
 }
 vsip_vfill_f(0,b);
 vsip_vscatter_f(a,b,ab_vi); /* cliped cosine */
 for(i=0; i<L; i++)
 printf("%6.3f\n",vsip_vget_f(b,i));
 /*recover the data space*/
 vsip_valldestroy_f(a);
 vsip_valldestroy_f(b);
 vsip_valldestroy_vi(ab_vi);
 vsip_valldestroy_bl(ab_bl);
 vsip_finalize((void*)0);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
140 DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 6 Signal Processing Functionality in
the VSIPL Core Profile

Introduction

For the core profile signal processing functions included are, with the exception of multiple
FFT, defined for use on single vectors. Multiple FFT is also one dimensional, except it is done
over a matrix input. With the exception of the IIR filter routines almost all the one dimensional
functionality of the VSIPL signal processing specification is contained in the core profile.

Window Creation

VSIPL provides functions to create Blackman, Chebyshev, Hanning and Kaiser windows.
Unlike most functions in VSIPL the window creation routines do not use an already created
vector and fill it. Instead they actually create a block, allocate data for the block, create a unit
stride full length vector on the block, fill the vector with the window coefficients, and then
return the pointer to the vector view. The return value will be NULL on an allocation failure,
and careful programmers will check this (as the examples demonstrate the author tends to be
not very careful).

The four window functions are standard and discussed in many texts. The actual formulas for
the windows are included in the VSIPL standard and will not be included here. In Example 18
below we look at window creation for the Chebyshev window.

In lines 6 and 7 we define a couple of VSIP user functions to allow us to print vectors to a file
(Vector File Print y gnuplot => vfprintyg in case your wondering), and to rearrange an fft out-
put so the DC value goes to the middle of the vector. VSIPL has defined a function to allow
this, but it is not included in the core profile. These functions are in lines 38-81.

On line 8-9 we calculate the Chebyshev window. In lines 12-14 we create a complex vector
for calculating the frequency response. We initialize the vector to zero. This is important if the
vector contents are not replaced in some other step. For this example the real part is replaced
with the window, but the imaginary part is initialized using the complex vector fill done on
line 14.

In line 18 we copy the window to the real portion of the complex vector. Note that frequently
we can do things directly in a real view, versus doing a copy, but the window creation method
in VSIPL does not allow this, since the windows data space is created directly. In line 18 and
19 we find the fourier transform of the window and it’s magnitude squared value.
SP VSIPL Core Plus DRAFT 141

DRAFT
 Example 18 (1 of 2)

#include<vsip.h>
#define ripple 100 /* First side lobe 100 db down */
#define Nlength 101 /* window length */
int main()
{ int init vsip_init((void*)0);
 void VU_vfprintyg_f(char*,vsip_vview_f*,char*);
 void VU_vfreqswapIP_f(vsip_vview_f*);
 vsip_vview_f* Cw = vsip_vcreate_cheby_f(

Nlength,ripple,0); /* window create here */
 vsip_fft_f *fft = vsip_ccfftip_create_f(
 Nlength,1.0,VSIP_FFT_FWD,0,0);
 vsip_cvview_f* FCW = vsip_cvcreate_f(Nlength,0);
 VU_vfprintyg_f("%6.8f\n",Cw,"Cheby_Window");
 vsip_cvfill_f(vsip_cmplx_f(0,0),FCW);
 { /* look at frequency response */
 vsip_vview_f *rv = vsip_vrealview_f(FCW);
 vsip_vcopy_f_f(Cw,rv);
 vsip_ccfftip_f(fft,FCW);
 vsip_vcmagsq_f(FCW,rv);
 { /* scale by 130 dB min to max*/
 vsip_index ind;
 vsip_scalar_f max = vsip_vmaxval_f(rv,&ind);
 vsip_scalar_f min = max * (1e-13);
 vsip_vclip_f(rv,min,max,min,max,rv);
 }
 vsip_vlog10_f(rv,rv);
 vsip_svmul_f(10,rv,rv);
 VU_vfreqswapIP_f(rv);
 VU_vfprintyg_f("%6.8f\n",rv,
 " Cheby_Window_Frequency_Response");
 vsip_vdestroy_f(rv);
 }
 vsip_fft_destroy_f(fft);
 vsip_valldestroy_f(Cw);
 vsip_cvalldestroy_f(FCW);
 vsip_finalize((void*)0); return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
142 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 18 (2 of 2)

void VU_vfreqswapIP_f(vsip_vview_f* b)
{ vsip_length N = vsip_vgetlength_f(b);
 if(N%2){/* odd */
 vsip_vview_f *a1 = vsip_vsubview_f(b,
 (vsip_index)(N/2)+1,
 (vsip_length)(N/2));
 vsip_vview_f *a2 = vsip_vsubview_f(b,
 (vsip_index)0,
 (vsip_length)(N/2)+1);
 vsip_vview_f *a3 = vsip_vcreate_f(
 (vsip_length)(N/2)+1,
 VSIP_MEM_NONE);
 vsip_vcopy_f_f(a2,a3);
 vsip_vputlength_f(a2,(vsip_length)(N/2));
 vsip_vcopy_f_f(a1,a2);
 vsip_vputlength_f(a2,(vsip_length)(N/2) + 1);
 vsip_vputoffset_f(a2,(vsip_offset)(N/2));
 vsip_vcopy_f_f(a3,a2);
 vsip_vdestroy_f(a1); vsip_vdestroy_f(a2);
 vsip_valldestroy_f(a3);
 }else{ /* even */
 vsip_vview_f *a1 = vsip_vsubview_f(b,
 (vsip_index)(N/2),
 (vsip_length)(N/2));
 vsip_vputlength_f(b,(vsip_length)(N/2));
 vsip_vswap_f(b,a1);
 vsip_vdestroy_f(a1);
 vsip_vputlength_f(b,N);
 }
 return;
}

void VU_vfprintyg_f(char* format,
 vsip_vview_f* a,
 char* fname)
{ vsip_length N = vsip_vgetlength_f(a);
 vsip_length i;
 FILE *of = fopen(fname,"w");
 for(i=0; i<N; i++)
 fprintf(of,format, vsip_vget_f(a,i));
 fclose(of);
 return;
}

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
51
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
SP VSIPL Core Plus DRAFT 143

DRAFT
 Figure 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

"Cheby_Window"

-100

-80

-60

-40

-20

0

20

40

0 20 40 60 80 100

"Cheby_Window_Frequency_Response"

Output of example 18 plotted using gnuplot. The top plot is the Chebyshev
window, the bottom the corresponding frequency response.
144 DRAFT TASP VSIPL Core Plus

DRAFT

TA
For the window in example 18 we requested 100 db between the highest sidelobe and the main
lobe; however the minimum value could be zero. Very small or zero values are inconvenient
when doing logs. In lines 20-25 we scale the frequency response values to 130 dB. We find

log base of the values in lines 26-27 (this is the dB value), and in line 29-30 print them
out. Figure 2 is the resultant window, and it’s frequency response.

The author notes that he has run example 18 on two platforms, a Sun server and a Pentium
based Linux computer, but for some reason the result of the float version of the Chebyshev
window on the Sun is not very good (the first side lobe is only down about 60 dB on the Sun
float version). The double version on the Sun platform works fine. The version in figure 2 is
the float version from the pentium platform. The library and example code is identical on both
platforms. The author has not tracked down the problem yet.

Convolution, Correlation and FIR Filtering

There are many similarities between these three functions. The convolution and FIR use a ker-
nel vector in there object creation which is stored in the object; however the correlation uses a
reference data vector which is not stored in the object. The convolution and FIR are basically
filter functions and allow de-sampling. The correlation has an option to remove bias. The cor-
relation and convolution have options to indicate what portion of the output is desired. The
convolution is designed to filter a single piece of data, the FIR object maintains state informa-
tion so that it may be used to filter a continuous data stream.

The FIR has already been demonstrated in example 11. In this section we will do two addi-
tional examples, one for convolution and one for correlation. In the convolution example the
FIR and convolution results for identical kernels will be compared.

Correlation

The Correlation example is number 19. In lines 2-3 we define a frequency of for creat-

ing data and a sample rate of . In lines 4-5 we define Nval as (the length of the
input vector) and Mval as 51 (the length of the reference vector). In lines 11-16 we create
some data space. Note that z_y is used to store lag time values, and z_xh is used to store sam-
ple time values. These allow for nicer plotting, but are not really necessary. Note that the func-
tion in line 7 (code in lines 68-80) allows easy printing to a file of x, y values suitable for use
in a simple plotting package.

In line 17 we create a correlation object for full support (VSIP_SUPPORT_FULL). In line 19 we
create a ramp for use in creating our input vector and reference vector in lines 25-26 and 23-
24 respectively. Note that the reference vector length must be less than or equal to the input
vector length. In lines 20-22 we set up the time vector and the lag vector.

In lines 32 through 43 we do a biased correlation and save it in file “y_full” and an unbiased
correlation and save it in file “y_full_unbiased”. In line 43 we destroy the correlation object so
we can reuse it. We then create and do a biased correlation for same support
(VSIP_SUPPORT_SAME) in lines 44-51 storing the result in file “y_same”, and in lines 53
through 60 we create and do a biased correlation for minimum support storing the result in file

10 10

5 Hz

128 Hz 75
SP VSIPL Core Plus DRAFT 145

DRAFT
“y_min”. Note that we must destroy a correlation object before creating a new one (lines 51
and 52) for the same reason we must destroy a vector object before creating a new one.

In example 19 we have not done every possible case for unbiased but the results can be
inferred from the biased case. The results of example 19 are plotted in figure 3.

Note that for the minimum support case a point is only output for correlation where every
point of the reference vector is used in the calculation. If the reference vector and the input
vector are both the same length only one point will be output for the minimum support case.

In the correlation plot of figure 3 for the unbiased case the three supports are each plotted in a
separate color, black for full support, blue for same support, and red for minimum support.
146 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 19 (1 of 2)

#include<vsip.h>
#define f0 5 /* Frequency */
#define fs 128 /* Sample rate */
#define Nval 75 /* Input Data Length */
#define Mval 51 /* Reference Data Length */

void VU_vfprintxyg_f(
 char*,vsip_vview_f*,vsip_vview_f*,char*);
int main()
{ int init vsip_init((void*)0);
 vsip_length max_l = Nval + Mval - 1;
 vsip_vview_f *x = vsip_vcreate_f(Nval,0);
 vsip_vview_f *h = vsip_vcreate_f(Mval,0);
 vsip_vview_f *y = vsip_vcreate_f(max_l,0);
 vsip_vview_f *z_y = vsip_vcreate_f(max_l,0);
 vsip_vview_f *z_xh = vsip_vcreate_f(Nval,0);
 vsip_corr1d_f *cor = vsip_corr1d_create_f(
 Mval,Nval,VSIP_SUPPORT_FULL,0,0);
 vsip_vramp_f(0,(2 * M_PI * f0)/ fs,x);
 vsip_vramp_f(-((vsip_scalar_f)max_l)/(2.0 * fs),
 1.0/(fs),z_y);
 vsip_vramp_f(0.0,1.0/(fs),z_xh);
 vsip_vputlength_f(x,Mval);
 vsip_vsin_f(x,h);
 vsip_vputlength_f(x,Nval);
 vsip_vsin_f(x,x);
 vsip_vputlength_f(z_xh,Mval /*h length*/);
 VU_vfprintxyg_f("%8.6f %8.6f\n",z_xh,h,"h_data");
 vsip_vputlength_f(z_xh,Nval /*x length*/);
 VU_vfprintxyg_f("%8.6f %8.6f\n",z_xh,x,"x_data");

 vsip_correlate1d_f(cor,VSIP_BIASED,h,x,y);
 vsip_vputoffset_f(z_y,0);
 vsip_vputlength_f(z_y,vsip_vgetlength_f(y));
 VU_vfprintxyg_f("%8.6f %8.6f\n",z_y,y,"y_full");

 vsip_correlate1d_f(cor,VSIP_UNBIASED,h,x,y);
 VU_vfprintxyg_f(
 "%8.6f %8.6f\n",z_y,y,"y_full_unbiased");
 vsip_corr1d_destroy_f(cor);

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
SP VSIPL Core Plus DRAFT 147

DRAFT
 Example 19 (2 of 2)

cor = vsip_corr1d_create_f(
 Mval,Nval,VSIP_SUPPORT_SAME,0,0);
 vsip_vputlength_f(y,Nval);
 vsip_vputlength_f(z_y,Nval);
 vsip_vputoffset_f(z_y,(vsip_offset)(Mval/2));
 vsip_correlate1d_f(cor,VSIP_BIASED,h,x,y);
 VU_vfprintxyg_f("%8.6f %8.6f\n",z_y,y,"y_same");
 vsip_corr1d_destroy_f(cor);

 cor = vsip_corr1d_create_f(
 Mval,Nval,VSIP_SUPPORT_MIN,0,0);
 vsip_vputlength_f(y,Nval-Mval+1);
 vsip_vputoffset_f(z_y,(vsip_offset)(Mval - 1));
 vsip_vputlength_f(z_y,Nval-Mval+1);
 vsip_correlate1d_f(cor,VSIP_BIASED,h,x,y);
 VU_vfprintxyg_f("%8.6f %8.6f\n",z_y,y,"y_min");
 vsip_corr1d_destroy_f(cor);

 vsip_valldestroy_f(x);
 vsip_valldestroy_f(h);
 vsip_valldestroy_f(y);
 vsip_finalize((void*)0); return 0;
}

void VU_vfprintxyg_f(char* format,
 vsip_vview_f* x,
 vsip_vview_f* y,
 char* fname){
 vsip_length N = vsip_vgetlength_f(y);
 vsip_length i;
 FILE *of = fopen(fname,"w");
 for(i=0; i<N; i++)
 fprintf(of,format,
 vsip_vget_f(x,i), vsip_vget_f(y,i));
 fclose(of);
 return;
}

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
148 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Figure 3

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ag

ni
tu

de

Time (seconds)

Reference Data

"h_data"

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

M
ag

ni
tu

de

Time (seconds)

Input Data

"x_data"

-30

-20

-10

0

10

20

30

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

B
ia

ss
ed

 C
or

re
la

tio
n

lag (seconds)

Correlation Output

"y_full"
"y_same"

"y_min"

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

U
nb

ia
ss

ed
 C

or
re

la
tio

n

lag (seconds)

Correlation Output

"y_full_unbiased"

Output of example 19 plotted using gnuplot. Note that the input data and the
reference data are not the same number of samples, although they are the same
sample rate and frequency.
SP VSIPL Core Plus DRAFT 149

DRAFT
Convolution

The convolution is very similar to the FIR filter, except the FIR is designed to be done on con-
tinuous data, and the Convolution is designed to be done on a single data vector. In addition
since the convolution is done only once the portion of the output (support type definition
vsip_support_region) is defined for minimum, same or full output similar to the correlation
function. The outputs for the convolution and the FIR for the same kernel should be similar. In
example 20 we create a Kaiser window in line 9-10 and use this as the kernel for use in the
convolution creates and FIR creates. We use the non-portable random number generator to
create gaussian data for an input. We do two cases, one with a decimation factor of
one (no decimation) and one with a decimation factor of three. The output is displayed in fig-
ure 4.

