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Chapter 1:
Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but can
be used by anybody whose primary need is speed.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared
to systems like Axiom, Macsyma, Maple, Mathematica or Reduce on such tasks (e.g. multivariate
polynomials, formal integration, etc. . . ). On the other hand, the three main advantages of the sys-
tem are its speed, the possibility of using directly data types which are familiar to mathematicians,
and its extensive algebraic number theory module which has no equivalent in the above-mentioned
systems.

PARI is used in three different ways:

1) as a library, which can be called from an upper-level language application, for instance
written in ANSI C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler GP2C translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by GP2C runs 3 to 10 times faster. The generated C code can be edited
and optimized by hand. It may also be used as a tutorial to library programming.

The present Chapter 1 gives an overview of the PARI/GP system; GP2C is distributed sepa-
rately and comes with its own manual. Chapter 2 describes the GP programming language and the
gp calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet (User’s Guide to the PARI library ,
libpari.dvi).

Important note. A tutorial for gp is provided in the standard distribution (A tutorial for
PARI/GP , tutorial.dvi) and you should read this first. You can then start over and read
the more boring stuff which lies ahead. You can have a quick idea of what is available by looking at
the gp reference card (refcard.dvi or refcard.ps). In case of need, you can refer to the complete
function description in Chapter 3.

How to get the latest version? Everything can be found on PARI’s home page:

http://pari.math.u-bordeaux.fr/

From that point you may access all sources, some binaries, version informations, the complete
mailing list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs? Bugs are submitted online to our Bug Tracking System, available from
PARI’s home page, or directly from the URL

http://pari.math.u-bordeaux.fr/Bugs

Further instructions can be found on that page.
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1.2 The PARI types.

The GP language is not typed in the traditional sense (it is dynamically typed); in particular,
variables have no type. In library mode, the type of all PARI objects is GEN, a generic type. On
the other hand, each object has a specific internal type, depending on the mathematical object it
represents.

The crucial word is recursiveness: most of the types PARI knows about are recursive. For
example, the basic internal type t_COMPLEX exists. However, the components (i.e. the real and
imaginary part) of such a “complex number” can be of any type. The only sensible ones are
integers (we are then in Z[i]), rational numbers (Q[i]), real numbers (R[i] = C), or even elements
of Z/nZ (in (Z/nZ)[t]/(t2 + 1)), or p-adic numbers when p ≡ 3 mod 4 (Qp[i]).

This feature must not be used too rashly in library mode: for example you are in principle
allowed to create objects which are “complex numbers of complex numbers”. (This is not possible
under gp.) But do not expect PARI to make sensible use of such objects: you will mainly get
nonsense.

On the other hand, one thing which is allowed is to have components of different, but com-
patible, types. For example, taking again complex numbers, the real part could be of type integer,
and the imaginary part of type rational. By compatible, we mean types which can be freely mixed
in operations like + or ×. For example if the real part is of type real, the imaginary part cannot
be of type intmod (integers modulo a given number n).

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T to designate any type; the symbolic names t_xxx

correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)
type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Intmods (integers modulo n)
type t_FRAC Q Rational numbers (in irreducible form)
type t_COMPLEX T [i] Complex numbers
type t_PADIC Qp p-adic numbers
type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD T [X]/P (X)T [X] Polmods (polynomials modulo P )
type t_POL T [X] Polynomials
type t_SER T ((X)) Power series (finite Laurent series)
type t_RFRAC T (X) Rational functions (in irreducible form)
type t_VEC Tn Row (i.e. horizontal) vectors
type t_COL Tn Column (i.e. vertical) vectors
type t_MAT Mm,n(T ) Matrices
type t_LIST Tn Lists
type t_STR Character strings

and where the types T in recursive types can be different in each component.

The internal type t_VECSMALL, holds vectors of small integers, whose absolute value is bounded
by 231 (resp. 263) on 32-bit, resp. 64-bit, machines. They are used internally to represent permu-
tations, polynomials or matrices over a small finite field, etc.

In addition, there exist types t_QFR and t_QFI for binary quadratic forms of respectively
positive and negative discriminants, which can be used in specific operations, but which may
disappear in future versions.
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Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.2.1 Integers and reals: they are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered inexistent):
integers must be in absolute value less than 2268435454 (i.e. roughly 80807123 digits). The precision
of real numbers is also at most 80807123 significant decimal digits, and the binary exponent must
be in absolute value less than 229.

Note that PARI has been optimized so that it works as fast as possible on numbers with at most
a few thousand decimal digits. In particular, the native PARI kernel does not contain asymptotically
fast DFT-based techniques Hence, although it is possible to use PARI to do computations with 107

decimal digits, better programs can be written for such huge numbers. At the very least the GMP
kernel should be used at this point. (For reasons of backward compatibility, we cannot enable GMP
by default, but you probably should enable it.)

Integers and real numbers are non-recursive types and are sometimes called leaves.

1.2.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions:
these are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” pk, and an ap-
proximation to the p-adic number. Here Zp is considered as the projective limit lim←−Z/pkZ (via

its finite quotients), and Qp as its field of fractions. Like real numbers, the codewords contain an
exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with pk, but is included for the sake of efficiency.

1.2.3 Complex numbers and quadratic numbers: quadratic numbers are numbers of the
form a+ bw, where w is such that [Z[w] : Z] = 2, and more precisely w =

√
d/2 when d ≡ 0 mod 4,

and w = (1 +
√
d)/2 when d ≡ 1 mod 4, where d is the discriminant of a quadratic order. Complex

numbers correspond to the important special case w =
√
−1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Qp[i], but this is equal to Qp when p ≡ 1 mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.
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1.2.4 Polynomials, power series, vectors, matrices and lists: they are completely recur-
sive: their components can be of any type, and types can be mixed (however beware when doing
operations). Note in particular that a polynomial in two variables is simply a polynomial with
polynomial coefficients.

In the present version 2.3.5 of PARI, there are bugs in the handling of power series of power
series, i.e. power series in several variables. However power series of polynomials (which are power
series in several variables of a special type) are OK. This bug is difficult to correct because the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.2.5 Strings: These contain objects just as they would be printed by the gp calculator.

1.2.6 Notes:

1.2.6.1 Exact and imprecise objects: we have already said that integers and reals are called
the leaves because they are ultimately at the end of every branch of a tree representing a PARI
object. Another important notion is that of an exact object: by definition, numbers of basic type
real, p-adic or power series are imprecise, and we will say that a PARI object having one of these
imprecise types anywhere in its tree is not exact. All other PARI objects will be called exact. This
is an important notion since no numerical analysis is involved when dealing with exact objects.

1.2.6.2 Scalar types: the first nine basic types, from t_INT to t_POLMOD, will be called scalar
types because they essentially occur as coefficients of other more complicated objects. Note that
type t_POLMOD is used to define algebraic extensions of a base ring, and as such is a scalar type.

1.2.6.3 What is zero? This is a crucial question in all computer systems. The answer we give in
PARI is the following. For exact types, all zeros are equivalent and are exact, and thus are usually
represented as an integer zero. The problem becomes non-trivial for imprecise types. For p-adics
the answer is as follows: every p-adic number, including 0, has an exponent e and a “mantissa” (a
purist would say a significand) u which is a p-adic unit, except when the number is zero (in which
case u is zero), the significand having a certain precision of k “significant words” (i.e. being defined
modulo pk). Then this p-adic zero is understood to be equal to O(pe), i.e. there are infinitely many
distinct p-adic zeros. The number k is thus irrelevant.

For power series the situation is similar, with p replaced by X, i.e. a power series zero will be
O(Xe), the number k (here the length of the power series) being also irrelevant.

For real numbers, the precision k is also irrelevant, and a real zero will in fact be O(2e) where
e is now usually a negative binary exponent. This of course will be printed as usual for a floating
point number (0.0000 · · · in f format or 0.Exx in e format) and not with a O symbol as with
p-adics or power series. With respect to the natural ordering on the reals we make the following
convention: whatever its exponent a real zero is smaller than any positive number, and any two
real zeroes are equal.
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1.3 Multiprecision kernels / Portability.

(You can skip this section if you are not interested in hardware technicalities.)

The PARI multiprecision kernel comes in three non exclusive flavours. See Appendix A for
how to set up these on your system; various compilers are supported, but the GNU gcc compiler
is the definite favourite.

A first version is written entirely in ANSI C, with a C++-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

• the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

• three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc II version;

• the DEC Alpha 64-bit processor;

• the Intel Itanium 64-bit processor;

• the PowerPC equipping modern macintoshs (G3, G4, etc.);

• the HPPA processors (both 32 and 64 bit);

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves significantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the first version are still in
use within the GMP kernel, but are scheduled to disappear.

An historical version of the PARI/GP kernel, written in 1985, was specific to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, one should now use the GMP kernel.

1.4 The PARI philosophy.

The basic principle which governs PARI is that operations and functions should, firstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

Specifically, an exact operation between exact objects will yield an exact object. For example,
dividing 1 by 3 does not give 0.33333 · · ·, but simply the rational number (1/3). To get the result
as a floating point real number, evaluate 1./3 or add 0. to (1/3).

Conversely, the result of operations between imprecise objects will be as precise as possible.
Consider for example the addition of two real numbers x and y. The accuracy of the result is a
priori unpredictable; it depends on the precisions of x and y, on their sizes, and also on the size of
x + y. From this data, PARI works out the right precision for the result. Even if it is working in
calculator mode gp where there is a notion of default precision, which is only used to convert exact
types to inexact ones.
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In particular, this means that if an operation involves objects of different accuracies, some
digits will be disregarded by PARI. It is a common source of errors to forget, for instance, that a
real number is given as r + 2eε where r is a rational approximation, e a binary exponent and ε is
a nondescript real number less than 1 in absolute value*. Hence, any number less than 2e may be
treated as an exact zero:

? 0.E-28 + 1.E-100

%1 = 0.E-28

? 0.E100 + 1

%2 = 0.E100

As an exercise, if a = 2^(-100), why do a + 0. and a * 1. differ ?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that a
computation comes out with a result which is a vector with many components, and one wants to
get the exponential of each one. This could easily be done either under gp or in library mode, but
in fact PARI assumes that this is exactly what you want to do when you take the exponential of a
vector, so no work is necessary. Most transcendental functions work in the same way (see Chapter
3 for details).

An ambiguity would arise with square matrices. PARI always considers that you want to do
componentwise function evaluation, hence to get for example the exponential of a square matrix
you would need to use a function with a different name, matexp for instance. In the present version
2.3.5, this is not implemented.

1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, -, *, / exist. It should once more be emphasized that
division is, as far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this,
operations on integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist
(and for integers, \/ computes the quotient such that the remainder has smallest possible absolute
value). There is also the exponentiation operator ^, when the exponent is of type integer; otherwise,
it is considered as a transcendental function. Finally, the logical operators ! (not prefix operator),
&& (and operator), || (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc. . . . Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

* this is actually not quite true: internally, the format is 2b(a+ ε), where a and b are integers
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1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
everexpanding and of course contains all the elementary functions, plus many others. Recall that
by extension, PARI usually allows a transcendental function to operate componentwise on vectors
or matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks’s SQUFOF, Pollard’s rho, Lenstra’s ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certified by the APRCL test.

There is also a large package to work with algebraic number fields. All the usual operations
on elements, ideals, prime ideals, etc. . . are available.

More sophisticated functions are also implemented, like solving Thue equations, finding integral
bases and discriminants of number fields, computing class groups and fundamental units, computing
in relative number field extensions, class field theory, and also many functions dealing with elliptic
curves over Q or over local fields.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included. See the last sections of Chapter 3 for details.

And now, you should really have a look at the tutorial before proceeding.
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Chapter 2:

Specific Use of the gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library, and not much
thought had been given to making it user-friendly. The situation has changed, and gp is very useful
as a stand-alone tool. The operations and functions available in PARI and gp are described in the
next chapter. In the present one, we describe the specific use of the gp programmable calculator.

EMACS: If you have GNU Emacs, you can work in a special Emacs shell, described in Section 2.14. Specific
features of this Emacs shell are indicated by an EMACS sign in the left margin.

2.1.1 Startup

To start the calculator, the general command line syntax is:

gp [-s stacksize] [-p primelimit] [files]

where items within brackets are optional. The [files] argument is a list of files written in the GP
scripting language, which will be loaded on startup. The ones starting with a minus sign are flags,
setting some internal parameters of gp, or defaults. See Section 2.11 below for a list and explanation
of all defaults, there are many more than just those two. These defaults can be changed by adding
parameters to the input line as above, or interactively during a gp session or in a preferences file
(also known as gprc).

If a preferences file (or gprc, to be discussed in Section 2.13) can be found, gp then read its and
execute the commands it contains. This provides an easy way to customize gp. The files argument
is processed right after the gprc.

A copyright message then appears which includes the version number, and a lot of useful
technical information. After the copyright, the computer writes the top-level help information,
some initial defaults, and then waits after printing its prompt, which is ’? ’ by default . Whether
extended on-line help and line editing are available or not is indicated in this gp banner, between
the version number and the copyright message. Consider investigating the matter with the person
who installed gp if they are not. Do this as well if there is no mention of the GMP kernel.

2.1.2 Getting help

To get help, type a ? and hit return. A menu appears, describing the eleven main categories
of available functions and how to get more detailed help. If you now type ?n with 1 ≤ n ≤ 11,
you get the list of commands corresponding to category n and simultaneously to Section 3.n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.12.1) is available on your system, you can double or triple the ?

sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ???"elliptic curve" or ???"quadratic field").
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If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15.1 or ??readline for a short summary
of the line editor’s commands.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing ?. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

As a general rule, under gp, commands starting with \ or with some other symbols like ? or
#, are not computing commands, but are metacommands which allow you to exchange information
with gp. The available metacommands can be divided into default setting commands (explained
below) and simple commands (or keyboard shortcuts, to be dealt with in Section 2.12).

2.1.3 Input

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: this will hide the result from you! (Which is certainly useful if it occupies
several screens.)

2.1.4 Interrupt, Quit

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C

(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

*** gcd: user interrupt after 840 ms.

telling you how much time ellapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that specific function when you stopped it.

2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc. . . are functions*, and the main loop does not really execute, but
rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.
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2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15.1 for a description of the line editor.
When you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns
it to an “history” array if it is not void (see next section).

More precisely, you input either a metacommand or a sequence of expressions. Metacommands,
described in Section 2.12, are not part of the GP language and are simple shortcuts designed to
alter gp’s internal state (such as the working precision or general verbosity level), or speed up
input/output.

An expression is formed by combining constants, variables, operator symbols, functions (in-
cluding user-defined functions) and control statements. It always has a value, which can be any
PARI object. There is a distinction between lowercase and uppercase. Also, outside of character
strings, blanks are completely ignored in the input to gp. An expression is evaluated using the
conventions about operator priorities and left to right associativity.

Several expressions are combined on a single line by separating them with semicolons (’;’).
Such an expression sequence will be called simply a seq . A seq also has a value, which is the value
of the last expression in the sequence. Under gp, the value of the seq , and only this last value,
becomes an history entry. The values of the other expressions in the seq are discarded after the
execution of the seq is complete, except of course if they were assigned into variables. In addition,
the value of the seq is printed if the line does not end with a semicolon ;.

2.2.2 The gp history.

This is not to be confused with the history of your commands, maintained by readline. It
only contains their non-void results, in sequence. Several inputs only act through side effects and
produce a void result, for instance a print statement, a for loop, or a function definition.

The successive elements of the history array are called %1, %2, . . .As a shortcut, the latest
computed expression can also be called %, the previous one %‘, the one before that %‘‘ and so on.
The total number of history entries is %#.

When you suppress the printing of the result with a semicolon, its history number will not
appear either, so it is often a better idea to assign it to a variable for later use than to mentally
recompute what its number is. Of course, on the next line, just use % as usual.

This history “array” is in fact better thought of as a queue: its size is limited to 5000 entries
by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as gp

prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
gp executes your commands as soon as you have finished typing them, there must be a way to tell
it to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is simply to use the backslash character \ at the end of the line that you are
typing, just before hitting <Return>. This tells gp that what you will write on the next line is
the physical continuation of what you have just written. In other words, it makes gp forget your
newline character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

? 3 + \

4

29



instead of typing 3 + 4.

The second one is a slight variation on the first, and is mostly useful when defining a user
function (see Section 2.6): since an equal sign can never end a valid expression, gp disregards a
newline immediately following an =.

? a =

123

%1 = 123

The third one cannot be used everywhere, but is in general much more useful. It is the use of
braces { and }. An opening brace ({) at the beginning of a line (modulo spaces as usual) signals
that you are typing a multi-line command, and newlines are ignored until you type a closing brace
}. There is an important, but easily obeyed, restriction: inside an open brace-close brace pair, all
your input lines are concatenated, suppressing any newlines. Thus, all newlines should occur after
a semicolon (;), a comma (,) or an operator (for clarity’s sake, we don’t recommend splitting an
identifier over two lines in this way). For instance, the following program

{

a = b

b = c

}

would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of c to
both bb and a.

2.3 The PARI types.

We see here how to input values of the different data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on efficiency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more efficient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product

∑
i+j=n xiyj in

Z/NZ (common when multiplying polynomials!), it is wasteful to perform n reductions modulo
N . In short, basic individual operations on these types are fast, but recursive objects with such
components could be handled more efficiently: programming with libpari will save large constant
factors here, compared to GP.

2.3.1 Integers (type t_INT): type the integer (with an initial + or -, if desired) with no decimal
point.

2.3.2 Real numbers (type t_REAL): type the number with a decimal point. The internal precision
of the real number is the supremum of the input precision and the default precision. For example,
if the default precision is 28 digits, typing 2. gives a number with internal precision 28, but typing
a 45 significant digit real number gives a number with internal precision at least 45, although less
may be printed.

You can also use scientific notation with the letter E or e, in which case the (non leading)
decimal point may be omitted (like 6.02 E 23 or 1e-5, but not e10). By definition, 0.E N (or 0

E N) returns a real 0 of (decimal) exponent N , whereas 0. returns a real 0 “of default precision”
(of exponent −realprecision), see Section 1.2.6.3.
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2.3.3 Intmods (type t_INTMOD): to enter nmodm, type Mod(n,m), not n%m. Internally, all oper-
ations are done on integer representatives belonging to [0,m− 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo m.

2.3.4 Rational numbers (types t_FRAC): all fractions are automatically reduced to lowest terms,
so it is impossible to work with reducible fractions. To enter n/m just type it as written. As
explained in Section 3.1.4, division is not performed, only reduction to lowest terms.

Note that this type is available for convenience, not for speed: each elementary operation
involves computing a gcd.

2.3.5 Complex numbers (type t_COMPLEX): to enter x+iy, type x + I*y (not x+i*y). The letter
I stands for

√
−1. Recall from Chapter 1 that x and y can be of type t_INT, t_REAL, t_INTMOD,

t_FRAC, or t_PADIC.

2.3.6 p-adic numbers (type t_PADIC): to enter a p-adic number, simply write a rational or integer
expression and add to it O(p^k), where p and k are integers. This last expression indicates three
things to gp: first that it is dealing with a t_PADIC type (the fact that p is an integer, and not a
polynomial, which would be used to enter a series, see Section 2.3.10), secondly the prime p, and
finally the number of significant p-adic digits k.

Note that it is not checked whether p is indeed prime but results are undefined if this is not the
case: you can work on 10-adics if you want, but disasters will happen as soon as you do something
non-trivial like taking a square root. Note that O(25) is not the same as O(5^2); you want the
latter!

For example, you can type in the 7-adic number

2*7^(-1) + 3 + 4*7 + 2*7^2 + O(7^3)

exactly as shown, or equivalently as 905/7 + O(7^3).

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some pk. Each elementary operation involves updating pk (multiplying or
dividing by powers of p) and a reduction mod pk. In particular additions are slow.

? n = 1+O(2^20); for (i=1,10^5, n++)

time = 86 ms.

? n = Mod(1,2^20); for (i=1,10^5, n++)

time = 48 ms.

? n = 1; for (i=1,10^5, n++)

time = 38 ms.
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2.3.7 Quadratic numbers (type t_QUAD): first, you must define the default quadratic order or
field in which you want to work. This is done using the quadgen function, in the following way.
Write something like

w = quadgen(d)

where d is the discriminant of the quadratic order in which you want to work (hence d is congruent
to 0 or 1 modulo 4). The name w is of course just a suggestion, but corresponds to traditional usage.
You can use any variable name that you like. However, quadratic numbers are always printed with
a w, regardless of the discriminant. So beware, two numbers can be printed in the same way and
not be equal. However gp will refuse to add or multiply them for example.

Now (1, w) is the “canonical” integral basis of the quadratic order (i.e. w =
√
d/2 if d ≡ 0 mod 4,

and w = (1 +
√
d)/2 if d ≡ 1 mod 4, where d is the discriminant), and to enter x+ yw you just type

x + y*w.

2.3.8 Polmods (type t_POLMOD): exactly as for intmods, to enter xmod y (where x and y are
polynomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one
variable, polmods whose modulus is y are simply algebraic numbers in the finite extension defined
by the polynomial y. This allows us to work easily in number fields, finite extensions of the p-adic
field Qp, or finite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y.

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]/(y) is represented by its representative of lowest degree,
which is a t_POL in R[t], and computations occur with polynomials in the variable t. PARI will not
recognize that Mod(y, y^2 + 1) is “the same” as Mod(x, x^2 + 1), since x and y are different
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.4 for a definition of “priority” and a discussion of (PARI’s
idea of) multivariate polynomial arithmetic. For instance:

? Mod(x, x^2+ 1) + Mod(x, x^2 + 1)

%1 = Mod(2*x, x^2 + 1) \\ 2i (or −2i), with i2 = −1
? x + Mod(y, y^2 + 1)

%2 = x + Mod(y, y^2 + 1) \\ in Q(i)[x]
? y + Mod(x, x^2 + 1)

%3 = Mod(x + y, x^2 + 1) \\ in Q(y)[i]

The first two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.

If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? x + Mod(x, x^2 + 1)

%1 = Mod(2*x, x^2 + 1)
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2.3.9 Polynomials (type t_POL): type the polynomial in a natural way, not forgetting to put a
“∗” between a coefficient and a formal variable (this ∗ does not appear in beautified output). Any
variable name can be used except for the reserved names I (used exclusively for the square root
of −1), Pi (3.14 . . .), Euler (Euler’s constant), and all the function names: predefined functions,
as described in Chapter 3 (use \c to get the complete list of them) and user-defined functions,
which you ought to know about (use \u if you are subject to memory lapses). The total number of
different variable names is limited to 16384 and 65536 on 32-bit and 64-bit machines respectively,
which should be enough. If you ever need hundreds of variables, you should probably be using
vectors instead. See Section 2.5.4 for a discussion of multivariate polynomial rings.

2.3.10 Power series (type t_SER): type a rational function or polynomial expression and add to
it O(expr^k), where expr is an expression which has non-zero valuation (it can be a polynomial,
power series, or a rational function; the most common case being simply a variable name). This
indicates to gp that it is dealing with a power series, and the desired precision is k times the
valuation of expr with respect to the main variable of expr . (To check the ordering of the variables,
or to modify it, use the function reorder; see Section 3.11.2.23.)

Caveat. Power series with inexact coefficients sometimes have a non-intuitive behaviour: if k
significant terms are requested, an inexact zero is counted as significant, even if it is the coefficient
of lowest degree. This means that useful higher order terms may be disregarded. If the series
precision is insufficient, errors may occur (mostly division by 0), which could have been avoided by
a better global understanding of the computation:

? A = 1/(y + 0.); B = 1. + O(y);

? B * denominator(A)

%2 = 0.E-28 + O(y)

? A/B

*** division by zero

? A*B

*** Warning: normalizing a series with 0 leading term.

*** division by zero

? A*(1/B)

*** Warning: normalizing a series with 0 leading term.

%3 = 1.000000000000000000000000000*y^-1 + O(1)

If a series with a zero leading coefficient must be inverted, then as a desperation measure that
coefficient is discarded, and a warning is issued:

? C = 0. + y + O(y^2);

? 1/C

*** Warning: normalizing a series with 0 leading term.

%2 = y^-1 + O(1)

The last result could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0. may represent any sufficiently small real number). But it was thought more
useful to try and go on with an approximate computation than to raise an early exception.

In the first example above, to compute A*(1/B), the denominator of A was converted to a
power series, then inverted.
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2.3.11 Rational functions (types t_RFRAC): as for fractions, all rational functions are automat-
ically reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid
here.

2.3.12 Binary quadratic forms of positive or negative discriminant (type t_QFR and
t_QFI): these are input using the function Qfb (see Chapter 3). For example Qfb(1,2,3) cre-
ates the binary form x2 + 2xy+ 3y2. It is imaginary (of internal type t_QFI) since 22 − 4 ∗ 3 = −8
is negative.

Although imaginary forms could be positive or negative definite, only positive definite forms
are implemented.

In the case of forms with positive discriminant (type t_QFR), you may add an optional fourth
component (related to the regulator, more precisely to Shanks and Lenstra’s “distance”), which
must be a real number. See also the function qfbprimeform which directly creates a prime form
of given discriminant (see Chapter 3).

2.3.13 Row and column vectors (types t_VEC and t_COL): to enter a row vector, type the
components separated by commas “,”, and enclosed between brackets “[ ” and “ ]”, e.g. [1,2,3].
To enter a column vector, type the vector horizontally, and add a tilde “˜” to transpose. [ ] yields
the empty (row) vector. The function Vec can be used to transform any object into a vector (see
Chapter 3).

2.3.14 Matrices (type t_MAT): to enter a matrix, type the components line by line, the components
being separated by commas “,”, the lines by semicolons “;”, and everything enclosed in brackets
“[ ” and “ ]”, e.g. [x,y; z,t; u,v]. [ ; ] yields the empty (0x0) matrix. The function Mat can
be used to transform any object into a matrix (see Chapter 3).

Note that although the internal representation is essentially the same (only the type number
is different), a row vector of column vectors is not a matrix; for example, multiplication will not
work in the same way.

Note also that it is possible to create matrices (by conversion of empty column vectors and
concatenation, or using the matrix function) with a given positive number of columns, each of
which has zero rows. It is not possible to create or represent matrices with zero columns and a
nonzero number of rows.

2.3.15 Lists (type t_LIST): lists cannot be input directly; you have to use the function listcreate

first, then listput each time you want to append a new element (but you can access the elements
directly as with the vector types described above). The function List can be used to transform
(row or column) vectors into lists (see Chapter 3).

2.3.16 Strings (type t_STR): to enter a string, just enclose it between double quotes ", like this:
"this is a string". The function Str can be used to transform any object into a string (see
Chapter 3).

2.3.17 Small vectors (type t_VECSMALL): this is an internal type, used to code in an efficient
way vectors containing only small integers, such as permutations. Most gp functions will refuse to
operate on these objects.
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2.3.18 Note on output formats. A zero real number is printed in e format as 0.Exx where xx
is the (usually negative) decimal exponent of the number (cf. Section 1.2.6.3). This allows the user
to check the accuracy of that particular zero.

When the integer part of a real number x is not known exactly because the exponent of x is
greater than the internal precision, the real number is printed in e format.

Note also that in beautified format, a number of type integer or real is written without enclosing
parentheses, while most other types have them. Hence, if you see the expression (3.14), it is not
of type real, but probably of type complex with zero imaginary part, or polynomial of degree 0 (to
be sure, use \x or the function type).

2.4 GP operators.

Loosely speaking, an operator is a function (usually associated to basic arithmetic operations) whose
name contains only non-alphanumeric characters. In practice, most of these are simple functions,
which take arguments, and return a value; assignment operators also have side effects. Each of these
has some fixed and unchangeable priority, which means that, in a given expression, the operations
with the highest priority is performed first. Operations at the same priority level are performed
in the order they were written, i.e. from left to right. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved independently of the surrounding context.
For instance, assuming that op1, op2, op3 are standard binary operators with increasing priorities
(think of +, *, ^ for instance),

x op1 y op2 z op2 x op3 y

is equivalent to
x op1 ((y op2 z) op2 (x op3 y)).

GP contains quite a lot of different operators, some of them unary (having only one argument),
some binary, plus special selection operators. Unary operators are defined for either prefix (pre-
ceding their single argument: op x) or postfix (following the argument: x op) position, never both
(some are syntactically correct in both positions, but with different meanings). Binary operators all
use the syntax x op y. Most of them are well known, some are borrowed from C syntax, and a few
are specific to GP. Beware that some GP operators may differ slightly from their C counterparts.
For instance, GP’s postfix ++ returns the new value, like the prefix ++ of C, and the binary shifts
<<, >> have a priority which is different from (higher than) that of their C counterparts. When in
doubt, just surround everything by parentheses. (Besides, your code will be more legible.)

Here is the complete list in order of decreasing priority, binary unless mentioned otherwise:

• Priority 10
++ and -- (unary, postfix): x++ assigns the value x + 1 to x, then returns the new value of

x. This corresponds to the C statement ++x (there is no prefix ++ operator in GP). x-- does the
same with x− 1.

• Priority 9
op=, where op is any simple binary operator (i.e. a binary operator with no side effects, i.e. one

of those defined below) which is not a boolean operator (comparison or logical). x op= y assigns
(x op y) to x, and returns the new value of x. This is not a reference to the variable x, i.e. an
lvalue; thus

(x += 2) = 3
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is invalid.

• Priority 8
= is the assignment operator. The result of x = y is the value of the expression y, which

is also assigned to the variable x. This is not the equality test operator; a statement like x = 1

is always true (i.e. non-zero), and sets x to 1. The right hand side of the assignment operator is
evaluated before the left hand side. If the left hand side cannot be modified, raise an error.

• Priority 7
[ ] is the selection operator. x[i] returns the i-th component of vector x; x[i,j], x[,j] and

x[i,] respectively return the entry of coordinates (i, j), the j-th column, and the i-th row of
matrix x. If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1][1] = 0 is valid; but beware that (x[1])[1]

= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modifiable).

• Priority 6
’ (unary, prefix): quote its argument (a variable name) without evaluating it.

? a = x + 1; x = 1;

? subst(a,x,1)

*** variable name expected: subst(a,x,1)

^---

? subst(a,’x,1)

%1 = 2

^: powering.

’ (unary, postfix): derivative with respect to the main variable. If f is a (GP or user) function,
f ′(x) is allowed. If x is a scalar, the operator performs numerical derivation, defined as (f(x +
ε)− f(x− ε))/2ε for a suitably small epsilon depending on current precision. It behaves as (f(x))′

otherwise.

~ (unary, postfix): vector/matrix transpose.

! (unary, postfix): factorial. x! = x(x− 1) · · · 1.

.member (unary, postfix): x.member extracts member from structure x (see Section 2.7).

• Priority 5
! (unary, prefix): logical not . !x return 1 if x is equal to 0 (specifically, if gcmp0(x)==1), and

0 otherwise.

# (unary, prefix): cardinality; #x returns length(x).

• Priority 4
+, - (unary, prefix): - toggles the sign of its argument, + has no effect whatsoever.

• Priority 3
*: multiplication.

/: exact division (3/2=3/2, not 1.5).

\, %: Euclidean quotient and remainder, i.e. if x = qy + r, with 0 ≤ r < y (if x and y are
polynomials, assume instead that deg r < deg y and that the leading terms of r and x have the
same sign), then x\y = q, x%y = r.
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\/: rounded Euclidean quotient for integers (rounded towards +∞ when the exact quotient
would be a half-integer).

<<, >>: left and right binary shift: x<<n = x ∗ 2n if n > 0, and x\/2−n otherwise. Right shift
is defined by x>>n = x<<(-n).

• Priority 2
+, -: addition/subtraction.

• Priority 1
<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For

instance, x<=1 returns 1 if x ≤ 1 and 0 otherwise.

<>, !=: test for (exact) inequality.

==: test for (exact) equality.

• Priority 0
&, &&: logical and .

|, ||: logical (inclusive) or . Any sequence of logical or and and operations is evaluated from
left to right, and aborted as soon as the final truth value is known. Thus, for instance,

x && test(1/x)

type(p) == "t_INT" && isprime(p)

will never produce an error since the second argument need not (and will not) be processed when
the first is already zero (false).

Remark: For optimal efficiency, you should use the ++, -- and op= operators whenever possible:

? a = 200000;

? i = 0; while(i<a, i=i+1)

time = 4,919 ms.

? i = 0; while(i<a, i+=1)

time = 4,478 ms.

? i = 0; while(i<a, i++)

time = 3,639 ms.

For the same reason, the shift operators should be preferred to multiplication:

? a = 1<<20000;

? i = 1; while(i<a, i=i*2);

time = 5,255 ms.

? i = 1; while(i<a, i<<=1);

time = 988 ms.
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2.5 Variables and symbolic expressions.

2.5.1 Variable names. In GP you can use up to 16383 variable names (up to 65535 on 64-bit
machines). A valid identifier name starts with a letter and contain only valid keyword characters:

or alphanumeric characters ([ A-Za-z0-9]). You may not use built-in function names; see the list
with \c, including the constants Pi, Euler and I =

√
−1.

Note that GP names are case sensitive. This means for instance that the symbol i is perfectly
safe to use, and will not be mistaken for

√
−1, and that o is not synonymous to O.

We will see in Section 2.6 that it is possible to restrict the use of a given variable by declaring
it to be global or local. This can be useful to enforce clean programming style, but is in no way
mandatory.

2.5.2 Vectors and matrices. If the variable x contains a vector or list, x[m] refers to its m-th
entry. You can assign a result to x[m] (i.e. write something like x[k] = expr). If x is a matrix,
x[m,n] referes to its (m,n) entry; you can assign a result to x[m,n], but not to x[m]. If you want
to assign an expression to the m-th column of a matrix x, use x[,m] = expr instead. Similarly,
use x[m, ] = expr to assign an expression to the m-th row of x. This process is recursive, so if x
is a matrix of matrices of . . . , an expression such as x[1,1][,3][4] = 1 is perfectly valid (and
actually identical to x[1,1][4,3] = 1), assuming that all matrices along the way have compatible
dimensions.

2.5.3 Variables and polynomials The main thing to understand is that PARI/GP is not a
symbolic manipulation package. One of the main consequences of this fact is that all expressions
are evaluated as soon as they are written, they never stay in an abstract form*. As an important
example, consider what happens when you use a variable name before assigning a value into it, x
say. This is perfectly acceptable, it is considered as a monomial of degree 1 in the variable x.

? p = x^2 + 1

%1 = x^2 + 1

? x = 2;

? x^2 + 1

%3 = 5

? p

%4 = x^2 + 1

? eval(p)

%5 = 5

As is shown above, assigning a value to a variable, does not affect polynomials that used it; to take
into account the new variable’s value, one must use the function eval (see Section 3.7.3). It is in
general preferable to use subst, rather than assigning values to polynomial variables.

* An obvious but important exception are character strings which are evaluated essentially to
themselves (type t_STR). Not exactly so though, since we do some work to treat the quoted char-
acters correctly (those preceded by a \).
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2.5.4 Variable priorities, multivariate objects. PARI has no “sparse” representation of poly-
nomials. So a multivariate polynomial in PARI is just a polynomial (in one variable), whose
coefficients are themselves polynomials, arbitrary but for the fact that they do not involve the
main variable. All computations are then just done formally on the coefficients as if the polynomial
was univariate.

This is not symmetrical. So if I enter x + y in a clean session, what happens ? This is
understood as

x1 + y ∗ x0 ∈ (Z[y])[x]

but how do we know that x is “more important” than y ? Why not y1 + x ∗ y0, which is the same
mathematical entity after all ?

The answer is that variables are ordered implicitly by the gp interpreter: when a new identifier
(e.g x, or y as above) is input, the corresponding variable is registered as having a strictly lower
priority than any variable in use at this point** . To see the ordering used by gp at any given time,
type reorder().

Given such an ordering, multivariate polynomials are stored so that the variable with the
highest priority is the main variable. And so on, recursively, until all variables are exhausted. A
different storage pattern (which could only be obtained via library mode) would produce an invalid
object, and eventually a disaster.

In any case, if you are working with expressions involving several variables and want to have
them ordered in a specific manner in the internal representation just described, the simplest is just
to write down the variables one after the other under gp before starting any real computations.
You could also define variables from your GPRC to have a consistent ordering of common variable
names in all your gp sessions, e.g read in a file variables.gp containing

x;y;z;t;a;b;c;d;

If you already have started working and want to change the names of the variables in an object,
use the function changevar. If you only want to have them ordered when the result is printed, you
can also use the function reorder, but this won’t change anything to the internal representation,
and is not recommended.

Important note: PARI allows Euclidean division of multivariate polynomials, but assumes that
the computation takes place in the fraction field of the coefficient ring (if it is not an integral
domain, the result will a priori not make sense). This can be very tricky; for instance assume x
has highest priority (which is always the case), then y:

? x % y

%1 = 0

? y % x

%2 = y \\ these two take place in Q(y)[x]
? x * Mod(1,y)

%3 = Mod(1, y)*x \\ in (Q(y)/yQ(y))[x] ∼ Q[x]
? Mod(x,y)

%4 = 0

** This is not strictly true: if an identifier is interpreted as a user function, no variable is registered.
Also, the variable x is predefined and always has the highest possible priority.
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In the last example, the division by y takes place in Q(y)[x], hence the Mod object is a coset
in (Q(y)[x])/(yQ(y)[x]), which is the null ring since y is invertible! So be very wary of variable
ordering when your computations involve implicit divisions and many variables. This also affects
functions like numerator/denominator or content:

? denominator(x / y)

%1 = 1

? denominator(y / x)

%2 = x

? content(x / y)

%3 = 1/y

? content(y / x)

%4 = y

? content(2 / x)

%5 = 2

Can you see why ? Hint: x/y = (1/y) ∗ x is in Q(y)[x] and denominator is taken with respect to
Q(y)(x); y/x = (y ∗x0)/x is in Q(y)(x) so y is invertible in the coefficient ring. On the other hand,
2/x involves a single variable and the coefficient ring is simply Z.

These problems arise because the variable ordering defines an implicit variable with respect
to which division takes place. This is the price to pay to allow % and / operators on polynomials
instead of requiring a more cumbersome divrem(x, y, var) (which also exists). Unfortunately,
in some functions like content and denominator, there is no way to set explicitly a main variable
like in divrem and remove the dependence on implicit orderings. This will hopefully be corrected
in future versions.

2.5.5 Multivariate power series Just like multivariate polynomials, power series are funda-
mentally single-variable objects. It is awkward to handle many variables at once, since PARI’s
implementation cannot handle multivariate error terms like O(xiyj). (It can handle the polyno-
mial O(yj)× xi which is a very different thing, see below.)

The basic assumption in our model is that if variable x has higher priority than y, then y does
not depend on x: setting y to a function of x after some computations with bivariate power series
does not make sense a priori. This is because implicit constants in expressions like O(xi) depend
on y (whereas in O(yj) they can not depend on x). For instance

? O(x) * y

%1 = O(x)

? O(y) * x

%2 = O(y)*x

Here is a more involved example:

? A = 1/x^2 + 1 + O(x); B = 1/x + 1 + O(x^3);

? subst(z*A, z, B)

%2 = x^-3 + x^-2 + x^-1 + 1 + O(x)

? B * A

%3 = x^-3 + x^-2 + x^-1 + O(1)

? z * A

%4 = z*x^-2 + z + O(x)
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The discrepancy between %2 and %3 is surprising. Why does %2 contain a spurious constant term,
which cannot be deduced from the input ? Well, we ignored the rule that forbids to substitute
an expression involving high-priority variables to a low-priority variable. The result %4 is correct
according to our rules since the implicit constant in O(x) may depend on z. It is obviously wrong
if z is allowed to have negative valuation in x. Of course, the correct error term should be O(xz),
but this is not possible in PARI.

