statistics-0.16.3.0: A library of statistical types, data, and functions
Copyright(c) 2015 Mihai Maruseac
LicenseBSD3
Maintainermihai.maruseac@maruseac.com
Stabilityexperimental
Portabilityportable
Safe HaskellNone
LanguageHaskell2010

Statistics.Distribution.Laplace

Description

The Laplace distribution. This is the continuous probability defined as the difference of two iid exponential random variables or a Brownian motion evaluated as exponentially distributed times. It is used in differential privacy (Laplace Method), speech recognition and least absolute deviations method (Laplace's first law of errors, giving a robust regression method)

Synopsis

Documentation

data LaplaceDistribution #

Instances

Instances details
FromJSON LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

ToJSON LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Binary LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Data LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LaplaceDistribution -> c LaplaceDistribution #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LaplaceDistribution #

toConstr :: LaplaceDistribution -> Constr #

dataTypeOf :: LaplaceDistribution -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LaplaceDistribution) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LaplaceDistribution) #

gmapT :: (forall b. Data b => b -> b) -> LaplaceDistribution -> LaplaceDistribution #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LaplaceDistribution -> r #

gmapQ :: (forall d. Data d => d -> u) -> LaplaceDistribution -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LaplaceDistribution -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LaplaceDistribution -> m LaplaceDistribution #

Generic LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Associated Types

type Rep LaplaceDistribution 
Instance details

Defined in Statistics.Distribution.Laplace

type Rep LaplaceDistribution = D1 ('MetaData "LaplaceDistribution" "Statistics.Distribution.Laplace" "statistics-0.16.3.0-JhFVwN7Kv9y2XSvDlj54t" 'False) (C1 ('MetaCons "LD" 'PrefixI 'True) (S1 ('MetaSel ('Just "ldLocation") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "ldScale") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double)))
Read LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Show LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Eq LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

ContDistr LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

ContGen LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Distribution LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Entropy LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

MaybeEntropy LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

MaybeMean LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

MaybeVariance LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Mean LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

Variance LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

FromSample LaplaceDistribution Double #

Create Laplace distribution from sample. The location is estimated as the median of the sample, and the scale as the mean absolute deviation of the median.

Instance details

Defined in Statistics.Distribution.Laplace

Methods

fromSample :: Vector v Double => v Double -> Maybe LaplaceDistribution #

type Rep LaplaceDistribution # 
Instance details

Defined in Statistics.Distribution.Laplace

type Rep LaplaceDistribution = D1 ('MetaData "LaplaceDistribution" "Statistics.Distribution.Laplace" "statistics-0.16.3.0-JhFVwN7Kv9y2XSvDlj54t" 'False) (C1 ('MetaCons "LD" 'PrefixI 'True) (S1 ('MetaSel ('Just "ldLocation") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "ldScale") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Double)))

Constructors

laplace #

Arguments

:: Double

Location

-> Double

Scale

-> LaplaceDistribution 

Create an Laplace distribution.

laplaceE #

Arguments

:: Double

Location

-> Double

Scale

-> Maybe LaplaceDistribution 

Create an Laplace distribution.

Accessors