We note that the current version of TASP_VSIPL uses a time domain moving weighted (by
the kernel) sum with save information between data sets to calculate the output. For the FIR
decimation is done on the fly by skipping calculations not needed in the output. The convolu-
tion uses an FFT method and does the decimation only on the final output, after the total con-
volution is complete. The two methods should be equivalent, with some small calculation
errors. The output shows up a larger sidelobe level (see figure 4) for the FIR method with dec-
imation. The author is not sure what is going on here.

We want to display the results as a frequency response in dB. The routine VU_vfrdB_f in lines
134-177 computes a simple frequency response. Note the routine returns one on allocation
failure and a zero on success. We don’t use this feature in the main routine, but it is handy to
be able to check for allocation failures. We also allow for a range to be passed into the routine
for scaling. Even though we have a complex magnitude squared function (line 149) which
ensures a positive result we may still have a zero in the data and log functions do not handle
zero gracefully. The input is replaced with the output in this function. Although the input is
always real we use a complex to complex FFT to calculate the frequency response. This is
because the real to complex FFT requires an even number of input values, and we want this
function to be more general than that.

A print function (in lines 125-133) supports output to a file suitable for use in a simple graph
program.

We create the convolution and FIR objects in lines 26-30 for the decimation factor of one
case. These are destroyed in lines 63-64 and new ones created for the decimation factor of
three case in lines 65-70. Note that just like vectors we must destroy these objects before reas-
signing the pointer to new ones to avoid memory leaks.

The length of the output vector for the full support on the convolution is
 where is the input data length and is the decimation factor. The

number of samples for the FIR output may not always be the same, depending on the input
vector length, the decimation factor, and the state of the FIR object. The maximum output
length for the FIR will be the . The FIR returns a value equal to the number of
new samples actually returned in the output vector. For this example we have ignored this fac-
tor since it is only one sample point at the end of the vector and only affects the decimation 3

N 0 1,()

floor N 1–() D⁄[] 1+ N D

ceiling N D⁄[]
150 DRAFT TASP VSIPL Core Plus

DRAFT

TA
case. The vector lengths are set in lines 22-25 and lines 71- 74. The calculation for the convo-
lution returns the correct value for maximum output length for the FIR.

We output the data for the various pieces in lines 38-44, 56-62, 82-89, 97-103. Note the axis
is a frequency which is basically a percent of the sample rate. The largest frequency is one half
the sample rate.

We output the kernel, and the kernels frequency response in lines 105-115.

x

SP VSIPL Core Plus DRAFT 151

DRAFT
 Example 20 (1 of 4)

#include<vsip.h>
#define N_data 4096
#define dec1 1
#define dec3 3
int VU_vfrdB_f(vsip_vview_f*,vsip_scalar_f);
void VU_vfprintxyg_f(char*, vsip_vview_f*,
 vsip_vview_f*, char*);
int main () /* Start of main program*******************/
{ int init = vsip_init((void*)0);
 vsip_vview_f *kernel =
 vsip_vcreate_kaiser_f(128,15.0,VSIP_MEM_NONE);
 vsip_randstate *r_state =
 vsip_randcreate(11,1,1,VSIP_NPRNG);
 vsip_conv1d_f *conv;
 vsip_fir_f *fir;
 vsip_vview_f *data = vsip_vcreate_f(
 N_data,VSIP_MEM_NONE),
 *noise = vsip_vcreate_f(
 N_data,VSIP_MEM_NONE),
 *avg = vsip_vcreate_f(
 N_data,VSIP_MEM_NONE);
 int i; vsip_length N_len;
 vsip_vputlength_f(data,
 (vsip_length)((N_data-1)/dec1)+1);
vsip_vputlength_f(avg,(vsip_length)((N_data-1)/dec1)+1);

 conv = vsip_conv1d_create_f(kernel,VSIP_NONSYM,
 N_data,dec1,VSIP_SUPPORT_SAME,0,0);
 fir = vsip_fir_create_f(kernel,VSIP_NONSYM,N_data,
 dec1,VSIP_STATE_SAVE,0,0);
 vsip_vfill_f(0,avg);
 for(i=0; i<10; i++){
 vsip_vrandn_f(r_state,noise);
 vsip_convolve1d_f(conv,noise,data);
 VU_vfrdB_f(data,1e-13);
 vsip_vsma_f(data,0.1,avg,avg);
 }
 N_len = vsip_vgetlength_f(avg);
 { vsip_vview_f *x = vsip_vcreate_f(
 N_len,VSIP_MEM_NONE);
 vsip_vramp_f(-.5,1.0/(vsip_scalar_f)(N_len-1),x);
 VU_vfprintxyg_f("%8.6f %8.6f\n",x,avg,"conv_dec1");

 vsip_vdestroy_f(x);
 }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
152 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 20 (2 of 4)

 vsip_vfill_f(0,avg);
 for(i=0; i<10; i++){
 vsip_vrandn_f(r_state,noise);
 vsip_firflt_f(fir,noise,data);
 VU_vfrdB_f(data,1e-13);
 vsip_vsma_f(data,0.1,avg,avg);
 }
 N_len = vsip_vgetlength_f(avg);
 { vsip_vview_f *x = vsip_vcreate_f(
 N_len,VSIP_MEM_NONE);
 vsip_vramp_f(-.5,1.0/(vsip_scalar_f)(N_len-1),x);
 VU_vfprintxyg_f("%8.6f %8.6f\n",x,avg,"fir_dec1");
 vsip_vdestroy_f(x);
 }
 vsip_conv1d_destroy_f(conv);
 vsip_fir_destroy_f(fir);
 conv = vsip_conv1d_create_f(
 kernel,VSIP_NONSYM,
 N_data,dec3,VSIP_SUPPORT_SAME,0,0);
 fir = vsip_fir_create_f(
 kernel,VSIP_NONSYM,
 N_data,dec3,VSIP_STATE_SAVE,0,0);
 vsip_vputlength_f(data,
 (vsip_length)((N_data-1)/dec3)+1);
 vsip_vputlength_f(avg,
 (vsip_length)((N_data-1)/dec3)+1);
 vsip_vfill_f(0,avg);
 for(i=0; i<10; i++){
 vsip_vrandn_f(r_state,noise);
 vsip_convolve1d_f(conv,noise,data);
 VU_vfrdB_f(data,1e-13);
 vsip_vsma_f(data,0.1,avg,avg);
 }
 N_len = vsip_vgetlength_f(avg);
 { vsip_vview_f *x = vsip_vcreate_f(
 N_len,VSIP_MEM_NONE);

vsip_vramp_f(-.5,1.0/(vsip_scalar_f)(N_len - 1),x);
 VU_vfprintxyg_f("%8.6f %8.6f\n",
 x, avg,"conv_dec3");
 vsip_vdestroy_f(x);
 }

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
SP VSIPL Core Plus DRAFT 153

DRAFT
 Example 20 (3 of 4)

 vsip_vfill_f(0,avg);
 for(i=0; i<10; i++){
 vsip_vrandn_f(r_state,noise);
 vsip_firflt_f(fir,noise,data);
 VU_vfrdB_f(data,1e-13);
 vsip_vsma_f(data,0.1,avg,avg);
 }
 N_len = vsip_vgetlength_f(avg);
 { vsip_vview_f *x = vsip_vcreate_f(
 N_len,VSIP_MEM_NONE);
 vsip_vramp_f(-.5,1.0/(vsip_scalar_f)(N_len-1),x);
 VU_vfprintxyg_f("%8.6f %8.6f\n",
 x, avg,"fir_dec3");
 vsip_vdestroy_f(x);
 }
 N_len = vsip_vgetlength_f(kernel);
 { vsip_vview_f *x = vsip_vcreate_f(
 N_len,VSIP_MEM_NONE);
 vsip_vramp_f(0,1,x);
 VU_vfprintxyg_f("%8.6f %8.6f\n",
 x,kernel,"kaiser_window");
 vsip_vramp_f(-.5,1.0/(vsip_scalar_f)(N_len-1),x);
 VU_vfrdB_f(kernel,1e-20);
 VU_vfprintxyg_f("%8.6f %8.6f\n",
 x,kernel,"Freq_Resp_Kaiser");
 vsip_vdestroy_f(x);
 }
 vsip_randdestroy(r_state);
 vsip_valldestroy_f(kernel);
 vsip_conv1d_destroy_f(conv);vsip_fir_destroy_f(fir);
 vsip_valldestroy_f(data); vsip_valldestroy_f(noise);
 vsip_valldestroy_f(avg);
 vsip_finalize((void*)0); return 0;
}/*end of main program *******************************/

void VU_vfprintxyg_f(char* format,vsip_vview_f* x,
 vsip_vview_f* y,char* fname)
{ vsip_length N = vsip_vgetlength_f(y);
 vsip_length i;
 FILE *of = fopen(fname,"w");
 for(i=0; i<N; i++)fprintf(of,
 format, vsip_vget_f(x,i),vsip_vget_f(y,i));
 fclose(of); return;
}

 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
154 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 20 (4 of 4)

int VU_vfrdB_f(vsip_vview_f *a,vsip_scalar_f range)
{ int ret = 0;
 vsip_length N_len=vsip_vgetlength_f(a);
 vsip_cvview_f *ca=vsip_cvcreate_f(N_len,VSIP_MEM_NONE);
 vsip_fft_f *fft = vsip_ccfftip_create_f(
 N_len,1,VSIP_FFT_FWD,0,0);
 vsip_vview_f *ra = vsip_vrealview_f(ca),
 *ia = vsip_vimagview_f(ca),
 *ta = vsip_vcloneview_f(a);
 vsip_offset s = (vsip_offset)vsip_vgetstride_f(ta);
 if((ca == NULL) || (fft == NULL) || (ra == NULL) ||
 (ia == NULL) || (ta == NULL)){ret = 1;
 }else{
 vsip_vfill_f(0,ia); vsip_vcopy_f_f(a,ra);
 vsip_ccfftip_f(fft,ca);
 vsip_vcmagsq_f(ca,ra);
 { vsip_index ind;/* scale by "range" min to max*/
 vsip_scalar_f max = vsip_vmaxval_f(ra,&ind);
 vsip_scalar_f min = max * range;
 vsip_vclip_f(ra,min,max,min,max,ra);
 }
 if(N_len%2){vsip_length Nlen = N_len/2;
 vsip_vputlength_f(ta,Nlen+1);
 vsip_vputlength_f(ra,Nlen+1);
 vsip_vputoffset_f(ta,Nlen * s);
 vsip_vcopy_f_f(ra,ta);
 vsip_vputlength_f(ra,Nlen);
 vsip_vputlength_f(ta,Nlen);
 vsip_vputoffset_f(ta,vsip_vgetoffset_f(a));
 vsip_vputoffset_f(ra,Nlen+1);
 vsip_vcopy_f_f(ra,ta);
 }else{vsip_length Nlen = N_len/2;
 vsip_vcopy_f_f(ra,ta);
 vsip_vputlength_f(ta,Nlen);
 vsip_vputlength_f(a,Nlen);
 vsip_vputoffset_f(ta,(vsip_offset)(Nlen) * s);
 vsip_vswap_f(ta,a);
 vsip_vputlength_f(a,N_len);
 }vsip_vlog10_f(a,a);vsip_svmul_f(10,a,a);
 }vsip_fft_destroy_f(fft);
 vsip_vdestroy_f(ra); vsip_vdestroy_f(ia);
 vsip_cvalldestroy_f(ca);vsip_vdestroy_f(ta);
 return ret;
}

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
SP VSIPL Core Plus DRAFT 155

DRAFT
 Figure 4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140

M
ag

ni
tu

de

Sample Point

Kaiser Window

"kaiser_window"

-180
-160
-140
-120
-100
-80
-60
-40
-20

0
20
40

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

dB

F/Fs

Kaiser Window Frequency Response

"Freq_Resp_Kaiser"

0

10

20

30

40

50

60

70

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

dB

F/Fs

FIR versus Convolution For Decimation 1

"conv_dec1"
"fir_dec1"

0

10

20

30

40

50

60

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

dB

F/Fs

FIR versus Convolution For Decimation 3

"conv_dec3"
"fir_dec3"

 Output of example 20. Comparison of FIR and Convolution results.
156 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Fourier Transforms

We have used the FFT routine in several previous examples in this document. The main differ-
ences in FFT functionality between the core lite profile and the core profile is the addition of
real to complex and complex to real FFTs and the addition of multiple FFTs. In example 21
we demonstrate the real to complex multiple FFT and the complex to complex multiple FFT
in the computation of a wavenumber frequency plot.

Wavenumber/Frequency plot

For example 21we need a little background for the example to make sense. If the reader is
already familiar with plots he should skip this section. There is no VSIPL information
here.

A wavenumber is where is the wavelength, and a wave vector is the wavenum-
ber times a unit vector in the direction of propagation. Please refer to Figure 5.

Basically we define a two dimensional medium and propagate a plan wave through it. The
plane wave propagates at a speed of . We sample the plane wave in time with sample rate

and in space with sample rate . Note that is samples per second and is samples per

meter. For example if our sensors were placed at one meter intervals then the sample rate in
space would be one sample per meter for a wave vector parallel to the array. For the array of

sensors shown in Figure 5 we can see that where is the position

of the sensor along the direction of the unit vector . Note we can place our origin any place

we want we and make the component go away by setting it to zero. We now see that if we

calculate the FFT of with time (seconds) that we transform to frequency space

cycles per second (Hz), and if we do an FFT with (meters) we transform to frequency space

with frequency cycles per meter. Since the equation

 we can do a discrete transform in time and space independently.