2.6 User defined functions.

2.6.1 Definition. It is easy to define a new function in GP, which can then be used like any other
function. The syntax is as follows:

name(list of formal variables) = local(list of local variables); seq

which looks better written on consecutive lines:

name(x0, x1, . . . ) =

{

local(t0, t1, . . . );
local(. . . );

. . .
}

(the first newline is disregarded due to the preceding = sign, and the others because of the en-
closing braces). Both lists of variables are comma-separated and allowed to be empty. The local

statements can be omitted; as usual seq is any expression sequence.

name is the name given to the function and is subject to the same restrictions as variable names.
In addition, variable names are not valid function names, you have to kill the variable first (the
converse is true: function names can’t be used as variables, see Section 3.11.2.14). Previously used
function names can be recycled: you are just redefining the function. The previous definition is
lost of course.

list of formal variables is the list of variables corresponding to those which you will actually use
when calling your function. The number of actual parameters supplied when calling the function
has to be less than the number of formal variables. Arguments are passed by value, not as variables:
modifying a function’s argument in the function body is allowed, but does not modify its value in
the calling frame. In fact, a copy of the actual parameter is assigned to the formal parameter when
the function is called.

Uninitialized formal variables are given a default value. An equal (=) sign following a variable
name in the function definition, followed by any expression, gives the variable a default value. The
said expression gets evaluated the moment the function is called, hence may involve the preceding
function parameters (a default value for xi may involve xj for j < i). A variable for which you
supply no default value is initialized to (the integer) zero. For instance

foo(x, y=2, z=3) = print(x ":" y ":" z)

defines a function which prints its arguments (at most three of them), separated by colons. This
then follows the rules of default arguments generation as explained at the beginning of Section 3.0.2.

? foo(6,7)
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6:7:3

? foo(,5)

0:5:3

? foo()

0:2:3

list of local variables is the list of additional temporary variables used in the function body. Note
that if you omit some or all of these local variable declarations, the non-declared variables will
become global, hence known outside of the function, and this may have undesirable side-effects.
On the other hand, in some cases it may also be what you want. See Section 2.6.6 for details. Local
variables can be given a default value as the formal variables.

Restrictions on variable use: it is not allowed to use the same variable name for different
parameters of your function. Or to use a given variable both as a formal parameter and a local
variable in a given function. Hence

? f(x,x) = 1

*** user function f: variable x declared twice.

Note: The above syntax (using the local keyword) was introduced in version 2.0.13. The old
syntax

name(list of true formal variables, list of local variables) = seq

is still recognized but is deprecated since genuine arguments and local variables become undistin-
guishable.

2.6.2 Use. Once the function is defined using the above syntax, you can use it like any other
function, see the example with fun above. In addition, you can also recall its definition exactly as
you do for predefined functions, that is by writing ?name. This will print the list of arguments,
as well as their default values, the text of seq , and a short help text if one was provided using the
addhelp function (see Section 3.11.2.1). One small difference to predefined functions is that you
can never redefine the built-in functions, while you can redefine a user-defined function as many
times as you want.

Typing \u will output the list of user-defined functions.

An amusing example of a user-defined function is the following. It is intended to illustrate both
the use of user-defined functions and the power of the sumalt function. Although the Riemann
zeta-function is included in the standard functions, let us assume that this is not the case (or
that we want another implementation). One way to define it, which is probably the simplest, but
certainly not the most efficient, is as follows:

zet(s) =

{ local(n); /* not needed, and possibly confusing (see below) */

sumalt(n=1, (-1)^(n-1)*n^(-s)) / (1 - 2^(1-s))

}

This gives reasonably good accuracy and speed as long as you are not too far from the domain of
convergence. Try it for s integral between −5 and 5, say, or for s = 0.5 + i ∗ t where t = 14.134 . . .
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2.6.3 Recursive functions. Recursive functions can easily be written as long as one pays proper
attention to variable scope. Here is an example, used to retrieve the coefficient array of a multivari-
ate polynomial (a non-trivial task due to PARI’s unsophisticated representation for those objects):

coeffs(P, nbvar) =

{

if (type(P) != "t_POL",

for (i=1, nbvar, P = [P]);

return (P)

);

vector(poldegree(P)+1, i, coeffs(polcoeff(P, i-1), nbvar-1))

}

If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coefficient
of xn1

1 . . . xnkk in P is given by v[n1+1][. . . ][nk+1].

The operating system automatically limits the recursion depth:

? dive(n) = if (n, dive(n-1))

? dive(5000);

*** deep recursion: if(n,dive(n-1))

^---------------

There is no way to increase the recursion limit (which may be different on your machine) from
within gp. To increase it before launching gp, you can use ulimit or limit, depending on your
shell, and raise the process available stack space (increase stacksize).

2.6.4 Function which take functions as parameters ? Use the following trick (neat example
due to Bill Daly):

calc(f, x) = eval( Str(f, "(x)") )

If you call this with calc("sin", 1), it will return sin(1) (evaluated!).

2.6.5 Defining functions within a function ? The first idea

init(x) = add(y) = x+y; mul(y) = x*y;

does not work since in the construction f() = seq , the function body contains everything until the
end of the expression. Hence executing init defines the wrong function add. The way out is to
use parentheses for grouping, to that enclosed subexpressions be evaluated independently:

init(x) = ( add(y) = x+y ); ( mul(y) = x*y );
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2.6.6 Variable scope.

Local variables should more appropriately be called temporary values since they are in fact local
to the function declaring them and any subroutine called from within. In the following example

f() = local(y); ... ; g()

g() = y + 1

g() “sees” the y introduced in f(). True lexical scoping does not exist in GP. (See e.g. the difference
between local and my in Perl.)

In an iterative constructs which use a variable name (forxxx, prodxxx, sumxxx, vector,
matrix, plot, etc.) the given variable is also local to the construct. A value is pushed on entry and
poped on exit. So, it is not necessary for a function using such an iterator to declare the variable
as local. On the other hand, if you exit the loop prematurely, e.g. using the break statement, you
must save the loop index in another variable since its value prior the loop will be restored upon
exit: for instance

for(i = 1, n,

if (ok(i), break);

);

if (i > n, return(failure));

is incorrect, since the value of i tested by the (i > n) is quite unrelated to the loop index.

Finally, the statement global(x, y, z, t) (see Section 3.11.2.11) declares the corresponding
variables to be global. It is then forbidden to use them as formal parameters or loop indexes as
above, since the parameter would “shadow” the variable. If speed is of the essence and an object
is large (e.g. a bnf , a huge matrix), it should be declared global, not passed as a parameter, since
this saves an expensive copy. It is possible to declare it local and use it as a global variables from
relevant subroutines, but global is safer.

It is strongly recommended to explicitly declare all global variables at the beginning of your
program and all local variable used inside a given function, with the possible exception of loop
indexes which are local to their loop. If a function accesses a variable which is not one of its formal
parameters, the value used will be the one which happens to be on top of the stack at the time of
the call. This could be a “global” value, or a local value belonging to any function higher in the
call chain, and is in general not what you want to do. So, be warned.

Coming back to our previous example zet, since loop variables are not visible outside their
loops, the variable n need not be declared in the function protoype.

zet(s) = sumalt(n=1, (-1)^(n-1)*n^(-s)) / (1 - 2^(1-s))

would be a better definition. One last example: what is wrong with the following definition?

FirstPrimeDiv(x) =

{ local(p);

forprime(p=2, x, if (x%p == 0, break));

p

}

? FirstPrimeDiv(10)

%1 = 0
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Well, the index p in the forprime loop is local to the loop and is not visible to the outside world.
Hence, it does not survive the break statement. More precisely, at this point the loop index is
restored to its preceding value, which is 0 (local variables are initialized to 0 by default). To sum
up, the routine returns the p declared local to it, not the one which was local to forprime and ran
through consecutive prime numbers. Here is a corrected version:

? FirstPrimeDiv(x) = forprime(p=2, x, if (x%p == 0, return(p)))

Implementation note: For the curious reader, here is how values of variables are handled: a
hashing function is computed from the variable name, and used as an index in hashtable, a table
of linked list of structures (type entree). The linked list is searched linearly for the identifier (each
list typically has less than 10 components). When the correct entree is found, it points to the top
of the stack of values for that identifier if it is a variable, to the function itself if it is a predefined
function, and to a copy of the text of the function if it is a user-defined function. When an error
occurs, all of this maze (rather a tree, in fact) is searched and restored to the state preceding the
last call of the main evaluator.

2.7 Member functions.

Member functions use the ‘dot’ notation to retrieve information from complicated structures,
by default: bid, ell, galois, nf, bnf, bnr and prime ideals. The syntax structure.member is taken
to mean: retrieve member from structure, e.g. ell.j returns the j-invariant of the elliptic curve
ell, or outputs an error message if ell doesn’t have the correct type.

To define your own member functions, use the syntax structure.member = function text , where
function text is written as the seq in a standard user function (without local variables), whose only
argument would be structure. For instance, the current implementation of the ell type is simply
an horizontal vector, the j-invariant being the thirteenth component. It could be implemented as

x.j =

{

if (type(x) != "t_VEC" || length(x) < 14,

error("this is not a proper elliptic curve: " x)

);

x[13]

}

Typing \um will output the list of user-defined member functions.

You can redefine one of your own member functions simply by typing a new definition for it.
On the other hand, as a safety measure, you can’t redefine the built-in member functions, so typing
the above text would in fact produce an error (you’d have to call it e.g. x.myj in order for gp to
accept it).

Warning: contrary to user functions arguments, the structure accessed by a member function is
not copied before being used. Any modification to the structure’s components will be permanent.
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Warning: it is advised not to apply a member whose name starts with e or E to an integer
constant, where it would be confused with the usual floating point exponent. E.g compare

? x.e2 = x+1

? 1.e2

%1 = 100.000000000 \\ taken to mean 1.0E2.
? (1).e2

%2 = 2

? 1.0.e2

%3 = 2.00000000000

Note: Member functions were not meant to be too complicated or to depend on any data that
wouldn’t be global. Hence they do no have parameters (besides the implicit structure) or local
variables. Of course, if you need some preprocessing work in there, there’s nothing to prevent you
from calling your own functions (using freely their local variables) from a member function. For
instance, one could implement (a dreadful idea as far as efficiency goes):

correct_ell_if_needed(x) =

{ local(tmp);

if (type(x) != "t_VEC", tmp = ellinit(x))

\\ some further checks
tmp

}

x.j = correct_ell_if_needed(x)[13];

2.8 Strings and Keywords.

2.8.1 Strings. GP variables can hold values of type character string (internal type t_STR). This
section describes how they are actually used, as well as some convenient tricks (automatic concate-
nation and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are significant: the string will contain
the exact number of spaces you typed in. Besides, you can “escape” characters by putting a \ just
before them; the translation is as follows

\e: <Escape>

\n: <Newline>

\t: <Tab>

For any other character x, \x is expanded to x. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is “a”.
This is definitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated first).

? concat("ex", 1+1)

%1 = "ex2"

? a = 2; b = "ex"; concat(b, a)

%2 = "ex2"
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? concat(a, b)

%3 = "2ex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but useful one (see the end of this section for a complete list). While typing
in such an argument, you will be said to be in string context. The rest of this section is devoted to
special syntactical tricks which can be used with such arguments (and only here; you will get an
error message if you try these outside of string context):

• Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the first
expression: the first whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and gp actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

• If you insert any expression when a string is expected, it gets “expanded”: it is evaluated
as a standard GP expression, and the final result (as would have been printed if you had typed
it by itself) is then converted to a string, as if you had typed it directly. For instance "a" 1+1

"b" is equivalent to "a2b": three strings get created, the middle one being the expansion of 1+1,
and these are then concatenated according to the rule described above. Another tricky point here:
assume you did not assign a value to aaa in a GP expression before. Then typing aaa by itself in
a string context will actually produce the correct output (i.e. the string whose content is aaa), but
in a fortuitous way. This aaa gets expanded to the monomial of degree one in the variable aaa,
which is of course printed as aaa, and thus will expand to the three letters you were expecting.

Warning: expression involving strings are not handled in a special way; even in string context,
the largest possible expression is evaluated, hence print("a"[1]) is incorrect since "a" is not an
object whose first component can be extracted. On the other hand print("a", [1]) is correct
(two distinct argument, each converted to a string), and so is print("a" 1) (since "a"1 is not
a valid expression, only "a" gets expanded, then 1, and the result is concatenated as explained
above). In case of doubt, you can surround part of your text by parenthesis to force immediate
interpretation of a subexpression: print("a"([1])) is another solution.

2.8.2 Keywords. Since there are cases where expansion is not desirable, we now distinguish
between “Keywords” and “Strings”. String is what has been described so far. Keywords are
special relatives of Strings which are automatically assumed to be quoted, whether you actually
type in the quotes or not. Thus expansion is never performed on them. They get concatenated,
though. The analyzer supplies automatically the quotes you have “forgotten” and treats Keywords
just as normal strings otherwise. For instance, if you type "a"b+b in Keyword context, you will get
the string whose contents are ab+b. In String context, on the other hand, you would get a2*b.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated
expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).
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Reference: The arguments of the following functions are processed in string context:
Str

addhelp (second argument)
default (second argument)
error

extern

plotstring (second argument)
plotterm (first argument)
read and readvec

system

all the printxxx functions
all the writexxx functions

The arguments of the following functions are processed as keywords:
alias

default (first argument)
install (all arguments but the last)
trap (first argument)
type (second argument)
whatnow

2.8.3 Useful examples The function Str converts its arguments into strings and concatenate
them. Coupled with eval, it is very powerful. The following example creates generic matrices:

? genmat(u,v,s="x") = matrix(u,v,i,j, eval( Str(s,i,j) ))

? genmat(2,3) + genmat(2,3,"m")

%1 =

[x11 + m11 x12 + m12 x13 + m13]

[x21 + m21 x22 + m22 x23 + m23]

Two last examples: hist(10,20) returns all history entries from %10 to %20 neatly packed
into a single vector; histlast(10) returns the last 10 history entries:

hist(a,b) = vector(b-a+1, i, eval(Str("%", a-1+i)))

histlast(n) = vector(n, i, eval(Str("%", %#-i+1)))

2.9 Errors and error recovery.

2.9.1 Errors. There are two kind of errors: syntax errors, and errors produced by functions in
the PARI library. Both kinds are fatal to your computation: gp will report the error, perform
some cleanup (restore variables modified while evaluating the erroneous command, close open files,
reclaim unused memory, etc.), and will output its usual prompt.

When reporting a syntax error, gp tries to give meaningful context by copying the sentence it
was trying to read (whitespace and comments stripped out), indicating an error with a little caret
like in

? factor(x^2 - 1

*** expected character: ’,’ instead of: factor(x^2-1

^
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possibly enlarged to a full arrow given enough trailing context

? if (siN(x) < eps, do_something())

*** expected character: ’=’ instead of: if(siN(x)<eps,do_something())

^--------------------

Error messages will often be mysterious, because gp cannot guess what you were trying to do and
the error usually occurs once gp has been sidetracked. Let’s have a look at the two messages above.

The first error is a missing parenthesis, but from gp’s point of view, you might as well have
intended to give further arguments to factor (this is possible, and often useful, see the description
of the function). Since gp did not see the closing parenthesis, it tried to read a second argument,
first looking for the comma that would separate it form the first. The error occurred at this point.
So gp tells you that it was expecting a comma and saw a blank.

The second error is even weirder. It is a simple typo, siN instead of sin and gp tells us that is
was expecting an equal sign a few characters later? What happens is this: siN is not a recognized
identifier, but from the context, it looks like a function (it is followed by an open parenthesis), then
we have an argument, then a closing parenthesis. Then if siN were a known function we would
evaluate it; but it is not, so gp assumes that you were trying to define it, as in

? if (siN(x)=sin(x), ...)

This is actually allowed (!) and defines the function siN as an alias for sin. As any expression
a function definition has a value, which is 0, hence the test is meaningful, and false, so nothing
happens. (Admittedly this doesn’t look like a useful syntax but it can be interesting in other
contexts to let functions define other functions. Anyway, it is allowed by the language definition.)
So gp tells you in good faith that to correctly define a function, you need an equal sign between its
name and its body.

Error messages from the library will usually be clearer since, by definition, they answer a cor-
rectly worded query (otherwise gp would have protested first). Also they have more mathematical
content, which should be easier to grasp than a parser’s logic. For instance:

? 1/0

*** division by zero

2.9.2 Error recovery.

It is quite annoying to wait for some program to finish and find out the hard way that there
was a mistake in it (like the division by 0 above), sending you back to the prompt. First you may
lose some valuable intermediate data. Also, correcting the error may not be ovious; you might have
to change your program, adding a number of extra statements and tests to try and narrow down
the problem.

A slightly different situation, still related to error recovery, is when you you actually foresee
that some error may occur, are unable to prevent it, but quite capable of recovering from it, given
the chance. Examples include lazy factorization (cf. addprimes), where you knowingly use a pseudo
prime N as if it were prime; you may then encounter an “impossible” situation, but this would
usually exhibit a factor of N , enabling you to refine the factorization and go on. Or you might run
an expensive computation at low precision to guess the size of the output, hence the right precision
to use. You can then encounter errors like “precision loss in truncation”, e.g when trying to convert
1E1000, known to 28 digits of accuracy, to an integer; or “division by 0”, e.g inverting 0E1000 when
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all accuracy has been lost, and no significant digit remains. It would be enough to restart part of
the computation at a slightly higher precision.

We now describe error trapping, a useful mechanism which alleviates much of the pain in the
first situation, and provides a satisfactory way out of the second one. Everything is handled via
the trap function whose different modes we now describe.

2.9.3 Break loop.

A break loop is a special debugging mode that you enter whenever an error occurs, freezing
the gp state, and preventing cleanup until you get out of the loop. Any error: syntax error, library
error, user error (from error), even user interrupts like C-c (Control-C). When a break loop starts,
a prompt is issued (break>). You can type in a gp command, which is evaluated when you hit
the <Return> key, and the result is printed as during the main gp loop, except that no history of
results is kept Then the break loop prompt reappears and you can type further commands as long
as you do not exit the loop. If you are using readline, the history of commands is kept, and line
editing is available as usual. If you type in a command that results in an error, you are sent back
to the break loop prompt (errors does not terminate the loop).

To get out of a break loop, you can use next, break, return, or C-d (EOF), any of which will let
gp perform its usual cleanup, and send you back to the gp prompt. If the error is not fatal, inputing
an empty line, i.e hitting the <Return> key at the break> prompt, will continue the temporarily
interrupted computation. An empty line has no effect in case of a fatal error, to ensure you do not
get out of the loop prematurely, thus losing most debugging data during the cleanup (since user
variables will be restored to their former values).

In current version 2.3.5, an error is non-fatal if and only if it was initiated by a C-c typed by
the user.

Break loops are useful as a debugging tool to inspect the values of gp variables to understand
why an error occurred, or to change gp’s state in the middle of a computation (increase debugging
level, start storing results in a logfile, set variables to different values. . . ): hit C-c, type in your
modifications, then let the computation go on as explained above.

A break loop looks like this:

? for(v = -2, 2, print(1/v))

-1/2

-1

*** division by zero in gdiv, gdivgs or ginv

*** Starting break loop (type ’break’ to go back to GP):

*** for(v=-2,2,print(1/v))

^--

break>

So the standard error message is printed first, except now we always have context, whether the
error comes from the library or the parser. The break> at the bottow is a prompt, and hitting v

then <Return>, we see:

break> v

0

explaining the problem. We could have typed any gp command, not only the name of a variable,
of course. There is no special set of commands becoming available during a break loop, as they
would in most debuggers.
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Important Note: upon startup, this mechanism is off . Type trap() (or include it in a script)
to start trapping errors in this way. By default, you will be sent back to the prompt.

Technical Note: When you enter a break loop due to a PARI stack overflow, the PARI stack is
reset so that you can run commands (otherwise the stack would immediately overflow again). Still,
as explained above, you do not lose the value of any gp variable in the process.

2.9.4 Error handlers. The break loop described above is a (sophisticated) example of an error
handler: a function that is executed whenever an error occurs, supposedly to try and recover. The
break loop is quite a satisfactory error handler, but it may not be adequate for some purposes, for
instance when gp runs in non-interactive mode, detached from a terminal.

So, you can define a different error handler, to be used in place of the break loop. This is the
purpose of the second argument of trap: to specify an error handler. (We will discuss the first
argument at the very end.) For instance:

? { trap( , \\ note the comma: arg1 is omitted

print(reorder);

writebin("crash")) }

After that, whenever an error occurs, the list of all user variables is printed, and they are all saved
in binary format in file crash, ready for inspection. Of course break loops are no longer available:
the new handler has replaced the default one. Besides user-defined handlers as above, there are
two special handlers you can use in trap, which are

• trap(, "") (do-nothing handler): to disable the trapping mechanism and let errors propa-
gate, which is the default situation on startup.

• trap(, ) (omitted argument, default handler): to trap errors by a break loop.

2.9.5 Protecting code. Finally trap can define a temporary handler used within the scope of a
code frament, protecting it from errors, by providing replacement code should the trap be activated.
The expression

trap( , recovery , statements)

evaluates and returns the value of statements, unless an error occurs during the evaluation in which
case the value of recovery is returned. As in an if/else clause, with the difference that statements
has been partially evaluated, with possible side effects. For instance one could define a fault tolerant
inversion function as follows:

? inv(x) = trap (, "oo", 1/x)

? for (i=-1,1, print(inv(i)))

-1

oo

1

Protected codes can be nested without adverse effect, the last trap seen being the first to spring.
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2.9.6 Trapping specific exceptions. We have not yet seen the use of the first argument of trap,
which has been omitted in all previous examples. It simply indicates that only errors of a specific
type should be intercepted, to be chosen among

accurer: accuracy problem

gdiver: division by 0

invmoder: impossible inverse modulo

archer: not available on this architecture or operating system

typeer: wrong type

errpile: the PARI stack overflows

Omitting the error name means we are trapping all errors. For instance, the following can be used
to check in a safe way whether install works correctly in your gp:

broken_install() =

{

trap(archer, return ("OS"),

install(addii,GG)

);

trap(, "USE",

if (addii(1,1) != 2, "BROKEN")

)

}

The function returns 0 if everything works (the omitted else clause of the if), OS if the operating
system does not support install, USE if using an installed function triggers an error, and BROKEN

if the installed function did not behave as expected.

2.10 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This specific use will be dealt
with extensively in Chapter 4. gp itself provides a convenient, if simple-minded, interpreter, which
enables you to execute rather intricate scripts (see Section 3.11).

Scripts, when properly written, tend to be shorter and clearer than C programs, and are
certainly easier to write, maintain or debug. You don’t need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C for the sake of speed. The GP2C compiler often eases this part.

Note also that the install command enables you to concentrate on critical parts of your
programs only (which can of course be written with the help of other mathematical libraries than
PARI!), and to efficiently import foreign functions for use under gp (see Section 3.11.2.13).

We are aware of four PARI-related public domain packages to embed PARI in other languages.
We neither endorse nor support any of them; you might want to give them a try if you are familiar
with the languages they are based on. The first is the Math::Pari Perl module (see any CPAN
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mirror), written by Ilya Zakharevich. The second is PariPython*, by Stéfane Fermigier, which is
no more maintained. Starting from Fermigier’s work, Wiliam Stein has embedded PARI into his
Python-based SAGE** system. Finally, Michael Stoll has integrated PARI into CLISP ***, which
is a Common Lisp implementation by Bruno Haible, Marcus Daniels and others; this interface has
been updated for pari-2 by Sam Steingold.

These provide interfaces to gp functions for use in perl, python or Lisp programs, respectively.

2.11 Defaults.

There are many internal variables in gp, defining how the system will behave in certain situations,
unless a specific override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.13), but some of
them are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.11.2.4. The basic syntax is

default(def , value),

which sets the default def to value. In interactive use, most of these can be abbreviated using
historic gp metacommands (mostly, starting with \), which we shall describe in the next section.

Here we will only describe the available defaults and how they are used. Just be aware that
typing default by itself will list all of them, as well as their current values (see \d). Just after the
default name, we give between parentheses the initial value when gp starts (assuming you did not
tamper with it using command-line switches or a gprc).

Note: the suffixes k, M or G can be appended to a value which is a numeric argument, with the
effect of multiplying it by 103, 106 and 109 respectively. Case is not taken into account there, so
for instance 30k and 30K both stand for 30000. This is mostly useful to modify or set the defaults
primelimit or stacksize which typically involve a lot of trailing zeroes.

(somewhat technical) Note: As we will see in Section 2.8, the second argument to default will
be subject to string context expansion, which means you can use run-time values. In other words,
something like

a = 3;

default(logfile, "\var{some filename}" a ".log")

logs the output in some filename3.log.

Some defaults will be expanded further when the values are used, after the above expansion
has been performed:

• time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt, psfile, and logfile. For
instance,

* see http://www.fermigier.com/fermigier/PariPython/

** see http://modular.fas.harvard.edu/sage/

*** see http://clisp.cons.org
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default(prompt,"(%H:%M) ? ")

will prepend the time of day, in the form (hh:mm) to gp’s usual prompt.

• environment expansion: When the string contains a sequence of the form $SOMEVAR,
e.g. $HOME, the environment is searched and if SOMEVAR is defined, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in many shells — ~ by itself
stands for your home directory, and ~user is expanded to user’s home directory. This is applied
to all filenames.

2.11.1 colors (default ""): this default is only usable if gp is running within certain color-capable
terminals. For instance rxvt, color xterm and modern versions of xterm under X Windows, or
standard Linux/DOS text consoles. It causes gp to use a small palette of colors for its output.
With xterms, the colormap used corresponds to the resources Xterm*colorn where n ranges from
0 to 15 (see the file misc/color.dft for an example). Accepted values for this default are strings
"a1,. . . ,ak" where k ≤ 7 and each ai is either

• the keyword no (use the default color, usually black on transparent background)

• an integer between 0 and 15 corresponding to the aforementioned colormap

• a triple [c0, c1, c2] where c0 stands for foreground color, c1 for background color, and c2 for
attributes (0 is default, 1 is bold, 4 is underline).

The output objects thus affected are respectively error messages, history numbers, prompt,
input line, output, help messages, timer (that’s seven of them). If k < 7, the remaining ai are
assumed to be no. For instance

default(colors, "9, 5, no, no, 4")

typesets error messages in color 9, history numbers in color 5, output in color 4, and does not affect
the rest.

A set of default colors for dark (reverse video or PC console) and light backgrounds respectively
is activated when colors is set to darkbg, resp. lightbg (or any proper prefix: d is recognized as
an abbreviation for darkbg). A bold variant of darkbg, called boldfg, is provided if you find the
former too pale.

EMACS: In the present version, this default is incompatible with Emacs. Changing it will just fail silently
(the alternative would be to display escape sequences as is, since Emacs will refuse to interpret
them). On the other hand, you can customize highlighting in your .emacs so as to mimic exactly
this behaviour. See emacs/pariemacs.txt.

Technical note: If you use an old readline library (version number less than 2.0), you should
do as in the example above and leave a3 and a4 (prompt and input line) strictly alone. Since old
versions of readline did not handle escape characters correctly (or more accurately, treated them
in the only sensible way since they did not care to check all your terminal capabilities: it just
ignored them), changing them would result in many annoying display bugs.

The specific thing to look for is to check the readline.h include file, wherever your readline
include files are, for the string RL PROMPT START IGNORE. If it is there, you are safe. Another
sensible way is to make some experiments, and get a more recent readline if yours doesn’t work
the way you would like it to. See the file misc/gprc.dft for some examples.

54



2.11.2 compatible (default 0): The GP function names and syntax have changed tremendously
between versions 1.xx and 2.00. To help you cope with this we provide some kind of backward
compatibility, depending on the value of this default:

compatible = 0: no backward compatibility. In this mode, a very handy function, to be
described in Section 3.11.2.29, is whatnow, which tells you what has become of your favourite
functions, which gp suddenly can’t seem to remember.

compatible = 1: warn when using obsolete functions, but otherwise accept them. The
output uses the new conventions though, and there may be subtle incompatibilities between the
behaviour of former and current functions, even when they share the same name (the current
function is used in such cases, of course!). We thought of this one as a transitory help for gp old-
timers. Thus, to encourage switching to compatible=0, it is not possible to disable the warning.

compatible = 2: use only the old function naming scheme (as used up to version 1.39.15),
but taking case into account . Thus I ( =

√
−1) is not the same as i (user variable, unbound by

default), and you won’t get an error message using i as a loop index as used to be the case.

compatible = 3: try to mimic exactly the former behaviour. This is not always possible
when functions have changed in a fundamental way. But these differences are usually for the better
(they were meant to, anyway), and will probably not be discovered by the casual user.

One adverse side effect is that any user functions and aliases that have been defined before
changing compatible will get erased if this change modifies the function list, i.e. if you move
between groups {0, 1} and {2, 3} (variables are unaffected). We of course strongly encourage you
to try and get used to the setting compatible=0.

Note that the default new_galois_format is another compatibility setting, which is completely
independent of compatible.

2.11.3 datadir (default: the location of installed precomputed data): the name of directory
containing the optional data files. For now, only the galdata and elldata packages.

2.11.4 debug (default 0): debugging level. If it is non-zero, some extra messages may be printed
(some of it in French), according to what is going on (see \g).

2.11.5 debugfiles (default 0): file usage debugging level. If it is non-zero, gp will print information
on file descriptors in use, from PARI’s point of view (see \gf).

2.11.6 debugmem (default 0): memory debugging level. If it is non-zero, gp will regularly
print information on memory usage. If it’s greater than 2, it will indicate any important garbage
collecting and the function it is taking place in (see \gm).

Important Note: As it noticeably slows down the performance, the first functionality (memory
usage) is disabled if you’re not running a version compiled for debugging (see Appendix A).

2.11.7 echo (default 0): this is a toggle, which can be either 1 (on) or 0 (off). When echo mode is
on, each command is reprinted before being executed. This can be useful when reading a file with
the \r or read commands. For example, it is turned on at the beginning of the test files used to
check whether gp has been built correctly (see \e).
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2.11.8 factor add primes (default 0): if this is set, the integer factorization machinery will call
addprimes on primes factor that were difficult to find, so they are automatically tried first in other
factorizations. If a routine is performing (or has performed) a factorization and is interrupted by
an error or via Control-C, this let you recover the prime factors already found.

2.11.9 format (default "g0.28" and "g0.38" on 32-bit and 64-bit machines, respectively): of the
form xm.n, where x is a letter in {e, f, g}, and n, m are integers. If x is f, real numbers will be
printed in fixed floating point format with no explicit exponent (e.g. 0.000033), unless their integer
part is not defined (not enough significant digits); if the letter is e, they will be printed in scientific
format, always with an explicit exponent (e.g. 3.3e-5). If the letter is g, real numbers will be
printed in f format, except when their absolute value is less than 2−32 or they are real zeroes (of
arbitrary exponent), in which case they are printed in e format.

The number n is the number of significant digits printed for real numbers, except if n < 0
where all the significant digits will be printed (initial default 28, or 38 for 64-bit machines), and
the number m is the number of characters to be used for printing integers, but is ignored if equal
to 0 (which is the default). This is a feeble attempt at formatting.

UNIX: 2.11.10 help (default: the location of the gphelp script): the name of the external help program
which will be used from within gp when extended help is invoked, usually through a ?? or ???

request (see Section 2.12.1), or M-H under readline (see Section 2.15.1).

2.11.11 histsize (default 5000): gp keeps a history of the last histsize results computed so far,
which you can recover using the % notation (see Section 2.12.4). When this number is exceeded,
the oldest values are erased. Tampering with this default is the only way to get rid of the ones you
do not need anymore.

2.11.12 lines (default 0): if set to a positive value, gp prints at most that many lines from each
result, terminating the last line shown with [+++] if further material has been suppressed. The
various print commands (see Section 3.11.2) are unaffected, so you can always type print(%), \a,
or \b to view the full result. If the actual screen width cannot be determined, a “line” is assumed
to be 80 characters long.

2.11.13 log (default 0): this can be either 0 (off) or 1, 2, 3 (on, see below for the various modes).
When logging mode is turned on, gp opens a log file, whose exact name is determined by the
logfile default. Subsequently, all the commands and results will be written to that file (see \l).
In case a file with this precise name already existed, it will not be erased: your data will be appended
at the end.

The specific positive values of log have the following meaning

1: plain logfile

2: emit color codes to the logfile (if colors is set).

3: write LaTeX output to the logfile (can be further customized using TeXstyle).

2.11.14 logfile (default "pari.log"): name of the log file to be used when the log toggle is on.
Environment and time expansion are performed.
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2.11.15 new galois format (default 0): if this is set, the polgalois command will use a different,
more consistent, naming scheme for Galois groups. This default is provided to ensure that scripts
can control this behaviour and do not break unexpectedly. Note that the default value of 0 (unset)
will change to 1 (set) in the next major version.

2.11.16 output (default 1): there are four possible values: 0 (= raw), 1 (= prettymatrix ), 2
(= prettyprint), or 3 (= external prettyprint). This means that, independently of the default
format for reals which we explained above, you can print results in four ways: either in raw format,
i.e. a format which is equivalent to what you input, including explicit multiplication signs, and
everything typed on a line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to paste it somewhere else.

The second format is the prettymatrix format. The only difference to raw format is that
matrices are printed as boxes instead of horizontally. This is prettier, but takes more space and
cannot be used for input. Column vectors are still printed horizontally.

The third format is the prettyprint format, or beautified format. In the present version 2.3.5,
this is not beautiful at all.

The fourth format is external prettyprint, which pipes all gp output in TeX format to an
external prettyprinter, according to the value of prettyprinter. The default script (tex2mail)
converts its input to readable two-dimensional text.

Independently of the setting of this default, an object can be printed in any of the three formats
at any time using the commands \a, \m and \b respectively (see below).

2.11.17 parisize (default 4M, resp. 8M on a 32-bit, resp. 64-bit machine): gp, and in fact any
program using the PARI library, needs a stack in which to do its computations. parisize is the
stack size, in bytes. It is strongly recommended you increase this default (using the -s command-
line switch, or a gprc) if you can afford it. Don’t increase it beyond the actual amount of RAM
installed on your computer or gp will spend most of its time paging.

In case of emergency, you can use the allocatemem function to increase parisize, once the
session is started.

2.11.18 path (default ".:~:~/gp" on UNIX systems, ".;C:\;C:\GP on DOS, OS/2 and Windows,
and "." otherwise): This is a list of directories, separated by colons ’:’ (semicolons ’;’ in the DOS
world, since colons are pre-empted for drive names). When asked to read a file whose name does
not contain / (i.e. no explicit path was given), gp will look for it in these directories, in the order
they were written in path. Here, as usual, ’.’ means the current directory, and ’. .’ its immediate
parent. Environment expansion is performed.

UNIX: 2.11.19 prettyprinter (default "tex2mail -TeX -noindent -ragged -by par") the name of an
external prettyprinter to use when output is 3 (alternate prettyprinter). Note that the default
tex2mail looks much nicer than the built-in “beautified format” (output = 2).

2.11.20 primelimit (default 500k): gp precomputes a list of all primes less than primelimit at
initialization time. These are used by many arithmetical functions. If you don’t plan to invoke
any of them, you can just set this to 1. The maximal value is a little less than 232 (resp 264) on a
32-bit (resp. 64-bit) machine.
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2.11.21 prompt (default "? "): a string that will be printed as prompt. Note that most usual
escape sequences are available there: \e for Esc, \n for Newline, . . . , \\ for \. Time expansion is
performed.

This string is sent through the library function strftime (on a Unix system, you can try man

strftime at your shell prompt). This means that % constructs have a special meaning, usually
related to the time and date. For instance, %H = hour (24-hour clock) and %M = minute [00,59] (use
%% to get a real %).

If you use readline, escape sequences in your prompt will result in display bugs. If you have
a relatively recent readline (see the comment at the end of Section 2.11.1), you can brace them
with special sequences (\[ and \]), and you will be safe. If these just result in extra spaces in
your prompt, then you’ll have to get a more recent readline. See the file misc/gprc.dft for an
example.

EMACS: Caution: Emacs needs to know about the prompt pattern to separate your input from previous gp
results, without ambiguity. It is not a trivial problem to adapt automatically this regular expression
to an arbitrary prompt (which can be self-modifying!). Thus, in this version 2.3.5, Emacs relies on
the prompt being the default one. So, do not tamper with the prompt variable unless you modify it
simultaneously in your .emacs file (see emacs/pariemacs.txt and misc/gprc.dft for examples).

2.11.22 prompt cont (default ""): a string that will be printed to prompt for continuation lines
(e.g. in between braces, or after a line-terminating backslash). Everything that applies to prompt

applies to prompt cont as well.

2.11.23 psfile (default "pari.ps"): name of the default file where gp is to dump its PostScript
drawings (these are appended, so that no previous data are lost). Environment and time expansion
are performed.

2.11.24 readline (default 1): switches readline line-editing facilities on and off. This may be
useful if you are running gp in a Sun cmdtool, which interacts badly with readline. Of course, until
readline is switched on again, advanced editing features like automatic completion and editing
history are not available.

2.11.25 realprecision (default 28 and 38 on 32-bit and 64-bit machines respectively): the number
of significant digits and, at the same time, the number of printed digits of real numbers (see \p).
Note that PARI internal precision works on a word basis (32 or 64 bits), hence may not coincide
with the number of decimal digits you input. For instance to get 2 decimal digits you need one
word of precision which, on a 32-bit machine, actually gives you 9 digits (9 < log10(232) < 10):

? default(realprecision, 2)

realprecision = 9 significant digits (2 digits displayed)

2.11.26 secure (default 0): this is a toggle which can be either 1 (on) or 0 (off). If on, the
system and extern command are disabled. These two commands are potentially dangerous when
you execute foreign scripts since they let gp execute arbitrary UNIX commands. gp will ask for
confirmation before letting you (or a script) unset this toggle.

2.11.27 seriesprecision (default 16): number of significant terms when converting a polynomial
or rational function to a power series (see \ps).
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2.11.28 simplify (default 1): this is a toggle which can be either 1 (on) or 0 (off). When the PARI
library computes something, the type of the result is not always the simplest possible. The only type
conversions which the PARI library does automatically are rational numbers to integers (when they
are of type t_FRAC and equal to integers), and similarly rational functions to polynomials (when
they are of type t_RFRAC and equal to polynomials). This feature is useful in many cases, and
saves time, but can be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function simplify (see Chapter 3) which allows you to simplify objects to the simplest
possible types recursively (see \y).

2.11.29 strictmatch (default 1): this is a toggle which can be either 1 (on) or 0 (off). If on,
unused characters after a sequence has been processed will produce an error. Otherwise just a
warning is printed. This can be useful when you’re not sure how many parentheses you have to
close after complicated nested loops.

2.11.30 TeXstyle (default 0): the bits of this default allow gp to use less rigid TeX formatting
commands in the logfile. This default is only taken into account when log = 3. The bits of
TeXstyle have the following meaning

2: insert \right / \left pairs where appropriate.

