Arithmetic.Equal
symmetric :: forall (m :: Nat) (n :: Nat). (m :=: n) -> n :=: m #
plusR :: forall (c :: Natural) (m :: Nat) (n :: Nat). (m :=: n) -> (m + c) :=: (n + c) #
plusL :: forall (c :: Natural) (m :: Nat) (n :: Nat). (m :=: n) -> (c + m) :=: (c + n) #
plusR# :: forall (c :: Natural) (m :: Nat) (n :: Nat). (m :=:# n) -> (m + c) :=:# (n + c) #
plusL# :: forall (c :: Natural) (m :: Nat) (n :: Nat). (m :=:# n) -> (c + m) :=:# (c + n) #
lift :: forall (m :: Nat) (n :: Nat). (m :=:# n) -> m :=: n #