Note that our sensors need to be equally spaced to use the FFT method in space. Another way
to say this is that is a constant.

The above explanation is pretty short. For a more thorough description of frequency domain
beamforming the author recommends “Array Signal Processing: Concepts and Techniques”
by Johnson and Dudgeon.

Demonstration for

Although the purpose of example 21 is to demonstrate frequency domain beamforming using
multiple fourier transform functions available in VSIPL most of the example calculations are
to simulate data to beam form, and then format the output for plotting. The output is in figure
6 and was done using the “tv” plotting tool in PV-Wave. The author was not successful in find-
ing a better way to do this type of plot using public domain tools. We will go through the code
in some detail, but all the beamforming takes place in lines 101-102 where the data is win-

kω

2π() λ⁄ λ k

c f s

Fs f s Fs

k r⋅ 2π() λ⁄() θ()cos x= x

êx

y

p t x,() f

x

2π() λ⁄() θ()cos

p t x,() po p1 t() p2 x()=

Fs

kω
SP VSIPL Core Plus DRAFT 157

DRAFT
dowed (data taper) to reduce side lobes, and in lines 104-105 where FFT beamforming is
done.

In lines 3-16 we define some constants. Our array has a sensor spacing of 1.5, and each

sensor is sampled in time at . We define some frequencies in line 5-8 to simu-
late a narrow band source. The source is located on beam 30. The number of samples col-
lected on each sensor before processing the array is . We need to define some noise

coming from various directions. We define a noise length to allow for simple

beamforming of the noise. The number of independent noise sources are . We
define some constants for a Kaiser window in lines 15-16. The Kaiser window we use as a low
pass filter for the noise estimate. (The author mostly guessed around till he found some values
that seemed to give a suitable output for Figure 6. There is no science to the selection of this
window.) The number of sensors in our array will be and the propagation speed of

the medium will be . Note that the propagation speed of the medium and the sensor
spacing must have conformant units (meters, feet, yards) but for this example the actual length
unit does not matter.

In lines 22-23 we create windows to do the data taper in time (windowt) and space (windowp)
In lines 24-25 we create the FIR filter object. Most of the code through lines 44 create various
works spaces which the author may discuss latter in the program. The author is not sure he did
the routine in the most efficient way so some of the work space may seem a little redundant.
Note line 29 where we create an array to hold the noise vectors. We could have kept the noise
vectors in a matrix, but it would not have been as handy to work with. In line 42 we create a
constant which is basically the travel time of a signal between two sensors if the signal arrives
at endfire. (The term “endfire” indicates a plain wave traveling with a wave vector parallel to
the array. This is the maximum travel time between sensors.) This is normalized by the sample
rate.

In line 45 we create a state object for a portable random number generator. Lines 47-50 create
radian frequencies of our target frequencies and normalize them by the sample rate. Lines 51
and 52 are used in the program (lines 91-96) for calculating the noise on each sensor for each
noise direction. Line 51 is basically a constant angular distribution for the noise from endfire
to endfire, and line 52 is an offset into a noise vector of a size great enough that the time rep-
resented by the sample at the offset is at least as large as the time for a wave to traverse the
entire array. This offset is adjusted, plus or minus, to account for the travel time for the noise
from a particular direction and on a particular sensor.

In lines 58-61 we basically calculate a matrix of (normalized) time delays between the first
sensor and any other sensor for all the beams we will calculate in the FFT beamformer. (We
don’t actually need all these for this example, but the author did this example from another
example we don’t cover here, and did not want to change this step).

We call the output matrix gram. In lines 62-66 we initialize the output data matrix to zero
using a rowview create-destroy cycle with a vector fill. (This is not the most efficient way to
do it.)

D

Fs 1000 Hz=

Ns 512=

Nn 1024=

Nnoise 64=

Mp 128=

c 1500=
158 DRAFT TASP VSIPL Core Plus

DRAFT

TA
In lines 67-73 we fill our noise vectors for each noise direction. In line 72 we set the length to
our data length of , and in line 71 we scale the Noise. Note that there is nothing
special in the scaling. The author just tried some scaling until he got a noise level he liked.

In line 74 we fill a normalized time vector. The actual time would require a scaling by the
inverse of the sample rate, but we have done that scaling elsewhere.

Finally we are ready to fill our input matrix with (simulated) data in lines 75-99. We must
sample our data at a different time for each sensor so we loop through each sensor (line 75)
and select the proper time delay between sensors for beam Theta_o = in line 76. We then
calculate the narrow band time series and place them in the input data in lines 78-90.

In lines 91-96 we estimate the proper offset in the noise vector for all the noise directions for
the particular phone we are simulating data for. We do this in the time domain so it is not exact
as the proper delay may be between samples. For noise we don’t need to be exact. The main
purpose of adding the noise is to reproduce the characteristic wedge shape of a plot.

All the steps above have been to create some artificial time series data to do the frequency
domain beamforming on. We now have a matrix of data.

In lines 101-102 we window the data to reduce the sidelobes. Note we use an elementwise
vector matrix multiply, first along the row for the time data, then along the column for the
space data. This function does a vector elementwise multiply to each row or column of a
matrix.

In line 105 we finally get to the first multiple FFT. Since we have a matrix of time series it is
faster to use the multiple FFT than to do each phone separately. We also have a real array and
only need the positive portion of the frequency domain output so the function we use is the
real to complex FFT (vsip_rcfftmop_f). Note that this function must be done out of place.

In line 102 we do an FFT along the array. For this function we must use the complex to com-
plex multiple FFT and we do it in place (vsip_ccfftmip_f). We now have transformed our
time and space data to frequency direction data.

The rest of the example is spent transforming our output to be suitable for plotting. The author
decided to do this with a gray scale between a minimum of and a maximum of . We
basically find the magnitude squared value of each element of the data in line 114, scale this
output in line 117 so the minimum value is (log of one is zero), then take its log in line
119, then scale the log data to between 0 and 255 for plotting. In line 125-128 we move the
origin of our plot so that broadside beams (corresponding to zero (space) frequency) arrive at
the middle in figure 6.

We now back up a little and look at lines 108-112. Here the author has used knowledge of the
input matrix views attributes to extract a unit stride vector which covers the entire data space
of the matrix. Since the core profile does not have elementwise matrix operations this step is
needed so that the scaling in the paragraph above may be easily done using vector element-
wise operations.

Ns 512=

30

kω

0 255

1.0
SP VSIPL Core Plus DRAFT 159

DRAFT
Also in lines 125-128 where the origin of the space FFT is moved to the center the author has
used knowledge that the number of sensors in the array are even. This algorithm will not work
if there are an odd number of sensors.

Finally we print the results in line 133.
160 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 21 (1 of 4)

#include <vsip.h>

#define D 1.5 /* sensor spacing */
#define Fs 1000 /* sample rate Hz */
#define F0 450 /* some frequencies for a target */
#define F1 300
#define F2 150
#define F3 50
#define Theta_o 30 /* beam number of narrow band tones */
#define Ns 512 /* samples in a time series */
#define Nn 1024 /* sample in a noise series */
#define Mp 128 /* sensors in linear array */
#define c 1500 /* propagation speed */
#define Nnoise 64 /* number of noise directions */
#define kaiser 9 /* window parameter */
#define Nfilter 10 /* kernel length for noise filter */

void VU_mprintgram_f(vsip_mview_f*,char*);

int main()
{ int init = vsip_init((void*)0),i,j; /* counters */
 vsip_vview_f *windowt = vsip_vcreate_hanning_f(Ns,0);
 vsip_vview_f *windowp = vsip_vcreate_hanning_f(Mp,0);
 vsip_vview_f *kernel =
 vsip_vcreate_kaiser_f(Nfilter,kaiser,0);

vsip_fir_f *fir = vsip_fir_create_f(kernel,VSIP_NONSYM,
 2 * Nn,2,VSIP_STATE_SAVE,0,0);
 vsip_vview_f *t =vsip_vcreate_f(Ns,0); /*time vector*/
 vsip_vview_f *noise[Nnoise];
 vsip_vview_f *nv = vsip_vcreate_f(2 * Nn,0);
 vsip_vview_f *tt = vsip_vcreate_f(Ns,0);
 vsip_mview_f *data = vsip_mcreate_f(Mp,Ns,VSIP_ROW,0),
 *rmview;
 vsip_vview_f *data_v, *gram_v;
 vsip_cvview_f *gram_data_v;
 vsip_cmview_f *gram_data =
 vsip_cmcreate_f(Mp,Ns/2 + 1,VSIP_COL,0);
 vsip_mview_f *gram =
 vsip_mcreate_f(Mp,Ns/2 + 1,VSIP_ROW,0);
 vsip_mview_f *Xim =
 vsip_mcreate_f(Mp,Mp+1,VSIP_ROW,0);
 vsip_scalar_f alpha = (D * Fs) / c;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
SP VSIPL Core Plus DRAFT 161

DRAFT
 Example 21 (2 of 4)

vsip_vview_f *m = vsip_vcreate_f(Mp,0);
 vsip_vview_f *Xi = vsip_vcreate_f(Mp + 1,0);
 vsip_randstate *state =
 vsip_randcreate(15,1,1,VSIP_PRNG);
 vsip_scalar_f w0 = 2 * M_PI * F0/Fs;
 vsip_scalar_f w1 = 2 * M_PI * F1/Fs;
 vsip_scalar_f w2 = 2 * M_PI * F2/Fs;
 vsip_scalar_f w3 = 2 * M_PI * F3/Fs;
 vsip_scalar_f cnst1 = M_PI/Nnoise;
 vsip_offset offset0 = (vsip_offset)(alpha * Mp + 1);
 vsip_fftm_f *rcfftmop_obj = /* time fft */
 vsip_rcfftmop_create_f(Mp,Ns,1,VSIP_ROW,0,0);
 vsip_fftm_f *ccfftmip_obj = /*space fft */
 vsip_ccfftmip_create_f(Mp,Ns/2 +
 1,VSIP_FFT_FWD,1,VSIP_COL,0,0);
 vsip_vramp_f(0,1,m);
 vsip_vramp_f(0,M_PI/Mp,Xi);
 vsip_vcos_f(Xi,Xi);
 vsip_vouter_f(alpha,m,Xi,Xim);
 { vsip_vview_f *gram_v = vsip_mrowview_f(gram,0);
 vsip_vputlength_f(gram_v,Mp*(Ns/2 + 1));
 vsip_vfill_f(0,gram_v);
 vsip_vdestroy_f(gram_v);
 }
 for(j=0; j<Nnoise; j++){
 noise[j] = vsip_vcreate_f(Nn,0);
 vsip_vrandn_f(state,nv);
 vsip_firflt_f(fir,nv,noise[j]);
 vsip_svmul_f(12.0/(Nnoise),noise[j],noise[j]);
 vsip_vputlength_f(noise[j],Ns);
 }
 vsip_vramp_f(0,1.0,t); /* time vector */

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
162 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Example 21 (3 of 4)

for(i=0; i<Mp; i++){
 vsip_scalar_f Xim_val = vsip_mget_f(Xim,i,Theta_o);
 data_v = vsip_mrowview_f(data,i);
 vsip_vsmsa_f(t,w0,-w0 * Xim_val,tt);
 vsip_vcos_f(tt,data_v); /*F0 time series */
 vsip_vsmsa_f(t,w1,-w1 * Xim_val,tt);
 vsip_vcos_f(tt,tt); /*F1 time series */
 vsip_vadd_f(tt,data_v,data_v);
 vsip_vsmsa_f(t,w2,-w2 * Xim_val,tt);
 vsip_vcos_f(tt,tt); /*F2 time series */
 vsip_vadd_f(tt,data_v,data_v);
 vsip_vsmsa_f(t,w3,-w3 * Xim_val,tt);
 vsip_vcos_f(tt,tt); /*F3 time series */
 vsip_svmul_f(3.0,tt,tt); /* scale by 3.0 */
 vsip_vadd_f(tt,data_v,data_v);
 vsip_svmul_f(3,data_v,data_v);
 for(j=0; j<Nnoise; j++){
 /* simple time delay beam forming for noise */
 vsip_vputoffset_f(noise[j],offset0 +
 (int)(i * alpha * cos(j * cnst1)));
 vsip_vadd_f(noise[j],data_v,data_v);
 }
 /* need to destroy before going on to next phone */
 vsip_vdestroy_f(data_v);
 }

/* window the data and the array to reduce sidelobes */
 vsip_vmmul_f(windowt,data,VSIP_ROW,data);
 vsip_vmmul_f(windowp,data,VSIP_COL,data);
 /* do ffts */
 vsip_rcfftmop_f(rcfftmop_obj,data,gram_data);
 vsip_ccfftmip_f(ccfftmip_obj,gram_data);
 { /* scale gram to db, min 0 max 255 */
 vsip_index ind;
 gram_v = vsip_mrowview_f(gram,0);
 gram_data_v = vsip_cmcolview_f(gram_data,0);
 rmview = vsip_mrealview_f(gram_data);
 vsip_vputlength_f(gram_v,Mp*(Ns/2 + 1));
 vsip_cvputlength_f(gram_data_v,Mp*(Ns/2 + 1));
 data_v = vsip_vrealview_f(gram_data_v);
 vsip_vcmagsq_f(gram_data_v,data_v);
 vsip_mcopy_f_f(rmview,gram);
 vsip_vdestroy_f(data_v);
 vsip_svadd_f(1.0 - vsip_vminval_f(gram_v,&ind),
 gram_v,gram_v);

 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
SP VSIPL Core Plus DRAFT 163