4: insert discretionary breaks in polynomials, to enhance the probability of a good line break.

2.11.31 timer (default 0): this is a toggle which can be either 1 (on) or 0 (off). If on, every
instruction sequence (anything ended by a newline in your input) is timed, to some accuracy
depending on the hardware and operating system. The time measured is the user CPU time, not
including the time for printing the results (see # and ##).

2.12 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.11). Beware that these, as all of gp input, are case sensitive. For example, \Q is not identical
to \q. In the following list, braces are used to denote optional arguments, with their default values
when applicable, e.g. {n = 0} means that if n is not there, it is assumed to be 0. Whitespace (or
spaces) between the metacommand and its arguments and within arguments is optional. (This can
cause problems only with \w, when you insist on having a filename whose first character is a digit,
and with \r or \w, if the filename itself contains a space. In such cases, just use the underlying
read or write function; see Section 3.11.2.30).

2.12.1 ? {command}: gp on-line help interface. If you type ?n where n is a number from 1 to 11,
you will get the list of functions in Section 3.n of the manual (the list of sections being obtained
by simply typing ?).

These names are in general not informative enough. More details can be obtained by typing
?function, which gives a short explanation of the function’s calling convention and effects. Of
course, to have complete information, read Chapter 3 of this manual (the source code is at your
disposal as well, though a trifle less readable).

If the line before the copyright message indicates that extended help is available (this means
perl is present on your system and the PARI distribution was correctly installed), you can add
more ? signs for extended functionalities:
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?? keyword yields the functions description as it stands in this manual, usually in Chapter 2
or 3. If you’re not satisfied with the default chapter chosen, you can impose a given chapter by
ending the keyword with @ followed by the chapter number, e.g. ?? Hello@2 will look in Chapter 2
for section heading Hello (which doesn’t exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key gp concepts, e.g. readline (the line editor), integer, nf (“number field”
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of conflicts between function and default names (e.g log, simplify), the function has
higher priority. To get the default help, use

?? default(log)

?? default(simplify)

??? pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.

If your query contains dangerous characters (e.g ? or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g ??? "elliptic curve").

Note that extended help is much more powerful than the short help, since it knows about
operators as well: you can type ?? * or ?? &&, whereas a single ? would just yield a not too
helpful

*** unknown identifier.

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
?? n (where ?n would yield merely a list of functions). Finally, a few key concepts in gp are
documented in this way: metacommands (e.g ?? "??"), defaults (e.g ?? psfile) and type names
(e.g t_INT or integer), as well as various miscellaneous keywords such as edit (short summary of
line editor commands), operator, member, "user defined", nf, ell, . . .

Last but not least: ?? without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is defined in your environment) containing the full user’s manual. ??tutorial and ??refcard

do the same with the tutorial and reference card respectively.

Technical note: these functionalities are provided by an external perl script that you are free
to use outside any gp session (and modify to your liking, if you are perl-knowledgeable). It is
called gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure

first, see Appendix A) and is really two programs in one. The one which is used from within gp

is gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp

-detex is a text mode equivalent, which looks often nicer especially on a colour-capable terminal
(see misc/gprc.dft for examples). The default help selects which help program will be used from
within gp. You are welcome to improve this help script, or write new ones (and we would like to
know about it so that we may include them in future distributions). By the way, outside of gp you
can give more than one keyword as argument to gphelp.

2.12.2 /*...*/: comment. Everything between the stars is ignored by gp. These comments can
span any number of lines.

2.12.3 \\: one-line comment. The rest of the line is ignored by gp.
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2.12.4 \a {n}: prints the object number n (%n) in raw format. If the number n is omitted, print
the latest computed object (%).

2.12.5 \b {n}: Same as \a, in prettyprint (i.e. beautified) format.

2.12.6 \c: prints the list of all available hardcoded functions under gp, not including operators
written as special symbols (see Section 2.4). More information can be obtained using the ? meta-
command (see above). For user-defined functions / member functions, see \u and \um.

2.12.7 \d: prints the defaults as described in the previous section (shortcut for default(), see
Section 3.11.2.4).

2.12.8 \e {n}: switches the echo mode on (1) or off (0). If n is explicitly given, set echo to n.

2.12.9 \g {n}: sets the debugging level debug to the non-negative integer n.

2.12.10 \gf {n}: sets the file usage debugging level debugfiles to the non-negative integer n.

2.12.11 \gm {n}: sets the memory debugging level debugmem to the non-negative integer n.

2.12.12 \h {m-n}: outputs some debugging info about the hashtable. If the argument is a number
n, outputs the contents of cell n. Ranges can be given in the form m-n (from cell m to cell n, $
= last cell). If a function name is given instead of a number or range, outputs info on the internal
structure of the hash cell this function occupies (a struct entree in C). If the range is reduced to
a dash (’-’), outputs statistics about hash cell usage.

2.12.13 \l {logfile}: switches log mode on and off. If a logfile argument is given, change the
default logfile name to logfile and switch log mode on.

2.12.14 \m: as \a, but using prettymatrix format.

2.12.15 \o {n}: sets output mode to n (0: raw, 1: prettymatrix, 2: prettyprint, 3: external
prettyprint).

2.12.16 \p {n}: sets realprecision to n decimal digits. Prints its current value if n is omitted.

2.12.17 \ps {n}: sets seriesprecision to n significant terms. Prints its current value if n is
omitted.

2.12.18 \q: quits the gp session and returns to the system. Shortcut for the function quit (see
Section 3.11.2.20).
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2.12.19 \r {filename}: reads into gp all the commands contained in the named file as if they had
been typed from the keyboard, one line after the other. Can be used in combination with the \w

command (see below). Related but not equivalent to the function read (see Section 3.11.2.21); in
particular, if the file contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If filename is omitted, re-read the previously
used input file (fails if no file has ever been successfully read in the current session). If a gp binary

file (see Section 3.11.2.32) is read using this command, it is silently loaded, without cluttering
the history.

Assuming gp figures how to decompress files on your machine, this command accepts com-
pressed files in compressed (.Z) or gzipped (.gz or .z) format. They will be uncompressed on
the fly as gp reads them, without changing the files themselves.

2.12.20 \s: prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI.

2.12.21 \t: prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a gp user.

2.12.22 \u: prints the definitions of all user-defined functions.

2.12.23 \um: prints the definitions of all user-defined member functions.

2.12.24 \v: prints the version number and implementation architecture (680x0, Sparc, Alpha,
other) of the gp executable you are using. In library mode, you can use instead the two character
strings PARIVERSION and PARIINFO, which correspond to the first two lines printed by gp just before
the Copyright message.

2.12.25 \w {n} {filename}: writes the object number n ( %n ) into the named file, in raw format.
If the number n is omitted, writes the latest computed object ( % ). If filename is omitted, appends
to logfile (the GP function write is a trifle more powerful, as you can have arbitrary filenames).

2.12.26 \x: prints the complete tree with addresses and contents (in hexadecimal) of the internal
representation of the latest computed object in gp. As for \s, this is used primarily as a debugging
device for PARI, and the format should be self-explanatory (a ∗ before an object – typically a
modulus – means the corresponding component is out of stack). However, used on a PARI integer,
it can be used as a decimal→hexadecimal converter.

2.12.27 \y {n}: switches simplify on (1) or off (0). If n is explicitly given, set simplify to n.

2.12.28 #: switches the timer on or off.

2.12.29 ##: prints the time taken by the latest computation. Useful when you forgot to turn on
the timer.
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2.13 The preferences file.

This file, called gprc in the sequel, is used to modify or extend gp default behaviour, in all gp
sessions: e.g customize default values or load common user functions and aliases. gp opens the
gprc file and processes the commands in there, before doing anything else, e.g. creating the PARI
stack. If the file does not exist or cannot be read, gp will proceed to the initialization phase at
once, eventually emitting a prompt. If any explicit command line switches are given, they override
the values read from the preferences file.

2.13.1 Syntax. The syntax in the gprc file (and valid in this file only) is simple-minded, but
should be sufficient for most purposes. The file is read line by line; as usual, white space is ignored
unless surrounded by quotes and the standard multiline constructions using braces, \, or = are
available (multiline comments between /* . . . */ are also recognized).

2.13.1.1 Preprocessor: Two types of lines are first dealt with by a preprocessor:

• comments are removed. This applies to all text surrounded by /* . . . */ as well as to
everything following \\ on a given line.

• lines starting with #if boolean are treated as comments if boolean evaluates to false, and
read normally otherwise. The condition can be negated using either #if not (or #if !). If the
rest of the current line is empty, the test applies to the next line (same behaviour as = under gp).
Only three tests can be performed:

EMACS: true if gp is running in an Emacs or TeXmacs shell (see Section 2.14).

READL: true if gp is compiled with readline support (see Section 2.15.1).

VERSION op number : where op is in the set {>,<,<=, >=}, and number is a PARI version
number of the form Major .Minor .patch, where the last two components can be omitted (i.e. 1 is
understood as versio 1.0.0). This is true if gp’s version number satisfies the required inequality.

2.13.1.2 Commands: After the preprocessing the remaining lines are executed as sequence of
expressions (as usual, separated by ; if necessary). Only two kinds of expressions are recognized:

• default = value, where default is one of the available defaults (see Section 2.11), which will
be set to value on actual startup. Don’t forget the quotes around strings (e.g. for prompt or help).

• read "some GP file" where some GP file is a regular GP script this time, which will be
read just before gp prompts you for commands, but after initializing the defaults. In particular,
file input is delayed until the gprc has been fully loaded. This is the right place to input files
containing alias commands, or your favorite macros.

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >

prompt = "(%H:%M) \e[1mgp\e[m > "

\\ readline wants non-printing characters to be braced between ^A/^B pairs

#if READL prompt = "(%H:%M) ^A\e[1m^Bgp^A\e[m^B > "

\\ escape sequences not supported under emacs

#if EMACS prompt = "(%H:%M) gp > "

Note that any of the last two lines could be broken in the following way

#if EMACS
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prompt = "(%H:%M) gp > "

since the preprocessor directive applies to the next line if the current one is empty.

A sample gprc file called misc/gprc.dft is provided in the standard distribution. It is a good
idea to have a look at it and customize it to your needs. Since this file does not use multiline
constructs, here is one (note the terminating ; to separate the expressions):

#if VERSION > 2.2.3

{

read "my_scripts"; \\ syntax errors in older versions

new_galois_format = 1; \\ default introduced in 2.2.4

}

#if ! EMACS

{

colors = "9, 5, no, no, 4, 1, 2";

help = "gphelp -detex -ch 4 -cb 0 -cu 2";

}

2.13.2 Where is it? When gp is started, it looks for a customization file, or gprc in the following
places (in this order, only the first one found will be loaded):

• On the Macintosh (only), gp looks in the directory which contains the gp executable itself for a
file called gprc.

• gp checks whether the environment variable GPRC is set. Under DOS, you can set it in AU-

TOEXEC.BAT. On Unix, this can be done with something like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc file).

If so, the file named by $GPRC is the gprc.

• If GPRC is not set, and if the environment variable HOME is defined, gp then tries

$HOME/.gprc on a Unix system

$HOME\ gprc on a DOS, OS/2, or Windows system.

• If HOME also leaves us clueless, we try

~/.gprc on a Unix system (where as usual ~ stands for your home directory), or

\ gprc on a DOS, OS/2, or Windows system.

• Finally, if no gprc was found among the user files mentioned above we look for /etc/gprc

(\etc\gprc) for a system-wide gprc file (you will need root privileges to set up such a file yourself).

Note that on Unix systems, the gprc’s default name starts with a ’.’ and thus is hidden to
regular ls commands; you need to type ls -a to list it.
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2.14 Using GNU Emacs.

If GNU Emacs is installed on your machine, it is possible to use gp as a subprocess in Emacs.
To use this, you should include in your .emacs file the following lines:

(autoload ’gp-mode "pari" nil t)

(autoload ’gp-script-mode "pari" nil t)

(autoload ’gp "pari" nil t)

(autoload ’gpman "pari" nil t)

(setq auto-mode-alist

(cons ’("\\.gp$" . gp-script-mode) auto-mode-alist))

which autoloads functions from pari.el. See also pariemacs.txt. These files are included in the
PARI distribution and are installed at the same time as gp.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key,
i.e. Escape, or on SUN keyboards, the Left key), a special shell will be started, which in particular
launches gp with the default stack size, prime limit and input buffer size. If you type instead C-u

M-x gp, you will be asked for the name of the gp executable, the stack size and the prime limit
before the execution of gp begins. If for any of these you simply type return, the default value will
be used. On UNIX machines it will be the place you told Configure (usually /usr/local/bin/gp)
for the executable, 10M for the stack and 500k for the prime limit.

You can then work as usual under gp, but with two notable advantages (which don’t really
matter if readline is available to you, see below). First and foremost, you have at your disposal
all the facilities of a text editor like Emacs, in particular for correcting or copying blocks. Second,
you can have an on-line help which is much more complete than what you obtain by typing ?name.
This is done by typing M-?. In the minibuffer, Emacs asks what function you want to describe, and
after your reply you obtain the description which is in the users manual, including the description
of functions (such as \, %) which use special symbols.

This help system can also be menu-driven, by using the command M-\c which opens a help
menu window which enables you to choose the category of commands for which you want an
explanation.

Nevertheless, if extended help is available on your system (see Section 2.12.1), you should use
it instead of the above, since it’s nicer (it ran through TEX) and understands many more keywords.

Finally you can use command completion in the following way. After the prompt, type the
first few letters of the command, then <TAB> where <TAB> is the TAB key. If there exists a unique
command starting with the letters you have typed, the command name will be completed. If not,
either the list of commands starting with the letters you typed will be displayed in a separate
window (which you can then kill by typing as usual C-x 1 or by typing in more letters), or “no
match found” will be displayed in the Emacs command line. If your gp was linked with the readline
library, read the section on completion in the section below (the paragraph on online help is not
relevant).

Note that if for some reason the session crashes (due to a bug in your program or in the PARI
system), you will usually stay under Emacs, but the gp buffer will be killed. To recover it, simply
type again M-x gp (or C-u M-x gp), and a new session of gp will be started after the old one, so
you can recover what you have typed. Note that this will of course not work if for some reason you
kill Emacs and start a new session.
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You also have at your disposal a few other commands and many possible customizations
(colours, prompt). Read the file emacs/pariemacs.txt in standard distribution for details.

2.15 Using readline.

Thanks to the initial help of Ilya Zakharevich, there is a possibility of line editing and command
name completion outside of an Emacs buffer if you have compiled gp with the GNU readline library.
If you do not have Emacs available, or cannot stand using it, we really advise you to make sure
you get this very useful library before configuring or compiling gp. In fact, with readline, even
line editing becomes more powerful outside an Emacs buffer!

2.15.1 A (too) short introduction to readline: The basics are as follows (read the readline
user manual !), assume that C- stands for “the Control key combined with another” and the same
for M- with the Meta key (generally C- combinations act on characters, while the M- ones operate
on words). The Meta key might be called Alt on some keyboards, will display a black diamond on
most others, and can safely be replaced by Esc in any case. Typing any ordinary key inserts text
where the cursor stands, the arrow keys enabling you to move in the line. There are many more
movement commands, which will be familiar to the Emacs user, for instance C-a/C-e will take you
to the start/end of the line, M-b/M-f move the cursor backward/forward by a word, etc. Just press
the <Return> key at any point to send your command to gp.

All the commands you type in are stored in a history (with multiline commands being saved as
single concatenated lines). The Up and Down arrows (or C-p/C-n) will move you through it, M-</M-
> sending you to the start/end of the history. C-r/C-s will start an incremental backward/forward
search. You can kill text (C-k kills till the end of line, M-d to the end of current word) which you
can then yank back using the C-y key (M-y will rotate the kill-ring). C- will undo your last changes
incrementally (M-r undoes all changes made to the current line). C-t and M-t will transpose the
character (word) preceding the cursor and the one under the cursor.

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behaviour)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi–style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a file named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want specific bindings for gp):

$if Pari-GP

set show-all-if-ambiguous

"\C-h": backward-delete-char

"\e\C-h": backward-kill-word

"\C-xd": dump-functions

(: "\C-v()\C-b" # can be annoying when copy-pasting !
[: "\C-v[]\C-b"

$endif

C-x C-r will re-read this init file, incorporating any changes made to it during the current session.
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Note: By default, ( and [ are bound to the function pari-matched-insert which, if “electric
parentheses” are enabled (default: off) will automatically insert the matching closure (respectively
) and ]). This behaviour can be toggled on and off by giving the numeric argument −2 to (

(M--2(), which is useful if you want, e.g to copy-paste some text into the calculator. If you do not
want a toggle, you can use M--0 / M--1 to specifically switch it on or off).

Note: In some versions of readline (2.1 for instance), the Alt or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you do not want to fall back to the Esc

combination, put the following two lines in your .inputrc:

set convert-meta on

set output-meta off

2.15.2 Command completion and online help. As in the Emacs shell, <TAB> will complete
words for you. But, under readline, this mechanism will be context-dependent: gp will strive to
only give you meaningful completions in a given context (it will fail sometimes, but only under rare
and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some file. Directly after
default( has been typed, we would expect one of the default keywords. After whatnow( , we
expect the name of an old function, which may well have disappeared from this version. After a
’.’, we expect a member keyword. And generally of course, we expect any GP symbol which may
be found in the hashing lists: functions (both yours and GP’s), and variables.

If, at any time, only one completion is meaningful, gp will provide it together with

• an ending comma if we are completing a default,

• a pair of parentheses if we are completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help*.

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just ex-
periment with this mechanism as often as possible, you will probably find it very convenient. For
instance, you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10,
which saves 18 keystrokes (out of 27).

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.

* recall that you can always undo the effect of the preceding keys by hitting C-
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Chapter 3:
Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
everexpanding. Here is a description of the ones available in version 2.3.5. It should be noted that
many of these functions accept quite different types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.
In this chapter, we will describe the functions according to a rough classification. The general entry
looks something like:

foo(x, {flag = 0}): short description.

The library syntax is foo(x, flag).

This means that the GP function foo has one mandatory argument x, and an optional one, flag ,
whose default value is 0. (The {} should not be typed, it is just a convenient notation we will use
throughout to denote optional arguments.) That is, you can type foo(x,2), or foo(x), which is
then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order. When none are left, the
defaults are used instead. Thus, assuming that foo’s prototype had been

foo({x = 1}, {y = 2}, {z = 3}),
typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, you can use the “empty arg”
trick alluded to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields
foo(1,2,3) as was to be expected.

In this rather special case of a function having no mandatory argument, you can even omit
the (): a standalone foo would be enough (though we do not recommend it for your scripts, for
the sake of clarity). In defining GP syntax, we strove to put optional arguments at the end of the
argument list (of course, since they would not make sense otherwise), and in order of decreasing
usefulness so that, most of the time, you will be able to ignore them.

Finally, an optional argument (between braces) followed by a star, like {x}∗, means that any
number of such arguments (possibly none) can be given. This is in particular used by the various
print routines.

Flags. A flag is an argument which, rather than conveying actual information to the routine,
intructs it to change its default behaviour, e.g. return more or less information. All such flags are
optional, and will be called flag in the function descriptions to follow. There are two different kind
of flags

• generic: all valid values for the flag are individually described (“If flag is equal to 1, then. . . ”).

• binary: use customary binary notation as a compact way to represent many toggles with
just one integer. Let (p0, . . . , pn) be a list of switches (i.e. of properties which take either the value
0 or 1), the number 23 + 25 = 40 means that p3 and p5 are set (that is, set to 1), and none of the
others are (that is, they are set to 0). This is announced as “The binary digits of flag mean 1: p0,
2: p1, 4: p2”, and so on, using the available consecutive powers of 2.
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Mnemonics for flags. Numeric flags as mentionned above are obscure, error-prone, and quite
rigid: should the authors want to adopt a new flag numbering scheme (for instance when noticing
flags with the same meaning but different numeric values across a set of routines), it would break
backward compatibility. The only advantage of explicit numeric values is that they are fast to type,
so their use is only advised when using the calculator gp.

As an alternative, one can replace a numeric flag by a character string containing symbolic
identifiers. For a generic flag, the mnemonic corresponding to the numeric identifier is given after
it as in

fun(x, {flag = 0} ):

If flag is equal to 1 = AGM, use an agm formula\dots

which means that one can use indifferently fun(x, 1) or fun(x, AGM).

For a binary flag, mnemonics corresponding to the various toggles are given after each of them.
They can be negated by prepending no to the mnemonic, or by removing such a prefix. These
toggles are grouped together using any punctuation character (such as ’,’ or ’;’). For instance (taken
from description of ploth(X = a, b, expr , {flag = 0}, {n = 0}))

Binary digits of flags mean: 1 = Parametric, 2 = Recursive, . . .

so that, instead of 1, one could use the mnemonic "Parametric; no Recursive", or simply "Para-

metric" since Recursive is unset by default (default value of flag is 0, i.e. everything unset).

Pointers. If a parameter in the function prototype is prefixed with a & sign, as in

foo(x,&e)

it means that, besides the normal return value, the function may assign a value to e as a side effect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.3.5, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in Z issquare(x, {&e}).

About library programming. the library function foo, as defined at the beginning of this
section, is seen to have two mandatory arguments, x and flag : no PARI mathematical function has
been implemented so as to accept a variable number of arguments, so all arguments are mandatory
when programming with the library (often, variants are provided corresponding to the various
flag values). When not mentioned otherwise, the result and arguments of a function are assumed
implicitly to be of type GEN. Most other functions return an object of type long integer in C (see
Chapter 4). The variable or parameter names prec and flag always denote long integers.

The entree type is used by the library to implement iterators (loops, sums, integrals, etc.)
when a formal variable has to successively assume a number of values in a given set. When
programming with the library, it is easier and much more efficient to code loops and the like
directly. Hence this type is not documented, although it does appear in a few library function
prototypes below. See Section 3.9 for more details.
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3.1 Standard monadic or dyadic operators.

3.1.1 +/-: The expressions +x and -x refer to monadic operators (the first does nothing, the second
negates x).

The library syntax is gneg(x) for -x.

3.1.2 +, -: The expression x + y is the sum and x - y is the difference of x and y. Among the
prominent impossibilities are addition/subtraction between a scalar type and a vector or a matrix,
between vector/matrices of incompatible sizes and between an intmod and a real number.

The library syntax is gadd(x, y) x + y, gsub(x, y) for x - y.

3.1.3 *: The expression x * y is the product of x and y. Among the prominent impossibilities
are multiplication between vector/matrices of incompatible sizes, between an intmod and a real
number. Note that because of vector and matrix operations, * is not necessarily commutative.
Note also that since multiplication between two column or two row vectors is not allowed, to
obtain the scalar product of two vectors of the same length, you must multiply a line vector by a
column vector, if necessary by transposing one of the vectors (using the operator ~ or the function
mattranspose, see Section 3.8).

If x and y are binary quadratic forms, compose them. See also qfbnucomp and qfbnupow.

The library syntax is gmul(x, y) for x * y. Also available is gsqr(x) for x * x (faster of
course!).

3.1.4 /: The expression x / y is the quotient of x and y. In addition to the impossibilities for
multiplication, note that if the divisor is a matrix, it must be an invertible square matrix, and in
that case the result is x∗y−1. Furthermore note that the result is as exact as possible: in particular,
division of two integers always gives a rational number (which may be an integer if the quotient
is exact) and not the Euclidean quotient (see x \ y for that), and similarly the quotient of two
polynomials is a rational function in general. To obtain the approximate real value of the quotient
of two integers, add 0. to the result; to obtain the approximate p-adic value of the quotient of two
integers, add O(p^k) to the result; finally, to obtain the Taylor series expansion of the quotient of
two polynomials, add O(X^k) to the result or use the taylor function (see Section 3.7.34).

The library syntax is gdiv(x, y) for x / y.

3.1.5 \: The expression x \ y is the Euclidean quotient of x and y. If y is a real scalar, this is
defined as floor(x/y) if y > 0, and ceil(x/y) if y < 0 and the division is not exact. Hence the
remainder x - (x\y)*y is in [0, |y|[.

Note that when y is an integer and x a polynomial, y is first promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is gdivent(x, y) for x \ y.

3.1.6 \/: The expression x \/ y evaluates to the rounded Euclidean quotient of x and y. This is
the same as x \ y except for scalar division: the quotient is such that the corresponding remainder
is smallest in absolute value and in case of a tie the quotient closest to +∞ is chosen (hence the
remainder would belong to ]− |y|/2, |y|/2]).

When x is a vector or matrix, the operator is applied componentwise.

The library syntax is gdivround(x, y) for x \/ y.
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3.1.7 %: The expression x % y evaluates to the modular Euclidean remainder of x and y, which
we now define. If y is an integer, this is the smallest non-negative integer congruent to x modulo
y. If y is a polynomial, this is the polynomial of smallest degree congruent to x modulo y. When
y is a non-integral real number, x%y is defined as x - (x\y)*y. This coincides with the definition
for y integer if and only if x is an integer, but still belongs to [0, |y|[. For instance:

? (1/2) % 3

%1 = 2

? 0.5 % 3

*** forbidden division t_REAL % t_INT.

? (1/2) % 3.0

%2 = 1/2

Note that when y is an integer and x a polynomial, y is first promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is gmod(x, y) for x % y.

3.1.8 divrem(x, y, {v}): creates a column vector with two components, the first being the Eu-
clidean quotient (x \ y), the second the Euclidean remainder (x - (x\y)*y), of the division of x
by y. This avoids the need to do two divisions if one needs both the quotient and the remainder.
If v is present, and x, y are multivariate polynomials, divide with respect to the variable v.

Beware that divrem(x,y)[2] is in general not the same as x % y; there is no operator to
obtain it in GP:

? divrem(1/2, 3)[2]

%1 = 1/2

? (1/2) % 3

%2 = 2

? divrem(Mod(2,9), 3)[2]

*** forbidden division t_INTMOD \ t_INT.

? Mod(2,9) % 6

%3 = Mod(2,3)

The library syntax is divrem(x, y, v),where v is a long. Also available as gdiventres(x, y)
when v is not needed.

3.1.9 ^: The expression x^n is powering. If the exponent is an integer, then exact operations are
performed using binary (left-shift) powering techniques. In particular, in this case x cannot be a
vector or matrix unless it is a square matrix (invertible if the exponent is negative). If x is a p-adic
number, its precision will increase if vp(n) > 0. Powering a binary quadratic form (types t_QFI and
t_QFR) returns a reduced representative of the class, provided the input is reduced. In particular,
x^1 is identical to x.

PARI is able to rewrite the multiplication x∗x of two identical objects as x2, or sqr(x). Here,
identical means the operands are two different labels referencing the same chunk of memory; no
equality test is performed. This is no longer true when more than two arguments are involved.

If the exponent is not of type integer, this is treated as a transcendental function (see Sec-
tion 3.3), and in particular has the effect of componentwise powering on vector or matrices.
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As an exception, if the exponent is a rational number p/q and x an integer modulo a prime or
a p-adic number, return a solution y of yq = xp if it exists. Currently, q must not have large prime
factors. Beware that

? Mod(7,19)^(1/2)

%1 = Mod(11, 19) /* is any square root */

? sqrt(Mod(7,19))

%2 = Mod(8, 19) /* is the smallest square root */

? Mod(7,19)^(3/5)

%3 = Mod(1, 19)

? %3^(5/3)

%4 = Mod(1, 19) /* Mod(7,19) is just another cubic root */

If the exponent is a negative integer, an inverse must be computed. For non-invertible
t_INTMOD, this will fail and implicitly exhibit a non trivial factor of the modulus:

? Mod(4,6)^(-1)

*** impossible inverse modulo: Mod(2, 6).

(Here, a factor 2 is obtained directly. In general, take the gcd of the representative and the
modulus.) This is most useful when performing complicated operations modulo an integer N
whose factorization is unknown. Either the computation succeeds and all is well, or a factor d is
discovered and the computation may be restarted modulo d or N/d.

For non-invertible t_POLMOD, this will fail without exhibiting a factor.

? Mod(x^2, x^3-x)^(-1)

*** non-invertible polynomial in RgXQ_inv.

? a = Mod(3,4)*y^3 + Mod(1,4); b = y^6+y^5+y^4+y^3+y^2+y+1;

? Mod(a, b)^(-1);

*** non-invertible polynomial in RgXQ_inv.

In fact the latter polynomial is invertible, but the algorithm used (subresultant) assumes the base
ring is a domain. If it is not the case, as here for Z/4Z, a result will be correct but chances are an
error will occur first. In this specific case, one should work with 2-adics. In general, one can try
the following approach

? inversemod(a, b) =

{ local(m);

m = polsylvestermatrix(polrecip(a), polrecip(b));

m = matinverseimage(m, matid(#m)[,1]);

Polrev( vecextract(m, Str("..", poldegree(b))), variable(b) )

}

? inversemod(a,b)

%2 = Mod(2,4)*y^5 + Mod(3,4)*y^3 + Mod(1,4)*y^2 + Mod(3,4)*y + Mod(2,4)

This is not guaranteed to work either since it must invert pivots. See Section 3.8.

The library syntax is gpow(x, n, prec) for x^n.
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3.1.10 bittest(x, n): outputs the nth bit of x starting from the right (i.e. the coefficient of 2n in
the binary expansion of x). The result is 0 or 1. To extract several bits at once as a vector, pass a
vector for n.

See Section 3.2.17 for the behaviour at negative arguments.

The library syntax is bittest(x, n), where n and the result are longs.

3.1.11 shift(x, n) or x << n (= x >> (−n)): shifts x componentwise left by n bits if n ≥ 0 and
right by |n| bits if n < 0. A left shift by n corresponds to multiplication by 2n. A right shift of an
integer x by |n| corresponds to a Euclidean division of x by 2|n| with a remainder of the same sign
as x, hence is not the same (in general) as x\2n.

The library syntax is gshift(x, n) where n is a long.

3.1.12 shiftmul(x, n): multiplies x by 2n. The difference with shift is that when n < 0, ordinary
division takes place, hence for example if x is an integer the result may be a fraction, while for
shifts Euclidean division takes place when n < 0 hence if x is an integer the result is still an integer.

The library syntax is gmul2n(x, n) where n is a long.

3.1.13 Comparison and boolean operators. The six standard comparison operators <=, <, >=,
>, ==, != are available in GP, and in library mode under the names gle, glt, gge, ggt, geq, gne
respectively. The library syntax is co(x, y), where co is the comparison operator. The result is 1
(as a GEN) if the comparison is true, 0 (as a GEN) if it is false. For the purpose of comparison, t_STR
objects are strictly larger than any other non-string type; two t_STR objects are compared using
the standard lexicographic order.

The standard boolean functions || (inclusive or), && (and) and ! (not) are also available, and
the library syntax is gor(x, y), gand(x, y) and gnot(x) respectively.

In library mode, it is in fact usually preferable to use the two basic functions which are
gcmp(x, y) which gives the sign (1, 0, or -1) of x−y, where x and y must be in R, and gequal(x, y)
which can be applied to any two PARI objects x and y and gives 1 (i.e. true) if they are equal (but not
necessarily identical), 0 (i.e. false) otherwise. Comparisons to special constants are implemented and
should be used instead of gequal: gcmp0(x) (x == 0 ?), gcmp1(x) (x == 1 ?), and gcmp 1(x)
(x == −1 ?).

Note that gcmp0(x) tests whether x is equal to zero, even if x is not an exact object. To test
whether x is an exact object which is equal to zero, one must use isexactzero(x).

Also note that the gcmp and gequal functions return a C-integer, and not a GEN like gle etc.

GP accepts the following synonyms for some of the above functions: since we thought it might
easily lead to confusion, we don’t use the customary C operators for bitwise and or bitwise or (use
bitand or bitor), hence | and & are accepted as synonyms of || and && respectively. Also, <> is
accepted as a synonym for !=. On the other hand, = is definitely not a synonym for == since it is
the assignment statement.
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3.1.14 lex(x, y): gives the result of a lexicographic comparison between x and y (as −1, 0 or 1).
This is to be interpreted in quite a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of
different lengths. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? lex([1,3], [1,2,5])

%1 = 1

? lex([1,3], [1,3,-1])

%2 = -1

? lex([1], [[1]])

%3 = -1

? lex([1], [1]~)

%4 = 0

The library syntax is lexcmp(x, y).

3.1.15 sign(x): sign (0, 1 or −1) of x, which must be of type integer, real or fraction.

The library syntax is gsigne(x). The result is a long.

3.1.16 max(x, y) and min(x, y): creates the maximum and minimum of x and y when they can
be compared.

The library syntax is gmax(x, y) and gmin(x, y).

3.1.17 vecmax(x): if x is a vector or a matrix, returns the maximum of the elements of x,
otherwise returns a copy of x. Error if x is empty.

The library syntax is vecmax(x).

3.1.18 vecmin(x): if x is a vector or a matrix, returns the minimum of the elements of x, otherwise
returns a copy of x. Error if x is empty.

The library syntax is vecmin(x).

3.2 Conversions and similar elementary functions or commands.

Many of the conversion functions are rounding or truncating operations. In this case, if the argu-
ment is a rational function, the result is the Euclidean quotient of the numerator by the denomi-
nator, and if the argument is a vector or a matrix, the operation is done componentwise. This will
not be restated for every function.
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3.2.1 Col(x = [ ]): transforms the object x into a column vector. The vector will be with one com-
ponent only, except when x is a vector or a quadratic form (in which case the resulting vector is
simply the initial object considered as a column vector), a matrix (the column of row vectors com-
prising the matrix is returned), a character string (a column of individual characters is returned),
but more importantly when x is a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the polynomial, while for power series
only the significant coefficients are taken into account, but this time by increasing order of degree.

The library syntax is gtocol(x).

3.2.2 List(x = [ ]): transforms a (row or column) vector x into a list. The only other way to create
a t_LIST is to use the function listcreate.

This is useless in library mode.

3.2.3 Mat(x = [ ]): transforms the object x into a matrix. If x is already a matrix, a copy of x is
created. If x is not a vector or a matrix, this creates a 1× 1 matrix. If x is a row (resp. column)
vector, this creates a 1-row (resp. 1-column) matrix, unless all elements are column (resp. row)
vectors of the same length, in which case the vectors are concatenated sideways and the associated
big matrix is returned.

? Mat(x + 1)

%1 =

[x + 1]

? Vec( matid(3) )

%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]

? Mat(%)

%3 =

[1 0 0]

[0 1 0]

[0 0 1]

? Col( [1,2; 3,4] )

%4 = [[1, 2], [3, 4]]~
? Mat(%)

%5 =

[1 2]

[3 4]

The library syntax is gtomat(x).

3.2.4 Mod(x, y, {flag = 0}): creates the PARI object (xmod y), i.e. an intmod or a polmod. y
must be an integer or a polynomial. If y is an integer, x must be an integer, a rational number, or
a p-adic number compatible with the modulus y. If y is a polynomial, x must be a scalar (which is
not a polmod), a polynomial, a rational function, or a power series.

This function is not the same as x % y, the result of which is an integer or a polynomial.

flag is obsolete and should not be used.

The library syntax is gmodulo(x, y).
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3.2.5 Pol(x, {v = x}): transforms the object x into a polynomial with main variable v. If x is a
scalar, this gives a constant polynomial. If x is a power series, the effect is identical to truncate

(see there), i.e. it chops off the O(Xk). If x is a vector, this function creates the polynomial whose
coefficients are given in x, with x[1] being the leading coefficient (which can be zero).

Warning: this is not a substitution function. It will not transform an object containing variables
of higher priority than v.

? Pol(x + y, y)

*** Pol: variable must have higher priority in gtopoly.

The library syntax is gtopoly(x, v), where v is a variable number.

3.2.6 Polrev(x, {v = x}): transform the object x into a polynomial with main variable v. If x is
a scalar, this gives a constant polynomial. If x is a power series, the effect is identical to truncate

(see there), i.e. it chops off the O(Xk). If x is a vector, this function creates the polynomial whose
coefficients are given in x, with x[1] being the constant term. Note that this is the reverse of Pol
if x is a vector, otherwise it is identical to Pol.

The library syntax is gtopolyrev(x, v), where v is a variable number.

3.2.7 Qfb(a, b, c, {D = 0.}): creates the binary quadratic form ax2 + bxy + cy2. If b2 − 4ac > 0,
initialize Shanks’ distance function to D. Negative definite forms are not implemented, use their
positive definite counterpart instead.

The library syntax is Qfb0(a, b, c,D, prec). Also available are qfi(a, b, c) (when b2− 4ac < 0),
and qfr(a, b, c, d) (when b2 − 4ac > 0).

3.2.8 Ser(x, {v = x}): transforms the object x into a power series with main variable v (x by
default). If x is a scalar, this gives a constant power series with precision given by the default
serieslength (corresponding to the C global variable precdl). If x is a polynomial, the precision
is the greatest of precdl and the degree of the polynomial. If x is a vector, the precision is similarly
given, and the coefficients of the vector are understood to be the coefficients of the power series
starting from the constant term (i.e. the reverse of the function Pol).

The warning given for Pol also applies here: this is not a substitution function.

The library syntax is gtoser(x, v), where v is a variable number (i.e. a C integer).

3.2.9 Set({x = [ ]}): converts x into a set, i.e. into a row vector of character strings, with strictly
increasing entries with respect to lexicographic ordering. The components of x are put in canonical
form (type t_STR) so as to be easily sorted. To recover an ordinary GEN from such an element, you
can apply eval to it.

The library syntax is gtoset(x).
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3.2.10 Str({x}∗): converts its argument list into a single character string (type t_STR, the empty
string if x is omitted). To recover an ordinary GEN from a string, apply eval to it. The arguments
of Str are evaluated in string context, see Section 2.8.

? x2 = 0; i = 2; Str(x, i)

%1 = "x2"

? eval(%)

%2 = 0

This function is mostly useless in library mode. Use the pair strtoGEN/GENtostr to convert
between GEN and char*. The latter returns a malloced string, which should be freed after usage.

3.2.11 Strchr(x): converts x to a string, translating each integer into a character.

? Strchr(97)

%1 = "a"

? Vecsmall("hello world")

%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])

? Strchr(%)

%3 = "hello world"

3.2.12 Strexpand({x}∗): converts its argument list into a single character string (type t_STR,
the empty string if x is omitted). Then performe environment expansion, see Section 2.11. This
feature can be used to read environment variable values.

? Strexpand("$HOME/doc")

%1 = "/home/pari/doc"

The individual arguments are read in string context, see Section 2.8.

3.2.13 Strtex({x}∗): translates its arguments to TeX format, and concatenates the results into a
single character string (type t_STR, the empty string if x is omitted).

The individual arguments are read in string context, see Section 2.8.

3.2.14 Vec(x = [ ]): transforms the object x into a row vector. The vector will be with one
component only, except when x is a vector or a quadratic form (in which case the resulting vector
is simply the initial object considered as a row vector), a matrix (the vector of columns comprising
the matrix is return), a character string (a vector of individual characters is returned), but more
importantly when x is a polynomial or a power series. In the case of a polynomial, the coefficients
of the vector start with the leading coefficient of the polynomial, while for power series only the
significant coefficients are taken into account, but this time by increasing order of degree.

The library syntax is gtovec(x).

3.2.15 Vecsmall(x = [ ]): transforms the object x into a row vector of type t_VECSMALL. This acts
as Vec, but only on a limited set of objects (the result must be representable as a vector of small
integers). In particular, polynomials and power series are forbidden. If x is a character string, a
vector of individual characters in ASCII encoding is returned (Strchr yields back the character
string).