DRAFT
 Example 21 (4 of 4)

 vsip_vlog10_f(gram_v,gram_v);
 vsip_svmul_f(256.0 / vsip_vmaxval_f(gram_v,&ind),
 gram_v,gram_v);/* scale */
 /* reorganize the data to place zero in the
 center for direction space */
 data_v = vsip_vcloneview_f(gram_v);
 vsip_vputlength_f(data_v,(Mp/2) * (Ns/2 + 1));
 vsip_vputoffset_f(data_v,(Mp/2) * (Ns/2 + 1));
 vsip_vputlength_f(gram_v,(Mp/2) * (Ns/2 + 1));
 vsip_vswap_f(data_v,gram_v);
 vsip_vdestroy_f(gram_v);
 vsip_vdestroy_f(data_v);vsip_mdestroy_f(rmview);
 vsip_cvdestroy_f(gram_data_v);
 }
 VU_mprintgram_f(gram,”gram_output”);
 for(j=0; j<Nnoise; j++) vsip_valldestroy_f(noise[j]);
 vsip_valldestroy_f(windowt);
 vsip_valldestroy_f(windowp);
 vsip_valldestroy_f(kernel);
 vsip_valldestroy_f(t);vsip_valldestroy_f(tt);
 vsip_valldestroy_f(nv);
 vsip_malldestroy_f(data);
 vsip_cmalldestroy_f(gram_data);
 vsip_malldestroy_f(gram);
 vsip_valldestroy_f(m);
 vsip_malldestroy_f(Xim);vsip_valldestroy_f(Xi);
 vsip_randdestroy(state);vsip_fir_destroy_f(fir);
 vsip_fftm_destroy_f(rcfftmop_obj);
 vsip_fftm_destroy_f(ccfftmip_obj);
 vsip_finalize((void*)0);return 0;
}
void VU_mprintgram_f(vsip_mview_f* M,char* fname)
{ vsip_length RL = vsip_mgetrowlength_f(M);
 vsip_length CL = vsip_mgetcollength_f(M);
 FILE *of = fopen(fname,”w”);
 vsip_length row,col;
 for(row = 0; row<CL; row++)
 for(col=0; col<RL; col++)
 fprintf(of,”%ld %ld %3.0f\n”,
 row,col,vsip_mget_f(M,row,col));
 fclose(of);
 return;
}

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
170
164 DRAFT TASP VSIPL Core Plus

DRAFT

TA
 Figure 5 Coher ent plane wave propagation in a 2D medium

 Figure 6 for example 21

k

θ

êx

ê y

k 2π() λ⁄() θ()cos êx θ()sin ê y+()=

c 2πf() λ⁄ ω λ⁄= =

p t r,() po j k r⋅()()exp j2πft–()exp=

sensor ri

sensor ro

0 50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

k
θ(

)
c
o
s

k–
k

0
k

2⁄
–

k
2⁄

kω
SP VSIPL Core Plus DRAFT 165

DRAFT
166 DRAFT TASP VSIPL Core Plus

DRAFT

TA
CHAPTER 7 Linear Algebra Functionality in the
VSIPL Core Profile

Introduction

The VSIPL Core profile specifies support simple matrix operations such as matrix products,

methods to solve the standard matrix equation , and methods to solve least squares
problems. VSIPL hides the decomposition of matrices in objects. So in addition to standard
matrix products, special functions for doing matrix products with decomposition matrices are
provided.

We note that although vectors are treated as column vectors in equations, VSIPL vector views
have only one stride and so the action of the vector within the function is defined only by the
function definition.

In general all matrix views passed into a function are defined as type const. This means that
the area of the block mapped by the view does not change inside of the function call. For some
of the defined in place operations where the input and output are defined by the same view the
input matrix size may be different than that required by the output data. For these cases the
strides of the input view define where the output data is placed. The first element of the output
data replaces the first element of the input data. The author recommends defining a view of the
output data space for convenience. For a couple of cases the output data space may be bigger
than the input data space. Defining an output data view will ensure that the strides of the input
view and the size of the block are sufficient to hold the output data.

Simple Matrix-Matrix and Vector-Matrix Operations

These matrix products include matrix products, vector matrix products, matrix vector prod-
ucts, outer products, vector dot products, a general matrix product, and a general matrix sum.

Most of the simple matrix products may not be done in place. An exception is vsip_cmherm_f
which may be done in place only if the matrix is square.

The author notes that the dot product functionality of VSIPL has a complex dot product,
vsip_cvdot_f, and a complex conjugate dot product, vsip_cvjdot_f. The user is cautioned
to not become confused. The complex dot product is a simple complex multiply and add. The
complex conjugate dot product is the more common complex multiply times complex conju-
gate and add.

Ax b=
SP VSIPL Core Plus DRAFT 167

DRAFT
Simple Solvers

VSIPL has simple one function calls to solve a covariance problem, a linear least square prob-
lem, or a Toeplitz symmetric positive definite symmetric problem. The decision whether to
use a simple solver, or one of the more complicated solvers will depend on the application.

Covariance Problem

The function vsip_covsol_f solves a matrix equation of the form where A is of

size with . We note that is of size so the input matrix is of

size . This function is done in place and the output data replaces the input data. For
this function the output data will exactly fit in the input view.

It is possible that there will be a memory allocation failure with this function. If this happens
the function returns a value of negative one. If successful it returns a value of zero. A positive
return value indicates a failure for some other reason.

Linear Least Squares Problem

The function vsip_llsqsol_f solves a matrix equation of the form where is of

size and . Generally this problem is overdetermined and is solved for in
the linear least squares sense. The least squares problem is well covered in many texts and the
author will not go into the details.

The input matrix is of size and the output data is of size . This means that
the output data will reside in the top part of the input/output view. A view of the output data
matrix may be created by using the matrix sub view function. We note that a view of the out-
put data has the first element at index 0,0 of the input data, and has the same strides as the
input data.

/* example of output view for vsip_llsqsol_f */
vsip_mview_f *output_data = vsip_msubview_f(
 input_data, 0,0,N,N);

This function returns zero on success, negative one on failure due to a memory allocation
problem, and positive for failure for some other reason.

Toeplitz System

This function, vsip_toepsol_f, solves a matrix equation of the form where the

matrix has the special form known as Toeplitz, where the diagonals are constant. In addi-
tion the matrix must be Hermitian and positive definite. This type matrix looks as follows for

the Hermitian case. The real case is the obvious generalization. Note that is the conjugate

A
T

A X B=

M by N M N≥ AT A N by N B

N by N

A X B= A

M by N M N≥ X

B M by N N by N

Ax b=

A

r*
168 DRAFT TASP VSIPL Core Plus

DRAFT

TA
of . Since a Hermitian matrix requires we see that the diagonal must have a zero
imaginary component.

This functions only has vector arguments. Since all the required information for the matrix
resides in the first row, this is the input argument. All the vectors input into this function may
be overwritten in the output calculation. If the data is needed again it must be copied to a safe
place before being input to the function. There is no in-place operation for this function.

The TASP VSIPL library uses the Levinson routine to solve this problem.

This function returns negative one if it fails because of a memory allocation problem, it
returns zero if it completes successfully, and it returns a positive number if it fails for some
other reason.

LU decomposition function set

The general matrix equation where is a square matrix is solved with the LU
(lower, upper) decomposition. This method is well covered in many texts and the author will
not go into details. In VSIPL the solution follows a four step procedure.

First an object, called an LUD object, is created. This object is opaque and vendor dependent.
It is designed to hold the decomposition, and any information or data space required when
solving the matrix equation. If an allocation failure occurs when creating the object then the
create function returns null.

Second the LUD object and the matrix to be decomposed are passed into the decomposition
function. The matrix view is const, however the data space used by the matrix may be used
by the decomposition. After the decomposition the matrix data space is associated with the
LUD object and should not be used for any purpose. Note that this is only the data space asso-
ciated with the matrix view. If the matrix is bound to a block with more view bound to it than
just the matrix, portions of the block not mapped by the matrix view are not affected. The
matrix continues to reside in memory, and the view continues to be available. They just should
not be used until the LUD object is destroyed, at which time they may be reused or destroyed

r AH A=

r0 r1 r2 … rN 2– rN 1–

r1
* r0 r1 … … rN 2–

r2
* r1

* r0 … … …

… … … … … …
rN 2–

* … … … r0 r1

rN 1–
* rN 2–

* … … r1
* ro

A X B= A
SP VSIPL Core Plus DRAFT 169

DRAFT
as required. The original data is of course not in the view, even after the LUD object is
destroyed.

Third the matrix equation is solved. Note that the vsip_lusol_f function has a flag, the

vsip_mat_op flag, that allows solving or for the real case, and

or for the complex case. The TASP VSIPL library will also solve the matrix conju-
gate case, but this is no longer compliant with the current VSIPL library specification and
should not be used. It will be removed from the library when the author gets around to rewrit-
ing the LUD function set.

It should be noted that LUD was written long ago without much research. It is not one of the
more efficient or better written functions in the TASP VSIPL implementation. However it
does appear to give the correct answer.

The fourth step is to destroy the LUD object after it is no longer needed.

Example 22 solves a simple problem using the LUD function set.

 Example 22

/* A simple LUD example */
#include<vsip.h>
int main()
{ int init = vsip_init((void*)0);
 vsip_mview_f *A =
 vsip_mcreate_f(3,3,VSIP_ROW,VSIP_MEM_NONE),
 *B = vsip_mcreate_f(3,2,VSIP_COL,VSIP_MEM_NONE);
 vsip_lu_f *lud = vsip_lud_create_f(3);
 vsip_mput_f(A,0,0,1);vsip_mput_f(A,0,1,2);
 vsip_mput_f(A,0,2,3);
 vsip_mput_f(A,1,0,-1);vsip_mput_f(A,1,1,1);
 vsip_mput_f(A,1,2,-2);
 vsip_mput_f(A,2,0,1);vsip_mput_f(A,2,1,1);
 vsip_mput_f(A,2,2,-3);
 vsip_mput_f(B,0,0,1); vsip_mput_f(B,0,1,1);
 vsip_mput_f(B,1,0,-1); vsip_mput_f(B,1,1,1);
 vsip_mput_f(B,2,0,-2); vsip_mput_f(B,2,1,3);
 printf(“A = “); VU_mprintm_f(“%4.2f ”,A);
 printf(“B = “); VU_mprintm_f(“%4.2f ”,B);
 if(0 != vsip_lud_f(lud,A)) return 1;
 vsip_lusol_f(lud,VSIP_MAT_NTRANS,B);
 printf(“X = “); VU_mprintm_f(“%6.3f ”,B);
 vsip_malldestroy_f(A); vsip_malldestroy_f(B);
 vsip_lud_destroy_f(lud);
 vsip_finalize((void*)0);
 return 0;
}

A X B= AT X B= A X B=

AH X B=

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
170 DRAFT TASP VSIPL Core Plus

DRAFT

TA
The output for example 22 (with liberal formatting) looks as follows:

A = [1.00 2.00 3.00
 -1.00 1.00 -2.00
 1.00 1.00 -3.00];

B = [1.00 1.00
 -1.00 1.00
 -2.00 3.00];

X = [-0.235 0.765
 -0.176 0.824
 0.529 -0.471];

Cholesky Decomposition Function set

The author did not write the Cholesky Decomposition currently in the library, and is not famil-
iar with the properties Cholesky. The function set does appear to work, and is compliant with
the specification. The author will become more familiar with Cholesky in time, but for now is
not prepared to write this section, and so will blow it of until some future release.

QR Decomposition Function set

The QR decomposition function set is similar to the LU decomposition; however it is much
more complicated with extra functions. The LU decomposition solves the fully determined

matrix equation where is square. The QR decomposition is used to solve the

overdetermined matrix equation where is of size where . There are also

methods to solve equation with the matrix from the decomposition, ignoring the matrix

altogether, and a method to do matrix products with the matrix. The author is not expert (or
even slightly competent) on the uses of QR decomposition, and so will not go into many
details on its use here.

For QRD the author has used only the Householder method. There are options to only solve

for skinny , or for the full , or for just . However for the current TASP VSIPL imple-
mentation it is always done with Householder’s method. The function may fail if the proper

options are not selected, as they are tested for. For instance if is not required to be saved in

the decomposition, calling a function which requires will fail. Householder, used properly,
seems to cover all the bases, although it may not be the most efficient or best way for every
case.

The first two steps in using the QR decomposition function set are the same as the LUD func-
tion set.

The first step is to create the decomposition object. During the creation of the object clues are
passed in as to what the user requires from the decomposition. These options require either

A X B= A

A M by N M N≥

R Q

Q

Q Q R

Q

Q

SP VSIPL Core Plus DRAFT 171

DRAFT
just the matrix, or the matrix and either the skinny (also called) matrix or the full

 matrix. For explanations of skinny and full matrix please refer to a linear algebra text.

The second step is the decomposition. The decomposition function takes the QRD object, and

the input matrix A and does the decomposition. The same as LUD the data matrix (data
space) is owned by the QRD object and should not be touched after the decomposition. The
contents of A is not defined by the specification, and should not be used directly. Even if the

contents of are recognizable the contents are vendor dependent, and any code produced
which uses the contents, will not be portable. The QRD object must be used along with the
QRD function set.

Once the decomposition has taken place three functions may be called. These are a QRD

product function, a linear system solver based on , and a covariance or linear least squares
solver based.

For example 23 we use the linear system solver to solve the LUD example22.

 Example 23
/* A simple QRD example */
#include<vsip.h>
int main()
{ int init = vsip_init((void*)0);
 vsip_mview_f *A =
 vsip_mcreate_f(3,3,VSIP_ROW,VSIP_MEM_NONE),
 *B = vsip_mcreate_f(3,2,VSIP_COL,VSIP_MEM_NONE);

vsip_qr_f *qrd = vsip_qrd_create_f(3,3,VSIP_QRD_SAVEQ);
 vsip_mput_f(A,0,0,1);vsip_mput_f(A,0,1,2);
 vsip_mput_f(A,0,2,3);
 vsip_mput_f(A,1,0,-1);vsip_mput_f(A,1,1,1);
 vsip_mput_f(A,1,2,-2);
 vsip_mput_f(A,2,0,1);vsip_mput_f(A,2,1,1);
 vsip_mput_f(A,2,2,-3);
 vsip_mput_f(B,0,0,1); vsip_mput_f(B,0,1,1);
 vsip_mput_f(B,1,0,-1); vsip_mput_f(B,1,1,1);
 vsip_mput_f(B,2,0,-2); vsip_mput_f(B,2,1,3);
 printf("A = "); VU_mprintm_f("%4.2f ",A);
 printf("B = "); VU_mprintm_f("%4.2f ",B);
 if(0 != vsip_qrd_f(qrd,A)) return 1;
 vsip_qrsol_f(qrd,VSIP_LLS,B);
 printf("X = "); VU_mprintm_f("%6.3f ",B);
 vsip_malldestroy_f(A); vsip_malldestroy_f(B);
 vsip_qrd_destroy_f(qrd);
 vsip_finalize((void*)0);
 return 0;
}

R R Q Q1

Q

A

A

R

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
172 DRAFT TASP VSIPL Core Plus

DRAFT

TA
We get the same answer as example 22 (hopefully). We note that in line 8 for example 22 only
a single number is passed, but in example 23 we have two numbers and an option. The option
says to return an LUD object suitable for calculating a full Q. The LUD input matrix is square
so only the size of the matrix is needed, but the QRD input matrix may have more rows than
columns so the first number is the column length, and the second number is the row length.
Since the QRD solver solves both the least squares problem, and the covariance problem we
need to tell it which one to solve. This is what the flag VSIP_LLS does in line 21.