The library syntax is gtovecsmall(x).
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3.2.16 binary(x): outputs the vector of the binary digits of |x|. Here x can be an integer, a
real number (in which case the result has two components, one for the integer part, one for the
fractional part) or a vector/matrix.

The library syntax is binaire(x).

3.2.17 bitand(x, y): bitwise and of two integers x and y, that is the integer∑
i

(xi and yi)2
i

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(xn, yn), where
xn and yn are non-negative integers tending to x and y respectively. (The result is an ordinary
integer, possibly negative.)

? bitand(5, 3)

%1 = 1

? bitand(-5, 3)

%2 = 3

? bitand(-5, -3)

%3 = -7

The library syntax is gbitand(x, y).

3.2.18 bitneg(x, {n = −1}): bitwise negation of an integer x, truncated to n bits, that is the
integer

n−1∑
i=0

not(xi)2
i

The special case n = −1 means no truncation: an infinite sequence of leading 1 is then represented
as a negative number.

See Section 3.2.17 for the behaviour for negative arguments.

The library syntax is gbitneg(x).

3.2.19 bitnegimply(x, y): bitwise negated imply of two integers x and y (or not (x ⇒ y)), that
is the integer ∑

(xi andnot(yi))2
i

See Section 3.2.17 for the behaviour for negative arguments.

The library syntax is gbitnegimply(x, y).

3.2.20 bitor(x, y): bitwise (inclusive) or of two integers x and y, that is the integer∑
(xi or yi)2

i

See Section 3.2.17 for the behaviour for negative arguments.

The library syntax is gbitor(x, y).
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3.2.21 bittest(x, n): outputs the nth bit of |x| starting from the right (i.e. the coefficient of 2n in
the binary expansion of x). The result is 0 or 1. To extract several bits at once as a vector, pass a
vector for n.

The library syntax is bittest(x, n), where n and the result are longs.

3.2.22 bitxor(x, y): bitwise (exclusive) or of two integers x and y, that is the integer∑
(xi xor yi)2

i

See Section 3.2.17 for the behaviour for negative arguments.

The library syntax is gbitxor(x, y).

3.2.23 ceil(x): ceiling of x. When x is in R, the result is the smallest integer greater than or equal
to x. Applied to a rational function, ceil(x) returns the euclidian quotient of the numerator by
the denominator.

The library syntax is gceil(x).

3.2.24 centerlift(x, {v}): lifts an element x = a mod n of Z/nZ to a in Z, and similarly lifts a
polmod to a polynomial. This is the same as lift except that in the particular case of elements
of Z/nZ, the lift y is such that −n/2 < y ≤ n/2. If x is of type fraction, complex, quadratic,
polynomial, power series, rational function, vector or matrix, the lift is done for each coefficient.
Reals are forbidden.

The library syntax is centerlift0(x, v), where v is a long and an omitted v is coded as −1.
Also available is centerlift(x) = centerlift0(x,-1).

3.2.25 changevar(x, y): creates a copy of the object x where its variables are modified according
to the permutation specified by the vector y. For example, assume that the variables have been
introduced in the order x, a, b, c. Then, if y is the vector [x,c,a,b], the variable a will be
replaced by c, b by a, and c by b, x being unchanged. Note that the permutation must be
completely specified, e.g. [c,a,b] would not work, since this would replace x by c, and leave a and
b unchanged (as well as c which is the fourth variable of the initial list). In particular, the new
variable names must be distinct.

The library syntax is changevar(x, y).

3.2.26 components of a PARI object:

There are essentially three ways to extract the components from a PARI object.

The first and most general, is the function component(x, n) which extracts the nth-component
of x. This is to be understood as follows: every PARI type has one or two initial code words. The
components are counted, starting at 1, after these code words. In particular if x is a vector, this
is indeed the nth-component of x, if x is a matrix, the nth column, if x is a polynomial, the nth

coefficient (i.e. of degree n− 1), and for power series, the nth significant coefficient. The use of the
function component implies the knowledge of the structure of the different PARI types, which can
be recalled by typing \t under gp.

The library syntax is compo(x, n), where n is a long.
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The two other methods are more natural but more restricted. The function polcoeff(x, n)
gives the coefficient of degree n of the polynomial or power series x, with respect to the main variable
of x (to check variable ordering, or to change it, use the function reorder, see Section 3.11.2.23).
In particular if n is less than the valuation of x or in the case of a polynomial, greater than the
degree, the result is zero (contrary to compo which would send an error message). If x is a power
series and n is greater than the largest significant degree, then an error message is issued.

For greater flexibility, vector or matrix types are also accepted for x, and the meaning is then
identical with that of compo.

Finally note that a scalar type is considered by polcoeff as a polynomial of degree zero.

The library syntax is truecoeff(x, n).

The third method is specific to vectors or matrices in GP. If x is a (row or column) vector,
then x[n] represents the nth component of x, i.e. compo(x,n). It is more natural and shorter to
write. If x is a matrix, x[m,n] represents the coefficient of row m and column n of the matrix,
x[m,] represents the mth row of x, and x[,n] represents the nth column of x.

Finally note that in library mode, the macros gcoeff and gmael are available as direct accessors
to a GEN component. See Chapter 4 for details.

3.2.27 conj(x): conjugate of x. The meaning of this is clear, except that for real quadratic
numbers, it means conjugation in the real quadratic field. This function has no effect on integers,
reals, intmods, fractions or p-adics. The only forbidden type is polmod (see conjvec for this).

The library syntax is gconj(x).

3.2.28 conjvec(x): conjugate vector representation of x. If x is a polmod, equal to Mod(a, q),
this gives a vector of length degree(q) containing the complex embeddings of the polmod if q has
integral or rational coefficients, and the conjugates of the polmod if q has some intmod coefficients.
The order is the same as that of the polroots functions. If x is an integer or a rational number, the
result is x. If x is a (row or column) vector, the result is a matrix whose columns are the conjugate
vectors of the individual elements of x.

The library syntax is conjvec(x, prec).

3.2.29 denominator(x): denominator of x. The meaning of this is clear when x is a rational
number or function. If x is an integer or a polynomial, it is treated as a rational number of
function, respectively, and the result is equal to 1. For polynomials, you probably want to use

denominator( content(x) )

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator
of a t_POLMOD is the denominator of its (minimal degree) polynomial representative.

If x is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its
components (a common denominator) is computed. This also applies for t_COMPLEXs and t_QUADs.
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Warning: multivariate objects are created according to variable priorities, with possibly surprising
side effects (x/y is a polynomial, but y/x is a rational function). See Section 2.5.4.

The library syntax is denom(x).

3.2.30 floor(x): floor of x. When x is in R, the result is the largest integer smaller than or equal
to x. Applied to a rational function, floor(x) returns the euclidian quotient of the numerator by
the denominator.

The library syntax is gfloor(x).

3.2.31 frac(x): fractional part of x. Identical to x− floor(x). If x is real, the result is in [0, 1[.

The library syntax is gfrac(x).

3.2.32 imag(x): imaginary part of x. When x is a quadratic number, this is the coefficient of ω
in the “canonical” integral basis (1, ω).

The library syntax is gimag(x). This returns a copy of the imaginary part. The internal
routine imag_i is faster, since it returns the pointer and skips the copy.

3.2.33 length(x): number of non-code words in x really used (i.e. the effective length minus 2 for
integers and polynomials). In particular, the degree of a polynomial is equal to its length minus 1.
If x has type t_STR, output number of letters.

The library syntax is glength(x) and the result is a C long.

3.2.34 lift(x, {v}): lifts an element x = a mod n of Z/nZ to a in Z, and similarly lifts a polmod
to a polynomial if v is omitted. Otherwise, lifts only polmods whose modulus has main variable
v (if v does not occur in x, lifts only intmods). If x is of recursive (non modular) type, the lift is
done coefficientwise. For p-adics, this routine acts as truncate. It is not allowed to have x of type
t_REAL.

? lift(Mod(5,3))

%1 = 2

? lift(3 + O(3^9))

%2 = 3

? lift(Mod(x,x^2+1))

%3 = x

? lift(x * Mod(1,3) + Mod(2,3))

%4 = x + 2

? lift(x * Mod(y,y^2+1) + Mod(2,3))

%5 = y*x + Mod(2, 3) \\ do you understand this one ?
? lift(x * Mod(y,y^2+1) + Mod(2,3), x)

%6 = Mod(y, y^2+1) * x + Mod(2, y^2+1)

The library syntax is lift0(x, v), where v is a long and an omitted v is coded as −1. Also
available is lift(x) = lift0(x,-1).
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3.2.35 norm(x): algebraic norm of x, i.e. the product of x with its conjugate (no square roots are
taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise and
hence is not the L2-norm (see norml2). Note that the norm of an element of R is its square, so as
to be compatible with the complex norm.

The library syntax is gnorm(x).

3.2.36 norml2(x): square of the L2-norm of x. More precisely, if x is a scalar, norml2(x) is defined
to be x * conj(x). If x is a (row or column) vector or a matrix, norml2(x) is defined recursively
as
∑
i norml2(xi), where (xi) run through the components of x. In particular, this yields the usual∑

|xi|2 (resp.
∑
|xi,j |2) if x is a vector (resp. matrix) with complex components.

? norml2( [ 1, 2, 3 ] ) \\ vector

%1 = 14

? norml2( [ 1, 2; 3, 4] ) \\ matrix

%1 = 30

? norml2( I + x )

%3 = x^2 + 1

? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined

%4 = 91

The library syntax is gnorml2(x).

3.2.37 numerator(x): numerator of x. The meaning of this is clear when x is a rational number
or function. If x is an integer or a polynomial, it is treated as a rational number of function,
respectively, and the result is x itself. For polynomials, you probably want to use

numerator( content(x) )

instead.

In other cases, numerator(x) is defined to be denominator(x)*x. This is the case when x is
a vector or a matrix, but also for t_COMPLEX or t_QUAD. In particular since a t_PADIC or t_INTMOD
has denominator 1, its numerator is itself.

Warning: multivariate objects are created according to variable priorities, with possibly surprising
side effects (x/y is a polynomial, but y/x is a rational function). See Section 2.5.4.

The library syntax is numer(x).

3.2.38 numtoperm(n, k): generates the k-th permutation (as a row vector of length n) of the
numbers 1 to n. The number k is taken modulo n! , i.e. inverse function of permtonum.

The library syntax is numtoperm(n, k), where n is a long.

3.2.39 padicprec(x, p): absolute p-adic precision of the object x. This is the minimum precision
of the components of x. The result is VERYBIGINT (231− 1 for 32-bit machines or 263− 1 for 64-bit
machines) if x is an exact object.

The library syntax is padicprec(x, p) and the result is a long integer.

3.2.40 permtonum(x): given a permutation x on n elements, gives the number k such that
x = numtoperm(n, k), i.e. inverse function of numtoperm.

The library syntax is permtonum(x).
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3.2.41 precision(x, {n}): gives the precision in decimal digits of the PARI object x. If x is an
exact object, the largest single precision integer is returned. If n is not omitted, creates a new
object equal to x with a new precision n. This is to be understood as follows:

For exact types, no change. For x a vector or a matrix, the operation is done componentwise.

For real x, n is the number of desired significant decimal digits. If n is smaller than the
precision of x, x is truncated, otherwise x is extended with zeros.

For x a p-adic or a power series, n is the desired number of significant p-adic or X-adic digits,
where X is the main variable of x.

Note that the function precision never changes the type of the result. In particular it is not
possible to use it to obtain a polynomial from a power series. For that, see truncate.

The library syntax is precision0(x, n), where n is a long. Also available are ggprecision(x)
(result is a GEN) and gprec(x, n), where n is a long.

3.2.42 random({N = 231}): returns a random integer between 0 and N−1. N is an integer, which
can be arbitrary large. This is an internal PARI function and does not depend on the system’s
random number generator.

The resulting integer is obtained by means of linear congruences and will not be well dis-
tributed in arithmetic progressions. The random seed may be obtained via getrand, and reset
using setrand.

Note that random(2^31) is not equivalent to random(), although both return an integer be-
tween 0 and 231−1. In fact, calling random with an argument generates a number of random words
(32bit or 64bit depending on the architecture), rescaled to the desired interval. The default uses
directly a 31-bit generator.

Important technical note: the implementation of this function is incorrect unless N is a power
of 2 (integers less than the bound are not equally likely, some may not even occur). It is kept for
backward compatibility only, and has been rewritten from scratch in the 2.4.x unstable series. Use
the following script for a correct version:

RANDOM(N) =

{ local(n, L);

L = 1; while (L < N, L <<= 1;);

/* L/2 < N <= L, L power of 2 */

until(n < N, n = random(L)); n

}

The library syntax is genrand(N). Also available are pari_rand() which returns a random
unsigned long (32bit or 64bit depending on the architecture), and pari_rand31() which returns
a 31bit long integer.

3.2.43 real(x): real part of x. In the case where x is a quadratic number, this is the coefficient of
1 in the “canonical” integral basis (1, ω).

The library syntax is greal(x). This returns a copy of the real part. The internal routine
real_i is faster, since it returns the pointer and skips the copy.
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3.2.44 round(x, {&e}): If x is in R, rounds x to the nearest integer and sets e to the number of
error bits, that is the binary exponent of the difference between the original and the rounded value
(the “fractional part”). If the exponent of x is too large compared to its precision (i.e. e > 0), the
result is undefined and an error occurs if e was not given.

Important remark: note that, contrary to the other truncation functions, this function operates
on every coefficient at every level of a PARI object. For example

truncate

(
2.4 ∗X2 − 1.7

X

)
= 2.4 ∗X,

whereas

round

(
2.4 ∗X2 − 1.7

X

)
=

2 ∗X2 − 2

X
.

An important use of round is to get exact results after a long approximate computation, when
theory tells you that the coefficients must be integers.

The library syntax is grndtoi(x,&e), where e is a long integer. Also available is ground(x).

3.2.45 simplify(x): this function simplifies x as much as it can. Specifically, a complex or quadratic
number whose imaginary part is an exact 0 (i.e. not an approximate one as a O(3) or 0.E-28)
is converted to its real part, and a polynomial of degree 0 is converted to its constant term.
Simplifications occur recursively.

This function is especially useful before using arithmetic functions, which expect integer argu-
ments:

? x = 1 + y - y

%1 = 1

? divisors(x)

*** divisors: not an integer argument in an arithmetic function

? type(x)

%2 = "t_POL"

? type(simplify(x))

%3 = "t_INT"

Note that GP results are simplified as above before they are stored in the history. (Unless you
disable automatic simplification with \y, that is.) In particular

? type(%1)

%4 = "t_INT"

The library syntax is simplify(x).

3.2.46 sizebyte(x): outputs the total number of bytes occupied by the tree representing the PARI
object x.

The library syntax is taille2(x) which returns a long; taille(x) returns the number of words
instead.

3.2.47 sizedigit(x): outputs a quick bound for the number of decimal digits of (the components
of) x, off by at most 1. If you want the exact value, you can use #Str(x), which is slower.

The library syntax is sizedigit(x) which returns a long.
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3.2.48 truncate(x, {&e}): truncates x and sets e to the number of error bits. When x is in R,
this means that the part after the decimal point is chopped away, e is the binary exponent of the
difference between the original and the truncated value (the “fractional part”). If the exponent of
x is too large compared to its precision (i.e. e > 0), the result is undefined and an error occurs if
e was not given. The function applies componentwise on vector / matrices; e is then the maximal
number of error bits. If x is a rational function, the result is the “integer part” (Euclidean quotient
of numerator by denominator) and e is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a
polynomial or a rational function with denominator a power of X, by chopping away the O(Xk).
Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number
by chopping away the O(pk).

The library syntax is gcvtoi(x,&e), where e is a long integer. Also available is gtrunc(x).

3.2.49 valuation(x, p): computes the highest exponent of p dividing x. If p is of type integer, x
must be an integer, an intmod whose modulus is divisible by p, a fraction, a q-adic number with
q = p, or a polynomial or power series in which case the valuation is the minimum of the valuation
of the coefficients.

If p is of type polynomial, x must be of type polynomial or rational function, and also a power
series if x is a monomial. Finally, the valuation of a vector, complex or quadratic number is the
minimum of the component valuations.

If x = 0, the result is VERYBIGINT (231 − 1 for 32-bit machines or 263 − 1 for 64-bit machines)
if x is an exact object. If x is a p-adic numbers or power series, the result is the exponent of the
zero. Any other type combinations gives an error.

The library syntax is ggval(x, p), and the result is a long.

3.2.50 variable(x): gives the main variable of the object x, and p if x is a p-adic number. Gives
an error if x has no variable associated to it. Note that this function is useful only in GP, since in
library mode the function gvar is more appropriate.

The library syntax is gpolvar(x). However, in library mode, this function should not be used.
Instead, test whether x is a p-adic (type t_PADIC), in which case p is in x[2], or call the function
gvar(x) which returns the variable number of x if it exists, BIGINT otherwise.

3.3 Transcendental functions.

As a general rule, which of course in some cases may have exceptions, transcendental functions
operate in the following way:

• If the argument is either an integer, a real, a rational, a complex or a quadratic number, it
is, if necessary, first converted to a real (or complex) number using the current precision held in the
default realprecision. Note that only exact arguments are converted, while inexact arguments
such as reals are not.

In GP this is transparent to the user, but when programming in library mode, care must
be taken to supply a meaningful parameter prec as the last argument of the function if the first
argument is an exact object. This parameter is ignored if the argument is inexact.
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Note that in library mode the precision argument prec is a word count including codewords,
i.e. represents the length in words of a real number, while under gp the precision (which is changed
by the metacommand \p or using default(realprecision,...)) is the number of significant
decimal digits.

Note that some accuracies attainable on 32-bit machines cannot be attained on 64-bit machines
for parity reasons. For example the default gp accuracy is 28 decimal digits on 32-bit machines,
corresponding to prec having the value 5, but this cannot be attained on 64-bit machines.

After possible conversion, the function is computed. Note that even if the argument is real,
the result may be complex (e.g. acos(2.0) or acosh(0.0)). Note also that the principal branch is
always chosen.

• If the argument is an intmod or a p-adic, at present only a few functions like sqrt (square
root), sqr (square), log, exp, powering, teichmuller (Teichmüller character) and agm (arithmetic-
geometric mean) are implemented.

Note that in the case of a 2-adic number, sqr(x) may not be identical to x ∗ x: for example if
x = 1+O(25) and y = 1+O(25) then x∗y = 1+O(25) while sqr(x) = 1+O(26). Here, x∗x yields
the same result as sqr(x) since the two operands are known to be identical . The same statement
holds true for p-adics raised to the power n, where vp(n) > 0.

Remark: note that if we wanted to be strictly consistent with the PARI philosophy, we should
have x ∗ y = (4 mod 8) and sqr(x) = (4 mod 32) when both x and y are congruent to 2 modulo
4. However, since intmod is an exact object, PARI assumes that the modulus must not change,
and the result is hence (0 mod 4) in both cases. On the other hand, p-adics are not exact objects,
hence are treated differently.

• If the argument is a polynomial, power series or rational function, it is, if necessary, first
converted to a power series using the current precision held in the variable precdl. Under gp this
again is transparent to the user. When programming in library mode, however, the global variable
precdl must be set before calling the function if the argument has an exact type (i.e. not a power
series). Here precdl is not an argument of the function, but a global variable.

Then the Taylor series expansion of the function around X = 0 (where X is the main variable)
is computed to a number of terms depending on the number of terms of the argument and the
function being computed.

• If the argument is a vector or a matrix, the result is the componentwise evaluation of the
function. In particular, transcendental functions on square matrices, which are not implemented
in the present version 2.3.5, will have a different name if they are implemented some day.

3.3.1 ^: If y is not of type integer, x^y has the same effect as exp(y*log(x)). It can be applied
to p-adic numbers as well as to the more usual types.

The library syntax is gpow(x, y, prec).

3.3.2 Euler: Euler’s constant γ = 0.57721 · · ·. Note that Euler is one of the few special reserved
names which cannot be used for variables (the others are I and Pi, as well as all function names).

The library syntax is mpeuler(prec) where prec must be given. Note that this creates γ on
the PARI stack, but a copy is also created on the heap for quicker computations next time the
function is called.
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3.3.3 I: the complex number
√
−1.

The library syntax is the global variable gi (of type GEN).

3.3.4 Pi: the constant π (3.14159 · · ·).

The library syntax is mppi(prec) where prec must be given. Note that this creates π on the
PARI stack, but a copy is also created on the heap for quicker computations next time the function
is called.

3.3.5 abs(x): absolute value of x (modulus if x is complex). Rational functions are not allowed.
Contrary to most transcendental functions, an exact argument is not converted to a real number
before applying abs and an exact result is returned if possible.

? abs(-1)

%1 = 1

? abs(3/7 + 4/7*I)

%2 = 5/7

? abs(1 + I)

%3 = 1.414213562373095048801688724

If x is a polynomial, returns −x if the leading coefficient is real and negative else returns x. For a
power series, the constant coefficient is considered instead.

The library syntax is gabs(x, prec).

3.3.6 acos(x): principal branch of cos−1(x), i.e. such that Re(acos(x)) ∈ [0, π]. If x ∈ R and
|x| > 1, then acos(x) is complex.

The library syntax is gacos(x, prec).

3.3.7 acosh(x): principal branch of cosh−1(x), i.e. such that Im(acosh(x)) ∈ [0, π]. If x ∈ R and
x < 1, then acosh(x) is complex.

The library syntax is gach(x, prec).

3.3.8 agm(x, y): arithmetic-geometric mean of x and y. In the case of complex or negative
numbers, the principal square root is always chosen. p-adic or power series arguments are also
allowed. Note that a p-adic agm exists only if x/y is congruent to 1 modulo p (modulo 16 for
p = 2). x and y cannot both be vectors or matrices.

The library syntax is agm(x, y, prec).

3.3.9 arg(x): argument of the complex number x, such that −π < arg(x) ≤ π.

The library syntax is garg(x, prec).

3.3.10 asin(x): principal branch of sin−1(x), i.e. such that Re(asin(x)) ∈ [−π/2, π/2]. If x ∈ R
and |x| > 1 then asin(x) is complex.

The library syntax is gasin(x, prec).

3.3.11 asinh(x): principal branch of sinh−1(x), i.e. such that Im(asinh(x)) ∈ [−π/2, π/2].

The library syntax is gash(x, prec).
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3.3.12 atan(x): principal branch of tan−1(x), i.e. such that Re(atan(x)) ∈ ]− π/2, π/2[.

The library syntax is gatan(x, prec).

3.3.13 atanh(x): principal branch of tanh−1(x), i.e. such that Im(atanh(x)) ∈ ] − π/2, π/2]. If
x ∈ R and |x| > 1 then atanh(x) is complex.

The library syntax is gath(x, prec).

3.3.14 bernfrac(x): Bernoulli number Bx, where B0 = 1, B1 = −1/2, B2 = 1/6,. . . , expressed as
a rational number. The argument x should be of type integer.

The library syntax is bernfrac(x).

3.3.15 bernreal(x): Bernoulli number Bx, as bernfrac, but Bx is returned as a real number
(with the current precision).

The library syntax is bernreal(x, prec).

3.3.16 bernvec(x): creates a vector containing, as rational numbers, the Bernoulli numbers B0,
B2,. . . , B2x. This routine is obsolete. Use bernfrac instead each time you need a Bernoulli number
in exact form.

Note: this routine is implemented using repeated independent calls to bernfrac, which is faster
than the standard recursion in exact arithmetic. It is only kept for backward compatibility: it is
not faster than individual calls to bernfrac, its output uses a lot of memory space, and coping
with the index shift is awkward.

The library syntax is bernvec(x).

3.3.17 besselh1(nu, x): H1-Bessel function of index nu and argument x.

The library syntax is hbessel1(nu, x, prec).

3.3.18 besselh2(nu, x): H2-Bessel function of index nu and argument x.

The library syntax is hbessel2(nu, x, prec).

3.3.19 besseli(nu, x): I-Bessel function of index nu and argument x. If x converts to a power
series, the initial factor (x/2)ν/Γ(ν + 1) is omitted (since it cannot be represented in PARI when
ν is not integral).

The library syntax is ibessel(nu, x, prec).

3.3.20 besselj(nu, x): J-Bessel function of index nu and argument x. If x converts to a power
series, the initial factor (x/2)ν/Γ(ν + 1) is omitted (since it cannot be represented in PARI when
ν is not integral).

The library syntax is jbessel(nu, x, prec).

3.3.21 besseljh(n, x): J-Bessel function of half integral index. More precisely, besseljh(n, x)
computes Jn+1/2(x) where n must be of type integer, and x is any element of C. In the present
version 2.3.5, this function is not very accurate when x is small.

The library syntax is jbesselh(n, x, prec).
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3.3.22 besselk(nu, x, {flag = 0}): K-Bessel function of index nu (which can be complex) and
argument x. Only real and positive arguments x are allowed in the present version 2.3.5. If flag is
equal to 1, uses another implementation of this function which is faster when x� 1.

The library syntax is kbessel(nu, x, prec) and kbessel2(nu, x, prec) respectively.

3.3.23 besseln(nu, x): N -Bessel function of index nu and argument x.

The library syntax is nbessel(nu, x, prec).

3.3.24 cos(x): cosine of x.

The library syntax is gcos(x, prec).

3.3.25 cosh(x): hyperbolic cosine of x.

The library syntax is gch(x, prec).

3.3.26 cotan(x): cotangent of x.

The library syntax is gcotan(x, prec).

3.3.27 dilog(x): principal branch of the dilogarithm of x, i.e. analytic continuation of the power
series log2(x) =

∑
n≥1 x

n/n2.

The library syntax is dilog(x, prec).

3.3.28 eint1(x, {n}): exponential integral
∫∞
x

e−t

t dt (x ∈ R)

If n is present, outputs the n-dimensional vector [eint1(x), . . . , eint1(nx)] (x ≥ 0). This is
faster than repeatedly calling eint1(i * x).

The library syntax is veceint1(x, n, prec). Also available is eint1(x, prec).

3.3.29 erfc(x): complementary error function (2/
√
π)
∫∞
x
e−t

2

dt (x ∈ R).

The library syntax is erfc(x, prec).

3.3.30 eta(x, {flag = 0}): Dedekind’s η function, without the q1/24. This means the following: if
x is a complex number with positive imaginary part, the result is

∏∞
n=1(1− qn), where q = e2iπx.

If x is a power series (or can be converted to a power series) with positive valuation, the result is∏∞
n=1(1− xn).

If flag = 1 and x can be converted to a complex number (i.e. is not a power series), computes
the true η function, including the leading q1/24.

The library syntax is eta(x, prec).

3.3.31 exp(x): exponential of x. p-adic arguments with positive valuation are accepted.

The library syntax is gexp(x, prec).

3.3.32 gammah(x): gamma function evaluated at the argument x+ 1/2.

The library syntax is ggamd(x, prec).
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3.3.33 gamma(x): gamma function of x.

The library syntax is ggamma(x, prec).

3.3.34 hyperu(a, b, x): U -confluent hypergeometric function with parameters a and b. The pa-
rameters a and b can be complex but the present implementation requires x to be positive.

The library syntax is hyperu(a, b, x, prec).

3.3.35 incgam(s, x, y): incomplete gamma function. The argument x and s are complex numbers
(x must be a positive real number if s = 0). The result returned is

∫∞
x
e−tts−1 dt. When y is

given, assume (of course without checking!) that y = Γ(s). For small x, this will speed up the
computation.

The library syntax is incgam(s, x, prec) and incgam0(s, x, y, prec), respectively (an omitted
y is coded as NULL).

3.3.36 incgamc(s, x): complementary incomplete gamma function. The arguments x and s are
complex numbers such that s is not a pole of Γ and |x|/(|s|+1) is not much larger than 1 (otherwise
the convergence is very slow). The result returned is

∫ x
0
e−tts−1 dt.

The library syntax is incgamc(s, x, prec).

3.3.37 log(x): principal branch of the natural logarithm of x, i.e. such that Im(log(x)) ∈ ]− π, π].
The result is complex (with imaginary part equal to π) if x ∈ R and x < 0. In general, the
algorithm uses the formula

log(x) ≈ π

2agm(1, 4/s)
−m log 2,

if s = x2m is large enough. (The result is exact to B bits provided s > 2B/2.) At low accuracies,
the series expansion near 1 is used.

p-adic arguments are also accepted for x, with the convention that log(p) = 0. Hence in
particular exp(log(x))/x is not in general equal to 1 but to a (p − 1)-th root of unity (or ±1 if
p = 2) times a power of p.

The library syntax is glog(x, prec).

3.3.38 lngamma(x): principal branch of the logarithm of the gamma function of x. This function is
analytic on the complex plane with non-positive integers removed. Can have much larger arguments
than gamma itself. The p-adic lngamma function is not implemented.

The library syntax is glngamma(x, prec).
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3.3.39 polylog(m,x, flag = 0): one of the different polylogarithms, depending on flag :

If flag = 0 or is omitted: mth polylogarithm of x, i.e. analytic continuation of the power series
Lim(x) =

∑
n≥1 x

n/nm (x < 1). Uses the functional equation linking the values at x and 1/x to

restrict to the case |x| ≤ 1, then the power series when |x|2 ≤ 1/2, and the power series expansion
in log(x) otherwise.

Using flag , computes a modified mth polylogarithm of x. We use Zagier’s notations; let <m
denotes < or = depending whether m is odd or even:

If flag = 1: compute D̃m(x), defined for |x| ≤ 1 by

<m

(
m−1∑
k=0

(− log |x|)k

k!
Lim−k(x) +

(− log |x|)m−1

m!
log |1− x|

)
.

If flag = 2: compute Dm(x), defined for |x| ≤ 1 by

<m

(
m−1∑
k=0

(− log |x|)k

k!
Lim−k(x)− 1

2

(− log |x|)m

m!

)
.

If flag = 3: compute Pm(x), defined for |x| ≤ 1 by

<m

(
m−1∑
k=0

2kBk
k!

(log |x|)kLim−k(x)− 2m−1Bm
m!

(log |x|)m
)
.

These three functions satisfy the functional equation fm(1/x) = (−1)m−1fm(x).

The library syntax is polylog0(m,x, flag , prec).

3.3.40 psi(x): the ψ-function of x, i.e. the logarithmic derivative Γ′(x)/Γ(x).

The library syntax is gpsi(x, prec).

3.3.41 sin(x): sine of x.

The library syntax is gsin(x, prec).

3.3.42 sinh(x): hyperbolic sine of x.

The library syntax is gsh(x, prec).
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3.3.43 sqr(x): square of x. This operation is not completely straightforward, i.e. identical to x∗x,
since it can usually be computed more efficiently (roughly one-half of the elementary multiplications
can be saved). Also, squaring a 2-adic number increases its precision. For example,

? (1 + O(2^4))^2

%1 = 1 + O(2^5)

? (1 + O(2^4)) * (1 + O(2^4))

%2 = 1 + O(2^4)

Note that this function is also called whenever one multiplies two objects which are known to be
identical , e.g. they are the value of the same variable, or we are computing a power.

? x = (1 + O(2^4)); x * x

%3 = 1 + O(2^5)

? (1 + O(2^4))^4

%4 = 1 + O(2^6)

(note the difference between %2 and %3 above).

The library syntax is gsqr(x).

3.3.44 sqrt(x): principal branch of the square root of x, i.e. such that Arg(sqrt(x)) ∈ ]−π/2, π/2],
or in other words such that <(sqrt(x)) > 0 or <(sqrt(x)) = 0 and =(sqrt(x)) ≥ 0. If x ∈ R and
x < 0, then the result is complex with positive imaginary part.

Intmod a prime and p-adics are allowed as arguments. In that case, the square root (if it exists)
which is returned is the one whose first p-adic digit (or its unique p-adic digit in the case of intmods)
is in the interval [0, p/2]. When the argument is an intmod a non-prime (or a non-prime-adic), the
result is undefined.

The library syntax is gsqrt(x, prec).

3.3.45 sqrtn(x, n, {&z}): principal branch of the nth root of x, i.e. such that Arg(sqrt(x)) ∈
]− π/n, π/n]. Intmod a prime and p-adics are allowed as arguments.

If z is present, it is set to a suitable root of unity allowing to recover all the other roots. If it
was not possible, z is set to zero. In the case this argument is present and no square root exist, 0
is returned instead or raising an error.

? sqrtn(Mod(2,7), 2)

%1 = Mod(4, 7)

? sqrtn(Mod(2,7), 2, &z); z

%2 = Mod(6, 7)

? sqrtn(Mod(2,7), 3)

*** sqrtn: nth-root does not exist in gsqrtn.

? sqrtn(Mod(2,7), 3, &z)

%2 = 0

? z

%3 = 0

The following script computes all roots in all possible cases:

sqrtnall(x,n)=

{
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local(V,r,z,r2);

r = sqrtn(x,n, &z);

if (!z, error("Impossible case in sqrtn"));

if (type(x) == "t_INTMOD" || type(x)=="t_PADIC" ,

r2 = r*z; n = 1;

while (r2!=r, r2*=z;n++));

V = vector(n); V[1] = r;

for(i=2, n, V[i] = V[i-1]*z);

V

}

addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");

The library syntax is gsqrtn(x, n,&z, prec).

3.3.46 tan(x): tangent of x.

The library syntax is gtan(x, prec).

3.3.47 tanh(x): hyperbolic tangent of x.

The library syntax is gth(x, prec).

3.3.48 teichmuller(x): Teichmüller character of the p-adic number x, i.e. the unique (p − 1)-th
root of unity congruent to x/pvp(x) modulo p.

The library syntax is teich(x).

3.3.49 theta(q, z): Jacobi sine theta-function.

The library syntax is theta(q, z, prec).

3.3.50 thetanullk(q, k): k-th derivative at z = 0 of theta(q, z).

The library syntax is thetanullk(q, k, prec), where k is a long.

3.3.51 weber(x, {flag = 0}): one of Weber’s three f functions. If flag = 0, returns

f(x) = exp(−iπ/24) · η((x+ 1)/2) / η(x) such that j = (f24 − 16)3/f24 ,

where j is the elliptic j-invariant (see the function ellj). If flag = 1, returns

f1(x) = η(x/2) / η(x) such that j = (f24
1 + 16)3/f24

1 .

Finally, if flag = 2, returns

f2(x) =
√

2η(2x) / η(x) such that j = (f24
2 + 16)3/f24

2 .

Note the identities f8 = f8
1 + f8

2 and ff1f2 =
√

2.

The library syntax is weber0(x, flag , prec). Associated to the various values of flag , the
following functions are also available: werberf(x, prec), werberf1(x, prec) or werberf2(x, prec).
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3.3.52 zeta(s): For s a complex number, Riemann’s zeta function ζ(s) =
∑
n≥1 n

−s, computed
using the Euler-Maclaurin summation formula, except when s is of type integer, in which case it is
computed using Bernoulli numbers for s ≤ 0 or s > 0 and even, and using modular forms for s > 0
and odd.

For s a p-adic number, Kubota-Leopoldt zeta function at s, that is the unique continuous p-
adic function on the p-adic integers that interpolates the values of (1−p−k)ζ(k) at negative integers
k such that k ≡ 1 (mod p− 1) (resp. k is odd) if p is odd (resp. p = 2).

The library syntax is gzeta(s, prec).

3.4 Arithmetic functions.

These functions are by definition functions whose natural domain of definition is either Z (or
Z>0), or sometimes polynomials over a base ring. Functions which concern polynomials exclusively
will be explained in the next section. The way these functions are used is completely different
from transcendental functions: in general only the types integer and polynomial are accepted as
arguments. If a vector or matrix type is given, the function will be applied on each coefficient
independently.

In the present version 2.3.5, all arithmetic functions in the narrow sense of the word — Euler’s
totient function, the Moebius function, the sums over divisors or powers of divisors etc.— call, after
trial division by small primes, the same versatile factoring machinery described under factorint.
It includes Shanks SQUFOF, Pollard Rho, ECM and MPQS stages, and has an early exit option
for the functions moebius and (the integer function underlying) issquarefree. Note that it relies
on a (fairly strong) probabilistic primality test, see ispseudoprime.

3.4.1 addprimes({x = [ ]}): adds the integers contained in the vector x (or the single integer x) to
a special table of “user-defined primes”, and returns that table. Whenever factor is subsequently
called, it will trial divise by the elements in this table. If x is empty or omitted, just returns the
current list of extra primes.

The entries in x are not checked for primality, and in fact they need only be positive integers.
The algorithm makes sure that all elements in the table are pairwise coprime, so it may end up
containing divisors of the input integers.

It is a useful trick to add known composite numbers, which the function factor(x, 0) was
not able to factor. In case the message “impossible inverse modulo 〈some INTMOD〉” shows up
afterwards, you have just stumbled over a non-trivial factor. Note that the arithmetic functions in
the narrow sense, like eulerphi, do not use this extra table.

To remove primes from the list use removeprimes.

The library syntax is addprimes(x).
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3.4.2 bestappr(x,A, {B}): if B is omitted, finds the best rational approximation to x ∈ R (or
R[X], or Rn, . . . ) with denominator at most equal to A using continued fractions.

If B is present, x is assumed to be of type t_INTMOD modulo M (or a recursive combination of
those), and the routine returns the unique fraction a/b in coprime integers a ≤ A and b ≤ B which
is congruent to x modulo M . If M ≤ 2AB, uniqueness is not guaranteed and the function fails
with an error message. If rational reconstruction is not possible (no such a/b exists for at least one
component of x), returns −1.

The library syntax is bestappr0(x,A,B). Also available is bestappr(x,A) corresponding to
an omitted B.

3.4.3 bezout(x, y): finds u and v minimal in a natural sense such that x ∗ u + y ∗ v = gcd(x, y).
The arguments must be both integers or both polynomials, and the result is a row vector with
three components u, v, and gcd(x, y).

The library syntax is vecbezout(x, y) to get the vector, or gbezout(x, y,&u,&v) which gives
as result the address of the created gcd, and puts the addresses of the corresponding created objects
into u and v.

3.4.4 bezoutres(x, y): as bezout, with the resultant of x and y replacing the gcd. The algorithm
uses (subresultant) assumes the base ring is a domain.

The library syntax is vecbezoutres(x, y) to get the vector, or subresext(x, y,&u,&v) which
gives as result the address of the created gcd, and puts the addresses of the corresponding created
objects into u and v.

3.4.5 bigomega(x): number of prime divisors of |x| counted with multiplicity. x must be an
integer.

The library syntax is bigomega(x), the result is a long.

3.4.6 binomial(x, y): binomial coefficient

(
x
y

)
. Here y must be an integer, but x can be any

PARI object.

The library syntax is binomial(x, y), where y must be a long.

3.4.7 chinese(x, {y}): if x and y are both intmods or both polmods, creates (with the same type)
a z in the same residue class as x and in the same residue class as y, if it is possible.

This function also allows vector and matrix arguments, in which case the operation is recur-
sively applied to each component of the vector or matrix. For polynomial arguments, it is applied
to each coefficient.

If y is omitted, and x is a vector, chinese is applied recursively to the components of x,
yielding a residue belonging to the same class as all components of x.

Finally chinese(x, x) = x regardless of the type of x; this allows vector arguments to contain
other data, so long as they are identical in both vectors.