The Q product function

The function vsip_qrdprodq_f supports the product of a matrix with the from the QRD

decomposition. Although we don’t have the actual , just the QRD object, the still has an
understood matrix size and the size of the input matrix will depend on it for the matrix product

to be conformant. The size of the will be (the size of the decomposed matrix) if

the skinny Q save option is selected. If the full Q save option is selected then will be of size

. The Q product function allows or ()to multiply the input matrix on the
right, or to be multiplied by the input matrix on the left. So the following cases are possible.

Real Cases for product

Options Operation Left Side Right Side Output Size

VSIP_QRD_SAVEQ
VSIP_NTRANS
VSIP_MAT_LSIDE

M by M M by K M by K

VSIP_QRD_SAVEQ
VSIP_TRANS

VSIP_MAT_LSIDE

M by M M by K M by K

VSIP_QRD_SAVEQ
VSIP_NTRANS

VSIP_MAT_RSIDE

K by M M by M K by M

VSIP_QRD_SAVEQ
VSIP_TRANS

VSIP_MAT_RSIDE

K by M M by M K by M

VSIP_QRD_SAVEQ1
VSIP_NTRANS

VSIP_MAT_LSIDE

M by N N by K M by K
(Bigger)

VSIP_QRD_SAVEQ1
VSIP_TRANS

VSIP_MAT_LSIDE

N by M M by K N by K

Q

Q Q

Q M by N

Q

M by M Q QT QH

Q

QB

QT B

BQ

BQT

QB

QT B
SP VSIPL Core Plus DRAFT 173

DRAFT
We note that two cases have been marked Bigger. This means that the output data will not fit in
the input view. For these cases the user must be careful that the strides of the input matrix view

VSIP_QRD_SAVEQ1
VSIP_NTRANS
VSIP_MAT_RSIDE

K by M M by N K by N

VSIP_QRD_SAVEQ1
VSIP_TRANS
VSIP_MAT_RSIDE

K by N N by M K by M
(Bigger)

Complex Cases for product

Options Operation Left Side Right Side Output Size

VSIP_QRD_SAVEQ
VSIP_NTRANS
VSIP_MAT_LSIDE

M by M M by K M by K

VSIP_QRD_SAVEQ
VSIP_HERM

VSIP_MAT_LSIDE

M by M M by K M by K

VSIP_QRD_SAVEQ
VSIP_NTRANS

VSIP_MAT_RSIDE

K by M M by M K by M

VSIP_QRD_SAVEQ
VSIP_HERM

VSIP_MAT_RSIDE

K by M M by M K by M

VSIP_QRD_SAVEQ1
VSIP_NTRANS

VSIP_MAT_LSIDE

M by N N by K M by K
(Bigger)

VSIP_QRD_SAVEQ1
VSIP_HERM

VSIP_MAT_LSIDE

N by M M by K N by K

VSIP_QRD_SAVEQ1
VSIP_HERM
VSIP_MAT_RSIDE

K by M M by N K by N

VSIP_QRD_SAVEQ1
VSIP_HERM
VSIP_MAT_RSIDE

K by N N by M K by M
(Bigger)

Real Cases for product

Options Operation Left Side Right Side Output Size

Q

BQ

BQT

Q

QB

QH B

BQ

BQH

QB

QH B

BQ

BQH
174 DRAFT TASP VSIPL Core Plus

DRAFT

TA
will also work for a view of the output matrix data. If the input matrix is created as a sub view
of the output matrix this will take care of any problems. For example for the case of save
skinny Q, no transform on the left we have the following:

/* create an input view with sufficient stride sizes */
vsip_mview_f *output_view =
 vsip_mcreate_f(M,K,VSIP_ROW,VSIP_MEM_NONE);
vsip_mview_f *input_view =
 vsip_msubview_f(output_view,0,0,N,K);

For example 24 we demonstrate the Q product by using some properties of the QR decompo-

sition. We know that is orthonormal, that and that . We use the iden-
tity matrix to extract an estimate of Q.

In lines 12-17 we input our matrix, lines 18-23 initializes the Q matrix to the identity. We do
the decomposition in line 25, and in line 16 we multiply the identity matrix in the Q matrix by

 in place. We had already created a transpose view of the Q matrix in line 8. In line 28 we

use a matrix product function to multiply the transpose of times giving . We then use

the QRD product function in line 31 to see if we can get back the original by multiplying

and together.

The output for example 24 (with some formatting) follows:

A = [1.00 2.00 3.00
 -1.00 1.00 -2.00
 1.00 1.00 -3.00];

Q = I Q =[0.577 0.617 0.535
 -0.577 0.772 -0.267
 0.577 0.154 -0.802];

R = QT A =[1.732 1.155 1.155
 -0.000 2.160 -0.154
 -0.000 -0.000 4.543];

A = QR =[1.000 2.000 3.000
 -1.000 1.000 -2.000
 1.000 1.000 -3.000];

Q A QR= R QT A=

Q

Q A R

A Q

R

SP VSIPL Core Plus DRAFT 175

DRAFT
 Example 24

/* A simple Q product example */
#include<vsip.h>
int main()
{ int init = vsip_init((void*)0);
 vsip_mview_f
 *A = vsip_mcreate_f(3,3,VSIP_ROW,VSIP_MEM_NONE),
 *Q = vsip_mcreate_f(3,3,VSIP_ROW,VSIP_MEM_NONE),
 *QT = vsip_mtransview_f(Q),
 *A0 = vsip_mcreate_f(3,3,VSIP_COL,VSIP_MEM_NONE),
 *R = vsip_mcreate_f(3,3,VSIP_COL,VSIP_MEM_NONE);
 vsip_qr_f *qrd=vsip_qrd_create_f(3,3,VSIP_QRD_SAVEQ1);
 vsip_mput_f(A,0,0,1);vsip_mput_f(A,0,1,2);
 vsip_mput_f(A,0,2,3);
 vsip_mput_f(A,1,0,-1);vsip_mput_f(A,1,1,1);
 vsip_mput_f(A,1,2,-2);
 vsip_mput_f(A,2,0,1);vsip_mput_f(A,2,1,1);
 vsip_mput_f(A,2,2,-3);
 vsip_mput_f(Q,0,0,1);vsip_mput_f(Q,0,1,0);
 vsip_mput_f(Q,0,2,0);
 vsip_mput_f(Q,1,0,0);vsip_mput_f(Q,1,1,1);
 vsip_mput_f(Q,0,2,0);
 vsip_mput_f(Q,2,0,0);vsip_mput_f(Q,2,1,0);
 vsip_mput_f(Q,2,2,1); vsip_mcopy_f_f(A,A0);
 printf("A = "); VU_mprintm_f("%4.2f ",A);
 if(0 != vsip_qrd_f(qrd,A)) return 1;
 vsip_qrdprodq_f(qrd,VSIP_MAT_NTRANS,VSIP_MAT_RSIDE,Q);
 printf("Q = I Q =");VU_mprintm_f("%6.3f ",Q);
 vsip_mprod_f(QT,A0,R);
 printf("R = QT A =");VU_mprintm_f("%6.3f ",R);
 vsip_qrdprodq_f(qrd,VSIP_MAT_NTRANS,VSIP_MAT_LSIDE,R);
 printf("A = QR =");VU_mprintm_f("%6.3f ",R);
 vsip_malldestroy_f(A); vsip_malldestroy_f(A0);
 vsip_malldestroy_f(R);
 vsip_mdestroy_f(QT); vsip_malldestroy_f(Q);
 vsip_qrd_destroy_f(qrd);
 vsip_finalize((void*)0);
 return 0;
}

The R solver function

The QRD solve R function, vsip_qrdsolr_f, solves a linear system of the form

or where is the upper triangular matrix from the QR decomposition and alpha

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

R X α B=

RT X α B= R
176 DRAFT TASP VSIPL Core Plus

DRAFT

TA
is a scalar. The calculation is done in place so that input matrix is replaced by output matrix

. Since is square the input and output are exactly the same size.

Final Remarks for Linear Algebra.

The decomposition functions in linear algebra are not well tested. The author does not guaran-
tee, promise, or think the routines are stable for ill conditioned matrices. The routines also
may not be very efficient. The author intends to keep working on the algorithms with the goal
of reasonable efficiency, and good numerical properties. For the present (and even the future)
the user is cautioned to be suspicious of any results. The author, as always, welcomes feed-
back and advice on these functions, or any functions in the TASP VSIPL library.

B

X R
SP VSIPL Core Plus DRAFT 177

DRAFT
178 DRAFT TASP VSIPL Core Plus

INDEX

DRAFT

TA
A
admitted state 102
ADT 4, 8
API 8

B
block 4
Boolean View 136

C
COE 1, 8
column length 122
convolution 150
Core 3
Correlation 145
COTS 1, 8
covariance solver 168, 172

D
dense matrix 122, 123
derived block 100
derived view 100
DOD 1, 8
dot product 167

E
example 1 5
example 10 112
example 11 116
example 12 128
example 13 130
example 14 135
example 15 137
example 16 139
example 17 140
example 18 142
example 19 147
example 2 98
example 20 152
example 21 161
example 22 170
example 23 172
example 24 176
example 3
98

example 4 99
example 5 99
example 6 101
example 7 102
example 8 104
example 9 108

F
FFT 157
filter kernel 114

finalize 48
FIR 114
FIR filter create 114
Fourier transforms 157
Function List 18

acos 18
vsip_acos_f 18

add 18
vsip_CADD_f 18
vsip_cadd_f 18
vsip_csvadd_f 18
vsip_cvadd_f 19
vsip_RCADD_f 18
vsip_rcadd_f 18
vsip_rcvadd_f 19
vsip_rscvadd_f 18
vsip_svadd_f 18
vsip_svadd_i 19
vsip_vadd_f 19
vsip_vadd_i 19

alldestroy 19
vsip_cmalldestroy_f 20
vsip_cvalldestroy_f 19
vsip_malldestroy_f 19
vsip_valldestroy_bl 19
vsip_valldestroy_f 19
vsip_valldestroy_i 19
vsip_valldestroy_mi 19
vsip_valldestroy_vi 19

alltrue 20
vsip_valltrue_bl 20

and 20
vsip_vand_bl 20
vsip_vand_i 20

anytrue 20
vsip_vanytrue_bl 20

arg 20
vsip_arg_f 20

asin 21
vsip_asin_f 21

atan 21
vsip_vatan_f 21

atan2 21
vsip_vatan2_f 21

bind 21
vsip_cmbind_f 22
vsip_cvbind_bl 22
vsip_cvbind_f 21
vsip_mbind_f 22, 123
vsip_vbind_f 21
vsip_vbind_mi 22
SP VSIPL Core Plus DRAFT 179

DRAFT
vsip_vbind_vi 22
blackman 23

vsip_vcreate_blackman_f 23
blockadmit 23

vsip_blockadmit_bl 23
vsip_blockadmit_f 23, 135
vsip_blockadmit_i 23
vsip_blockadmit_mi 23
vsip_blockadmit_vi 23
vsip_cblockadmit_f 23

blockbind 23
vsip_blockbind_bl 24
vsip_blockbind_f 24
vsip_blockbind_i 24
vsip_blockbind_mi 24
vsip_blockbind_vi 24
vsip_cblockbind_f 24

blockcreate 24, 97
vsip_blockcreate_bl 25
vsip_blockcreate_f 24
vsip_blockcreate_i 25
vsip_blockcreate_mi 25
vsip_blockcreate_vi 25
vsip_cblockcreate_f 25

blockdestroy 25
vsip_blockdestroy_bl 25
vsip_blockdestroy_f 25
vsip_blockdestroy_i 25
vsip_blockdestroy_mi 25
vsip_blockdestroy_vi 25
vsip_cblockdestroy_f 25

blockfind 25
vsip_blockfind_bl 26
vsip_blockfind_f 25
vsip_blockfind_i 26
vsip_blockfind_mi 26
vsip_blockfind_vi 26
vsip_cblockfind_f 25

blockrebind 26
vsip_blockrebind_bl 26
vsip_blockrebind_f 26
vsip_blockrebind_i 26
vsip_blockrebind_mi 26
vsip_blockrebind_vi 26
vsip_cblockrebind_f 26

blockrelease 27
vsip_blockrelease_bl 27
vsip_blockrelease_f 27, 135
vsip_blockrelease_i 27
vsip_blockrelease_mi 27
vsip_blockrelease_vi 27
vsip_cblockrelease_f 27

cheby 28
vsip_vcreate_cheby_f 28

chold 28, 171
vsip_cchold_create_f 28
vsip_cchold_destroy_f 29
vsip_cchold_f 28
vsip_cchold_getattr_f 29
vsip_ccholsol_f 29
vsip_chold_create_f 28
vsip_chold_destroy_f 29
vsip_chold_f 28
vsip_chold_getattr_f 29
vsip_cholsol_f 29

clip 30
vsip_vclip_f 31
vsip_vclip_i 31

cloneview 29
vsip_cmcloneview_f 30
vsip_cvcloneview_f 29
vsip_mcloneview_f 30
vsip_vcloneview_bl 30
vsip_vcloneview_f 29, 135
vsip_vcloneview_mi 30
vsip_vcloneview_vi 30

cmagsq
vsip_vcmagsq_f 32

cmaxmagsqval 32
vsip_vcmaxmagsqval 32

cmaxmgsq 32
vsip_vcmaxmgsq_f 32

cminmagsqval 33
vsip_vcminmagsqval 33

cminmgsq 32
vsip_vcminmgsq_f 32

cmplx 30
vsip_CMPLX_f 30
vsip_cmplx_f 30
vsip_vcmplx_f 30

colview 34
vsip_cmcolview_f 34
vsip_mcolview_f 34

conj 34
vsip_CONJ_f 34
vsip_conj_f 34

convolve 35, 150
vsip_conv1d_create_f 35
vsip_conv1d_destroy_f 36
vsip_conv1d_getattr_f 36
vsip_convolve1d_f 35

copy 33
vsip_cmcopy_f_f 34
vsip_cvcopy_f_f 33
vsip_mcopy_f_f 34
vsip_vcopy_bl_bl 33
vsip_vcopy_bl_f 34
vsip_vcopy_f_bl 34
180 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_vcopy_f_f 33
vsip_vcopy_f_i 33
vsip_vcopy_i_f 33
vsip_vcopy_i_i 33
vsip_vcopy_i_vi 33
vsip_vcopy_mi_mi 33
vsip_vcopy_vi_i 33
vsip_vcopy_vi_vi 33

correlate 36, 145
vsip_ccorr1d_create_f 36
vsip_ccorr1d_destroy_f 37
vsip_ccorr1d_getattr_f 37
vsip_ccorrelate1d_f 37
vsip_corr1d_create_f 36
vsip_corr1d_destroy_f 37
vsip_corr1d_getattr_f 37
vsip_correlate1d_f 37

cos 38
vsip_vcos_f 38

covsol 38, 168
vsip_ccovsol_f 38
vsip_covsol_f 38

create 38
vsip_cmcreate_f 39
vsip_cvcreate_f 39
vsip_mcreate_f 39, 124
vsip_vcreate_bl 39
vsip_vcreate_f 39
vsip_vcreate_i 39
vsip_vcreate_mi 39
vsip_vcreate_vi 39

cstorage 39
vsip_cstorage 39

cvconj
vsip_cvconj_f 34

destroy 39
vsip_cmdestroy_f 40
vsip_cvdestroy_f 40
vsip_mdestroy_f 40
vsip_vdestroy_bl 40
vsip_vdestroy_f 39
vsip_vdestroy_i 40
vsip_vdestroy_mi 40
vsip_vdestroy_vi 40

diagview 40
vsip_cmdiagview_f 40
vsip_mdiagview_f 40, 124

div 40
vsip_CDIV_f 40, 41
vsip_cdiv_f 40
vsip_crdiv_f 40
vsip_cvdiv_f 41
vsip_svdiv_f 41
vsip_vdiv_f 41

dot 41
vsip_cvdot_f 41
vsip_cvjdot_f 42
vsip_vdot_f 41

euler 42
vsip_veuler_f 42

exp 42
vsip_CEXP_f 42
vsip_cexp_f 42
vsip_cvexp_v 42
vsip_vexp_f 42

exp10 42
vsip_vexp10_f 43

expoavg 43
vsip_cvexpoavg_f 43
vsip_vexpoavg_f 43

fft 43, 109, 157
vsip_ccfftip_create_f 43
vsip_ccfftip_f 45
vsip_ccfftop_create_f 43
vsip_ccfftop_f 44
vsip_crfftmop_create_f 46
vsip_crfftop_create_f 44
vsip_crfftop_f 45
vsip_fft_destroy_f 45
vsip_rcfftmop_create_f 46
vsip_rcfftop_create_f 44
vsip_rcfftop_f 45

fftm 45, 162
vsip_ccfftmip_create_f 46
vsip_ccfftmip_f 47
vsip_ccfftmop_create_f 46
vsip_ccfftmop_f 47
vsip_crfftmop_f 48
vsip_fftm_destroy_f 48
vsip_fftm_getattr_f 48
vsip_rcfftmop_f 47

fill 48
vsip_vfill_f 48
vsip_vfill_i 48

fir 49, 114
vsip_cfir_create_f 49
vsip_cfir_destroy_f 50
vsip_cfir_getattr_f 50
vsip_cfirflt_f 50
vsip_fir_create_f 49
vsip_fir_destroy_f 50
vsip_fir_getattr_f 50
vsip_firflt_f 49

gather 50
vsip_cvgather_f 50
vsip_vgather_f 50
vsip_vgather_i 51

gecolstride
SP VSIPL Core Plus DRAFT 181

DRAFT
vsip_cmgetcolstride_f 54
vsip_mgetcolstride_f 54

gemp 51
vsip_cgemp_f 51
vsip_gemp_f 51

gems 52
vsip_cgems_f 52
vsip_gems_f 52

get 52
vsip_cmget_f 53
vsip_cvget_f 52
vsip_mget_f 53, 126
vsip_vget_bl 53
vsip_vget_f 52
vsip_vget_i 52
vsip_vget_mi 52
vsip_vget_vi 52

getattrib 53
vsip_cmgetattrib_f 53
vsip_cvgetattrib_f 53
vsip_mgetattrib_f 53
vsip_vgetattrib_bl 53
vsip_vgetattrib_f 53
vsip_vgetattrib_i 53
vsip_vgetattrib_mi 53
vsip_vgetattrib_vi 53

getblock 54
vsip_cmgetblock_f 54
vsip_cvgetblock_f 54
vsip_mgetblock_f 54
vsip_vgetblock_bl 54
vsip_vgetblock_f 54, 128
vsip_vgetblock_i 54
vsip_vgetblock_mi 54
vsip_vgetblock_vi 54

getcollength 54
vsip_cmgetcollength_f 54
vsip_mgetcollength_f 54

getcolstride 54
getlength 55

vsip_cvgetrowlength_f 55
vsip_vgetlength_bl 55
vsip_vgetlength_f 55
vsip_vgetlength_i 55
vsip_vgetlength_mi 55
vsip_vgetlength_vi 55

getoffset 55
vsip_cmgetoffset_f 55
vsip_cvgetoffset_f 55
vsip_mgetoffset_f 55
vsip_vgetoffset_bl 55
vsip_vgetoffset_f 55
vsip_vgetoffset_i 55
vsip_vgetoffset_mi 55

vsip_vgetoffset_vi 55
getrowlength 55

vsip_cmgetrowlength_f 56
vsip_mgetrowlength_f 56, 128

getrowstride 56
vsip_cmgetrowstride_f 56
vsip_mgetrowstride_f 56

getstride 56
vsip_cvgetstride_f 56
vsip_vgetstride_bl 56
vsip_vgetstride_f 56
vsip_vgetstride_i 56
vsip_vgetstride_mi 56
vsip_vgetstride_vi 56

hanning 56
vsip_vcreate_hanning_f 56

histo 57
vsip_vhisto_f 57

hypot 57
vsip_vhypot_f 57

imag 57
vsip_imag_f 57
vsip_vimag_f 57

imagview 58
vsip_mimagview_f 58
vsip_vimagview_f 58

indexbool 58
vsip_vindexbool 58, 139

invclip 58
vsip_vinvclip_f 59
vsip_vinvclip_i 59

kaiser 59
vsip_vcreate_kaiser_f 59

llsqsol 60, 168
vsip_cllsqsol_f 60
vsip_llsqsol_f 60

log 60
vsip_vexp_log_f 60

log10 60
vsip_vlog10_f 60

logical 60
vsip_vleq_f(61
vsip_vlge_f 61
vsip_vlgt_f 61
vsip_vlle_f 61
vsip_vllt_f 61

lud 62, 169
vsip_clud_create_f 62
vsip_clud_destroy_f 63
vsip_clud_f 62
vsip_clud_getattr_f 63
vsip_clusol_f 62
vsip_lud_create_f 62, 170
vsip_lud_destroy_f 63
182 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_lud_f 62
vsip_lud_gatattr_f 63
vsip_lusol_f 62, 170

mag 63
vsip_cmag_f 63
vsip_cvmag_f 64
vsip_vmag_f 63
vsip_vmag_i 64

matindex 64
max 64
maxmg 65

vsip_vmaxmg_f 65
maxmgval 65

vsip_vmaxmgval_f 65
maxval 65

vsip_vmaxval_f 65
meansqval 65

vsip_cvmeansqval_f 65
vsip_vmeansqval_f 65

meanval 66
vsip_cvmeanval_f 66
vsip_vmeanval_f 66

mherm 66
vsip_cmherm_f 66

min 66
vsip_vmin_f 66

minmg 66
vsip_vminmg_f 66

minmgval 67
vsip_vminmgval_f 67

minval 67
vsip_vminval_f 67

modulate 67
vsip_vmodulate_f 67

mprod 68
vsip_cmprod_f 68
vsip_cmprodj_f 68
vsip_cmprodt_f 69
vsip_cmvprod_f 69
vsip_cvmprod_f 69
vsip_mprod_f 68
vsip_mprodt_f 69
vsip_mvprod_f 69
vsip_vmprod_f 68

mtrans 69
vsip_cmtrans_f 70
vsip_mtrans_f 69

mul 70
vsip_CJMUL_f 71
vsip_cjmul_f 71
vsip_CMUL_f 70
vsip_cmul_f 70
vsip_csvmul_f 71
vsip_cvjmul_f 71

vsip_cvmmul_f 72
vsip_cvmul_f 70
vsip_RCMUL_f 70
vsip_rcmul_f 70
vsip_rcvmul_f 70
vsip_rscvmul_f 71
vsip_rvcmmul_f 72
vsip_svmul_f 71
vsip_svmul_i 71
vsip_vmmul_f 72
vsip_vmul_f 70
vsip_vmul_i 70

neg 72
vsip_CNEG_f 72
vsip_cneg_f 72
vsip_cvneg_f 73
vsip_vneg_f 72
vsip_vneg_i 73

not 73
vsip_vnot_bl 73
vsip_vnot_i 73

or 73
vsip_vor_bl 73
vsip_vor_i 73

outer 73
vsip_cvouter_f 74
vsip_vouter_f 73

polar 74
vsip_polar_f 74
vsip_vpolar_f 74

put 74
vsip_cmput_f 75
vsip_cvput_f 74
vsip_mput_f 75
vsip_vput_bl 75
vsip_vput_f 74
vsip_vput_i 74
vsip_vput_mi 75
vsip_vput_vi 75

putattrib 75
vsip_cmputattrib_f 76
vsip_cvputattrib_f 75
vsip_mputattrib_f 76
vsip_vputattrib_bl 76
vsip_vputattrib_f 75
vsip_vputattrib_i 75
vsip_vputattrib_mi 76
vsip_vputattrib_vi 75

putcollength 76
vsip_cmputcollength_f 76
vsip_mputcollength_f 76

putcolstride 76
vsip_cmputcolstride_f 76
vsip_mputcolstride_f 76
SP VSIPL Core Plus DRAFT 183

DRAFT
putlength 78
vsip_cvputlength_f 79
vsip_vputlength_f 78
vsip_vputstride_f 79

putoffset 77
vsip_cmputoffset_f 77
vsip_cvputoffset_f 77
vsip_mputoffset_f 77
vsip_vputoffset_bl 77
vsip_vputoffset_f 77
vsip_vputoffset_i 77
vsip_vputoffset_mi 77
vsip_vputoffset_vi 77

putrowlength 77
vsip_cmputrowlength_f 77
vsip_mputrowlength_f 77

putrowstride 78
vsip_cmputrowstride_f 78
vsip_mputrowstride_f 78

putstride 78
vsip_cvputstride_f 78
vsip_vputstride_bl 78
vsip_vputstride_f 78
vsip_vputstride_i 78
vsip_vputstride_mi 78
vsip_vputstride_vi 78

qrd 79, 171
vsip_cqrd_create_f 79
vsip_cqrd_destroy_f 82
vsip_cqrd_f 80
vsip_cqrd_getattr_f 82
vsip_cqrdprodq_f 80
vsip_cqrdsolr_f 81
vsip_cqrsol_f 82
vsip_qrd_create_f 79, 172
vsip_qrd_destroy_f 82, 172
vsip_qrd_f 80, 172
vsip_qrd_getattr_f 82
vsip_qrdprodq_f 80, 173
vsip_qrdsolr_f 81
vsip_qrsol_f 81, 172

ramp 82
vsip_vramp_f 82
vsip_vramp_i 82

rand 83
vsip_crandn_f 83
vsip_crandu_f 83
vsip_cvrandn_f 84
vsip_cvrandu_f 84
vsip_randcreate 83
vsip_randdestroy 84
vsip_randn_f 83
vsip_randu_f 83
vsip_vrandn_f 84

vsip_vrandu_f 84
real 84

vsip_real_f 84
vsip_vreal_f 84

realview 85
vsip_mrealview_f 85
vsip_vrealview_f 85

recip 85
vsip_CRECIP_f 85
vsip_crecip_f 85
vsip_cvrecip_f 85
vsip_vrecip_f 85

rect 85
vsip_RECT_f 86
vsip_rect_f 86
vsip_vrect_f 86

rowview 86
vsip_cmrowview_f 86
vsip_mrowview_f 86

rsqrt 86
vsip_vrsqrt_f 86

scatter 87
vsip_cvscatter_f 87
vsip_vscatter_f 87
vsip_vscatter_i 87

sin 87
vsip_vsin_f 87

sq 87
vsip_vsq_f 87

sqrt 87
vsip_CSQRT_f 88
vsip_csqrt_f 88
vsip_cvsqrt_f 88
vsip_vsqrt_f 88

sub 88
void vsip_RCSUB_f 88
vsip_CRSUB_f 88
vsip_crsub_f 88
vsip_crvsub_f 89
vsip_CSUB_f 88
vsip_csub_f 88
vsip_csvsub_f 89
vsip_cvsub_f 89
vsip_RCSUB_f 88
vsip_rcsub_f 88
vsip_rcvsub_f 89
vsip_rscvsub_f 89
vsip_svsub_f 89
vsip_svsub_i 89
vsip_vsub_f 89
vsip_vsub_i 89

subview 90
vsip_cmsubview_f 91
vsip_cvsubview_f 90
184 DRAFT TASP VSIPL Core Plus