The library syntax is chinese(x, y). Also available is chinese1(x), corresponding to an om-
mitted y.

96



3.4.8 content(x): computes the gcd of all the coefficients of x, when this gcd makes sense. This
is the natural definition if x is a polynomial (and by extension a power series) or a vector/matrix.
This is in general a weaker notion than the ideal generated by the coefficients:

? content(2*x+y)

%1 = 1 \\ = gcd(2,y) over Q[y]

If x is a scalar, this simply returns the absolute value of x if x is rational (t_INT or t_FRAC),
and either 1 (inexact input) or x (exact input) otherwise; the result should be identical to gcd(x,

0).

The content of a rational function is the ratio of the contents of the numerator and the de-
nominator. In recursive structures, if a matrix or vector coefficient x appears, the gcd is taken not
with x, but with its content:

? content([ [2], 4*matid(3) ])

%1 = 2

The library syntax is content(x).

3.4.9 contfrac(x, {b}, {nmax}): creates the row vector whose components are the partial quotients
of the continued fraction expansion of x. That is a result [a0, . . . , an] means that x ≈ a0 + 1/(a1 +
. . .+ 1/an) . . .). The output is normalized so that an 6= 1 (unless we also have n = 0).

The number of partial quotients n is limited to nmax. If x is a real number, the expansion
stops at the last significant partial quotient if nmax is omitted. x can also be a rational function
or a power series.

If a vector b is supplied, the numerators will be equal to the coefficients of b (instead of all
equal to 1 as above). The length of the result is then equal to the length of b, unless a partial
remainder is encountered which is equal to zero, in which case the expansion stops. In the case of
real numbers, the stopping criterion is thus different from the one mentioned above since, if b is
too long, some partial quotients may not be significant.

If b is an integer, the command is understood as contfrac(x, nmax).

The library syntax is contfrac0(x, b, nmax). Also available are gboundcf(x, nmax), gcf(x),
or gcf2(b, x), where nmax is a C integer.

3.4.10 contfracpnqn(x): when x is a vector or a one-row matrix, x is considered as the list
of partial quotients [a0, a1, . . . , an] of a rational number, and the result is the 2 by 2 matrix
[pn, pn−1; qn, qn−1] in the standard notation of continued fractions, so pn/qn = a0 + 1/(a1 + . . . +
1/an) . . .). If x is a matrix with two rows [b0, b1, . . . , bn] and [a0, a1, . . . , an], this is then considered
as a generalized continued fraction and we have similarly pn/qn = 1/b0(a0+b1/(a1+. . .+bn/an) . . .).
Note that in this case one usually has b0 = 1.

The library syntax is pnqn(x).

3.4.11 core(n, {flag = 0}): if n is a non-zero integer written as n = df2 with d squarefree, returns
d. If flag is non-zero, returns the two-element row vector [d, f ].

The library syntax is core0(n, flag). Also available are core(n) (= core0(n, 0)) and core2(n)
(= core0(n, 1)).
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3.4.12 coredisc(n, {flag}): if n is a non-zero integer written as n = df2 with d fundamental
discriminant (including 1), returns d. If flag is non-zero, returns the two-element row vector [d, f ].
Note that if n is not congruent to 0 or 1 modulo 4, f will be a half integer and not an integer.

The library syntax is coredisc0(n, flag). Also available are coredisc(n) (= coredisc(n, 0))
and coredisc2(n) (= coredisc(n, 1)).

3.4.13 dirdiv(x, y): x and y being vectors of perhaps different lengths but with y[1] 6= 0 considered
as Dirichlet series, computes the quotient of x by y, again as a vector.

The library syntax is dirdiv(x, y).

3.4.14 direuler(p = a, b, expr , {c}): computes the Dirichlet series associated to the Euler product
of expression expr as p ranges through the primes from a to b. expr must be a polynomial or
rational function in another variable than p (say X) and expr(X) is understood as the local factor
expr(p−s).

The series is output as a vector of coefficients. If c is present, output only the first c coefficients
in the series. The following command computes the sigma function, associated to ζ(s)ζ(s− 1):

? direuler(p=2, 10, 1/((1-X)*(1-p*X)))

%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]

The library syntax is direuler(void *E, GEN (*eval)(GEN,void*), GEN a, GEN b)

3.4.15 dirmul(x, y): x and y being vectors of perhaps different lengths considered as Dirichlet
series, computes the product of x by y, again as a vector.

The library syntax is dirmul(x, y).

3.4.16 divisors(x): creates a row vector whose components are the divisors of x. The factorization
of x (as output by factor) can be used instead.

By definition, these divisors are the products of the irreducible factors of n, as produced by
factor(n), raised to appropriate powers (no negative exponent may occur in the factorization). If
n is an integer, they are the positive divisors, in increasing order.

The library syntax is divisors(x).

3.4.17 eulerphi(x): Euler’s φ (totient) function of |x|, in other words |(Z/xZ)∗|. x must be of
type integer.

The library syntax is phi(x).
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3.4.18 factor(x, {lim = −1}): general factorization function. If x is of type integer, rational,
polynomial or rational function, the result is a two-column matrix, the first column being the
irreducibles dividing x (prime numbers or polynomials), and the second the exponents. If x is a
vector or a matrix, the factoring is done componentwise (hence the result is a vector or matrix of
two-column matrices). By definition, 0 is factored as 01.

If x is of type integer or rational, the factors are pseudoprimes (see ispseudoprime), and in
general not rigorously proven primes. In fact, any factor which is ≤ 1013 is a genuine prime number.
Use isprime to prove primality of other factors, as in

fa = factor(2^2^7 +1)

isprime( fa[,1] )

An argument lim can be added, meaning that we look only for prime factors p < lim, or up to
primelimit, whichever is lowest (except when lim = 0 where the effect is identical to setting
lim = primelimit). In this case, the remaining part may actually be a proven composite! See
factorint for more information about the algorithms used.

The polynomials or rational functions to be factored must have scalar coefficients. In particular
PARI does not know how to factor multivariate polynomials. See factormod and factorff for the
algorithms used over finite fields, factornf for the algorithms over number fields. Over Q, van
Hoeij’s method is used, which is able to cope with hundreds of modular factors.

Note that PARI tries to guess in a sensible way over which ring you want to factor. Note
also that factorization of polynomials is done up to multiplication by a constant. In particular, the
factors of rational polynomials will have integer coefficients, and the content of a polynomial or
rational function is discarded and not included in the factorization. If needed, you can always ask
for the content explicitly:

? factor(t^2 + 5/2*t + 1)

%1 =

[2*t + 1 1]

[t + 2 1]

? content(t^2 + 5/2*t + 1)

%2 = 1/2

See also factornf and nffactor.

The library syntax is factor0(x, lim), where lim is a C integer. Also available are factor(x)
(= factor0(x,−1)), smallfact(x) (= factor0(x, 0)).

3.4.19 factorback(f, {e}, {nf}): gives back the factored object corresponding to a factorization.
The integer 1 corresponds to the empty factorization. If the last argument is of number field type
(e.g. created by nfinit), assume we are dealing with an ideal factorization in the number field.
The resulting ideal product is given in HNF form.

If e is present, e and f must be vectors of the same length (e being integral), and the corre-
sponding factorization is the product of the f [i]e[i].

If not, and f is vector, it is understood as in the preceding case with e a vector of 1 (the
product of the f [i] is returned). Finally, f can be a regular factorization, as produced with any
factor command. A few examples:

? factorback([2,2; 3,1])
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%1 = 12

? factorback([2,2], [3,1])

%2 = 12

? factorback([5,2,3])

%3 = 30

? factorback([2,2], [3,1], nfinit(x^3+2))

%4 =

[16 0 0]

[0 16 0]

[0 0 16]

? nf = nfinit(x^2+1); fa = idealfactor(nf, 10)

%5 =

[[2, [1, 1]~, 2, 1, [1, 1]~] 2]

[[5, [-2, 1]~, 1, 1, [2, 1]~] 1]

[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? factorback(fa)

*** forbidden multiplication t_VEC * t_VEC.

? factorback(fa, nf)

%6 =

[10 0]

[0 10]

In the fourth example, 2 and 3 are interpreted as principal ideals in a cubic field. In the fifth
one, factorback(fa) is meaningless since we forgot to indicate the number field, and the entries
in the first column of fa can’t be multiplied.

The library syntax is factorback0(f, e,nf ), where an omitted nf or e is entered as NULL. Also
available is factorback(f,nf ) (case e = NULL) where an omitted nf is entered as NULL.

3.4.20 factorcantor(x, p): factors the polynomial x modulo the prime p, using distinct degree
plus Cantor-Zassenhaus. The coefficients of x must be operation-compatible with Z/pZ. The
result is a two-column matrix, the first column being the irreducible polynomials dividing x, and
the second the exponents. If you want only the degrees of the irreducible polynomials (for example
for computing an L-function), use factormod(x, p, 1). Note that the factormod algorithm is usually
faster than factorcantor.

The library syntax is factcantor(x, p).

3.4.21 factorff(x, p, a): factors the polynomial x in the field Fq defined by the irreducible poly-
nomial a over Fp. The coefficients of x must be operation-compatible with Z/pZ. The result is
a two-column matrix: the first column contains the irreducible factors of x, and the second their
exponents. If all the coefficients of x are in Fp, a much faster algorithm is applied, using the
computation of isomorphisms between finite fields.

The library syntax is factorff(x, p, a).
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3.4.22 factorial(x) or x!: factorial of x. The expression x! gives a result which is an integer, while
factorial(x) gives a real number.

The library syntax is mpfact(x) for x! and mpfactr(x, prec) for factorial(x). x must be a
long integer and not a PARI integer.

3.4.23 factorint(n, {flag = 0}): factors the integer n into a product of pseudoprimes (see ispseu-

doprime), using a combination of the Shanks SQUFOF and Pollard Rho method (with modifications
due to Brent), Lenstra’s ECM (with modifications by Montgomery), and MPQS (the latter adapted
from the LiDIA code with the kind permission of the LiDIA maintainers), as well as a search for
pure powers with exponents≤ 10. The output is a two-column matrix as for factor. Use isprime

on the result if you want to guarantee primality.

This gives direct access to the integer factoring engine called by most arithmetical functions.
flag is optional; its binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still
fall back to it later), 4: avoid Rho and SQUFOF, 8: don’t run final ECM (as a result, a huge
composite may be declared to be prime). Note that a (strong) probabilistic primality test is used;
thus composites might (very rarely) not be detected.

You are invited to play with the flag settings and watch the internals at work by using gp’s
debuglevel default parameter (level 3 shows just the outline, 4 turns on time keeping, 5 and above
show an increasing amount of internal details). If you see anything funny happening, please let us
know.

The library syntax is factorint(n, flag).

3.4.24 factormod(x, p, {flag = 0}): factors the polynomial x modulo the prime integer p, using
Berlekamp. The coefficients of x must be operation-compatible with Z/pZ. The result is a two-
column matrix, the first column being the irreducible polynomials dividing x, and the second the
exponents. If flag is non-zero, outputs only the degrees of the irreducible polynomials (for example,
for computing an L-function). A different algorithm for computing the mod p factorization is
factorcantor which is sometimes faster.

The library syntax is factormod(x, p, flag). Also available are factmod(x, p) (which is equiv-
alent to factormod(x, p, 0)) and simplefactmod(x, p) (= factormod(x, p, 1)).

3.4.25 fibonacci(x): xth Fibonacci number.

The library syntax is f ibo(x). x must be a long.

3.4.26 ffinit(p, n, {v = x}): computes a monic polynomial of degree n which is irreducible over
Fp. For instance if P = ffinit(3,2,y), you can represent elements in F32 as polmods modulo P.
This function uses a fast variant of Adleman-Lenstra’s algorithm.

The library syntax is f f init(p, n, v), where v is a variable number.
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3.4.27 gcd(x, {y}): creates the greatest common divisor of x and y. x and y can be of quite general
types, for instance both rational numbers. If y is omitted and x is a vector, returns the gcd of all
components of x, i.e. this is equivalent to content(x).

When x and y are both given and one of them is a vector/matrix type, the GCD is again taken
recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to gcd(x, y[i]), resp. gcd(x, y[,i]). Else if x is
a vector/matrix the result has the same type as x and an analogous definition. Note that for these
types, gcd is not commutative.

The algorithm used is a naive Euclid except for the following inputs:

• integers: use modified right-shift binary (“plus-minus” variant).

• univariate polynomials with coeffients in the same number field (in particular rational): use
modular gcd algorithm.

• general polynomials: use the subresultant algorithm if coefficient explosion is likely (exact,
non modular, coefficients).

The library syntax is ggcd(x, y). For general polynomial inputs, srgcd(x, y) is also available.
For univariate rational polynomials, one also has modulargcd(x, y).

3.4.28 hilbert(x, y, {p}): Hilbert symbol of x and y modulo p. If x and y are of type integer
or fraction, an explicit third parameter p must be supplied, p = 0 meaning the place at infinity.
Otherwise, p needs not be given, and x and y can be of compatible types integer, fraction, real,
intmod a prime (result is undefined if the modulus is not prime), or p-adic.

The library syntax is hil(x, y, p).

3.4.29 isfundamental(x): true (1) if x is equal to 1 or to the discriminant of a quadratic field,
false (0) otherwise.

The library syntax is gisfundamental(x), but the simpler function isfundamental(x) which
returns a long should be used if x is known to be of type integer.

3.4.30 ispower(x, {k}, {&n}): if k is given, returns true (1) if x is a k-th power, false (0) if not.
In this case, x may be an integer or polynomial, a rational number or function, or an intmod a
prime or p-adic.

If k is omitted, only integers and fractions are allowed and the function returns the maximal
k ≥ 2 such that x = nk is a perfect power, or 0 if no such k exist; in particular ispower(-1),
ispower(0), and ispower(1) all return 0.

If a third argument &n is given and a k-th root was computed in the process, then n is set to
that root.

The library syntax is ispower(x, k,&n), the result is a long. Omitted k or n are coded as
NULL.
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3.4.31 isprime(x, {flag = 0}): true (1) if x is a (proven) prime number, false (0) otherwise. This
can be very slow when x is indeed prime and has more than 1000 digits, say. Use ispseudoprime

to quickly check for pseudo primality. See also factor.

If flag = 0, use a combination of Baillie-PSW pseudo primality test (see ispseudoprime),
Selfridge “p− 1” test if x− 1 is smooth enough, and Adleman-Pomerance-Rumely-Cohen-Lenstra
(APRCL) for general x.

If flag = 1, use Selfridge-Pocklington-Lehmer “p− 1” test and output a primality certificate as
follows: return 0 if x is composite, 1 if x is small enough that passing Baillie-PSW test guarantees its
primality (currently x < 1013), 2 if x is a large prime whose primality could only sensibly be proven
(given the algorithms implemented in PARI) using the APRCL test. Otherwise (x is large and
x−1 is smooth) output a three column matrix as a primality certificate. The first column contains
the prime factors p of x − 1, the second the corresponding elements ap as in Proposition 8.3.1 in
GTM 138, and the third the output of isprime(p,1). The algorithm fails if one of the pseudo-prime
factors is not prime, which is exceedingly unlikely (and well worth a bug report).

If flag = 2, use APRCL.

The library syntax is gisprime(x, flag), but the simpler function isprime(x) which returns a
long should be used if x is known to be of type integer.

3.4.32 ispseudoprime(x, {flag}): true (1) if x is a strong pseudo prime (see below), false (0)
otherwise. If this function returns false, x is not prime; if, on the other hand it returns true, it is
only highly likely that x is a prime number. Use isprime (which is of course much slower) to prove
that x is indeed prime.

If flag = 0, checks whether x is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime (strong
Rabin-Miller pseudo prime for base 2, followed by strong Lucas test for the sequence (P,−1), P
smallest positive integer such that P 2 − 4 is not a square mod x).

There are no known composite numbers passing this test (in particular, all composites ≤ 1013

are correctly detected), although it is expected that infinitely many such numbers exist.

If flag > 0, checks whether x is a strong Miller-Rabin pseudo prime for flag randomly chosen
bases (with end-matching to catch square roots of −1).

The library syntax is gispseudoprime(x, flag), but the simpler function ispseudoprime(x)
which returns a long should be used if x is known to be of type integer.

3.4.33 issquare(x, {&n}): true (1) if x is a square, false (0) if not. What “being a square” means
depends on the type of x: all t_COMPLEX are squares, as well as all non-negative t_REAL; for exact
types such as t_INT, t_FRAC and t_INTMOD, squares are numbers of the form s2 with s in Z, Q and
Z/NZ respectively.

? issquare(3) \\ as an integer

%1 = 0

? issquare(3.) \\ as a real number

%2 = 1

? issquare(Mod(7, 8)) \\ in Z/8Z

%3 = 0

? issquare( 5 + O(13^4) ) \\ in Q_13

%4 = 0
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If n is given and an exact square root had to be computed in the checking process, puts that
square root in n. This is the case when x is a t_INT, t_FRAC, t_POL or t_RFRAC (or a vector of
such objects):

? issquare(4, &n)

%1 = 1

? n

%2 = 2

? issquare([4, x^2], &n)

%3 = [1, 1] \\ both are squares

? n

%4 = [2, x] \\ the square roots

This will not work for t_INTMOD (use quadratic reciprocity) or t_SER (only check the leading
coefficient).

The library syntax is gissquarerem(x,&n). Also available is gissquare(x).

3.4.34 issquarefree(x): true (1) if x is squarefree, false (0) if not. Here x can be an integer or a
polynomial.

The library syntax is gissquarefree(x), but the simpler function issquarefree(x) which
returns a long should be used if x is known to be of type integer. This issquarefree is just the
square of the Moebius function, and is computed as a multiplicative arithmetic function much like
the latter.

3.4.35 kronecker(x, y): Kronecker symbol (x|y), where x and y must be of type integer. By
definition, this is the extension of Legendre symbol to Z × Z by total multiplicativity in both
arguments with the following special rules for y = 0,−1 or 2:

• (x|0) = 1 if |x| = 1 and 0 otherwise.

• (x| − 1) = 1 if x ≥ 0 and −1 otherwise.

• (x|2) = 0 if x is even and 1 if x = 1,−1 mod 8 and −1 if x = 3,−3 mod 8.

The library syntax is kronecker(x, y), the result (0 or ±1) is a long.

3.4.36 lcm(x, {y}): least common multiple of x and y, i.e. such that lcm(x, y) ∗ gcd(x, y) =
abs(x ∗ y). If y is omitted and x is a vector, returns the lcm of all components of x.

When x and y are both given and one of them is a vector/matrix type, the LCM is again taken
recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result
has the same type as y, and components equal to lcm(x, y[i]), resp. lcm(x, y[,i]). Else if x is
a vector/matrix the result has the same type as x and an analogous definition. Note that for these
types, lcm is not commutative.

Note that lcm(v) is quite different from

l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))

Indeed, lcm(v) is a scalar, but l may not be (if one of the v[i] is a vector/matrix). The computa-
tion uses a divide-conquer tree and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):

? v = vector(10^4, i, random);
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? lcm(v);

time = 323 ms.

? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))

time = 833 ms.

The library syntax is glcm(x, y).

3.4.37 moebius(x): Moebius µ-function of |x|. x must be of type integer.

The library syntax is mu(x), the result (0 or ±1) is a long.

3.4.38 nextprime(x): finds the smallest pseudoprime (see ispseudoprime) greater than or equal
to x. x can be of any real type. Note that if x is a pseudoprime, this function returns x and not
the smallest pseudoprime strictly larger than x. To rigorously prove that the result is prime, use
isprime.

The library syntax is nextprime(x).

3.4.39 numdiv(x): number of divisors of |x|. x must be of type integer.

The library syntax is numbdiv(x).

3.4.40 numbpart(n): gives the number of unrestricted partitions of n, usually called p(n) in the
litterature; in other words the number of nonnegative integer solutions to a+ 2b+ 3c+ · · · = n. n
must be of type integer and 1 ≤ n < 1015. The algorithm uses the Hardy-Ramanujan-Rademacher
formula.

The library syntax is numbpart(n).

3.4.41 omega(x): number of distinct prime divisors of |x|. x must be of type integer.

The library syntax is omega(x), the result is a long.

3.4.42 precprime(x): finds the largest pseudoprime (see ispseudoprime) less than or equal to
x. x can be of any real type. Returns 0 if x ≤ 1. Note that if x is a prime, this function returns x
and not the largest prime strictly smaller than x. To rigorously prove that the result is prime, use
isprime.

The library syntax is precprime(x).

3.4.43 prime(x): the xth prime number, which must be among the precalculated primes.

The library syntax is prime(x). x must be a long.

3.4.44 primepi(x): the prime counting function. Returns the number of primes p, p ≤ x. Uses a
naive algorithm so that x must be less than primelimit.

The library syntax is primepi(x).

3.4.45 primes(x): creates a row vector whose components are the first x prime numbers, which
must be among the precalculated primes.

The library syntax is primes(x). x must be a long.
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3.4.46 qfbclassno(D, {flag = 0}): ordinary class number of the quadratic order of discriminant
D. In the present version 2.3.5, a O(D1/2) algorithm is used for D > 0 (using Euler product and the
functional equation) so D should not be too large, say D < 108, for the time to be reasonable. On
the other hand, for D < 0 one can reasonably compute qfbclassno(D) for |D| < 1025, since the
routine uses Shanks’s method which is in O(|D|1/4). For larger values of |D|, see quadclassunit.

If flag = 1, compute the class number using Euler products and the functional equation.
However, it is in O(|D|1/2).

Important warning. For D < 0, this function may give incorrect results when the class group has
a low exponent (has many cyclic factors), because implementing Shanks’s method in full generality
slows it down immensely. It is therefore strongly recommended to double-check results using either
the version with flag = 1 or the function quadclassunit.

Warning. contrary to what its name implies, this routine does not compute the number of classes
of binary primitive forms of discriminant D, which is equal to the narrow class number. The two
notions are the same when D < 0 or the fundamental unit ε has negative norm; when D > 0 and
Nε > 0, the number of classes of forms is twice the ordinary class number. This is a problem
which we cannot fix for backward compatibility reasons. Use the following routine if you are only
interested in the number of classes of forms:

QFBclassno(D) =

qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)

Here are a few examples:

? qfbclassno(400000028)

time = 3,140 ms.

%1 = 1

? quadclassunit(400000028).no

time = 20 ms. \\ much faster
%2 = 1

? qfbclassno(-400000028)

time = 0 ms.

%3 = 7253 \\ correct, and fast enough
? quadclassunit(-400000028).no

time = 0 ms.

%4 = 7253

The library syntax is qfbclassno0(D, flag). Also available: classno(D) (= qfbclassno(D)),
classno2(D) (= qfbclassno(D, 1)), and finally we have the function hclassno(D) which computes
the class number of an imaginary quadratic field by counting reduced forms, an O(|D|) algorithm.
See also qfbhclassno.

3.4.47 qfbcompraw(x, y) composition of the binary quadratic forms x and y, without reduction
of the result. This is useful e.g. to compute a generating element of an ideal.

The library syntax is compraw(x, y).

3.4.48 qfbhclassno(x): Hurwitz class number of x, where x is non-negative and congruent to 0 or
3 modulo 4. For x > 5 ·105, we assume the GRH, and use quadclassunit with default parameters.

The library syntax is hclassno(x).
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3.4.49 qfbnucomp(x, y, l): composition of the primitive positive definite binary quadratic forms
x and y (type t_QFI) using the NUCOMP and NUDUPL algorithms of Shanks, à la Atkin. l is
any positive constant, but for optimal speed, one should take l = |D|1/4, where D is the common
discriminant of x and y. When x and y do not have the same discriminant, the result is undefined.

The current implementation is straightforward and in general slower than the generic routine
(since the latter take advantadge of asymptotically fast operations and careful optimizations).

The library syntax is nucomp(x, y, l). The auxiliary function nudupl(x, l) can be used when
x = y.

3.4.50 qfbnupow(x, n): n-th power of the primitive positive definite binary quadratic form x using
Shanks’s NUCOMP and NUDUPL algorithms (see qfbnucomp, in particular the final warning).

The library syntax is nupow(x, n).

3.4.51 qfbpowraw(x, n): n-th power of the binary quadratic form x, computed without doing
any reduction (i.e. using qfbcompraw). Here n must be non-negative and n < 231.

The library syntax is powraw(x, n) where n must be a long integer.

3.4.52 qfbprimeform(x, p): prime binary quadratic form of discriminant x whose first coefficient
is the prime number p. By abuse of notation, p = ±1 is a valid special case which returns the unit
form. Returns an error if x is not a quadratic residue mod p. In the case where x > 0, p < 0 is
allowed, and the “distance” component of the form is set equal to zero according to the current
precision. (Note that negative definite t_QFI are not implemented.)

The library syntax is primeform(x, p, prec), where the third variable prec is a long, but is
only taken into account when x > 0.

3.4.53 qfbred(x, {flag = 0}, {D}, {isqrtD}, {sqrtD}): reduces the binary quadratic form x (up-
dating Shanks’s distance function if x is indefinite). The binary digits of flag are toggles meaning

1: perform a single reduction step

2: don’t update Shanks’s distance

D, isqrtD , sqrtD , if present, supply the values of the discriminant,
⌊√

D
⌋
, and

√
D respectively

(no checking is done of these facts). If D < 0 these values are useless, and all references to Shanks’s
distance are irrelevant.

The library syntax is qfbred0(x, flag , D, isqrtD , sqrtD). Use NULL to omit any of D, isqrtD ,
sqrtD .

Also available are

redimag(x) (= qfbred(x) where x is definite),

and for indefinite forms:

redreal(x) (= qfbred(x)),

rhoreal(x) (= qfbred(x, 1)),

redrealnod(x, sq) (= qfbred(x, 2, , isqrtD)),

rhorealnod(x, sq) (= qfbred(x, 3, , isqrtD)).
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3.4.54 qfbsolve(Q, p): Solve the equation Q(x, y) = p over the integers, where Q is a binary
quadratic form and p a prime number.

Return [x, y] as a two-components vector, or zero if there is no solution. Note that this function
returns only one solution and not all the solutions.

Let D = discQ. The algorithm used runs in probabilistic polynomial time in p (through the
computation of a square root of D modulo p); it is polynomial time in D if Q is imaginary, but
exponential time if Q is real (through the computation of a full cycle of reduced forms). In the
latter case, note that bnfisprincipal provides a solution in heuristic subexponential time in D
assuming the GRH.

The library syntax is qfbsolve(Q,n).

3.4.55 quadclassunit(D, {flag = 0}, {tech = []}): Buchmann-McCurley’s sub-exponential algo-
rithm for computing the class group of a quadratic order of discriminant D.

This function should be used instead of qfbclassno or quadregula when D < −1025, D >
1010, or when the structure is wanted. It is a special case of bnfinit, which is slower, but more
robust.

If flag is non-zero and D > 0, computes the narrow class group and regulator, instead of the
ordinary (or wide) ones. In the current version 2.3.5, this does not work at all: use the general
function bnfnarrow.

Optional parameter tech is a row vector of the form [c1, c2], where c1 ≤ c2 are positive real
numbers which control the execution time and the stack size. For a given c1, set c2 = c1 to get
maximum speed. To get a rigorous result under GRH, you must take c2 ≥ 6. Reasonable values for
c1 are between 0.1 and 2. More precisely, the algorithm will assume that prime ideals of norm less
than c2(log |D|)2 generate the class group, but the bulk of the work is done with prime ideals of
norm less than c1(log |D|)2. A larger c1 means that relations are easier to find, but more relations
are needed and the linear algebra will be harder. The default is c1 = c2 = 0.2, so the result is not
rigorously proven.

The result is a vector v with 3 components if D < 0, and 4 otherwise. The correspond
respectively to

• v[1]: the class number

• v[2]: a vector giving the structure of the class group as a product of cyclic groups;

• v[3]: a vector giving generators of those cyclic groups (as binary quadratic forms).

• v[4]: (omitted if D < 0) the regulator, computed to an accuracy which is the maximum of an
internal accuracy determined by the program and the current default (note that once the regulator
is known to a small accuracy it is trivial to compute it to very high accuracy, see the tutorial).

The library syntax is quadclassunit0(D, flag , tech). Also available are buchimag(D, c1, c2)
and buchreal(D, flag , c1, c2).

3.4.56 quaddisc(x): discriminant of the quadratic field Q(
√
x), where x ∈ Q.

The library syntax is quaddisc(x).
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3.4.57 quadhilbert(D, {pq}): relative equation defining the Hilbert class field of the quadratic
field of discriminant D.

If D < 0, uses complex multiplication (Schertz’s variant). The technical component pq, if
supplied, is a vector [p, q] where p, q are the prime numbers needed for the Schertz’s method.
More precisely, prime ideals above p and q should be non-principal and coprime to all reduced
representatives of the class group. In addition, if one of these ideals has order 2 in the class group,
they should have the same class. Finally, for efficiency, gcd(24, (p− 1)(q− 1)) should be as large as
possible. The routine returns 0 if [p, q] is not suitable.

If D > 0 Stark units are used and (in rare cases) a vector of extensions may be returned whose
compositum is the requested class field. See bnrstark for details.

The library syntax is quadhilbert(D, pq, prec).

3.4.58 quadgen(D): creates the quadratic number ω = (a+
√
D)/2 where a = 0 if x ≡ 0 mod 4,

a = 1 if D ≡ 1 mod 4, so that (1, ω) is an integral basis for the quadratic order of discriminant D.
D must be an integer congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is quadgen(x).

3.4.59 quadpoly(D, {v = x}): creates the “canonical” quadratic polynomial (in the variable v)
corresponding to the discriminant D, i.e. the minimal polynomial of quadgen(D). D must be an
integer congruent to 0 or 1 modulo 4, which is not a square.

The library syntax is quadpoly0(x, v).

3.4.60 quadray(D, f, {lambda}): relative equation for the ray class field of conductor f for the
quadratic field of discriminant D using analytic methods. A bnf for x2 − D is also accepted in
place of D.

For D < 0, uses the σ function. If supplied, lambda is is the technical element λ of bnf

necessary for Schertz’s method. In that case, returns 0 if λ is not suitable.

For D > 0, uses Stark’s conjecture, and a vector of relative equations may be returned. See
bnrstark for more details.

The library syntax is quadray(D, f, lambda, prec), where an omitted lambda is coded as NULL.

3.4.61 quadregulator(x): regulator of the quadratic field of positive discriminant x. Returns an
error if x is not a discriminant (fundamental or not) or if x is a square. See also quadclassunit if
x is large.

The library syntax is regula(x, prec).

3.4.62 quadunit(D): fundamental unit of the real quadratic field Q(
√
D) where D is the positive

discriminant of the field. If D is not a fundamental discriminant, this probably gives the funda-
mental unit of the corresponding order. D must be an integer congruent to 0 or 1 modulo 4, which
is not a square; the result is a quadratic number (see Section 3.4.58).

The library syntax is fundunit(x).
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3.4.63 removeprimes({x = [ ]}): removes the primes listed in x from the prime number table. In
particular removeprimes(addprimes) empties the extra prime table. x can also be a single integer.
List the current extra primes if x is omitted.

The library syntax is removeprimes(x).

3.4.64 sigma(x, {k = 1}): sum of the kth powers of the positive divisors of |x|. x and k must be
of type integer.

The library syntax is sumdiv(x) (= sigma(x)) or gsumdivk(x, k) (= sigma(x, k)), where k
is a C long integer.

3.4.65 sqrtint(x): integer square root of x, which must be a non-negative integer. The result is
non-negative and rounded towards zero.

The library syntax is sqrti(x). Also available is sqrtremi(x,&r) which returns s such that
s2 = x+ r, with 0 ≤ r ≤ 2s.

3.4.66 zncoppersmith(P,N,X, {B = N}): finds all integers x0 with |x0| ≤ X such that

gcd(N,P (x0)) ≥ B.

If N is prime or a prime power, polrootsmod or polrootspadic will be much faster. X must be
smaller than exp(log2B/(deg(P ) logN)).

The library syntax is zncoppersmith(P,N,X,B), where an omitted B is coded as NULL.

3.4.67 znlog(x, g): g must be a primitive root mod a prime p, and the result is the discrete log of
x in the multiplicative group (Z/pZ)∗. This function uses a simple-minded combination of Pohlig-
Hellman algorithm and Shanks baby-step/giant-step which requires O(

√
q) storage, where q is the

largest prime factor of p − 1. Hence it cannot be used when the largest prime divisor of p − 1 is
greater than about 1013.

The library syntax is znlog(x, g).

3.4.68 znorder(x, {o}): x must be an integer mod n, and the result is the order of x in the
multiplicative group (Z/nZ)∗. Returns an error if x is not invertible. If optional parameter o is
given it is assumed to be a multiple of the order (used to limit the search space).

The library syntax is znorder(x, o), where an omitted o is coded as NULL. Also available is
order(x).

3.4.69 znprimroot(n): returns a primitive root (generator) of (Z/nZ)∗, whenever this latter
group is cyclic (n = 4 or n = 2pk or n = pk, where p is an odd prime and k ≥ 0).

The library syntax is gener(x).

3.4.70 znstar(n): gives the structure of the multiplicative group (Z/nZ)∗ as a 3-component row
vector v, where v[1] = φ(n) is the order of that group, v[2] is a k-component row-vector d of integers

d[i] such that d[i] > 1 and d[i] | d[i − 1] for i ≥ 2 and (Z/nZ)∗ '
∏k
i=1(Z/d[i]Z), and v[3] is a

k-component row vector giving generators of the image of the cyclic groups Z/d[i]Z.

The library syntax is znstar(n).
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3.5 Functions related to elliptic curves.

We have implemented a number of functions which are useful for number theorists working on
elliptic curves. We always use Tate’s notations. The functions assume that the curve is given by a
general Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a priori the ai can be of any scalar type. This curve can be considered as a five-component
vector E=[a1,a2,a3,a4,a6]. Points on E are represented as two-component vectors [x,y], except
for the point at infinity, i.e. the identity element of the group law, represented by the one-component
vector [0].

It is useful to have at one’s disposal more information. This is given by the function ellinit

(see there), which initalizes and returns an ell structure by default. If a specific flag is added,
a shortened sell, for small ell, is returned, which is much faster to compute but contains less
information. The following member functions are available to deal with the output of ellinit,
both ell and sell :
a1–a6, b2–b8, c4–c6 : coefficients of the elliptic curve.
area : volume of the complex lattice defining E.
disc : discriminant of the curve.
j : j-invariant of the curve.
omega : [ω1, ω2], periods forming a basis of the complex lattice defining E (ω1 is the

real period, and ω2/ω1 belongs to Poincaré’s half-plane).
eta : quasi-periods [η1, η2], such that η1ω2 − η2ω1 = iπ.
roots : roots of the associated Weierstrass equation.
tate : [u2, u, v] in the notation of Tate.
w : Mestre’s w (this is technical).

The member functions area, eta and omega are only available for curves over Q. Conversely, tate
and w are only available for curves defined over Qp. The use of member functions is best described
by an example:

? E = ellinit([0,0,0,0,1]); \\ The curve y2 = x3 + 1
? E.a6

%2 = 1

? E.c6

%3 = -864

? E.disc

%4 = -432

Some functions, in particular those relative to height computations (see ellheight) require
also that the curve be in minimal Weierstrass form, which is duly stressed in their description
below. This is achieved by the function ellminimalmodel. Using a non-minimal model in such a
routine will yield a wrong result!

All functions related to elliptic curves share the prefix ell, and the precise curve we are
interested in is always the first argument, in either one of the three formats discussed above, unless
otherwise specified. The requirements are given as the minimal ones: any richer structure may
replace the ones requested. For instance, in functions which have no use for the extra information
given by an ell structure, the curve can be given either as a five-component vector, as an sell , or
as an ell ; if an sell is requested, an ell may equally be given.
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3.5.1 elladd(E, z1, z2): sum of the points z1 and z2 on the elliptic curve corresponding to E.

The library syntax is addell(E, z1, z2).

3.5.2 ellak(E,n): computes the coefficient an of the L-function of the elliptic curve E, i.e. in
principle coefficients of a newform of weight 2 assuming Taniyama-Weil conjecture (which is now
known to hold in full generality thanks to the work of Breuil, Conrad, Diamond, Taylor and Wiles).
E must be an sell as output by ellinit. For this function to work for every n and not just those
prime to the conductor, E must be a minimal Weierstrass equation. If this is not the case, use the
function ellminimalmodel before using ellak.

The library syntax is akell(E,n).

3.5.3 ellan(E,n): computes the vector of the first n ak corresponding to the elliptic curve E. All
comments in ellak description remain valid.

The library syntax is anell(E,n), where n is a C integer.

3.5.4 ellap(E, p, {flag = 0}): computes the ap corresponding to the elliptic curve E and the prime
number p. These are defined by the equation #E(Fp) = p+ 1− ap, where #E(Fp) stands for the
number of points of the curve E over the finite field Fp. When flag is 0, this uses the baby-step
giant-step method and a trick due to Mestre. This runs in time O(p1/4) and requires O(p1/4)
storage, hence becomes unreasonable when p has about 30 digits.

If flag is 1, computes the ap as a sum of Legendre symbols. This is slower than the previous
method as soon as p is greater than 100, say.

No checking is done that p is indeed prime. E must be an sell as output by ellinit, defined
over Q, Fp or Qp. E must be given by a Weierstrass equation minimal at p.

The library syntax is ellap0(E, p, flag). Also available are apell(E, p), corresponding to flag =
0, and apell2(E, p) (flag = 1).

3.5.5 ellbil(E, z1, z2): if z1 and z2 are points on the elliptic curve E, assumed to be integral given
by a minimal model, this function computes the value of the canonical bilinear form on z1, z2:

(h(E, z1+z2)− h(E, z1)− h(E, z2))/2

where + denotes of course addition on E. In addition, z1 or z2 (but not both) can be vectors or
matrices.

The library syntax is bilhell(E, z1, z2, prec).

3.5.6 ellchangecurve(E, v): changes the data for the elliptic curve E by changing the coordinates
using the vector v=[u,r,s,t], i.e. if x′ and y′ are the new coordinates, then x = u2x′ + r, y =
u3y′ + su2x′ + t. E must be an sell as output by ellinit.

The library syntax is coordch(E, v).

3.5.7 ellchangepoint(x, v): changes the coordinates of the point or vector of points x using the
vector v=[u,r,s,t], i.e. if x′ and y′ are the new coordinates, then x = u2x′+r, y = u3y′+su2x′+t
(see also ellchangecurve).

The library syntax is pointch(x, v).
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3.5.8 ellconvertname(name): converts an elliptic curve name, as found in the elldata database,
from a string to a triplet [conductor , isogeny class, index ]. It will also convert a triplet back to a
curve name. Examples:

? ellconvertname("123b1")

%1 = [123, 1, 1]

? ellconvertname(%)

%2 = "123b1"

The library syntax is ellconvertname(name).

3.5.9 elleisnum(E, k, {flag = 0}): E being an elliptic curve as output by ellinit (or, alterna-
tively, given by a 2-component vector [ω1, ω2] representing its periods), and k being an even positive
integer, computes the numerical value of the Eisenstein series of weight k at E, namely

(2iπ/ω2)k
(

1 + 2/ζ(1− k)
∑
n≥0

nk−1qn/(1− qn)
)
,

where q = e(ω1/ω2).

When flag is non-zero and k = 4 or 6, returns the elliptic invariants g2 or g3, such that

y2 = 4x3 − g2x− g3

is a Weierstrass equation for E.

The library syntax is elleisnum(E, k, flag).

3.5.10 elleta(om): returns the two-component row vector [η1, η2] of quasi-periods associated to
om = [ω1, ω2]

The library syntax is elleta(om, prec)

3.5.11 ellgenerators(E): returns a Z-basis of the free part of the Mordell-Weil group associated
to E. This function depends on the elldata database being installed and referencing the curve,
and so is only available for curves over Z of small conductors.

The library syntax is ellgenerators(E).

3.5.12 ellglobalred(E): calculates the arithmetic conductor, the global minimal model of E and
the global Tamagawa number c. E must be an sell as output by ellinit, and is supposed to
have all its coefficients ai in Q. The result is a 3 component vector [N, v, c]. N is the arithmetic
conductor of the curve. v gives the coordinate change for E over Q to the minimal integral model
(see ellminimalmodel). Finally c is the product of the local Tamagawa numbers cp, a quantity
which enters in the Birch and Swinnerton-Dyer conjecture.

The library syntax is ellglobalred(E).
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3.5.13 ellheight(E, z, {flag = 2}): global N“’eron-Tate height of the point z on the elliptic curve
E (defined over Q), given by a standard minimal integral model. E must be an ell as output by
ellinit. flagselects the algorithm used to compute the archimedean local height. If flag = 0, this
computation is done using sigma and theta-functions and a trick due to J. Silverman. If flag = 1,
use Tate’s 4n algorithm. If flag = 2, use Mestre’s AGM algorithm. The latter is much faster than
the other two, both in theory (converges quadratically) and in practice.

The library syntax is ellheight0(E, z, flag , prec). Also available are ghell(E, z, prec) (flag = 0)
and ghell2(E, z, prec) (flag = 1).

3.5.14 ellheightmatrix(E, x): x being a vector of points, this function outputs the Gram matrix
of x with respect to the Néron-Tate height, in other words, the (i, j) component of the matrix is
equal to ellbil(E,x[i],x[j]). The rank of this matrix, at least in some approximate sense, gives
the rank of the set of points, and if x is a basis of the Mordell-Weil group of E, its determinant is
equal to the regulator of E. Note that this matrix should be divided by 2 to be in accordance with
certain normalizations. E is assumed to be integral, given by a minimal model.

The library syntax is mathell(E, x, prec).

3.5.15 ellidentify(E): look up the elliptic curve E (over Z) in the elldata database and return
[[N, M, G], C] where N is the name of the curve in J. E. Cremona database, M the minimal
model, G a Z-basis of the free part of the Mordell-Weil group of E and C the coordinates change
(see ellchangecurve).

The library syntax is ellidentify(E).

3.5.16 ellinit(E, {flag = 0}): initialize an ell structure, associated to the elliptic curve E. E is a
5-component vector [a1, a2, a3, a4, a6] defining the elliptic curve with Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

or a string, in this case the coefficients of the curve with matching name are looked in the elldata

database if available. For the time being, only curves over a prime field Fp and over the p-adic or
real numbers (including rational numbers) are fully supported. Other domains are only supported
for very basic operations such as point addition.

The result of ellinit is a an ell structure by default, and a shorted sell if flag = 1. Both
contain the following information in their components:

a1, a2, a3, a4, a6, b2, b4, b6, b8, c4, c6,∆, j.

All are accessible via member functions. In particular, the discriminant is E.disc, and the j-
invariant is E.j.

The other six components are only present if flag is 0 or omitted. Their content depends on
whether the curve is defined over R or not:

• When E is defined over R, E.roots is a vector whose three components contain the roots
of the right hand side of the associated Weierstrass equation.

(y + a1x/2 + a3/2)2 = g(x)
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If the roots are all real, then they are ordered by decreasing value. If only one is real, it is the first
component.

Then ω1 =E.omega[1] is the real period of E (integral of dx/(2y+a1x+a3) over the connected
component of the identity element of the real points of the curve), and ω2 =E.omega[2] is a
complex period. In other words, E.omega forms a basis of the complex lattice defining E, with
τ = ω2

ω1
having positive imaginary part.

E.eta is a row vector containing the corresponding values η1 and η2 such that η1ω2−η2ω1 = iπ.

Finally, E.area is the volume of the complex lattice defining E.

• When E is defined over Qp, the p-adic valuation of j must be negative. Then E.roots is
the vector with a single component equal to the p-adic root of the associated Weierstrass equation
corresponding to −1 under the Tate parametrization.

E.tate yields the three-component vector [u2, u, q], in the notations of Tate. If the u-
component does not belong to Qp, it is set to zero.

E.w is Mestre’s w (this is technical).

For all other base fields or rings, the last six components are arbitrarily set equal to zero. See
also the description of member functions related to elliptic curves at the beginning of this section.

The library syntax is ellinit0(E, flag , prec). Also available are initell(E, prec) (flag = 0) and
smallinitell(E, prec) (flag = 1).

3.5.17 ellisoncurve(E, z): gives 1 (i.e. true) if the point z is on the elliptic curve E, 0 otherwise.
If E or z have imprecise coefficients, an attempt is made to take this into account, i.e. an imprecise
equality is checked, not a precise one. It is allowed for z to be a vector of points in which case a
vector (of the same type) is returned.

The library syntax is ellisoncurve(E, z). Also available is oncurve(E, z) which returns a
long but does not accept vector of points.

3.5.18 ellj(x): elliptic j-invariant. x must be a complex number with positive imaginary part, or
convertible into a power series or a p-adic number with positive valuation.

The library syntax is jell(x, prec).

3.5.19 elllocalred(E, p): calculates the Kodaira type of the local fiber of the elliptic curve E at
the prime p. E must be an sell as output by ellinit, and is assumed to have all its coefficients ai
in Z. The result is a 4-component vector [f, kod, v, c]. Here f is the exponent of p in the arithmetic
conductor of E, and kod is the Kodaira type which is coded as follows:

1 means good reduction (type I0), 2, 3 and 4 mean types II, III and IV respectively, 4 + ν
with ν > 0 means type Iν ; finally the opposite values −1, −2, etc. refer to the starred types I∗0, II∗,
etc. The third component v is itself a vector [u, r, s, t] giving the coordinate changes done during
the local reduction. Normally, this has no use if u is 1, that is, if the given equation was already
minimal. Finally, the last component c is the local Tamagawa number cp.

The library syntax is elllocalred(E, p).
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3.5.20 elllseries(E, s, {A = 1}): E being an sell as output by ellinit, this computes the value
of the L-series of E at s. It is assumed that E is defined over Q, not necessarily minimal. The
optional parameter A is a cutoff point for the integral, which must be chosen close to 1 for best
speed. The result must be independent of A, so this allows some internal checking of the function.

Note that if the conductor of the curve is large, say greater than 1012, this function will take
an unreasonable amount of time since it uses an O(N1/2) algorithm.

The library syntax is elllseries(E, s,A, prec) where prec is a long and an omitted A is coded
as NULL.

3.5.21 ellminimalmodel(E, {&v}): return the standard minimal integral model of the rational
elliptic curve E. If present, sets v to the corresponding change of variables, which is a vector
[u, r, s, t] with rational components. The return value is identical to that of ellchangecurve(E,
v).

The resulting model has integral coefficients, is everywhere minimal, a1 is 0 or 1, a2 is 0, 1
or −1 and a3 is 0 or 1. Such a model is unique, and the vector v is unique if we specify that u is
positive, which we do.

The library syntax is ellminimalmodel(E,&v), where an omitted v is coded as NULL.

3.5.22 ellorder(E, z): gives the order of the point z on the elliptic curve E if it is a torsion point,
zero otherwise. In the present version 2.3.5, this is implemented only for elliptic curves defined over
Q.

The library syntax is orderell(E, z).

3.5.23 ellordinate(E, x): gives a 0, 1 or 2-component vector containing the y-coordinates of the
points of the curve E having x as x-coordinate.

The library syntax is ordell(E, x).

3.5.24 ellpointtoz(E, z): if E is an elliptic curve with coefficients in R, this computes a complex
number t (modulo the lattice defining E) corresponding to the point z, i.e. such that, in the
standard Weierstrass model, ℘(t) = z[1], ℘′(t) = z[2]. In other words, this is the inverse function
of ellztopoint. More precisely, if (w1, w2) are the real and complex periods of E, t is such that
0 ≤ <(t) < w1 and 0 ≤ =(t) < =(w2).

If E has coefficients in Qp, then either Tate’s u is in Qp, in which case the output is a p-adic
number t corresponding to the point z under the Tate parametrization, or only its square is, in
which case the output is t+ 1/t. E must be an ell as output by ellinit.

The library syntax is zell(E, z, prec).

3.5.25 ellpow(E, z, n): computes n times the point z for the group law on the elliptic curve
E. Here, n can be in Z, or n can be a complex quadratic integer if the curve E has complex
multiplication by n (if not, an error message is issued).

The library syntax is powell(E, z, n).
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3.5.26 ellrootno(E, {p = 1}): E being an sell as output by ellinit, this computes the local (if
p 6= 1) or global (if p = 1) root number of the L-series of the elliptic curve E. Note that the global
root number is the sign of the functional equation and conjecturally is the parity of the rank of the
Mordell-Weil group. The equation for E must have coefficients in Q but need not be minimal.

The library syntax is ellrootno(E, p) and the result (equal to ±1) is a long.

3.5.27 ellsigma(E, z, {flag = 0}): value of the Weierstrass σ function of the lattice associated to
E as given by ellinit (alternatively, E can be given as a lattice [ω1, ω2]).

If flag = 1, computes an (arbitrary) determination of log(σ(z)).

If flag = 2, 3, same using the product expansion instead of theta series. The library syntax is
ellsigma(E, z, flag)

3.5.28 ellsearch(N): if N is an integer, it is taken as a conductor else if N is a string, it can be
a curve name (”11a1”), a isogeny class (”11a”) or a conductor ”11”. This function finds all curves
in the elldata database with the given property.

If N is a full curve name, the output format is [N, [a1, a2, a3, a4, a6], G] where [a1, a2, a3, a4, a6]
are the coefficients of the Weierstrass equation of the curve and G is a Z-basis of the free part of
the Mordell-Weil group associated to the curve.

If N is not a full-curve name, the output is the list (as a vector) of all matching curves in the
above format.

The library syntax is ellsearch(N). Also available is ellsearchcurve(N) that only accept
complete curve names.

3.5.29 ellsub(E, z1, z2): difference of the points z1 and z2 on the elliptic curve corresponding to
E.

The library syntax is subell(E, z1, z2).

3.5.30 elltaniyama(E): computes the modular parametrization of the elliptic curve E, where E
is an sell as output by ellinit, in the form of a two-component vector [u, v] of power series, given
to the current default series precision. This vector is characterized by the following two properties.
First the point (x, y) = (u, v) satisfies the equation of the elliptic curve. Second, the differential
du/(2v + a1u + a3) is equal to f(z)dz, a differential form on H/Γ0(N) where N is the conductor
of the curve. The variable used in the power series for u and v is x, which is implicitly understood
to be equal to exp(2iπz). It is assumed that the curve is a strong Weil curve, and that the Manin
constant is equal to 1. The equation of the curve E must be minimal (use ellminimalmodel to get
a minimal equation).

The library syntax is elltaniyama(E, prec), and the precision of the result is determined by
prec.
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3.5.31 elltors(E, {flag = 0}): if E is an elliptic curve defined over Q, outputs the torsion subgroup
of E as a 3-component vector [t,v1,v2], where t is the order of the torsion group, v1 gives the
structure of the torsion group as a product of cyclic groups (sorted by decreasing order), and v2

gives generators for these cyclic groups. E must be an ell as output by ellinit.

? E = ellinit([0,0,0,-1,0]);

? elltors(E)

%1 = [4, [2, 2], [[0, 0], [1, 0]]]

Here, the torsion subgroup is isomorphic to Z/2Z× Z/2Z, with generators [0, 0] and [1, 0].

If flag = 0, use Doud’s algorithm: bound torsion by computing #E(Fp) for small primes
of good reduction, then look for torsion points using Weierstrass parametrization (and Mazur’s
classification).

If flag = 1, use Lutz-Nagell (much slower), E is allowed to be an sell .

The library syntax is elltors0(E, flag).

3.5.32 ellwp(E, {z = x}, {flag = 0}):

Computes the value at z of the Weierstrass ℘ function attached to the elliptic curve E as given
by ellinit (alternatively, E can be given as a lattice [ω1, ω2]).

If z is omitted or is a simple variable, computes the power series expansion in z (starting
z−2 + O(z2)). The number of terms to an even power in the expansion is the default serieslength
in gp, and the second argument (C long integer) in library mode.

Optional flag is (for now) only taken into account when z is numeric, and means 0: compute
only ℘(z), 1: compute [℘(z), ℘′(z)].

The library syntax is ellwp0(E, z, flag , prec, precdl). Also available is weipell(E, precdl) for
the power series.

3.5.33 ellzeta(E, z): value of the Weierstrass ζ function of the lattice associated to E as given by
ellinit (alternatively, E can be given as a lattice [ω1, ω2]).

The library syntax is ellzeta(E, z).

3.5.34 ellztopoint(E, z): E being an ell as output by ellinit, computes the coordinates [x, y]
on the curve E corresponding to the complex number z. Hence this is the inverse function of ell-
pointtoz. In other words, if the curve is put in Weierstrass form, [x, y] represents the Weierstrass
$“wp$-function and its derivative. If z is in the lattice defining E over C, the result is the point at
infinity [0].

The library syntax is pointell(E, z, prec).
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3.6 Functions related to general number fields.

In this section can be found functions which are used almost exclusively for working in general
number fields. Other less specific functions can be found in the next section on polynomials.
Functions related to quadratic number fields are found in section Section 3.4 (Arithmetic functions).

3.6.1 Number field structures

Let K = Q[X]/(T ) a number field, ZK its ring of integers, T ∈ Z[X] is monic. Three basic
number field structures can be associated to K in GP:

• nf denotes a number field, i.e. a data structure output by nfinit. This contains the basic
arithmetic data associated to the number field: signature, maximal order (given by a basis nf.zk),
discriminant, defining polynomial T , etc.

• bnf denotes a “Buchmann’s number field”, i.e. a data structure output by bnfinit. This
contains nf and the deeper invariants of the field: units U(K), class group Cl(K), as well as
technical data required to solve the two associated discrete logarithm problems.

• bnr denotes a “ray number field”, i.e. a data structure output by bnrinit, corresponding to
the ray class group structure of the field, for some modulus f . It contains a bnf , the modulus f ,
the ray class group Clf (K) and data associated to the discrete logarithm problem therein.

3.6.2 Algebraic numbers and ideals

An algebraic number belonging to K = Q[X]/(T ) is given as

• a t_INT, t_FRAC or t_POL (implicitly modulo T ), or

• a t_POLMOD (modulo T ), or

• a t_COL v of dimension N = [K : Q], representing the element in terms of the computed
integral basis, as sum(i = 1, N, v[i] * nf.zk[i]). Note that a t_VEC will not be recognized.

An ideal is given in any of the following ways:

• an algebraic number in one of the above forms, defining a principal ideal.

• a prime ideal, i.e. a 5-component vector in the format output by idealprimedec.

• a t_MAT, square and in Hermite Normal Form (or at least upper triangular with non-negative
coefficients), whose columns represent a basis of the ideal.

One may use idealhnf to convert an ideal to the last (preferred) format.

Note. Some routines accept non-square matrices, but using this format is strongly discouraged.
Nevertheless, their behaviour is as follows: If strictly less than N = [K : Q] generators are given,
it is assumed they form a ZK-basis. If N or more are given, a Z-basis is assumed. If exactly N are
given, it is further assumed the matrix is in HNF. If any of these assumptions is not correct the
behaviour of the routine is undefined.

• an idele is a 2-component vector, the first being an ideal as above, the second being a
R1 +R2-component row vector giving Archimedean information, as complex numbers.
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3.6.3 Finite abelian groups

A finite abelian group G in user-readable format is given by its Smith Normal Form as a pair
[h, d] or triple [h, d, g]. Here h is the cardinality of G, (di) is the vector of elementary divisors, and
(gi) is a vector of generators. In short, G = ⊕i≤n(Z/diZ)gi, with dn | . . . | d2 | d1 and

∏
di = h.

This information can also be retrieved as G.no, G.cyc and G.gen.

• a character on the abelian group ⊕(Z/diZ)gi is given by a row vector χ = [a1, . . . , an] such
that χ(

∏
gnii ) = exp(2iπ

∑
aini/di).

• given such a structure, a subgroup H is input as a square matrix, whose column express
generators of H on the given generators gi. Note that the absolute value of the determinant of that
matrix is equal to the index (G : H).

3.6.4 Relative extensions

When defining a relative extension, the base field nf must be defined by a variable having a
lower priority (see Section 2.5.4) than the variable defining the extension. For example, you may
use the variable name y to define the base field, and x to define the relative extension.

• rnf denotes a relative number field, i.e. a data structure output by rnfinit.

• A relative matrix is a matrix whose entries are elements of a (fixed) number field nf , always
expressed as column vectors on the integral basis nf .zk. Hence it is a matrix of vectors.

• An ideal list is a row vector of (fractional) ideals of the number field nf .

• A pseudo-matrix is a pair (A, I) where A is a relative matrix and I an ideal list whose length
is the same as the number of columns of A. This pair is represented by a 2-component row vector.

• The projective module generated by a pseudo-matrix (A, I) is the sum
∑
i ajAj where the aj

are the ideals of I and Aj is the j-th column of A.

• A pseudo-matrix (A, I) is a pseudo-basis of the module it generates if A is a square matrix
with non-zero determinant and all the ideals of I are non-zero. We say that it is in Hermite Normal
Form (HNF) if it is upper triangular and all the elements of the diagonal are equal to 1.

• The determinant of a pseudo-basis (A, I) is the ideal equal to the product of the determinant
of A by all the ideals of I. The determinant of a pseudo-matrix is the determinant of any pseudo-
basis of the module it generates.

3.6.5 Class field theory

A modulus, in the sense of class field theory, is a divisor supported on the non-complex places
of K. In PARI terms, this means either an ordinary ideal I as above (no archimedean component),
or a pair [I, a], where a is a vector with r1 {0, 1}-components, corresponding to the infinite part of
the divisor. More precisely, the i-th component of a corresponds to the real embedding associated
to the i-th real root of K.roots. (That ordering is not canonical, but well defined once a defining
polynomial for K is chosen.) For instance, [1, [1,1]] is a modulus for a real quadratic field,
allowing ramification at any of the two places at infinity.

A bid or “big ideal” is a structure output by idealstar needed to compute in (ZK/I)∗, where
I is a modulus in the above sense. If is a finite abelian group as described above, supplemented by
technical data needed to solve discrete log problems.
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Finally we explain how to input ray number fields (or bnr), using class field theory. These
are defined by a triple a1, a2, a3, where the defining set [a1, a2, a3] can have any of the following
forms: [bnr ], [bnr , subgroup], [bnf ,module], [bnf ,module, subgroup].

• bnf is as output by bnfinit, where units are mandatory unless the modulus is trivial; bnr
is as output by bnrinit. This is the ground field K.

• module is a modulus f, as described above.

• subgroup a subgroup of the ray class group modulo f of K. As described above, this is input
as a square matrix expressing generators of a subgroup of the ray class group bnr.clgp on the
given generators.

The corresponding bnr is the subfield of the ray class field of K modulo f, fixed by the given
subgroup.

3.6.6 General use

All the functions which are specific to relative extensions, number fields, Buchmann’s number
fields, Buchmann’s number rays, share the prefix rnf, nf, bnf, bnr respectively. They take as first
argument a number field of that precise type, respectively output by rnfinit, nfinit, bnfinit,
and bnrinit.

However, and even though it may not be specified in the descriptions of the functions below,
it is permissible, if the function expects a nf , to use a bnf instead, which contains much more
information. On the other hand, if the function requires a bnf, it will not launch bnfinit for you,
which is a costly operation. Instead, it will give you a specific error message. In short, the types

nf ≤ bnf ≤ bnr

are ordered, each function requires a minimal type to work properly, but you may always substitute
a larger type.

The data types corresponding to the structures described above are rather complicated. Thus,
as we already have seen it with elliptic curves, GP provides “member functions” to retrieve data
from these structures (once they have been initialized of course). The relevant types of number
fields are indicated between parentheses:

bid (bnr , ) : bid ideal structure.
bnf (bnr , bnf ) : Buchmann’s number field.
clgp (bnr , bnf ) : classgroup. This one admits the following three subclasses:
cyc : cyclic decomposition (SNF).
gen : generators.
no : number of elements.

diff (bnr , bnf , nf ) : the different ideal.
codiff (bnr , bnf , nf ) : the codifferent (inverse of the different in the ideal group).
disc (bnr , bnf , nf ) : discriminant.
fu (bnr , bnf , nf ) : fundamental units.
index (bnr , bnf , nf ) : index of the power order in the ring of integers.
nf (bnr , bnf , nf ) : number field.
r1 (bnr , bnf , nf ) : the number of real embeddings.
r2 (bnr , bnf , nf ) : the number of pairs of complex embeddings.
reg (bnr , bnf , ) : regulator.
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roots (bnr , bnf , nf ) : roots of the polynomial generating the field.
t2 (bnr , bnf , nf ) : the T2 matrix (see nfinit).
tu (bnr , bnf , ) : a generator for the torsion units.
tufu (bnr , bnf , ) : [w, u1, ..., ur], (ui) is a vector of fundamental units, w generates the torsion units.
zk (bnr , bnf , nf ) : integral basis, i.e. a Z-basis of the maximal order.

For instance, assume that bnf = bnfinit(pol), for some polynomial. Then bnf .clgp retrieves
the class group, and bnf .clgp.no the class number. If we had set bnf = nfinit(pol), both would
have output an error message. All these functions are completely recursive, thus for instance
bnr.bnf.nf.zk will yield the maximal order of bnr , which you could get directly with a simple
bnr.zk.

3.6.7 Class group, units, and the GRH

Some of the functions starting with bnf are implementations of the sub-exponential algorithms
for finding class and unit groups under GRH, due to Hafner-McCurley, Buchmann and Cohen-
Diaz-Olivier. The general call to the functions concerning class groups of general number fields
(i.e. excluding quadclassunit) involves a polynomial P and a technical vector

tech = [c, c2,nrpid ],

where the parameters are to be understood as follows:

P is the defining polynomial for the number field, which must be in Z[X], irreducible and
monic. In fact, if you supply a non-monic polynomial at this point, gp issues a warning, then
transforms your polynomial so that it becomes monic. The nfinit routine will return a different
result in this case: instead of res, you get a vector [res,Mod(a,Q)], where Mod(a,Q) = Mod(X,P)

gives the change of variables. In all other routines, the variable change is simply lost.

The numbers c ≤ c2 are positive real numbers which control the execution time and the stack
size. For a given c, set c2 = c to get maximum speed. To get a rigorous result under GRH you
must take c2 ≥ 12 (or c2 ≥ 6 in P is quadratic). Reasonable values for c are between 0.1 and 2.
The default is c = c2 = 0.3.

nrpid is the maximal number of small norm relations associated to each ideal in the factor
base. Set it to 0 to disable the search for small norm relations. Otherwise, reasonable values are
between 4 and 20. The default is 4.

Warning. Make sure you understand the above! By default, most of the bnf routines depend on
the correctness of a heuristic assumption which is stronger than the GRH. In particular, any of the
class number, class group structure, class group generators, regulator and fundamental units may
be wrong, independently of each other. Any result computed from such a bnf may be wrong. The
only guarantee is that the units given generate a subgroup of finite index in the full unit group.
In practice, very few counter-examples are known, requiring unlucky random seeds. No counter-
example has been reported for c2 = 0.5 (which should be almost as fast as c2 = 0.3, and shall very
probably become the default). If you use c2 = 12, then everything is correct assuming the GRH
holds. You can use bnfcertify to certify the computations unconditionally.
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Remarks.

Apart from the polynomial P , you do not need to supply the technical parameters (under
the library you still need to send at least an empty vector, coded as NULL). However, should you
choose to set some of them, they must be given in the requested order. For example, if you want
to specify a given value of nrpid , you must give some values as well for c and c2, and provide a
vector [c, c2,nrpid ].

Note also that you can use an nf instead of P , which avoids recomputing the integral basis
and analogous quantities.

3.6.8 bnfcertify(bnf ): bnf being as output by bnfinit, checks whether the result is correct,
i.e. whether it is possible to remove the assumption of the Generalized Riemann Hypothesis. It is
correct if and only if the answer is 1. If it is incorrect, the program may output some error message,
or loop indefinitely. You can check its progress by increasing the debug level.

The library syntax is certifybuchall(bnf ), and the result is a C long.

3.6.9 bnfclassunit(P, {flag = 0}, {tech = [ ]}): this function is DEPRECATED, use bnfinit.

Buchmann’s sub-exponential algorithm for computing the class group, the regulator and a
system of fundamental units of the general algebraic number field K defined by the irreducible
polynomial P with integer coefficients.

The result of this function is a vector v with many components, which for ease of presentation
is in fact output as a one column matrix. It is not a bnf , you need bnfinit for that. First we
describe the default behaviour (flag = 0):

v[1] is equal to the polynomial P .

v[2] is the 2-component vector [r1, r2], where r1 and r2 are as usual the number of real and
half the number of complex embeddings of the number field K.

v[3] is the 2-component vector containing the field discriminant and the index.

v[4] is an integral basis in Hermite normal form.

v[5] (v.clgp) is a 3-component vector containing the class number (v.clgp.no), the structure
of the class group as a product of cyclic groups of order ni (v.clgp.cyc), and the corresponding
generators of the class group of respective orders ni (v.clgp.gen).

v[6] (v.reg) is the regulator computed to an accuracy which is the maximum of an internally
determined accuracy and of the default.

v[7] is deprecated, maintained for backward compatibility and always equal to 1.

v[8] (v.tu) a vector with 2 components, the first being the number w of roots of unity in K
and the second a primitive w-th root of unity expressed as a polynomial.

v[9] (v.fu) is a system of fundamental units also expressed as polynomials.

If flag = 1, and the precision happens to be insufficient for obtaining the fundamental units,
the internal precision is doubled and the computation redone, until the exact results are obtained.
Be warned that this can take a very long time when the coefficients of the fundamental units on
the integral basis are very large, for example in large real quadratic fields. For this case, there are
alternate compact representations for algebraic numbers, implemented in PARI but currently not
available in GP.
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If flag = 2, the fundamental units and roots of unity are not computed. Hence the result has
only 7 components, the first seven ones.

The library syntax is bnfclassunit0(P, flag , tech, prec).

3.6.10 bnfclgp(P, {tech = [ ]}): as bnfinit, but only outputs bnf.clgp, i.e. the class group.

The library syntax is classgrouponly(P, tech, prec), where tech is as described under bnfinit.

3.6.11 bnfdecodemodule(nf ,m): if m is a module as output in the first component of an exten-
sion given by bnrdisclist, outputs the true module.

The library syntax is decodemodule(nf ,m).

3.6.12 bnfinit(P, {flag = 0}, {tech = [ ]}): initializes a bnf structure. Used in programs such as
bnfisprincipal, bnfisunit or bnfnarrow. By default, the results are conditional on a heuristic
strengthening of the GRH, see 3.6.7. The result is a 10-component vector bnf .

This implements Buchmann’s sub-exponential algorithm for computing the class group, the
regulator and a system of fundamental units of the general algebraic number field K defined by the
irreducible polynomial P with integer coefficients.

If the precision becomes insufficient, gp outputs a warning (fundamental units too large,

not given) and does not strive to compute the units by default (flag = 0).

When flag = 1, we insist on finding the fundamental units exactly. Be warned that this can
take a very long time when the coefficients of the fundamental units on the integral basis are very
large. If the fundamental units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation of algebraic numbers
as a formal product of algebraic integers. The latter is implemented internally but not publicly
accessible yet.

When flag = 2, on the contrary, it is initially agreed that units are not computed. Note that
the resulting bnf will not be suitable for bnrinit, and that this flag provides negligible time savings
compared to the default. In short, it is deprecated.

When flag = 3, computes a very small version of bnfinit, a “small Buchmann’s number
field” (or sbnf for short) which contains enough information to recover the full bnf vector very
rapidly, but which is much smaller and hence easy to store and print. It is supposed to be used in
conjunction with bnfmake.

tech is a technical vector (empty by default, see 3.6.7). Careful use of this parameter may
speed up your computations considerably.

The components of a bnf or sbnf are technical and never used by the casual user. In fact:
never access a component directly, always use a proper member function. However, for the sake of
completeness and internal documentation, their description is as follows. We use the notations ex-
plained in the book by H. Cohen, A Course in Computational Algebraic Number Theory , Graduate
Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in particular.

bnf [1] contains the matrix W , i.e. the matrix in Hermite normal form giving relations for the
class group on prime ideal generators (℘i)1≤i≤r.

bnf [2] contains the matrix B, i.e. the matrix containing the expressions of the prime ideal
factorbase in terms of the ℘i. It is an r × c matrix.
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bnf [3] contains the complex logarithmic embeddings of the system of fundamental units which
has been found. It is an (r1 + r2)× (r1 + r2 − 1) matrix.

bnf [4] contains the matrix M ′′C of Archimedean components of the relations of the matrix
(W |B).

bnf [5] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

bnf [6] used to contain a permutation of the prime factor base, but has been obsoleted. It
contains a dummy 0.

bnf [7] or bnf .nf is equal to the number field data nf as would be given by nfinit.

bnf [8] is a vector containing the classgroup bnf .clgp as a finite abelian group, the regulator
bnf .reg, a 1 (used to contain an obsolete “check number”), the number of roots of unity and a
generator bnf .tu, the fundamental units bnf .fu.

bnf [9] is a 3-element row vector used in bnfisprincipal only and obtained as follows. Let
D = UWV obtained by applying the Smith normal form algorithm to the matrix W (= bnf [1])
and let Ur be the reduction of U modulo D. The first elements of the factorbase are given (in
terms of bnf.gen) by the columns of Ur, with Archimedean component ga; let also GDa be the
Archimedean components of the generators of the (principal) ideals defined by the bnf.gen[i]^

bnf.cyc[i]. Then bnf [9] = [Ur, ga, GDa].

bnf [10] is by default unused and set equal to 0. This field is used to store further information
about the field as it becomes available, which is rarely needed, hence would be too expensive
to compute during the initial bnfinit call. For instance, the generators of the principal ideals
bnf.gen[i]^bnf.cyc[i] (during a call to bnrisprincipal), or those corresponding to the relations
in W and B (when the bnf internal precision needs to be increased).

An sbnf is a 12 component vector v, as follows. Let bnf be the result of a full bnfinit,
complete with units. Then v[1] is the polynomial P , v[2] is the number of real embeddings r1, v[3]
is the field discriminant, v[4] is the integral basis, v[5] is the list of roots as in the sixth component
of nfinit, v[6] is the matrix MD of nfinit giving a Z-basis of the different, v[7] is the matrix
W = bnf [1], v[8] is the matrix matalpha = bnf [2], v[9] is the prime ideal factor base bnf [5] coded in
a compact way, and ordered according to the permutation bnf [6], v[10] is the 2-component vector
giving the number of roots of unity and a generator, expressed on the integral basis, v[11] is the
list of fundamental units, expressed on the integral basis, v[12] is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix matalpha, expressed on the integral
basis.

Note that all the components are exact (integral or rational), except for the roots in v[5]. Note
also that member functions will not work on sbnf , you have to use bnfmake explicitly first.

The library syntax is bnfinit0(P, flag , tech, prec).

3.6.13 bnfisintnorm(bnf , x): computes a complete system of solutions (modulo units of positive
norm) of the absolute norm equation Norm(a) = x, where a is an integer in bnf . If bnf has not
been certified, the correctness of the result depends on the validity of GRH.

See also bnfisnorm.

The library syntax is bnfisintnorm(bnf , x).
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3.6.14 bnfisnorm(bnf , x, {flag = 1}): tries to tell whether the rational number x is the norm of
some element y in bnf . Returns a vector [a, b] where x = Norm(a) ∗ b. Looks for a solution which
is an S-unit, with S a certain set of prime ideals containing (among others) all primes dividing x.
If bnf is known to be Galois, set flag = 0 (in this case, x is a norm iff b = 1). If flag is non zero
the program adds to S the following prime ideals, depending on the sign of flag . If flag > 0, the
ideals of norm less than flag . And if flag < 0 the ideals dividing flag .

Assuming GRH, the answer is guaranteed (i.e. x is a norm iff b = 1), if S contains all primes
less than 12 log(disc(Bnf ))2, where Bnf is the Galois closure of bnf .

See also bnfisintnorm.

The library syntax is bnfisnorm(bnf , x, flag , prec), where flag and prec are longs.

3.6.15 bnfissunit(bnf , sfu, x): bnf being output by bnfinit, sfu by bnfsunit, gives the column
vector of exponents of x on the fundamental S-units and the roots of unity. If x is not a unit,
outputs an empty vector.

The library syntax is bnfissunit(bnf , sfu, x).

3.6.16 bnfisprincipal(bnf , x, {flag = 1}): bnf being the number field data output by bnfinit,
and x being either a Z-basis of an ideal in the number field (not necessarily in HNF) or a prime
ideal in the format output by the function idealprimedec, this function tests whether the ideal is
principal or not. The result is more complete than a simple true/false answer: it gives a row vector
[v1, v2], where

v1 is the vector of components ci of the class of the ideal x in the class group, expressed on
the generators gi given by bnfinit (specifically bnf .gen). The ci are chosen so that 0 ≤ ci < ni
where ni is the order of gi (the vector of ni being bnf .cyc).

v2 gives on the integral basis the components of α such that x = α
∏
i g
ci
i . In particular, x is

principal if and only if v1 is equal to the zero vector. In the latter case, x = αZK where α is given
by v2. Note that if α is too large to be given, a warning message will be printed and v2 will be set
equal to the empty vector.

If flag = 0, outputs only v1, which is much easier to compute.

If flag = 2, does as if flag were 0, but doubles the precision until a result is obtained.

If flag = 3, as in the default behaviour (flag = 1), but doubles the precision until a result is
obtained.

The user is warned that these two last setting may induce very lengthy computations.

The library syntax is isprincipalall(bnf , x, flag).

3.6.17 bnfisunit(bnf , x): bnf being the number field data output by bnfinit and x being an
algebraic number (type integer, rational or polmod), this outputs the decomposition of x on the
fundamental units and the roots of unity if x is a unit, the empty vector otherwise. More precisely,
if u1,. . . ,ur are the fundamental units, and ζ is the generator of the group of roots of unity (bnf.tu),
the output is a vector [x1, . . . , xr, xr+1] such that x = ux1

1 · · ·uxrr · ζxr+1 . The xi are integers for
i ≤ r and is an integer modulo the order of ζ for i = r + 1.

The library syntax is isunit(bnf , x).
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3.6.18 bnfmake(sbnf ): sbnf being a “small bnf ” as output by bnfinit(x, 3), computes the com-
plete bnfinit information. The result is not identical to what bnfinit would yield, but is func-
tionally identical. The execution time is very small compared to a complete bnfinit. Note that
if the default precision in gp (or prec in library mode) is greater than the precision of the roots
sbnf [5], these are recomputed so as to get a result with greater accuracy.

Note that the member functions are not available for sbnf , you have to use bnfmake explicitly
first.

The library syntax is makebigbnf(sbnf , prec), where prec is a C long integer.

3.6.19 bnfnarrow(bnf ): bnf being as output by bnfinit, computes the narrow class group of bnf .
The output is a 3-component row vector v analogous to the corresponding class group component
bnf .clgp (bnf [8][1]): the first component is the narrow class number v.no, the second component
is a vector containing the SNF cyclic components v.cyc of the narrow class group, and the third
is a vector giving the generators of the corresponding v.gen cyclic groups. Note that this function
is a special case of bnrinit.

The library syntax is buchnarrow(bnf ).

3.6.20 bnfsignunit(bnf ): bnf being as output by bnfinit, this computes an r1 × (r1 + r2 − 1)
matrix having ±1 components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:

/* exponents of totally positive units generators on bnf.tufu */

tpuexpo(bnf)=

{ local(S,d,K);

S = bnfsignunit(bnf); d = matsize(S);

S = matrix(d[1],d[2], i,j, if (S[i,j] < 0, 1,0));

S = concat(vectorv(d[1],i,1), S); \\ add sign(-1)

K = lift(matker(S * Mod(1,2)));

if (K, mathnfmodid(K, 2), 2*matid(d[1]))

}

/* totally positive units */

tpu(bnf)=

{ local(vu = bnf.tufu, ex = tpuexpo(bnf));

vector(#ex-1, i, factorback(vu, ex[,i+1])) \\ ex[,1] is 1

}

The library syntax is signunits(bnf ).

3.6.21 bnfreg(bnf ): bnf being as output by bnfinit, computes its regulator.

The library syntax is regulator(bnf , tech, prec), where tech is as in bnfinit.
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3.6.22 bnfsunit(bnf , S): computes the fundamental S-units of the number field bnf (output by
bnfinit), where S is a list of prime ideals (output by idealprimedec). The output is a vector v
with 6 components.

v[1] gives a minimal system of (integral) generators of the S-unit group modulo the unit group.

v[2] contains technical data needed by bnfissunit.

v[3] is an empty vector (used to give the logarithmic embeddings of the generators in v[1] in
version 2.0.16).

v[4] is the S-regulator (this is the product of the regulator, the determinant of v[2] and the
natural logarithms of the norms of the ideals in S).

v[5] gives the S-class group structure, in the usual format (a row vector whose three components
give in order the S-class number, the cyclic components and the generators).

v[6] is a copy of S.

The library syntax is bnfsunit(bnf , S, prec).

3.6.23 bnfunit(bnf ): bnf being as output by bnfinit, outputs the vector of fundamental units
of the number field.

This function is mostly useless, since it will only succeed if bnf contains the units, in which
case bnf.fu is recommanded instead, or bnf was produced with bnfinit(,,2), which is itself
deprecated.

The library syntax is buchfu(bnf ).

3.6.24 bnrL1(bnr , {subgroup}, {flag = 0}): bnr being the number field data which is output by
bnrinit(,,1) and subgroup being a square matrix defining a congruence subgroup of the ray class
group corresponding to bnr (the trivial congruence subgroup if omitted), returns for each character
χ of the ray class group which is trivial on this subgroup, the value at s = 1 (or s = 0) of the
abelian L-function associated to χ. For the value at s = 0, the function returns in fact for each
character χ a vector [rχ, cχ] where rχ is the order of L(s, χ) at s = 0 and cχ the first non-zero term
in the expansion of L(s, χ) at s = 0; in other words

L(s, χ) = cχ · srχ +O(srχ+1)

near 0. flag is optional, default value is 0; its binary digits mean 1: compute at s = 1 if set to
1 or s = 0 if set to 0, 2: compute the primitive L-functions associated to χ if set to 0 or the
L-function with Euler factors at prime ideals dividing the modulus of bnr removed if set to 1 (this
is the so-called LS(s, χ) function where S is the set of infinite places of the number field together
with the finite prime ideals dividing the modulus of bnr , see the example below), 3: returns also
the character. Example:

bnf = bnfinit(x^2 - 229);

bnr = bnrinit(bnf,1,1);

bnrL1(bnr)

returns the order and the first non-zero term of the abelian L-functions L(s, χ) at s = 0 where χ
runs through the characters of the class group of Q(

√
229). Then

bnr2 = bnrinit(bnf,2,1);
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bnrL1(bnr2,,2)

returns the order and the first non-zero terms of the abelian L-functions LS(s, χ) at s = 0 where
χ runs through the characters of the class group of Q(

√
229) and S is the set of infinite places of

Q(
√

229) together with the finite prime 2. Note that the ray class group modulo 2 is in fact the
class group, so bnrL1(bnr2,0) returns exactly the same answer as bnrL1(bnr,0).