DRAFT

TA
vsip_msubview_f 90
vsip_vsubview_bl 90
vsip_vsubview_f 90
vsip_vsubview_i 90
vsip_vsubview_mi 90
vsip_vsubview_vi 90

sumsqval 91
vsip_sumsqval_f 91

sumval 91
vsip_vsumval_f 91

swap 91
vsip_cvswap_f 91
vsip_vswap_f 91

tan 92
vsip_vtan_f 92

Ternary Functions 92
vsip_cvam_f 92
vsip_cvma_f 92
vsip_cvmsa_f 93
vsip_cvmsb_f 93
vsip_cvsam_f 93
vsip_cvsbm_f 93
vsip_cvsma_f 94
vsip_cvsmsa_f 94
vsip_vam_f 92
vsip_vma_f 92
vsip_vmsa_f 92
vsip_vmsb_f 93
vsip_vsam_f 93
vsip_vsbm_f 93
vsip_vsma_f 93
vsip_vsmsa_f 94

toepsol 94, 168
vsip_ctoepsol_f 94
vsip_toepsol_f 94

transview 95
vsip_cmtransview_f 95
vsip_mtransview_f 95

vcmagsq 31
vsip_cmagsq_f 31

vsip_vsumval_bl
vsip_vsumval_bl 91

xor 95
vsip_vxor_bl 95
vsip_vxor_i 95

Fundamental Matrix Calculation 124
G

Gather 138
H

HRL 2
I

incomplete type 5
init 58

K
kernel 114

L
least squares 168, 172

M
major 122
Matrix View 122
minimum stride length 125
minor direction 123

O
object oriented 3
offset 4, 122

P
Public Types 11

alg_hint 11
bias 11
chol_attr 11
cmplx_mem 12
conv1d_attr 12
corr1d_attr 12
fft_attr 13
fft_dir 13
fft_place 13
fftm_attr 13
fir_attr 12
lu_attr 14
major 14
mat_op 14
mat_side 14
mattr 14
memory_hint 15
qrd_attr 15
qrd_prob 16
qrd_qopt 16
rng 17
support_region 16
symmetry 16
vattr 16

R
random number generate 107
released state 102
row length 122

S
scalar 4
Scatter 138
stride length 125

T
TAC 8
TASP 1, 8
TASP VSIPL 2

U
user blocks 102
SP VSIPL Core Plus DRAFT 185

DRAFT
user data 103
user data arrays 102

V
Vector Boolean Views 133
Vector Index Views 133
vector length 4
vector stride 4
VI_ 7
view 4
vsip 29
vsip_cblockbind_f 106
vsip_ccfftop_f 113
VSIP_FALSE 134
VSIP_NONSYM 114
vsip_rcfftop_f 113
VSIP_SYM_EVEN_LEN_EVEN 114
VSIP_SYM_EVEN_LEN_ODD 114
VSIP_TRUE 134
vsip_vcreate_f 7
VSIPL 2, 8
VSIPL blocks 102
VSIPL Forum 2
VSIPL scalar 4
VU_ 7
VU_mprintm_f 126
VU_vprint_f 105
186 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Appendix A VSIPL Fundamentals

VSIPL Fundamentals . A-1

Introduction. A-1

Disclaimer . A-1

Initializing VSIPL. A-1

Blocks and Views . A-1

User Data Arrays, VSIPL Data Arrays, Released and Admitted A-1

VSIPL Naming Convention and Functionality Requirements A-1

Summary of VSIPL Types . A-2

Basic Data Types . A-5

Scalar Data Types . A-5

Block Data Types . A-6

View Data Types. A-7

Block Requirements . A-7

Derived Blocks . A-8

View Requirements. A-9

Complex Views and Derived Real Views. A-10

User Data . A-10

Development mode requirements . A-11
SP VSIPL Core Plus DRAFT A-i

DRAFT
A-ii DRAFT TASP VSIPL Core Plus

DRAFT

TA
VSIPL Fundamentals
Introduction
This appendix contains fundamental information about a VSIPL compliant library including

the basic type definitions, block requirements, view requirements, and basic VSIPL definitions

and terminology.

Note that there are various requirements in the functionality document which pertain to some

small subset of functions. These requirements are not covered here. This document covers the

more general requirements that must be met by virtually all VSIPL implementations, no mat-

ter the profile.

Disclaimer

The VSIPL library is object based, not object oriented. The reader should be careful to not

bring along to this document any object oriented terms which may have specific meaning to

them from another context, but which are being used by the VSIPL forum to mean something

else. The basic terminology used by VSIPL is described below.

Initalizing VSIPL

The VSIPL library requires a call to vsip_init prior to calling any other VSIPL functions.

Before exiting an application all VSIPL objects are required to be destroyed and a call to

vsip_finalize must be made.

It is allowed to initialize the library and finalize the library as often as one wants internal to the

first vsip_init and the outermost vsip_finalize. This allows the user to write subroutines

which use VSIPL and have no external VSIPL interface and use them in a larger VSIPL appli-

cation without the need of the application knowing that VSIPL resides in the subroutine and

vice versa.

Blocks and Views

VSIPL has a notion of data storage in a block. A block is an abstract notion of contiguous data
elements available for storage of data. Associated with a block is a block object. The block
object contains the information necessary for the VSIPL implementation to access the mem-
ory used by the block for data storage. The design of the block object is implementation
dependent.

VSIPL has a notion of vectors, matrices and three tensors which are views of the block. The
information necessary to access the block data as if it is a vector, matrix or tensor is stored in
the view object.

User Data Arrays, VSIPL Data Arrays, Released and Admitted

Memory allocated by VSIPL for data storage is termed a VSIPL data array. There is no
method for a user to directly access a VSIPL data array. This causes a problem when input or
output of data is needed from VSIPL. To address this problem functions are available in
VSIPL to associate a data array allocated by the user to a VSIPL block.
SP VSIPL Core Plus DRAFT A-1

DRAFT
To insure that use of data stored in a user data array by the application does not conflict with
use of the data by VSIPL functions the block object associated with the data array maintains
state information which informs VSIPL whether or not the user block is admitted or released.

Note a user block is a block which is associated with a user data array. A VSIPL block is a
block which is not associated with a user data array. These are states of a block. The block
type (C typedef) of a user block and a VSIPL block are identical.

Functions are available to admit or release a user block. When a block is admitted it is an error
to directly manipulate any data in the user data array. When a block is released it is an error to
use any VSIPL function which will read or write data in the block.

VSIPL Naming Convention and Functionality Requirements
While there is nothing to prevent an implementor from writing VSIPL compatible functions,

only those functions that have been approved and are included in formal VSIPL documenta-

tion are a part of VSIPL. Functions outside of the standard should not use the VSIPL naming

conventions to avoid confusion of porting of applications. In particular, function names out-

side of VSIPL should not start with “vsip_”.

All VSIPL functionality is called out explicitly in the functionality document except for preci-

sion. The need to allow wide variation in precision to support diverse hardware precluded any

attempt to specify every possible data precision. Specified methods must be followed for

including data precision using a precision affix at the end of the specified VSIPL name. The

approved affixes are covered in the summary of VSIPL types below. Except for copies the pre-

cision affix is usually a suffix. Copies require two precision affix’s to make up the precision

suffix.

Summary of VSIPL Types

All VSIPL type declarations and function names have the data type encoded into the name.

The following are required VSIPL affix notations for use in encoding type data in the names

and type declarations, and a description of the data types supported in VSIPL. It is not

expected that any implementation will support all possible VSIPL data types. The data type

supported will depend in part on the hardware for which the library was developed, and the

expected use of the hardware.

Note that throughout the VSIPL documentation an affix of _p is used to denote a general pre-

cision of any type, and is a method to name functions or data types without having to spell out

every single prefix which might be needed for that function or data type. Also used are _i to

denote any integer, or an _f to denote any float. Note that the generalized affix is in a different

font style than the specific affix. To produce a valid VSIPL name, or data type, use a specified

name, or data type, from the functionality document, and replace the generalized affix with the

selected affix from the tables below.
A-2 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Standard Integer Data Types

Affix Definition

_c ANSI C char

_uc ANSI C unsigned char

_si ANSI C short integer

Standard Floating Point Data Types

Affix Definition

_f ANSI C single precision floating point

_d ANSI C double precision floating point

_l ANSI C extra precision floating point

Portable Precision Floating Point Data Types

Affix Definition

_f6 Floating point type with at least 6 decimal digits of accuracy. IEE 754 single precision (32

bit) has 6 decimal digits of accuracy.

_f15 Floating point types with at least 15 decimal digits of accuracy. IEEE 754 double preci-

sion (64 bit) has 15 decimal digits of accuracy.

_fn Floating point type with at least n decimal digits of accuracy. If the system supports such

a precision, it resolves to the smallest C type based on the values of FLT_MANT_DIG,

DBL_MANT_DIG, or LDBL_MANT_DIG (which are defined in float.h).

Standard Integer Data Types

Affix Definition

_us ANSI C unsigned short integer

_i ANSI C integer

_u ANSI C unsigned integer

_li ANSI C long integer

_ul ANSI C unsigned long integer

_ll Long, long integer, implementation dependent

_ull Unsigned long, long integer, implementation dependent
SP VSIPL Core Plus DRAFT A-3

DRAFT
Portable Precision Integer Data Types

Affix Definition

_il8 int of at least 8 bits

_il16 int of at least 16 bits

_il32 int of at least 32 bits

_il64 int of at least 64 bits

_iln int of at least n bits

_ul8 unsigned int of at least 8 bits

_ul16 unsigned int of at least 16 bits

_ul32 unsigned int of at least 32 bits

_ul64 unsigned int of at least 64 bits

_uln unsigned int of at least n bits

_ie8 int of exactly 8 bits

_ie16 int of exactly 16 bits

_ie32 int of exactly 32 bits

_ie64 int of exactly 64 bits

_ien int of exactly n bits

_ue8 unsigned int of exactly 8 bits

_ue16 unsigned int of exactly 16 bits

_ue32 unsigned int of exactly 32 bits

_ue64 unsigned int of exactly 64 bits

_uen unsigned int of exactly n bits

_if8 fastest int of at least 8 bits

_if16 fastest int of at least 16 bits

_if32 fastest int of at least 32 bits

-if64 fastest int of at least 64 bits

_ifn fastest int of at least n bits

_uf8 unsigned fastest int of at least 8 bits

_uf16 unsigned fastest int of at least 16 bits
A-4 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Basic Data Types
VSIPL has three basic data types, scalars, blocks, and views. VSIPL also has other special

data types and structures, used for defining special objects, which are used in a single function

or a small subset of functions. These special structures and data types are defined in the func-

tionality document, but not here. Structures required for VSIPL block creation are defined

below. Also defined below are structures for complex scalars and scalar indices.

Scalar Data Types

All supported VSIPL scalars have a type definition of

vsip_scalar_p
for real scalars, and a type definition of

vsip_cscalar_p
for complex scalars. Complex scalars are only supported for float and integer data types.

Note: For VSIPL 1.0 there are support functions for complex integers, but no other functions

which use complex integers are defined.

Below find an example of a VSIPL header definition for a scalar float, and a scalar unsigned

integer.

typedef float vsip_scalar_f;
typedef unsigned int vsip_scalar_u;

The following definitions (if the type is supported) must be included with the library. Some of

the information is implementation dependent. Implementation dependent information will be

indicated with a bracket (<?...?>) around the dependent section

_uf32 unsigned fastest int of at least 32 bits

_uf64 unsigned fastest int of at least 64 bits

_ufn unsigned fastest int of at least n bits

Other Data Types

Affix Definition

_bl Boolean Data Type. Logical false for 0, and Logical true for non-zero.

_vi Vector Index. This is an unsigned integer of sufficient precision to index any VSIPL vec-

tor.

_mi Matrix Index. This is a data type used for accessing matrix elements. The precision of the

type is the same as _vi. The matrix index of the element xi, j is the 2-tuple {i, j}.

_ti Tensor Index. This is a data type used for accessing tensor elements. The precision of the

type is the same as _vi. The tensor index of the element xi, j, k is the 3-tuple {i, j, k}.
SP VSIPL Core Plus DRAFT A-5

DRAFT
Note: The data type for the vector index (vsip_scalar_vi) is implementation dependent. It

must be an unsigned integer of sufficient size to allow indexing any possible view element of

the implementation.

Note: The stride data type must be a signed integer of the same number of bits precision as the

vector index.

Block Data Types

All supported VSIPL blocks have a type definition as described in the following table.

Complex typedef struct {vsip_scalar_p r, i;} vsip_cscalar_p;

Boolean typedef <?char?> vsip_scalar_bl;
typedef vsip_scalar_bl vsip_bool;
#define VSIP_FALSE 0
#define VSIP_TRUE 1

Vector

index

typedef unsigned <?long int?> vsip_scalar_vi
typedef vsip_scalar_vi vsip_index;

Matrix

index

typedef struct {vsip_scalar_vi r,c;} vsip_scalar_mi;

Tensor

index

typedef struct {vsip_scalar_vi l,r,c;} vsip_scalar_ti;

Offset typedef vsip_scalar_vi vsip_offset;

Stride typedef signed <?long int?> vsip_stride;

length typedef vsip_scalar_vi vsip_length;

Type VSIPL blocks

vsip_block_p For real blocks, index blocks, and boolean blocks

vsip_cblock_p For complex blocks. Complex blocks are only supported for float

and integer data.

Examples of incomplete type definitions for blocks included in vsip.h

struct vsip_blockobject_bl; /* boolean block structure */
typedef struct vsip_blockobject_bl vsip_block_bl;

struct vsip_blockobject_vi; /* vector index block structure */
typedef struct vsip_blockobject_vi vsip_block_vi;

struct vsip_blockobject_d; /* double block structure */
typedef struct vsip_blockobject_d vsip_block_d;

struct vsip_cblockobject_d; /* complex double block structure */
typedef struct vsip_cblockobject_d vsip_cblock_d;
A-6 DRAFT TASP VSIPL Core Plus

DRAFT

TA
Note that the above structures vsip_blockobject_bl, vsip_blockobject_vi,

vsip_blockobject_d, and vsip_cblockobject_d all may reside in a VSIPL header file

which is private to the implementation developer. The names of all these structures are imple-

mentation dependent. The only required naming convention is the block type necessary for

declaring VSIPL objects in the user application. For the examples above these are in bold.

The following hint structure must be included with an implementation. It is not required that

the hints be supported (in the functions where they are required), but the structure must be

available for portability reasons. Additional details of the hint are available on the functional-

ity page where it is defined.

typedef enum {
VSIP_MEM_NONE = 0,
VSIP_MEM_RDONLY = 1,
VSIP_MEM_CONST = 2,
VSIP_MEM_SHARED = 3,
VSIP_MEM_SHARED_RDONLY = 4,
VSIP_MEM_SHARED_CONST = 5
} vsip_memory_hint;

View Data Types

All supported VSIPL views have a type definition as follows

Note that all index views are vectors. There are only types vsip_vview_vi, vsip_vview_mi,

and types vsip_vview_ti.

Note that the above structures vsip_vviewobject_bl, vsip_vviewobject_vi,

vsip_vviewobject_d, and vsip_cvviewobject_d may all reside in a VSIPL header file

vsip_vview_p For real vector views, boolean vector views and index vector

views.

vsip_cvview_p For complex vector views.

vsip_mview_p For real matrix views and boolean matrix views.

vsip_cmview_p For complex matrix views

vsip_tview_p For real tensor views

vsip_ctview_p For complex tensor views

Examples of incomplete type definitions for views

struct vsip_vviewobject_bl; /* boolean vector view struct */
typedef struct vsip_vviewobject_bl vsip_vview_bl;

struct vsip_vviewobject_vi; /* vector index view struct */
typedef struct vsip_vviewobject_vi vsip_block_vi;

struct vsip_vviewobject_d; /* double vector view struct */
typedef struct vsip_blockobject_d vsip_block_d;

struct vsip_cvviewobject_d; /* complex double vector view struct */
typedef struct vsip_cvviewobject_d vsip_cblock_d;
SP VSIPL Core Plus DRAFT A-7

DRAFT
which is private to the implementation developer. The names of all these structures are imple-

mentation dependent. The only required naming convention is the view type needed by the

user to declare view objects. For the examples above these are in bold.

Block Requirements
A block is a VSIPL type representing an object where data is stored. The block is conceptually

a one dimensional data array of elements of a single data type. Mixed data types are not sup-

ported. The user supplies the size of the block on its creation.

The data in a block is accessed using views. The attributes stored in a view describe a portion

of a blocks data using offset from the beginning of the block, stride through the block, and

number of elements of the block described by the view (the length attribute). The block loca-

tion of the first element is at zero, and the block location of the final element is at N-1, where

N is the total length of the block.

There are two kinds of blocks, user and VSIPL. A user block is one which is created using a

data array which is allocated directly by the application so that the application has a pointer to

the data array. A VSIPL block is one which is not associated with a user data array, and the

user has no (proper) method to retrieve a pointer to the blocks data array.

A user block is either in a released or an admitted state to VSIPL. It is an error for a released

user blocks data array to be accessed by any VSIPL function which will read or write ele-

ments in the data array. Access to a released user blocks data must be through direct manipu-

lation of the data array. Access to an admitted user block must be through VSIPL functions. It

is an error to directly manipulate or read a user blocks data array after it has been admitted to

VSIPL. After admission only VSIPL functions should be used to access the data. A VSIPL
block is created in the admitted state and can not be released. A user block is created in the

released state, and can be admitted or released as required by the application.

A VSIPL block is created with a VSIPL creation function. When a VSIPL block is created, the

data array bound to it is created at the same time. The details of the physical storage of the

data array is implementation dependent; however the data array appears as contiguous data

elements for the purpose of assigning strides and offsets in views of the block. VSIPL blocks

are always admitted and the data array can only be manipulated with VSIPL function calls.

Except for a released user block, there is no function available to make a block and then at

some later time attach a data array to it. It is possible to create a user block using a NULL data

pointer. A user block bound to a NULL pointer can not be admitted until the block is re-bound

to a data pointer which is not NULL. A user block in the released state can be re-bound to any

valid pointer of the proper data type for the block. There is no function available in VSIPL 1.0

to allow rebinding an admitted block to different data array.

For released user blocks the user data must be contiguous with the following exception. For

complex user blocks the attached data can be contiguous, or it can consist of two separate con-

tiguous data arrays of equal size.

When a released block is admitted the implementation is free to do whatever is necessary

without concern for the released data layout. The user array data layout must be restored to

the same location and layout when the block is released.
A-8 DRAFT TASP VSIPL Core Plus

DRAFT

TA
A user block, admitted or released, and a VSIPL block, which contain data of the same type,

have a single block data type. Any information needed by the implementation developer

regarding the state of the block (admitted, released, user, VSIPL, etc.) is hidden from the

application using some implementation dependent method such as hidden attributes of the

block object.

Derived Blocks

There are functions defined to derive real views from complex views. These functions produce

a derived block to bind the real views to. The derived block is of type vsip_block_p.

The required derived block data space must encompass the entire real portion of the complex

block if a real view is derived, or the entire imaginary portion of the underlying complex block

if an imaginary view is derived. The derived block can encompass other portions of the com-

plex block outside the range of the required real or imaginary data space; however the imple-

mentation is only required to maintain views bound to the required derived block data space.

It is an error to bind new views to a derived block which will encompass both real and imagi-

nary portions of the original complex block. The result is implementation dependent.

The derived block is destroyed when the complex block is destroyed. It is an error to destroy a

derived block directly. The implementation must maintain sufficient state information in the

complex block, and the derived real block, to support the proper behavior of the derived block.

The internal format of any admitted block is implementation dependent so underlying memory

layout of the complex block is unknown. The following conditions must be met by an imple-

mentation for derived blocks.

1. A derived block bound to a user complex block can not be released. The derived block
is released when the complex block it is bound to is released.

2. A derived block bound to a user complex block can not be admitted. The derived block
is admitted when the complex block it is bound to is admitted.

View Requirements
A view is a VSIPL type representing some portion of the data in a block. A block can have

many views bound to it; however a view can only be bound to a single block.

When a view is created it is bound to a block There is no method in VSIPL 1.0 to create a view
that is not bound to a block. A view must have a user attribute which defines the block the view
is bound to. The views block attribute is not setable by the application after the views initial

creation.

A view must have an offset attribute which indicates the number of elements from the begin-

ning of the block where the first element of the view is located within the block. The offset
attribute is indexed starting at zero so that an offset of zero implies the first element of the

view is the first element of the block. The offset attribute is setable by the application.

A view will have one or more stride attributes. The magnitude of the stride attribute defines

the distance between two consecutive elements in some view dimension. For example, the row

stride indicates how many elements (through the block) from one element in the row to the

next element in the row. The distance defined is through the block. The sign of the stride
SP VSIPL Core Plus DRAFT A-9

DRAFT
attribute defines what direction the view description moves through the block as the index

value of the view description increases. A stride of zero must be supported. The stride

attribute is settable

A view will have a length attribute for each stride attribute. A length attribute is a positive

integer describing the number of elements in the dimension direction, such as the number of

elements in the row of a matrix. The length attribute is settable.

For vectors there is only one dimension so there is only one stride, and one length. For matri-

ces there are two view dimensions, so there are two strides, and two lengths. For three tensors

there are three strides and three lengths.

Additional information on offset, stride, and length attributes are available in the functionality

document.

Complex Views and Derived Real Views.

It is required that it be possible to create a derived view of the real or imaginary portion of a

complex view. Note that this is not a copy. Replacing an element in the real or imaginary view
derived from the complex view replaces the corresponding element in the complex view. Simi-

larly replacing a complex element in the complex view replaces the corresponding element in

the real and imaginary view. The real view and imaginary view of the complex view are real

and are not complex. They must be bound to a block of type vsip_block_p. The real block

bound to the real or imaginary view of a complex view is termed a derived block since it is

derived from the complex block.

The method of instantiating a derived block is implementation dependent.

Note: Because of the implementation dependent nature of derived blocks the stride and offset
of derived views are not determined until after the view is created.

User Data
This section covers the required data layout of user data arrays. The implementation devel-

oper must support, and the application developer must use, the required data array formats for

user data. These formats allow for portable input of user data into VSIPL, and portable output

of VSIPL results to the application.

For float the user data array is a contiguous memory segment of type vsip_scalar_f.

For integer the user data array is a contiguous memory segment of type vsip_scalar_i.

For boolean the user data array is a contiguous memory segment of type vsip_scalar_bl.

For vector index the user data array is a contiguous memory segment of type

vsip_scalar_vi.

For matrix index the user data array is a contiguous memory segment of type

vsip_scalar_vi. The matrix index element in a user data array is two consecutive elements

of type vsip_scalar_vi. The first element is the row index, the second is the column index.

Note that the matrix index element in a user data array is not the same as vsip_scalar_mi.

This corresponds to the interleaved method described below for complex.
A-10 DRAFT TASP VSIPL Core Plus

DRAFT

TA
For tensor index the user data array is a contiguous memory segment of type

vsip_scalar_vi. The tensor index element in a user data array is three consecutive elements

of type vsip_scalar_vi. The first value in the element is the leg index, the second is the row

index, and the third is the column index. Note that the tensor index element in a user data array

is not the same as vsip_scalar_ti.

For complex float or complex integer the user data array is either interleaved or split as

described below. Both the interleaved and split formats must be supported for user data. Note

that the data format for complex float user data arrays is not of type vsip_cscalar_p

Interleaved: The user data array is a contiguous memory segment of type

vsip_scalar_p. The complex element is two consecutive elements of type

vsip_scalar_p. The first element is real, the second imaginary.

Split: The user data array consists of two contiguous memory segments of equal

length, each of type vsip_scalar_p. The order of the arguments when the data is

bound to a block determines the real and imaginary portions.

Development mode requirements
The functionality portion of VSIP 1.0 has required error checks for development mode. The

basic requirement is that the implementation developer of a library supporting development

mode must maintain sufficient information within the implementation to support the required

error checks for every function supported by the implementation.
SP VSIPL Core Plus DRAFT A-11

DRAFT

A-12 DRAFT TASP VSIPL Core Plus

	TITLE PAGE
	TABLE OF CONTENTS
	REQUIRED CORE PUBLIC TYPES
	CORE FUNCTION LIST
	CHAPTER 1 Introduction To TASP VSIPL Core Plus Implementation
	Introduction
	Code History
	TASP and the TASP COE
	The VSIP Library Effort and the VSIPL Forum
	The TASP VSIPL Demonstration Library
	The Core Profile

	VSIP Fundamentals
	VSIPL Initialization and Finalization
	VSIPL Objects and Data Types

	A Simple First Example
	Add two vectors example.

	List of Acronyms

	CHAPTER 2 Functions
	Introduction
	Required Core Public Types
	alg_hint
	bias
	chol_attr
	cmplx_mem
	conv1d_attr
	corr1d_attr
	fir_attr
	fft_attr
	fft_dir
	fft_place
	fftm_attr
	lu_attr
	major
	mat_op
	mat_side
	mattr
	memory_hint
	obj_state
	qrd_attr
	qrd_prob
	qrd_qopt
	support_region
	symmetry
	vattr
	rng

	Core Function List
	acos
	add
	alldestroy
	alltrue
	and
	anytrue
	arg
	asin
	atan
	atan2
	bind
	blackman
	blockadmit
	blockbind
	blockcreate
	blockdestroy
	blockfind
	blockrebind
	blockrelease
	cheby
	chold
	cloneview
	cmplx
	clip
	cmagsq
	cmaxmgsq
	cmaxmagsqval
	cminmgsq
	cminmagsqval
	copy
	colview
	conj
	convolve
	correlate
	cos
	covsol
	create
	cstorage
	destroy
	diagview
	div
	dot
	euler
	exp
	exp10
	expoavg
	fft
	fftm
	fill
	finalize
	fir
	gather
	gemp
	gems
	get
	getattrib
	getblock
	getcollength
	getcolstride
	getlength
	getoffset
	getrowlength
	getrowstride
	getstride
	hanning
	histo
	hypot
	imag
	imagview
	indexbool
	init
	invclip
	kaiser
	llsqsol
	log
	log10
	logical
	lud
	mag
	matindex
	max
	maxmg
	maxmgval
	maxval
	meansqval
	meanval
	mherm
	min
	minmg
	minmgval
	minval
	modulate
	mprod
	mtrans
	mul
	neg
	not
	or
	outer
	polar
	put
	putattrib
	putcollength
	putcolstride
	putoffset
	putrowlength
	putrowstride
	putstride
	putlength
	qrd
	ramp
	rand
	real
	realview
	recip
	rect
	rowview
	rsqrt
	scatter
	sin
	sq
	sqrt
	sub
	subview
	sumsqval
	sumval
	swap
	tan
	Ternary Functions
	toepsol
	transview
	xor

	CHAPTER 3 Introduction to VSIPL Programming using the Core Lite Profile
	Introduction
	Support Functions
	Block Creation
	Vector Creation
	Other methods of view creation and view modification.
	Viewing the Real and Imaginary portions of a Complex Vector

	VSIPL Input and Output Methods
	Rebinding user data to a user block
	I/O Example
	Complex User Data

	Scalar Functions
	VSIPL Elementwise Functions
	Random Number Generation

	Signal Processing Functions
	The Fourier Transform
	The Finite Impulse Response Filter
	Summary

	CHAPTER 4 Introduction to VSIPL Matrices
	Introduction
	Matrix Fundamentals
	A Matrix
	Matrix Views
	Matrix Creation
	Extracting Vector views from Matrix Views
	Fundamental Matrix Calculation

	Simple Matrix Manipulations
	A Simple Print Function
	General Elementwise Matrix Operation Using Row or Column View

	CHAPTER 5 Introduction to Vector Index Views, Boolean views, Gather, Scatter, and Indexbool
	Introduction
	Vector Index Views
	Vector Boolean Views
	A first example using the scalar vector index

	Boolean and Vector Index Views
	Gather and Scatter

	CHAPTER 6 Signal Processing Functionality in the VSIPL Core Profile
	Introduction
	Window Creation
	Convolution, Correlation and FIR Filtering
	Correlation
	Convolution

	Fourier Transforms
	Wavenumber/Frequency plot
	Demonstration for

	CHAPTER 7 Linear Algebra Functionality in the VSIPL Core Profile
	Introduction
	Simple Matrix-Matrix and Vector-Matrix Operations
	Simple Solvers
	Covariance Problem
	Linear Least Squares Problem
	Toeplitz System

	LU decomposition function set
	Cholesky Decomposition Function set
	QR Decomposition Function set
	The Q product function
	The R solver function

	Final Remarks for Linear Algebra.

	INDEX
	Appendix A VSIPL Fundamentals
	VSIPL Fundamentals
	Introduction
	VSIPL Naming Convention and Functionality Requirements
	Basic Data Types
	Block Requirements
	1. A derived block bound to a user complex block can not be released. The derived block is releas...
	2. A derived block bound to a user complex block can not be admitted. The derived block is admitt...

	View Requirements
	User Data
	Development mode requirements