The library syntax is bnrL1(bnr , subgroup, flag , prec), where an omitted subgroup is coded as
NULL.

3.6.25 bnrclass(bnf , ideal , {flag = 0}): this function is DEPRECATED, use bnrinit.

bnf being as output by bnfinit (the units are mandatory unless the ideal is trivial), and ideal
being a modulus, computes the ray class group of the number field for the modulus ideal , as a finite
abelian group.

The library syntax is bnrclass0(bnf , ideal , flag).

3.6.26 bnrclassno(bnf , I): bnf being as output by bnfinit (units are mandatory unless the ideal
is trivial), and I being a modulus, computes the ray class number of the number field for the
modulus I. This is faster than bnrinit and should be used if only the ray class number is desired.
See bnrclassnolist if you need ray class numbers for all moduli less than some bound.

The library syntax is bnrclassno(bnf , I).

3.6.27 bnrclassnolist(bnf , list): bnf being as output by bnfinit, and list being a list of moduli
(with units) as output by ideallist or ideallistarch, outputs the list of the class numbers of the
corresponding ray class groups. To compute a single class number, bnrclassno is more efficient.

? bnf = bnfinit(x^2 - 2);

? L = ideallist(bnf, 100, 2);

? H = bnrclassnolist(bnf, L);

? H[98]

%4 = [1, 3, 1]

? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])

%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]

The weird l[i].mod[1], is the first component of l[i].mod, i.e. the finite part of the con-
ductor. (This is cosmetic: since by construction the archimedean part is trivial, I do not want to
see it). This tells us that the ray class groups modulo the ideals of norm 98 (printed as %5) have
respectively order 1, 3 and 1. Indeed, we may check directly :

? bnrclassno(bnf, ids[2])

%6 = 3

The library syntax is bnrclassnolist(bnf , list).
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3.6.28 bnrconductor(a1, {a2}, {a3}, {flag = 0}): conductor f of the subfield of a ray class field
as defined by [a1, a2, a3] (see bnr at the beginning of this section).

If flag = 0, returns f .

If flag = 1, returns [f, Clf , H], where Clf is the ray class group modulo f , as a finite abelian
group; finally H is the subgroup of Clf defining the extension.

If flag = 2, returns [f, bnr(f), H], as above except Clf is replaced by a bnr structure, as output
by bnrinit(, f, 1).

The library syntax is conductor(bnr , subgroup, flag), where an omitted subgroup (trivial sub-
group, i.e. ray class field) is input as NULL, and flag is a C long.

3.6.29 bnrconductorofchar(bnr , chi): bnr being a big ray number field as output by bnrinit,
and chi being a row vector representing a character as expressed on the generators of the ray class
group, gives the conductor of this character as a modulus.

The library syntax is bnrconductorofchar(bnr , chi).

3.6.30 bnrdisc(a1, {a2}, {a3}, {flag = 0}): a1, a2, a3 defining a big ray number field L over a
ground field K (see bnr at the beginning of this section for the meaning of a1, a2, a3), outputs a
3-component row vector [N,R1, D], where N is the (absolute) degree of L, R1 the number of real
places of L, and D the discriminant of L/Q, including sign (if flag = 0).

If flag = 1, as above but outputs relative data. N is now the degree of L/K, R1 is the number
of real places of K unramified in L (so that the number of real places of L is equal to R1 times the
relative degree N), and D is the relative discriminant ideal of L/K.

If flag = 2, as the default case, except that if the modulus is not the exact conductor corre-
sponding to the L, no data is computed and the result is 0.

If flag = 3, as case 2, but output relative data.

The library syntax is bnrdisc0(a1, a2, a3, flag).

3.6.31 bnrdisclist(bnf , bound , {arch}): bnf being as output by bnfinit (with units), computes
a list of discriminants of Abelian extensions of the number field by increasing modulus norm up to
bound bound . The ramified Archimedean places are given by arch; all possible values are taken if
arch is omitted.

The alternative syntax bnrdisclist(bnf , list) is supported, where list is as output by ideal-

list or ideallistarch (with units), in which case arch is disregarded.

The output v is a vector of vectors, where v[i][j] is understood to be in fact V [215(i− 1) + j]
of a unique big vector V . (This akward scheme allows for larger vectors than could be otherwise
represented.)

V [k] is itself a vector W , whose length is the number of ideals of norm k. We consider first
the case where arch was specified. Each component of W corresponds to an ideal m of norm k,
and gives invariants associated to the ray class field L of bnf of conductor [m, arch]. Namely, each
contains a vector [m, d, r,D] with the following meaning: m is the prime ideal factorization of the
modulus, d = [L : Q] is the absolute degree of L, r is the number of real places of L, and D is the
factorization of its absolute discriminant. We set d = r = D = 0 if m is not the finite part of a
conductor.
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If arch was omitted, all t = 2r1 possible values are taken and a component of W has the form
[m, [[d1, r1, D1], . . . , [dt, rt, Dt]]], where m is the finite part of the conductor as above, and [di, ri, Di]
are the invariants of the ray class field of conductor [m, vi], where vi is the i-th archimedean
component, ordered by inverse lexicographic order; so v1 = [0, . . . , 0], v2 = [1, 0 . . . , 0], etc. Again,
we set di = ri = Di = 0 if [m, vi] is not a conductor.

Finally, each prime ideal pr = [p, α, e, f, β] in the prime factorization m is coded as the integer
p · n2 + (f − 1) · n+ (j − 1), where n is the degree of the base field and j is such that

pr = idealprimedec(nf ,p)[j].

m can be decoded using bnfdecodemodule.

Note that to compute such data for a single field, either bnrclassno or bnrdisc is more
efficient.

The library syntax is bnrdisclist0(bnf, bound , arch).

3.6.32 bnrinit(bnf , f, {flag = 0}): bnf is as output by bnfinit, f is a modulus, initializes data
linked to the ray class group structure corresponding to this module, a so-called bnr structure.
The following member functions are available on the result: .bnf is the underlying bnf , .mod the
modulus, .bid the bid structure associated to the modulus; finally, .clgp, .no, .cyc, clgp refer to
the ray class group (as a finite abelian group), its cardinality, its elementary divisors, its generators.

The last group of functions are different from the members of the underlying bnf , which refer to
the class group; use bnr.bnf.xxx to access these, e.g. bnr.bnf.cyc to get the cyclic decomposition
of the class group.

They are also different from the members of the underlying bid , which refer to (∨K/f)∗; use
bnr.bid.xxx to access these, e.g. bnr.bid.no to get φ(f).

If flag = 0 (default), the generators of the ray class group are not computed, which saves time.
Hence bnr.gen would produce an error.

If flag = 1, as the default, except that generators are computed.

The library syntax is bnrinit0(bnf , f, flag).

3.6.33 bnrisconductor(a1, {a2}, {a3}): a1, a2, a3 represent an extension of the base field, given
by class field theory for some modulus encoded in the parameters. Outputs 1 if this modulus is the
conductor, and 0 otherwise. This is slightly faster than bnrconductor.

The library syntax is bnrisconductor(a1, a2, a3) and the result is a long.

3.6.34 bnrisprincipal(bnr , x, {flag = 1}): bnr being the number field data which is output by
bnrinit(, , 1) and x being an ideal in any form, outputs the components of x on the ray class group
generators in a way similar to bnfisprincipal. That is a 2-component vector v where v[1] is the
vector of components of x on the ray class group generators, v[2] gives on the integral basis an
element α such that x = α

∏
i g
xi
i .

If flag = 0, outputs only v1. In that case, bnr need not contain the ray class group generators,
i.e. it may be created with bnrinit(, , 0)

The library syntax is bnrisprincipal(bnr , x, flag).
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3.6.35 bnrrootnumber(bnr , chi , {flag = 0}): if χ = chi is a (not necessarily primitive) character
over bnr , let L(s, χ) =

∑
id χ(id)N(id)−s be the associated Artin L-function. Returns the so-called

Artin root number, i.e. the complex number W (χ) of modulus 1 such that

Λ(1− s, χ) = W (χ)Λ(s, χ)

where Λ(s, χ) = A(χ)s/2γχ(s)L(s, χ) is the enlarged L-function associated to L.

The generators of the ray class group are needed, and you can set flag = 1 if the character is
known to be primitive. Example:

bnf = bnfinit(x^2 - 145);

bnr = bnrinit(bnf,7,1);

bnrrootnumber(bnr, [5])

returns the root number of the character χ of Cl7(Q(
√

145)) such that χ(g) = ζ5, where g is the
generator of the ray-class field and ζ = e2iπ/N where N is the order of g (N = 12 as bnr.cyc

readily tells us).

The library syntax is bnrrootnumber(bnf , chi , flag)

3.6.36 bnrstark(bnr , {subgroup}): bnr being as output by bnrinit(,,1), finds a relative equation
for the class field corresponding to the modulus in bnr and the given congruence subgroup (as usual,
omit subgroup if you want the whole ray class group).

The routine uses Stark units and needs to find a suitable auxilliary conductor, which may not
exist when the class field is not cyclic over the base. In this case bnrstark is allowed to return a
vector of polynomials defining independent relative extensions, whose compositum is the requested
class field. It was decided that it was more useful to keep the extra information thus made available,
hence the user has to take the compositum herself.

The main variable of bnr must not be x, and the ground field and the class field must be
totally real. When the base field is Q, the vastly simpler galoissubcyclo is used instead. Here is
an example:

bnf = bnfinit(y^2 - 3);

bnr = bnrinit(bnf, 5, 1);

pol = bnrstark(bnr)

returns the ray class field of Q(
√

3) modulo 5. Usually, one wants to apply to the result one of

rnfpolredabs(bnf, pol, 16) \\ compute a reduced relative polynomial

rnfpolredabs(bnf, pol, 16 + 2) \\ compute a reduced absolute polynomial

The library syntax is bnrstark(bnr , subgroup), where an omitted subgroup is coded by NULL.

3.6.37 dirzetak(nf , b): gives as a vector the first b coefficients of the Dedekind zeta function of
the number field nf considered as a Dirichlet series.

The library syntax is dirzetak(nf , b).
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3.6.38 factornf(x, t): factorization of the univariate polynomial x over the number field defined by
the (univariate) polynomial t. x may have coefficients in Q or in the number field. The algorithm
reduces to factorization over Q (Trager’s trick). The direct approach of nffactor, which uses van
Hoeij’s method in a relative setting, is in general faster.

The main variable of t must be of lower priority than that of x (see Section 2.5.4). However
if non-rational number field elements occur (as polmods or polynomials) as coefficients of x, the
variable of these polmods must be the same as the main variable of t. For example

? factornf(x^2 + Mod(y, y^2+1), y^2+1);

? factornf(x^2 + y, y^2+1); \\ these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)

*** factornf: inconsistent data in rnf function.

? factornf(x^2 + z, y^2+1)

*** factornf: incorrect variable in rnf function.

The library syntax is polfnf(x, t).

3.6.39 galoisexport(gal , {flag = 0}): gal being be a Galois field as output by galoisinit, export
the underlying permutation group as a string suitable for (no flags or flag = 0) GAP or (flag = 1)
Magma. The following example compute the index of the underlying abstract group in the GAP
library:

? G = galoisinit(x^6+108);

? s = galoisexport(G)

%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"

? extern("echo \"IdGroup("s");\" | gap -q")

%3 = [6, 1]

? galoisidentify(G)

%4 = [6, 1]

This command also accepts subgroups returned by galoissubgroups.

The library syntax is galoisexport(gal , flag).

3.6.40 galoisfixedfield(gal , perm, {flag = 0}, {v = y})): gal being be a Galois field as output by
galoisinit and perm an element of gal .group or a vector of such elements, computes the fixed
field of gal by the automorphism defined by the permutations perm of the roots gal .roots. P is
guaranteed to be squarefree modulo gal .p.

If no flags or flag = 0, output format is the same as for nfsubfield, returning [P, x] such that
P is a polynomial defining the fixed field, and x is a root of P expressed as a polmod in gal .pol.

If flag = 1 return only the polynomial P .

If flag = 2 return [P, x, F ] where P and x are as above and F is the factorization of gal .pol
over the field defined by P , where variable v (y by default) stands for a root of P . The priority of
v must be less than the priority of the variable of gal .pol (see Section 2.5.4). Example:

? G = galoisinit(x^4+1);

? galoisfixedfield(G,G.group[2],2)

%2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]

computes the factorization x4 + 1 = (x2 −
√
−2x− 1)(x2 +

√
−2x− 1)

The library syntax is galoisf ixedfield(gal , perm, flag ,v), where v is a variable number, an
omitted v being coded by −1.
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3.6.41 galoisidentify(gal): gal being be a Galois field as output by galoisinit, output the
isomorphism class of the underlying abstract group as a two-components vector [o, i], where o is
the group order, and i is the group index in the GAP4 Small Group library, by Hans Ulrich Besche,
Bettina Eick and Eamonn O’Brien.

This command also accepts subgroups returned by galoissubgroups.

The current implementation is limited to degree less or equal to 127. Some larger “easy” orders
are also supported.

The output is similar to the output of the function IdGroup in GAP4. Note that GAP4
IdGroup handles all groups of order less than 2000 except 1024, so you can use galoisexport and
GAP4 to identify large Galois groups.

The library syntax is galoisidentify(gal).

3.6.42 galoisinit(pol , {den}): computes the Galois group and all necessary information for com-
puting the fixed fields of the Galois extension K/Q where K is the number field defined by pol
(monic irreducible polynomial in Z[X] or a number field as output by nfinit). The extension K/Q
must be Galois with Galois group “weakly” super-solvable (see nfgaloisconj)

This is a prerequisite for most of the galoisxxx routines. For instance:

P = x^6 + 108;

G = galoisinit(P);

L = galoissubgroups(G);

vector(#L, i, galoisisabelian(L[i],1))

vector(#L, i, galoisidentify(L[i]))

The output is an 8-component vector gal .

gal [1] contains the polynomial pol (gal.pol).

gal [2] is a three-components vector [p, e, q] where p is a prime number (gal.p) such that pol
totally split modulo p , e is an integer and q = pe (gal.mod) is the modulus of the roots in gal.roots.

gal [3] is a vector L containing the p-adic roots of pol as integers implicitly modulo gal.mod.
(gal.roots).

gal [4] is the inverse of the Van der Monde matrix of the p-adic roots of pol , multiplied by
gal [5].

gal [5] is a multiple of the least common denominator of the automorphisms expressed as
polynomial in a root of pol .

gal [6] is the Galois group G expressed as a vector of permutations of L (gal.group).

gal [7] is a generating subset S = [s1, . . . , sg] of G expressed as a vector of permutations of L
(gal.gen).

gal [8] contains the relative orders [o1, . . . , og] of the generators of S (gal.orders).

Let H be the maximal normal supersolvable subgroup of G, we have the following properties:

• if G/H ' A4 then [o1, . . . , og] ends by [2, 2, 3].

• if G/H ' S4 then [o1, . . . , og] ends by [2, 2, 3, 2].

• else G is super-solvable.
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• for 1 ≤ i ≤ g the subgroup of G generated by [s1, . . . , sg] is normal, with the exception of
i = g − 2 in the second case and of i = g − 3 in the third.

• the relative order oi of si is its order in the quotient group G/〈s1, . . . , si−1〉, with the same
exceptions.

• for any x ∈ G there exists a unique family [e1, . . . , eg] such that (no exceptions):

– for 1 ≤ i ≤ g we have 0 ≤ ei < oi

– x = ge11 g
e2
2 . . . genn

If present den must be a suitable value for gal [5].

The library syntax is galoisinit(gal , den).

3.6.43 galoisisabelian(gal , f l = 0): gal being as output by galoisinit, return 0 if gal is not an
abelian group, and the HNF matrix of gal over gal.gen if fl = 0, 1 if fl = 1.

This command also accepts subgroups returned by galoissubgroups.

The library syntax is galoisisabelian(gal ,fl) where fl is a C long integer.

3.6.44 galoispermtopol(gal , perm): gal being a Galois field as output by galoisinit and perm
a element of gal .group, return the polynomial defining the Galois automorphism, as output by
nfgaloisconj, associated with the permutation perm of the roots gal .roots. perm can also be a
vector or matrix, in this case, galoispermtopol is applied to all components recursively.

Note that

G = galoisinit(pol);

galoispermtopol(G, G[6])~

is equivalent to nfgaloisconj(pol), if degree of pol is greater or equal to 2.

The library syntax is galoispermtopol(gal , perm).

3.6.45 galoissubcyclo(N,H, {fl = 0}, {v}): computes the subextension of Q(ζn) fixed by the
subgroup H ⊂ (Z/nZ)∗. By the Kronecker-Weber theorem, all abelian number fields can be
generated in this way (uniquely if n is taken to be minimal).

The pair (n,H) is deduced from the parameters (N,H) as follows

• N an integer: then n = N ; H is a generator, i.e. an integer or an integer modulo n; or a
vector of generators.

• N the output of znstar(n). H as in the first case above, or a matrix, taken to be a HNF
left divisor of the SNF for (Z/nZ)∗ (of type N.cyc), giving the generators of H in terms of N.gen.

• N the output of bnrinit(bnfinit(y), m, 1) where m is a module. H as in the first case,
or a matrix taken to be a HNF left divisor of the SNF for the ray class group modulo m (of type
N.cyc), giving the generators of H in terms of N.gen.

In this last case, beware that H is understood relatively to N ; in particular, if the infinite
place does not divide the module, e.g if m is an integer, then it is not a subgroup of (Z/nZ)∗, but
of its quotient by {±1}.

If fl = 0, compute a polynomial (in the variable v) defining the the subfield of Q(ζn) fixed by
the subgroup H of (Z/nZ)∗.
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If fl = 1, compute only the conductor of the abelian extension, as a module.

If fl = 2, output [pol,N ], where pol is the polynomial as output when fl = 0 and N the
conductor as output when fl = 1.

The following function can be used to compute all subfields of Q(ζn) (of exact degree d, if d is
set):

subcyclo(n, d = -1)=

{

local(bnr,L,IndexBound);

IndexBound = if (d < 0, n, [d]);

bnr = bnrinit(bnfinit(y), [n,[1]], 1);

L = subgrouplist(bnr, IndexBound, 1);

vector(#L,i, galoissubcyclo(bnr,L[i]));

}

Setting L = subgrouplist(bnr, IndexBound) would produce subfields of exact conductor n∞.

The library syntax is galoissubcyclo(N,H, fl, v) where fl is a C long integer, and v a variable
number.

3.6.46 galoissubfields(G, {fl = 0}, {v}): Output all the subfields of the Galois group G , as a
vector. This works by applying galoisfixedfield to all subgroups. The meaning of the flag fl is
the same as for galoisfixedfield.

The library syntax is galoissubfields(G , f l, v), where fl is a long and v a variable number.

3.6.47 galoissubgroups(gal): Output all the subgroups of the Galois group gal. A subgroup is
a vector [gen, orders], with the same meaning as for gal .gen and gal .orders. Hence gen is a vector
of permutations generating the subgroup, and orders is the relatives orders of the generators. The
cardinal of a subgroup is the product of the relative orders. Such subgroup can be used instead
of a Galois group in the following command: galoisisabelian, galoissubgroups, galoisexport
and galoisidentify.

To get the subfield fixed by a subgroup sub of gal , use

galoisfixedfield(gal,sub[1])

The library syntax is galoissubgroups(gal).

3.6.48 idealadd(nf , x, y): sum of the two ideals x and y in the number field nf . When x and y
are given by Z-bases, this does not depend on nf and can be used to compute the sum of any two
Z-modules. The result is given in HNF.

The library syntax is idealadd(nf , x, y).

3.6.49 idealaddtoone(nf , x, {y}): x and y being two co-prime integral ideals (given in any form),
this gives a two-component row vector [a, b] such that a ∈ x, b ∈ y and a+ b = 1.

The alternative syntax idealaddtoone(nf , v), is supported, where v is a k-component vector
of ideals (given in any form) which sum to ZK . This outputs a k-component vector e such that
e[i] ∈ x[i] for 1 ≤ i ≤ k and

∑
1≤i≤k e[i] = 1.

The library syntax is idealaddtoone0(nf , x, y), where an omitted y is coded as NULL.
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3.6.50 idealappr(nf , x, {flag = 0}): if x is a fractional ideal (given in any form), gives an element
α in nf such that for all prime ideals ℘ such that the valuation of x at ℘ is non-zero, we have
v℘(α) = v℘(x), and. v℘(α) ≥ 0 for all other ℘.

If flag is non-zero, x must be given as a prime ideal factorization, as output by idealfactor,
but possibly with zero or negative exponents. This yields an element α such that for all prime
ideals ℘ occurring in x, v℘(α) is equal to the exponent of ℘ in x, and for all other prime ideals,
v℘(α) ≥ 0. This generalizes idealappr(nf , x, 0) since zero exponents are allowed. Note that the
algorithm used is slightly different, so that idealappr(nf ,idealfactor(nf ,x)) may not be the
same as idealappr(nf ,x,1).

The library syntax is idealappr0(nf , x, flag).

3.6.51 idealchinese(nf , x, y): x being a prime ideal factorization (i.e. a 2 by 2 matrix whose first
column contain prime ideals, and the second column integral exponents), y a vector of elements in
nf indexed by the ideals in x, computes an element b such that

v℘(b− y℘) ≥ v℘(x) for all prime ideals in x and v℘(b) ≥ 0 for all other ℘.

The library syntax is idealchinese(nf , x, y).

3.6.52 idealcoprime(nf , x, y): given two integral ideals x and y in the number field nf , finds a β
in the field, expressed on the integral basis nf [7], such that β · x is an integral ideal coprime to y.

The library syntax is idealcoprime(nf , x, y).

3.6.53 idealdiv(nf , x, y, {flag = 0}): quotient x · y−1 of the two ideals x and y in the number field
nf . The result is given in HNF.

If flag is non-zero, the quotient x · y−1 is assumed to be an integral ideal. This can be much
faster when the norm of the quotient is small even though the norms of x and y are large.

The library syntax is idealdiv0(nf , x, y, flag). Also available are idealdiv(nf , x, y) (flag = 0)
and idealdivexact(nf , x, y) (flag = 1).

3.6.54 idealfactor(nf , x): factors into prime ideal powers the ideal x in the number field nf . The
output format is similar to the factor function, and the prime ideals are represented in the form
output by the idealprimedec function, i.e. as 5-element vectors.

The library syntax is idealfactor(nf , x).

3.6.55 idealhnf(nf , a, {b}): gives the Hermite normal form matrix of the ideal a. The ideal can be
given in any form whatsoever (typically by an algebraic number if it is principal, by a ZK-system
of generators, as a prime ideal as given by idealprimedec, or by a Z-basis).

If b is not omitted, assume the ideal given was aZK + bZK , where a and b are elements of K
given either as vectors on the integral basis nf [7] or as algebraic numbers.

The library syntax is idealhnf0(nf , a, b) where an omitted b is coded as NULL. Also available
is idealhermite(nf , a) (b omitted).
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3.6.56 idealintersect(nf , A,B): intersection of the two ideals A and B in the number field nf .
The result is given in HNF.

? nf = nfinit(x^2+1);

? idealintersect(nf, 2, x+1)

%2 =

[2 0]

[0 2]

This function does not apply to general Z-modules, e.g. orders, since its arguments are replaced
by the ideals they generate. The following script intersects Z-modules A and B given by matrices
of compatible dimensions with integer coefficients:

ZM_intersect(A,B) =

{ local( Ker = matkerint(concat(A,B)) );

mathnf(A * vecextract(Ker, Str("..", #A), ".."))

}

The library syntax is idealintersect(nf , A,B).

3.6.57 idealinv(nf , x): inverse of the ideal x in the number field nf . The result is the Hermite
normal form of the inverse of the ideal, together with the opposite of the Archimedean information
if it is given.

The library syntax is idealinv(nf , x).

3.6.58 ideallist(nf , bound , {flag = 4}): computes the list of all ideals of norm less or equal to
bound in the number field nf . The result is a row vector with exactly bound components. Each
component is itself a row vector containing the information about ideals of a given norm, in no
specific order, depending on the value of flag :

The possible values of flag are:

0: give the bid associated to the ideals, without generators.

1: as 0, but include the generators in the bid .

2: in this case, nf must be a bnf with units. Each component is of the form [bid , U ], where
bid is as case 0 and U is a vector of discrete logarithms of the units. More precisely, it gives the
ideallogs with respect to bid of bnf.tufu. This structure is technical, and only meant to be used
in conjunction with bnrclassnolist or bnrdisclist.

3: as 2, but include the generators in the bid .

4: give only the HNF of the ideal.

? nf = nfinit(x^2+1);

? L = ideallist(nf, 100);

? L[1]

%3 = [[1, 0; 0, 1]] \\ A single ideal of norm 1
? #L[65]

%4 = 4 \\ There are 4 ideals of norm 4 in Z[i]

If one wants more information, one could do instead:

? nf = nfinit(x^2+1);
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? L = ideallist(nf, 100, 0);

? l = L[25]; vector(#l, i, l[i].clgp)

%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]

? l[1].mod

%4 = [[25, 18; 0, 1], []]

? l[2].mod

%5 = [[5, 0; 0, 5], []]

? l[3].mod

%6 = [[25, 7; 0, 1], []]

where we ask for the structures of the (Z[i]/I)∗ for all three ideals of norm 25. In fact, for all
moduli with finite part of norm 25 and trivial archimedean part, as the last 3 commands show. See
ideallistarch to treat general moduli.

The library syntax is ideallist0(nf , bound , flag), where bound must be a C long integer. Also
available is ideallist(nf , bound), corresponding to the case flag = 4.

3.6.59 ideallistarch(nf , list , arch): list is a vector of vectors of bid’s, as output by ideallist

with flag 0 to 3. Return a vector of vectors with the same number of components as the original
list . The leaves give information about moduli whose finite part is as in original list, in the same
order, and archimedean part is now arch (it was originally trivial). The information contained is
of the same kind as was present in the input; see ideallist, in particular the meaning of flag .

? bnf = bnfinit(x^2-2);

? bnf.sign

%2 = [2, 0] \\ two places at infinity

? L = ideallist(bnf, 100, 0);

? l = L[98]; vector(#l, i, l[i].clgp)

%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]

? La = ideallistarch(bnf, L, [1,1]); \\ add them to the modulus

? l = La[98]; vector(#l, i, l[i].clgp)

%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]

Of course, the results above are obvious: adding t places at infinity will add t copies of Z/2Z
to the ray class group. The following application is more typical:

? L = ideallist(bnf, 100, 2); \\ units are required now

? La = ideallistarch(bnf, L, [1,1]);

? H = bnrclassnolist(bnf, La);

? H[98];

%6 = [2, 12, 2]

The library syntax is ideallistarch(nf , list , arch).
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3.6.60 ideallog(nf , x, bid): nf is a number field, bid a “big ideal” as output by idealstar and x
a non-necessarily integral element of nf which must have valuation equal to 0 at all prime ideals
dividing I = bid [1]. This function computes the “discrete logarithm” of x on the generators given
in bid [2]. In other words, if gi are these generators, of orders di respectively, the result is a column
vector of integers (xi) such that 0 ≤ xi < di and

x ≡
∏
i

gxii (mod ∗I) .

Note that when I is a module, this implies also sign conditions on the embeddings.

The library syntax is zideallog(nf , x, bid).

3.6.61 idealmin(nf , x, {vdir}): computes a minimum of the ideal x in the direction vdir in the
number field nf .

The library syntax is minideal(nf , x, vdir , prec), where an omitted vdir is coded as NULL.

3.6.62 idealmul(nf , x, y, {flag = 0}): ideal multiplication of the ideals x and y in the number field
nf . The result is a generating set for the ideal product with at most n elements, and is in Hermite
normal form if either x or y is in HNF or is a prime ideal as output by idealprimedec, and this
is given together with the sum of the Archimedean information in x and y if both are given.

If flag is non-zero, reduce the result using idealred.

The library syntax is idealmul(nf , x, y) (flag = 0) or idealmulred(nf , x, y, prec) (flag 6= 0),
where as usual, prec is a C long integer representing the precision.

3.6.63 idealnorm(nf , x): computes the norm of the ideal x in the number field nf .

The library syntax is idealnorm(nf , x).

3.6.64 idealpow(nf , x, k, {flag = 0}): computes the k-th power of the ideal x in the number field
nf . k can be positive, negative or zero. The result is NOT reduced, it is really the k-th ideal power,
and is given in HNF.

If flag is non-zero, reduce the result using idealred. Note however that this is NOT the same
as as idealpow(nf , x, k) followed by reduction, since the reduction is performed throughout the
powering process.

The library syntax corresponding to flag = 0 is idealpow(nf , x, k). If k is a long, you can
use idealpows(nf , x, k). Corresponding to flag = 1 is idealpowred(nf , vp, k, prec), where prec is
a long.
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3.6.65 idealprimedec(nf , p): computes the prime ideal decomposition of the prime number p in
the number field nf . p must be a (positive) prime number. Note that the fact that p is prime is
not checked, so if a non-prime p is given the result is undefined.

The result is a vector of pr structures, each representing one of the prime ideals above p in the
number field nf . The representation P = [p, a, e, f, b] of a prime ideal means the following. The
prime ideal is equal to pZK + αZK where ZK is the ring of integers of the field and α =

∑
i aiωi

where the ωi form the integral basis nf .zk, e is the ramification index, f is the residual index, and
b represents a β ∈ ZK such that P−1 = ZK +β/pZK which will be useful for computing valuations,
but which the user can ignore. The number α is guaranteed to have a valuation equal to 1 at the
prime ideal (this is automatic if e > 1).

The components of P should be accessed by member functions: P.p, P.e, P.f, and P.gen

(returns the vector [p, a]).

The library syntax is primedec(nf , p).

3.6.66 idealprincipal(nf , x): creates the principal ideal generated by the algebraic number x
(which must be of type integer, rational or polmod) in the number field nf . The result is a one-
column matrix.

The library syntax is principalideal(nf , x).

3.6.67 idealred(nf , I, {vdir = 0}): LLL reduction of the ideal I in the number field nf , along the
direction vdir . If vdir is present, it must be an r1 + r2-component vector (r1 and r2 number of
real and complex places of nf as usual).

This function finds a “small” a in I (it is an LLL pseudo-minimum along direction vdir). The
result is the Hermite normal form of the LLL-reduced ideal rI/a, where r is a rational number such
that the resulting ideal is integral and primitive. This is often, but not always, a reduced ideal
in the sense of Buchmann. If I is an idele, the logarithmic embeddings of a are subtracted to the
Archimedean part.

More often than not, a principal ideal will yield the identity matrix. This is a quick and dirty
way to check if ideals are principal without computing a full bnf structure, but it’s not a necessary
condition; hence, a non-trivial result doesn’t prove the ideal is non-trivial in the class group.

Note that this is not the same as the LLL reduction of the lattice I since ideal operations are
involved.

The library syntax is ideallllred(nf , x, vdir , prec), where an omitted vdir is coded as NULL.

3.6.68 idealstar(nf , I, {flag = 1}): outputs a bid structure, necessary for computing in the finite
abelian group G = (ZK/I)∗. Here, nf is a number field and I is a modulus: either an ideal in
any form, or a row vector whose first component is an ideal and whose second component is a row
vector of r1 0 or 1.

This bid is used in ideallog to compute discrete logarithms. It also contains useful information
which can be conveniently retrieved as bid.mod (the modulus), bid.clgp (G as a finite abelian
group), bid.no (the cardinality of G), bid.cyc (elementary divisors) and bid.gen (generators).

If flag = 1 (default), the result is a bid structure without generators.

If flag = 2, as flag = 1, but including generators, which wastes some time.
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If flag = 0, deprecated . Only outputs (ZK/I)∗ as an abelian group, i.e as a 3-component
vector [h, d, g]: h is the order, d is the vector of SNF cyclic components and g the corresponding
generators. This flag is deprecated: it is in fact slightly faster to compute a true bid structure,
which contains much more information.

The library syntax is idealstar0(nf , I, flag).

3.6.69 idealtwoelt(nf , x, {a}): computes a two-element representation of the ideal x in the number
field nf , using a straightforward (exponential time) search. x can be an ideal in any form, (including
perhaps an Archimedean part, which is ignored) and the result is a row vector [a, α] with two
components such that x = aZK + αZK and a ∈ Z, where a is the one passed as argument if any.
If x is given by at least two generators, a is chosen to be the positive generator of x ∩ Z.

Note that when an explicit a is given, we use an asymptotically faster method, however in
practice it is usually slower.

The library syntax is ideal two elt0(nf , x, a), where an omitted a is entered as NULL.

3.6.70 idealval(nf , x, vp): gives the valuation of the ideal x at the prime ideal vp in the number
field nf , where vp must be a 5-component vector as given by idealprimedec.

The library syntax is idealval(nf , x, vp), and the result is a long integer.

3.6.71 ideleprincipal(nf , x): creates the principal idele generated by the algebraic number x
(which must be of type integer, rational or polmod) in the number field nf . The result is a two-
component vector, the first being a one-column matrix representing the corresponding principal
ideal, and the second being the vector with r1 + r2 components giving the complex logarithmic
embedding of x.

The library syntax is principalidele(nf , x).

3.6.72 matalgtobasis(nf , x): nf being a number field in nfinit format, and x a matrix whose
coefficients are expressed as polmods in nf , transforms this matrix into a matrix whose coefficients
are expressed on the integral basis of nf . This is the same as applying nfalgtobasis to each entry,
but it would be dangerous to use the same name.

The library syntax is matalgtobasis(nf , x).

3.6.73 matbasistoalg(nf , x): nf being a number field in nfinit format, and x a matrix whose
coefficients are expressed as column vectors on the integral basis of nf , transforms this matrix
into a matrix whose coefficients are algebraic numbers expressed as polmods. This is the same as
applying nfbasistoalg to each entry, but it would be dangerous to use the same name.

The library syntax is matbasistoalg(nf , x).

3.6.74 modreverse(a): a being a polmod A(X) modulo T (X), finds the “reverse polmod” B(X)
modulo Q(X), where Q is the minimal polynomial of a, which must be equal to the degree of T ,
and such that if θ is a root of T then θ = B(α) for a certain root α of Q.

This is very useful when one changes the generating element in algebraic extensions.

The library syntax is polmodrecip(x).
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3.6.75 newtonpoly(x, p): gives the vector of the slopes of the Newton polygon of the polynomial
x with respect to the prime number p. The n components of the vector are in decreasing order,
where n is equal to the degree of x. Vertical slopes occur iff the constant coefficient of x is zero
and are denoted by VERYBIGINT, the biggest single precision integer representable on the machine
(231 − 1 (resp. 263 − 1) on 32-bit (resp. 64-bit) machines), see Section 3.2.49.

The library syntax is newtonpoly(x, p).

3.6.76 nfalgtobasis(nf , x): this is the inverse function of nfbasistoalg. Given an object x whose
entries are expressed as algebraic numbers in the number field nf , transforms it so that the entries
are expressed as a column vector on the integral basis nf .zk.

The library syntax is algtobasis(nf , x).

3.6.77 nfbasis(x, {flag = 0}, {fa}): integral basis of the number field defined by the irreducible,
preferably monic, polynomial x, using a modified version of the round 4 algorithm by default, due
to David Ford, Sebastian Pauli and Xavier Roblot. The binary digits of flag have the following
meaning:

1: assume that no square of a prime greater than the default primelimit divides the discrim-
inant of x, i.e. that the index of x has only small prime divisors.

2: use round 2 algorithm. For small degrees and coefficient size, this is sometimes a little
faster. (This program is the translation into C of a program written by David Ford in Algeb.)

Thus for instance, if flag = 3, this uses the round 2 algorithm and outputs an order which will
be maximal at all the small primes.

If fa is present, we assume (without checking!) that it is the two-column matrix of the fac-
torization of the discriminant of the polynomial x. Note that it does not have to be a complete
factorization. This is especially useful if only a local integral basis for some small set of places is
desired: only factors with exponents greater or equal to 2 will be considered.

The library syntax is nfbasis0(x, flag , fa). An extended version is nfbasis(x,&d, flag , fa),
where d receives the discriminant of the number field (not of the polynomial x), and an omit-
ted fa is input as NULL. Also available are base(x,&d) (flag = 0), base2(x,&d) (flag = 2) and
factoredbase(x, fa,&d).

3.6.78 nfbasistoalg(nf , x): this is the inverse function of nfalgtobasis. Given an object x whose
entries are expressed on the integral basis nf .zk, transforms it into an object whose entries are
algebraic numbers (i.e. polmods).

The library syntax is basistoalg(nf , x).

3.6.79 nfdetint(nf , x): given a pseudo-matrix x, computes a non-zero ideal contained in (i.e. mul-
tiple of) the determinant of x. This is particularly useful in conjunction with nfhnfmod.

The library syntax is nfdetint(nf , x).
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3.6.80 nfdisc(x, {flag = 0}, {fa}): field discriminant of the number field defined by the integral,
preferably monic, irreducible polynomial x. flag and fa are exactly as in nfbasis. That is, fa
provides the matrix of a partial factorization of the discriminant of x, and binary digits of flag are
as follows:

1: assume that no square of a prime greater than primelimit divides the discriminant.

2: use the round 2 algorithm, instead of the default round 4. This should be slower except
maybe for polynomials of small degree and coefficients.

The library syntax is nfdiscf0(x, flag , fa) where an omitted fa is input as NULL. You can also
use discf(x) (flag = 0).

3.6.81 nfeltdiv(nf , x, y): given two elements x and y in nf , computes their quotient x/y in the
number field nf .

The library syntax is element div(nf , x, y).

3.6.82 nfeltdiveuc(nf , x, y): given two elements x and y in nf , computes an algebraic integer q
in the number field nf such that the components of x − qy are reasonably small. In fact, this is
functionally identical to round(nfeltdiv(nf ,x,y)).

The library syntax is nfdiveuc(nf , x, y).

3.6.83 nfeltdivmodpr(nf , x, y, pr): given two elements x and y in nf and pr a prime ideal in
modpr format (see nfmodprinit), computes their quotient x/y modulo the prime ideal pr .

The library syntax is element divmodpr(nf , x, y, pr).

3.6.84 nfeltdivrem(nf , x, y): given two elements x and y in nf , gives a two-element row vector
[q, r] such that x = qy + r, q is an algebraic integer in nf , and the components of r are reasonably
small.

The library syntax is nfdivrem(nf , x, y).

3.6.85 nfeltmod(nf , x, y): given two elements x and y in nf , computes an element r of nf of the
form r = x−qy with q and algebraic integer, and such that r is small. This is functionally identical
to

x− nfeltmul(nf , round(nfeltdiv(nf , x, y)), y).

The library syntax is nfmod(nf , x, y).

3.6.86 nfeltmul(nf , x, y): given two elements x and y in nf , computes their product x ∗ y in the
number field nf .

The library syntax is element mul(nf , x, y).

3.6.87 nfeltmulmodpr(nf , x, y, pr): given two elements x and y in nf and pr a prime ideal in
modpr format (see nfmodprinit), computes their product x ∗ y modulo the prime ideal pr .

The library syntax is element mulmodpr(nf , x, y, pr).
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3.6.88 nfeltpow(nf , x, k): given an element x in nf , and a positive or negative integer k, computes
xk in the number field nf .

The library syntax is element pow(nf , x, k).

3.6.89 nfeltpowmodpr(nf , x, k, pr): given an element x in nf , an integer k and a prime ideal pr
in modpr format (see nfmodprinit), computes xk modulo the prime ideal pr .

The library syntax is element powmodpr(nf , x, k, pr).

3.6.90 nfeltreduce(nf , x, ideal): given an ideal in Hermite normal form and an element x of the
number field nf , finds an element r in nf such that x− r belongs to the ideal and r is small.

The library syntax is element reduce(nf , x, ideal).

3.6.91 nfeltreducemodpr(nf , x, pr): given an element x of the number field nf and a prime ideal
pr in modpr format compute a canonical representative for the class of x modulo pr .

The library syntax is nfreducemodpr(nf , x, pr).

3.6.92 nfeltval(nf , x, pr): given an element x in nf and a prime ideal pr in the format output by
idealprimedec, computes their the valuation at pr of the element x. The same result could be
obtained using idealval(nf ,x,pr) (since x would then be converted to a principal ideal), but it
would be less efficient.

The library syntax is element val(nf , x, pr), and the result is a long.

3.6.93 nffactor(nf , x): factorization of the univariate polynomial x over the number field nf given
by nfinit. x has coefficients in nf (i.e. either scalar, polmod, polynomial or column vector). The
main variable of nf must be of lower priority than that of x (see Section 2.5.4). However if the
polynomial defining the number field occurs explicitly in the coefficients of x (as modulus of a
t_POLMOD), its main variable must be the same as the main variable of x. For example,

? nf = nfinit(y^2 + 1);

? nffactor(nf, x^2 + y); \\ OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ WRONG

The library syntax is nffactor(nf , x).

3.6.94 nffactormod(nf , x, pr): factorization of the univariate polynomial x modulo the prime
ideal pr in the number field nf . x can have coefficients in the number field (scalar, polmod,
polynomial, column vector) or modulo the prime ideal (intmod modulo the rational prime under
pr , polmod or polynomial with intmod coefficients, column vector of intmod). The prime ideal
pr must be in the format output by idealprimedec. The main variable of nf must be of lower
priority than that of x (see Section 2.5.4). However if the coefficients of the number field occur
explicitly (as polmods) as coefficients of x, the variable of these polmods must be the same as the
main variable of t (see nffactor).

The library syntax is nffactormod(nf , x, pr).
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3.6.95 nfgaloisapply(nf , aut , x): nf being a number field as output by nfinit, and aut being
a Galois automorphism of nf expressed either as a polynomial or a polmod (such automorphisms
being found using for example one of the variants of nfgaloisconj), computes the action of the
automorphism aut on the object x in the number field. x can be an element (scalar, polmod,
polynomial or column vector) of the number field, an ideal (either given by ZK-generators or by
a Z-basis), a prime ideal (given as a 5-element row vector) or an idele (given as a 2-element row
vector). Because of possible confusion with elements and ideals, other vector or matrix arguments
are forbidden.

The library syntax is galoisapply(nf , aut , x).

3.6.96 nfgaloisconj(nf , {flag = 0}, {d}): nf being a number field as output by nfinit, computes
the conjugates of a root r of the non-constant polynomial x = nf [1] expressed as polynomials in
r. This can be used even if the number field nf is not Galois since some conjugates may lie in the
field.

nf can simply be a polynomial if flag 6= 1.

If no flags or flag = 0, if nf is a number field use a combination of flag 4 and 1 and the result is
always complete, else use a combination of flag 4 and 2 and the result is subject to the restriction
of flag = 2, but a warning is issued when it is not proven complete.

If flag = 1, use nfroots (require a number field).

If flag = 2, use complex approximations to the roots and an integral LLL. The result is not
guaranteed to be complete: some conjugates may be missing (no warning issued), especially so if
the corresponding polynomial has a huge index. In that case, increasing the default precision may
help.

If flag = 4, use Allombert’s algorithm and permutation testing. If the field is Galois with
“weakly” super solvable Galois group, return the complete list of automorphisms, else only the
identity element. If present, d is assumed to be a multiple of the least common denominator of the
conjugates expressed as polynomial in a root of pol .

A group G is “weakly” super solvable (WKSS) if it contains a super solvable normal subgroup
H such that G = H , or G/H ' A4 , or G/H ' S4. Abelian and nilpotent groups are WKSS. In
practice, almost all groups of small order are WKSS, the exceptions having order 36(1 exception),
48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and ≥ 108.

Hence flag = 4 permits to quickly check whether a polynomial of order strictly less than 36
is Galois or not. This method is much faster than nfroots and can be applied to polynomials of
degree larger than 50.

This routine can only compute Q-automorphisms, but it may be used to get K-automorphism
for any base field K as follows:

rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)

{ local(polabs, N, H);

R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K

polabs = rnfequation(nfK, R);

N = nfgaloisconj(polabs) % R; \\ Q-automorphisms of L

H = [];

for(i=1, #N, \\ select the ones that fix K

if (subst(R, variable(R), Mod(N[i],R)) == 0,
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H = concat(H,N[i])

)

); H

}

K = nfinit(y^2 + 7);

polL = x^4 - y*x^3 - 3*x^2 + y*x + 1;

rnfgaloisconj(K, polL) \\ K-automorphisms of L

The library syntax is galoisconj0(nf , flag , d, prec). Also available are galoisconj(nf ) for
flag = 0, galoisconj2(nf , n, prec) for flag = 2 where n is a bound on the number of conjugates,
and galoisconj4(nf , d) corresponding to flag = 4.

3.6.97 nfhilbert(nf , a, b, {pr}): if pr is omitted, compute the global Hilbert symbol (a, b) in nf ,
that is 1 if x2 − ay2 − bz2 has a non trivial solution (x, y, z) in nf , and −1 otherwise. Otherwise
compute the local symbol modulo the prime ideal pr (as output by idealprimedec).

The library syntax is nfhilbert(nf , a, b, pr), where an omitted pr is coded as NULL.

3.6.98 nfhnf(nf , x): given a pseudo-matrix (A, I), finds a pseudo-basis in Hermite normal form of
the module it generates.

The library syntax is nfhermite(nf , x).

3.6.99 nfhnfmod(nf , x, detx ): given a pseudo-matrix (A, I) and an ideal detx which is contained
in (read integral multiple of) the determinant of (A, I), finds a pseudo-basis in Hermite normal
form of the module generated by (A, I). This avoids coefficient explosion. detx can be computed
using the function nfdetint.

The library syntax is nfhermitemod(nf , x, detx ).

3.6.100 nfinit(pol , {flag = 0}): pol being a non-constant, preferably monic, irreducible polynomial
in Z[X], initializes a number field structure (nf) associated to the field K defined by pol . As such,
it’s a technical object passed as the first argument to most nfxxx functions, but it contains some
information which may be directly useful. Access to this information via member functions is
preferred since the specific data organization specified below may change in the future. Currently,
nf is a row vector with 9 components:

nf [1] contains the polynomial pol (nf .pol).

nf [2] contains [r1, r2] (nf .sign, nf .r1, nf .r2), the number of real and complex places of K.

nf [3] contains the discriminant d(K) (nf .disc) of K.

nf [4] contains the index of nf [1] (nf .index), i.e. [ZK : Z[θ]], where θ is any root of nf [1].

nf [5] is a vector containing 7 matrices M , G, T2, T , MD, TI, MDI useful for certain com-
putations in the number field K.

•M is the (r1+r2)×nmatrix whose columns represent the numerical values of the conjugates
of the elements of the integral basis.

• G is such that T2 = tGG, where T2 is the quadratic form T2(x) =
∑
|σ(x)|2, σ running

over the embeddings of K into C.

• The T2 component is deprecated and currently unused.
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• T is the n×n matrix whose coefficients are Tr(ωiωj) where the ωi are the elements of the
integral basis. Note also that det(T ) is equal to the discriminant of the field K.

• The columns of MD (nf .diff) express a Z-basis of the different of K on the integral
basis.

• TI is equal to d(K)T−1, which has integral coefficients. Note that, understood as as ideal,
the matrix T−1 generates the codifferent ideal.

• Finally, MDI is a two-element representation (for faster ideal product) of d(K) times the
codifferent ideal (nf .disc∗nf .codiff, which is an integral ideal). MDI is only used in idealinv.

nf [6] is the vector containing the r1+r2 roots (nf .roots) of nf [1] corresponding to the r1+r2
embeddings of the number field into C (the first r1 components are real, the next r2 have positive
imaginary part).

nf [7] is an integral basis for ZK (nf .zk) expressed on the powers of θ. Its first element
is guaranteed to be 1. This basis is LLL-reduced with respect to T2 (strictly speaking, it is a
permutation of such a basis, due to the condition that the first element be 1).

nf [8] is the n×n integral matrix expressing the power basis in terms of the integral basis, and
finally

nf [9] is the n× n2 matrix giving the multiplication table of the integral basis.

If a non monic polynomial is input, nfinit will transform it into a monic one, then reduce it
(see flag = 3). It is allowed, though not very useful given the existence of nfnewprec, to input a
nf or a bnf instead of a polynomial.

? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)

? nf.pol \\ defining polynomial

%2 = x^3 - 12

? nf.disc \\ field discriminant

%3 = -972

? nf.index \\ index of power basis order in maximal order

%4 = 2

? nf.zk \\ integer basis, lifted to Q[X]

%5 = [1, x, 1/2*x^2]

? nf.sign \\ signature

%6 = [1, 1]

? factor(abs(nf.disc )) \\ determines ramified primes

%7 =

[2 2]

[3 5]

? idealfactor(nf, 2)

%8 =

[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ P3
2

In case pol has a huge discriminant which is difficult to factor, the special input format [pol , B]
is also accepted where pol is a polynomial as above and B is the integer basis, as would be computed
by nfbasis. This is useful if the integer basis is known in advance, or was computed conditionnally.

? pol = polcompositum(x^5 - 101, polcyclo(7))[1];

? B = nfbasis(pol, 1); \\ faster than nfbasis(pol), but conditional
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? nf = nfinit( [pol, B] );

? factor( abs(nf.disc) )

[5 18]

[7 25]

[101 24]

B is conditional when its discriminant, which is nf.disc, can’t be factored. In this example,
the above factorization proves the correctness of the computation.

If flag = 2: pol is changed into another polynomial P defining the same number field, which is
as simple as can easily be found using the polred algorithm, and all the subsequent computations
are done using this new polynomial. In particular, the first component of the result is the modified
polynomial.

If flag = 3, does a polred as in case 2, but outputs [nf , Mod(a, P )], where nf is as before and
Mod(a, P ) = Mod(x, pol) gives the change of variables. This is implicit when pol is not monic: first
a linear change of variables is performed, to get a monic polynomial, then a polred reduction.

If flag = 4, as 2 but uses a partial polred.

If flag = 5, as 3 using a partial polred.

The library syntax is nfinit0(x, flag , prec).

3.6.101 nfisideal(nf , x): returns 1 if x is an ideal in the number field nf , 0 otherwise.

The library syntax is isideal(x).

3.6.102 nfisincl(x, y): tests whether the number field K defined by the polynomial x is conjugate
to a subfield of the field L defined by y (where x and y must be in Q[X]). If they are not, the
output is the number 0. If they are, the output is a vector of polynomials, each polynomial a
representing an embedding of K into L, i.e. being such that y | x ◦ a.

If y is a number field (nf ), a much faster algorithm is used (factoring x over y using nffactor).
Before version 2.0.14, this wasn’t guaranteed to return all the embeddings, hence was triggered by
a special flag. This is no more the case.

The library syntax is nfisincl(x, y, flag).

3.6.103 nfisisom(x, y): as nfisincl, but tests for isomorphism. If either x or y is a number field,
a much faster algorithm will be used.

The library syntax is nfisisom(x, y, flag).

3.6.104 nfnewprec(nf ): transforms the number field nf into the corresponding data using current
(usually larger) precision. This function works as expected if nf is in fact a bnf (update bnf to
current precision) but may be quite slow (many generators of principal ideals have to be computed).

The library syntax is nfnewprec(nf , prec).

3.6.105 nfkermodpr(nf , a, pr): kernel of the matrix a in ZK/pr , where pr is in modpr format
(see nfmodprinit).

The library syntax is nfkermodpr(nf , a, pr).
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3.6.106 nfmodprinit(nf , pr): transforms the prime ideal pr into modpr format necessary for all
operations modulo pr in the number field nf .

The library syntax is nfmodprinit(nf , pr).

3.6.107 nfsubfields(pol , {d = 0}): finds all subfields of degree d of the number field defined by
the (monic, integral) polynomial pol (all subfields if d is null or omitted). The result is a vector
of subfields, each being given by [g, h], where g is an absolute equation and h expresses one of
the roots of g in terms of the root x of the polynomial defining nf . This routine uses J. Klüners’s
algorithm in the general case, and B. Allombert’s galoissubfields when nf is Galois (with weakly
supersolvable Galois group).

The library syntax is subfields(nf , d).

3.6.108 nfroots({nf }, x): roots of the polynomial x in the number field nf given by nfinit

without multiplicity (in Q if nf is omitted). x has coefficients in the number field (scalar, polmod,
polynomial, column vector). The main variable of nf must be of lower priority than that of x
(see Section 2.5.4). However if the coefficients of the number field occur explicitly (as polmods)
as coefficients of x, the variable of these polmods must be the same as the main variable of t (see
nffactor).

The library syntax is nfroots(nf , x).

3.6.109 nfrootsof1(nf ): computes the number of roots of unity w and a primitive w-th root of
unity (expressed on the integral basis) belonging to the number field nf . The result is a two-
component vector [w, z] where z is a column vector expressing a primitive w-th root of unity on
the integral basis nf .zk.

The library syntax is rootsof1(nf ).

3.6.110 nfsnf(nf , x): given a torsion module x as a 3-component row vector [A, I, J ] where A is
a square invertible n× n matrix, I and J are two ideal lists, outputs an ideal list d1, . . . , dn which
is the Smith normal form of x. In other words, x is isomorphic to ZK/d1 ⊕ · · · ⊕ ZK/dn and di
divides di−1 for i ≥ 2. The link between x and [A, I, J ] is as follows: if ei is the canonical basis of
Kn, I = [b1, . . . , bn] and J = [a1, . . . , an], then x is isomorphic to

(b1e1 ⊕ · · · ⊕ bnen)/(a1A1 ⊕ · · · ⊕ anAn) ,

where the Aj are the columns of the matrix A. Note that every finitely generated torsion module
can be given in this way, and even with bi = ZK for all i.

The library syntax is nfsmith(nf , x).

3.6.111 nfsolvemodpr(nf , a, b, pr): solution of a · x = b in ZK/pr , where a is a matrix and b a
column vector, and where pr is in modpr format (see nfmodprinit).

The library syntax is nfsolvemodpr(nf , a, b, pr).
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3.6.112 polcompositum(P,Q, {flag = 0}): P and Q being squarefree polynomials in Z[X] in the
same variable, outputs the simple factors of the étale Q-algebra A = Q(X,Y )/(P (X), Q(Y )). The
factors are given by a list of polynomials R in Z[X], associated to the number field Q(X)/(R), and
sorted by increasing degree (with respect to lexicographic ordering for factors of equal degrees).
Returns an error if one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where P and Q are irreducible first. The
routine will not perform this for you, since it may be expensive, and the inputs are irreducible in
most applications anyway. Assuming P is irreducible (of smaller degree than Q for efficiency), it is
in general much faster to proceed as follows

nf = nfinit(P); L = nffactor(nf, Q)[,1];

vector(#L, i, rnfequation(nf, L[i]))

to obtain the same result. If you are only interested in the degrees of the simple factors, the
rnfequation instruction can be replaced by a trivial poldegree(P) * poldegree(L[i]).

If flag = 1, outputs a vector of 4-component vectors [R, a, b, k], where R ranges through the
list of all possible compositums as above, and a (resp. b) expresses the root of P (resp. Q) as an
element of Q(X)/(R). Finally, k is a small integer such that b+ ka = X modulo R.

A compositum is quite often defined by a complicated polynomial, which it is advisable to
reduce before further work. Here is a simple example involving the field Q(ζ5, 5

1/5):

? z = polcompositum(x^5 - 5, polcyclo(5), 1)[1];

? pol = z[1] \\ pol defines the compositum
%2 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14 \

+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \

+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \

- 320*x + 256

? a = z[2]; a^5 - 5 \\ a is a fifth root of 5
%3 = 0

? z = polredabs(pol, 1); \\ look for a simpler polynomial
? pol = z[1]

%5 = x^20 + 25*x^10 + 5

? a = subst(a.pol, x, z[2]) \\ a in the new coordinates
%6 = Mod(-5/22*x^19 + 1/22*x^14 - 123/22*x^9 + 9/11*x^4, x^20 + 25*x^10 + 5)

The library syntax is polcompositum0(P,Q, flag).

3.6.113 polgalois(x): Galois group of the non-constant polynomial x ∈ Q[X]. In the present
version 2.3.5, x must be irreducible and the degree of x must be less than or equal to 7. On
certain versions for which the data file of Galois resolvents has been installed (available in the Unix
distribution as a separate package), degrees 8, 9, 10 and 11 are also implemented.

The output is a 4-component vector [n, s, k, name] with the following meaning: n is the cardi-
nality of the group, s is its signature (s = 1 if the group is a subgroup of the alternating group An,
s = −1 otherwise) and name is a character string containing name of the transitive group according
to the GAP 4 transitive groups library by Alexander Hulpke.

k is more arbitrary and the choice made up to version 2.2.3 of PARI is rather unfortunate:
for n > 7, k is the numbering of the group among all transitive subgroups of Sn, as given in “The
transitive groups of degree up to eleven”, G. Butler and J. McKay, Communications in Algebra,
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vol. 11, 1983, pp. 863–911 (group k is denoted Tk there). And for n ≤ 7, it was ad hoc, so as to
ensure that a given triple would design a unique group. Specifically, for polynomials of degree ≤ 7,
the groups are coded as follows, using standard notations

In degree 1: S1 = [1, 1, 1].

In degree 2: S2 = [2,−1, 1].

In degree 3: A3 = C3 = [3, 1, 1], S3 = [6,−1, 1].

In degree 4: C4 = [4,−1, 1], V4 = [4, 1, 1], D4 = [8,−1, 1], A4 = [12, 1, 1], S4 = [24,−1, 1].

In degree 5: C5 = [5, 1, 1], D5 = [10, 1, 1], M20 = [20,−1, 1], A5 = [60, 1, 1], S5 = [120,−1, 1].

In degree 6: C6 = [6,−1, 1], S3 = [6,−1, 2], D6 = [12,−1, 1], A4 = [12, 1, 1], G18 = [18,−1, 1],
S−4 = [24,−1, 1], A4 × C2 = [24,−1, 2], S+

4 = [24, 1, 1], G−36 = [36,−1, 1], G+
36 = [36, 1, 1], S4 ×

C2 = [48,−1, 1], A5 = PSL2(5) = [60, 1, 1], G72 = [72,−1, 1], S5 = PGL2(5) = [120,−1, 1],
A6 = [360, 1, 1], S6 = [720,−1, 1].

In degree 7: C7 = [7, 1, 1], D7 = [14,−1, 1], M21 = [21, 1, 1], M42 = [42,−1, 1], PSL2(7) =
PSL3(2) = [168, 1, 1], A7 = [2520, 1, 1], S7 = [5040,−1, 1].

This is deprecated and obsolete, but for reasons of backward compatibility, we cannot change
this behaviour yet. So you can use the default new_galois_format to switch to a consistent naming
scheme, namely k is always the standard numbering of the group among all transitive subgroups
of Sn. If this default is in effect, the above groups will be coded as:

In degree 1: S1 = [1, 1, 1].

In degree 2: S2 = [2,−1, 1].

In degree 3: A3 = C3 = [3, 1, 1], S3 = [6,−1, 2].

In degree 4: C4 = [4,−1, 1], V4 = [4, 1, 2], D4 = [8,−1, 3], A4 = [12, 1, 4], S4 = [24,−1, 5].

In degree 5: C5 = [5, 1, 1], D5 = [10, 1, 2], M20 = [20,−1, 3], A5 = [60, 1, 4], S5 = [120,−1, 5].

In degree 6: C6 = [6,−1, 1], S3 = [6,−1, 2], D6 = [12,−1, 3], A4 = [12, 1, 4], G18 = [18,−1, 5],
A4 × C2 = [24,−1, 6], S+

4 = [24, 1, 7], S−4 = [24,−1, 8], G−36 = [36,−1, 9], G+
36 = [36, 1, 10], S4 ×

C2 = [48,−1, 11], A5 = PSL2(5) = [60, 1, 12], G72 = [72,−1, 13], S5 = PGL2(5) = [120,−1, 14],
A6 = [360, 1, 15], S6 = [720,−1, 16].

In degree 7: C7 = [7, 1, 1], D7 = [14,−1, 2], M21 = [21, 1, 3], M42 = [42,−1, 4], PSL2(7) =
PSL3(2) = [168, 1, 5], A7 = [2520, 1, 6], S7 = [5040,−1, 7].
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Warning: The method used is that of resolvent polynomials and is sensitive to the current preci-
sion. The precision is updated internally but, in very rare cases, a wrong result may be returned if
the initial precision was not sufficient.

The library syntax is polgalois(x, prec). To enable the new format in library mode, set the
global variable new_galois_format to 1.

3.6.114 polred(x, {flag = 0}, {fa}): finds polynomials with reasonably small coefficients defining
subfields of the number field defined by x. One of the polynomials always defines Q (hence is equal
to x− 1), and another always defines the same number field as x if x is irreducible. All x accepted
by nfinit are also allowed here (e.g. non-monic polynomials, nf, bnf, [x,Z K basis]).

The following binary digits of flag are significant:

1: possibly use a suborder of the maximal order. The primes dividing the index of the order
chosen are larger than primelimit or divide integers stored in the addprimes table.

2: gives also elements. The result is a two-column matrix, the first column giving the elements
defining these subfields, the second giving the corresponding minimal polynomials.

If fa is given, it is assumed that it is the two-column matrix of the factorization of the
discriminant of the polynomial x.

The library syntax is polred0(x, flag , fa), where an omitted fa is coded by NULL. Also available
are polred(x) and factoredpolred(x, fa), both corresponding to flag = 0.

3.6.115 polredabs(x, {flag = 0}): finds one of the polynomial defining the same number field as
the one defined by x, and such that the sum of the squares of the modulus of the roots (i.e. the
T2-norm) is minimal. All x accepted by nfinit are also allowed here (e.g. non-monic polynomials,
nf, bnf, [x,Z K basis]).

Warning: this routine uses an exponential-time algorithm to enumerate all potential generators,
and may be exceedingly slow when the number field has many subfields, hence a lot of elements of
small T2-norm. E.g. do not try it on the compositum of many quadratic fields, use polred instead.

The binary digits of flag mean

1: outputs a two-component row vector [P, a], where P is the default output and a is an
element expressed on a root of the polynomial P , whose minimal polynomial is equal to x.

4: gives all polynomials of minimal T2 norm (of the two polynomials P (x) and P (−x), only
one is given).

16: possibly use a suborder of the maximal order. The primes dividing the index of the order
chosen are larger than primelimit or divide integers stored in the addprimes table. In that case
it may happen that the output polynomial does not have minimal T2 norm.

The library syntax is polredabs0(x, flag).

3.6.116 polredord(x): finds polynomials with reasonably small coefficients and of the same degree
as that of x defining suborders of the order defined by x. One of the polynomials always defines Q
(hence is equal to (x − 1)n, where n is the degree), and another always defines the same order as
x if x is irreducible.

The library syntax is ordred(x).
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3.6.117 poltschirnhaus(x): applies a random Tschirnhausen transformation to the polynomial
x, which is assumed to be non-constant and separable, so as to obtain a new equation for the étale
algebra defined by x. This is for instance useful when computing resolvents, hence is used by the
polgalois function.

The library syntax is tschirnhaus(x).

3.6.118 rnfalgtobasis(rnf , x): expresses x on the relative integral basis. Here, rnf is a relative
number field extension L/K as output by rnfinit, and x an element of L in absolute form, i.e.
expressed as a polynomial or polmod with polmod coefficients, not on the relative integral basis.

The library syntax is rnfalgtobasis(rnf , x).

3.6.119 rnfbasis(bnf ,M): let K the field represented by bnf , as output by bnfinit. M is a
projective ZK-module given by a pseudo-basis, as output by rnfhnfbasis. The routine returns
either a true ZK-basis of M if it exists, or an n+ 1-element generating set of M if not, where n is
the rank of M over K . (Note that n is the size of the pseudo-basis.)

It is allowed to use a polynomial P with coefficients in K instead of M , in which case, M
is defined as the ring of integers of K[X]/(P ) (P is assumed irreducible over K), viewed as a
ZK-module.

The library syntax is rnfbasis(bnf , x).

3.6.120 rnfbasistoalg(rnf , x): computes the representation of x as a polmod with polmods coeffi-
cients. Here, rnf is a relative number field extension L/K as output by rnfinit, and x an element
of L expressed on the relative integral basis.

The library syntax is rnfbasistoalg(rnf , x).

3.6.121 rnfcharpoly(nf , T, a, {v = x}): characteristic polynomial of a over nf , where a belongs
to the algebra defined by T over nf , i.e. nf [X]/(T ). Returns a polynomial in variable v (x by
default).

The library syntax is rnfcharpoly(nf , T, a, v), where v is a variable number.

3.6.122 rnfconductor(bnf , pol , {flag = 0}): given bnf as output by bnfinit, and pol a relative
polynomial defining an Abelian extension, computes the class field theory conductor of this Abelian
extension. The result is a 3-component vector [conductor , rayclgp, subgroup], where conductor is
the conductor of the extension given as a 2-component row vector [f0, f∞], rayclgp is the full ray
class group corresponding to the conductor given as a 3-component vector [h,cyc,gen] as usual for
a group, and subgroup is a matrix in HNF defining the subgroup of the ray class group on the given
generators gen. If flag is non-zero, check that pol indeed defines an Abelian extension, return 0 if
it does not.

The library syntax is rnfconductor(rnf , pol , flag).
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3.6.123 rnfdedekind(nf , pol , pr): given a number field nf as output by nfinit and a polynomial
pol with coefficients in nf defining a relative extension L of nf , evaluates the relative Dedekind
criterion over the order defined by a root of pol for the prime ideal pr and outputs a 3-component
vector as the result. The first component is a flag equal to 1 if the enlarged order could be proven
to be pr -maximal and to 0 otherwise (it may be maximal in the latter case if pr is ramified in
L), the second component is a pseudo-basis of the enlarged order and the third component is the
valuation at pr of the order discriminant.

The library syntax is rnfdedekind(nf , pol , pr).

3.6.124 rnfdet(nf ,M): given a pseudo-matrix M over the maximal order of nf , computes its
determinant.

The library syntax is rnfdet(nf ,M).

3.6.125 rnfdisc(nf , pol): given a number field nf as output by nfinit and a polynomial pol with
coefficients in nf defining a relative extension L of nf , computes the relative discriminant of L.
This is a two-element row vector [D, d], where D is the relative ideal discriminant and d is the

relative discriminant considered as an element of nf ∗/nf ∗
2
. The main variable of nf must be of

lower priority than that of pol , see Section 2.5.4.

The library syntax is rnfdiscf(bnf , pol).

3.6.126 rnfeltabstorel(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an element of L expressed as a polynomial modulo the absolute equation
rnf .pol, computes x as an element of the relative extension L/K as a polmod with polmod
coefficients.

The library syntax is rnfelementabstorel(rnf , x).

3.6.127 rnfeltdown(rnf , x): rnf being a relative number field extension L/K as output by rn-

finit and x being an element of L expressed as a polynomial or polmod with polmod coefficients,
computes x as an element of K as a polmod, assuming x is in K (otherwise an error will occur).
If x is given on the relative integral basis, apply rnfbasistoalg first, otherwise PARI will believe
you are dealing with a vector.

The library syntax is rnfelementdown(rnf , x).

3.6.128 rnfeltreltoabs(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an element of L expressed as a polynomial or polmod with polmod coefficients,
computes x as an element of the absolute extension L/Q as a polynomial modulo the absolute
equation rnf .pol. If x is given on the relative integral basis, apply rnfbasistoalg first, otherwise
PARI will believe you are dealing with a vector.

The library syntax is rnfelementreltoabs(rnf , x).

3.6.129 rnfeltup(rnf , x): rnf being a relative number field extension L/K as output by rnfinit

and x being an element of K expressed as a polynomial or polmod, computes x as an element of
the absolute extension L/Q as a polynomial modulo the absolute equation rnf .pol. If x is given
on the integral basis of K, apply nfbasistoalg first, otherwise PARI will believe you are dealing
with a vector.

The library syntax is rnfelementup(rnf , x).
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3.6.130 rnfequation(nf , pol , {flag = 0}): given a number field nf as output by nfinit (or simply
a polynomial) and a polynomial pol with coefficients in nf defining a relative extension L of nf ,
computes the absolute equation of L over Q.

If flag is non-zero, outputs a 3-component row vector [z, a, k], where z is the absolute equation
of L over Q, as in the default behaviour, a expresses as an element of L a root α of the polynomial
defining the base field nf , and k is a small integer such that θ = β + kα where θ is a root of z and
β a root of pol .

The main variable of nf must be of lower priority than that of pol (see Section 2.5.4). Note
that for efficiency, this does not check whether the relative equation is irreducible over nf , but only
if it is squarefree. If it is reducible but squarefree, the result will be the absolute equation of the
étale algebra defined by pol . If pol is not squarefree, an error message will be issued.

The library syntax is rnfequation0(nf , pol , flag).

3.6.131 rnfhnfbasis(bnf , x): given bnf as output by bnfinit, and either a polynomial x with
coefficients in bnf defining a relative extension L of bnf , or a pseudo-basis x of such an extension,
gives either a true bnf -basis of L in upper triangular Hermite normal form, if it exists, and returns
0 otherwise.

The library syntax is rnfhnfbasis(nf , x).

3.6.132 rnfidealabstorel(rnf , x): let rnf be a relative number field extension L/K as output
by rnfinit, and x an ideal of the absolute extension L/Q given by a Z-basis of elements of L.
Returns the relative pseudo-matrix in HNF giving the ideal x considered as an ideal of the relative
extension L/K.

If x is an ideal in HNF form, associated to an nf structure, for instance as output by
idealhnf(nf , . . .), use rnfidealabstorel(rnf, nf.zk * x) to convert it to a relative ideal.

The library syntax is rnfidealabstorel(rnf , x).

3.6.133 rnfidealdown(rnf , x): let rnf be a relative number field extension L/K as output by
rnfinit, and x an ideal of L, given either in relative form or by a Z-basis of elements of L (see
Section 3.6.132), returns the ideal of K below x, i.e. the intersection of x with K.

The library syntax is rnfidealdown(rnf , x).

3.6.134 rnfidealhnf(rnf , x): rnf being a relative number field extension L/K as output by rn-

finit and x being a relative ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF pseudo-matrix associated to x, viewed as a ZK-
module.

The library syntax is rnfidealhermite(rnf , x).

3.6.135 rnfidealmul(rnf , x, y): rnf being a relative number field extension L/K as output by
rnfinit and x and y being ideals of the relative extension L/K given by pseudo-matrices, outputs
the ideal product, again as a relative ideal.

The library syntax is rnfidealmul(rnf , x, y).
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3.6.136 rnfidealnormabs(rnf , x): rnf being a relative number field extension L/K as output
by rnfinit and x being a relative ideal (which can be, as in the absolute case, of many different
types, including of course elements), computes the norm of the ideal x considered as an ideal of the
absolute extension L/Q. This is identical to idealnorm(rnfidealnormrel(rnf ,x)), but faster.

The library syntax is rnfidealnormabs(rnf , x).

3.6.137 rnfidealnormrel(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being a relative ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the relative norm of x as a ideal of K in HNF.

The library syntax is rnfidealnormrel(rnf , x).

3.6.138 rnfidealreltoabs(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being a relative ideal, gives the ideal xZL as an absolute ideal of L/Q, in the form
of a Z-basis, given by a vector of polynomials (modulo rnf.pol). The following routine might be
useful:

\\ return y = rnfidealreltoabs(rnf,...) as an ideal in HNF form

\\ associated to nf = nfinit( rnf.pol );

idealgentoHNF(nf, y) = mathnf( Mat( nfalgtobasis(nf, y) ) );

The library syntax is rnfidealreltoabs(rnf , x).

3.6.139 rnfidealtwoelt(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an ideal of the relative extension L/K given by a pseudo-matrix, gives a
vector of two generators of x over ZL expressed as polmods with polmod coefficients.

The library syntax is rnfidealtwoelement(rnf , x).

3.6.140 rnfidealup(rnf , x): rnf being a relative number field extension L/K as output by rnfinit

and x being an ideal of K, gives the ideal xZL as an absolute ideal of L/Q, in the form of a Z-basis,
given by a vector of polynomials (modulo rnf.pol). The following routine might be useful:

\\ return y = rnfidealup(rnf,...) as an ideal in HNF form

\\ associated to nf = nfinit( rnf.pol );

idealgentoHNF(nf, y) = mathnf( Mat( nfalgtobasis(nf, y) ) );

The library syntax is rnfidealup(rnf , x).

3.6.141 rnfinit(nf , pol): nf being a number field in nfinit format considered as base field, and
pol a polynomial defining a relative extension over nf , this computes all the necessary data to work
in the relative extension. The main variable of pol must be of higher priority (see Section 2.5.4)
than that of nf , and the coefficients of pol must be in nf .

The result is a row vector, whose components are technical. In the following description, we
let K be the base field defined by nf , m the degree of the base field, n the relative degree, L the
large field (of relative degree n or absolute degree nm), r1 and r2 the number of real and complex
places of K.

rnf [1] contains the relative polynomial pol .

rnf [2] is currently unused.
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rnf [3] is a two-component row vector [d(L/K), s] where d(L/K) is the relative ideal discrimi-
nant of L/K and s is the discriminant of L/K viewed as an element of K∗/(K∗)2, in other words
it is the output of rnfdisc.

rnf [4] is the ideal index f, i.e. such that d(pol)ZK = f2d(L/K).

rnf [5] is currently unused.

rnf [6] is currently unused.

rnf [7] is a two-component row vector, where the first component is the relative integral pseudo
basis expressed as polynomials (in the variable of pol) with polmod coefficients in nf , and the
second component is the ideal list of the pseudobasis in HNF.

rnf [8] is the inverse matrix of the integral basis matrix, with coefficients polmods in nf .

rnf [9] is currently unused.

rnf [10] is nf .

rnf [11] is the output of rnfequation(nf, pol, 1). Namely, a vector vabs with 3 entries
describing the absolute extension L/Q. vabs[1] is an absolute equation, more conveniently obtained
as rnf.pol. vabs[2] expresses the generator α of the number field nf as a polynomial modulo the
absolute equation vabs[1]. vabs[3] is a small integer k such that, if β is an abstract root of pol and
α the generator of nf , the generator whose root is vabs will be β + kα. Note that one must be
very careful if k 6= 0 when dealing simultaneously with absolute and relative quantities since the
generator chosen for the absolute extension is not the same as for the relative one. If this happens,
one can of course go on working, but we strongly advise to change the relative polynomial so that
its root will be β + kα. Typically, the GP instruction would be

pol = subst(pol, x, x - k*Mod(y,nf .pol))

rnf [12] is by default unused and set equal to 0. This field is used to store further information
about the field as it becomes available (which is rarely needed, hence would be too expensive to
compute during the initial rnfinit call).

The library syntax is rnfinitalg(nf , pol , prec).

3.6.142 rnfisfree(bnf , x): given bnf as output by bnfinit, and either a polynomial x with co-
efficients in bnf defining a relative extension L of bnf , or a pseudo-basis x of such an extension,
returns true (1) if L/bnf is free, false (0) if not.

The library syntax is rnfisfree(bnf , x), and the result is a long.

3.6.143 rnfisnorm(T, a, {flag = 0}): similar to bnfisnorm but in the relative case. T is as output
by rnfisnorminit applied to the extension L/K. This tries to decide whether the element a in K
is the norm of some x in the extension L/K.

The output is a vector [x, q], where a = Norm(x) ∗ q. The algorithm looks for a solution x
which is an S-integer, with S a list of places of K containing at least the ramified primes, the
generators of the class group of L, as well as those primes dividing a. If L/K is Galois, then this is
enough; otherwise, flag is used to add more primes to S: all the places above the primes p ≤ flag
(resp. p|flag) if flag > 0 (resp. flag < 0).

The answer is guaranteed (i.e. a is a norm iff q = 1) if the field is Galois, or, under GRH, if S
contains all primes less than 12 log2 |disc(M)|, where M is the normal closure of L/K.
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If rnfisnorminit has determined (or was told) that L/K is Galois, and flag 6= 0, a Warning
is issued (so that you can set flag = 1 to check whether L/K is known to be Galois, according to
T ). Example:

bnf = bnfinit(y^3 + y^2 - 2*y - 1);

p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);

T = rnfisnorminit(bnf, p);

rnfisnorm(T, 17)

checks whether 17 is a norm in the Galois extension Q(β)/Q(α), where α3 + α2 − 2α− 1 = 0 and
β2 + α2 + 2α+ 1 = 0 (it is).

The library syntax is rnfisnorm(T , x, flag).

3.6.144 rnfisnorminit(pol , polrel , {flag = 2}): let K be defined by a root of pol , and L/K the
extension defined by the polynomial polrel . As usual, pol can in fact be an nf , or bnf , etc; if pol
has degree 1 (the base field is Q), polrel is also allowed to be an nf , etc. Computes technical data
needed by rnfisnorm to solve norm equations Nx = a, for x in L, and a in K.

If flag = 0, do not care whether L/K is Galois or not.

If flag = 1, L/K is assumed to be Galois (unchecked), which speeds up rnfisnorm.

If flag = 2, let the routine determine whether L/K is Galois.

The library syntax is rnfisnorminit(pol , polrel , flag).

3.6.145 rnfkummer(bnr , {subgroup}, {deg = 0}): bnr being as output by bnrinit, finds a relative
equation for the class field corresponding to the module in bnr and the given congruence subgroup
(the full ray class field if subgroup is omitted). If deg is positive, outputs the list of all relative
equations of degree deg contained in the ray class field defined by bnr , with the same conductor as
(bnr , subgroup).

Warning: this routine only works for subgroups of prime index. It uses Kummer theory, adjoining
necessary roots of unity (it needs to compute a tough bnfinit here), and finds a generator via
Hecke’s characterization of ramification in Kummer extensions of prime degree. If your extension
does not have prime degree, for the time being, you have to split it by hand as a tower / compositum
of such extensions.

The library syntax is rnfkummer(bnr , subgroup, deg , prec), where deg is a long and an omit-
ted subgroup is coded as NULL

3.6.146 rnflllgram(nf , pol , order): given a polynomial pol with coefficients in nf defining a relative
extension L and a suborder order of L (of maximal rank), as output by rnfpseudobasis(nf , pol)
or similar, gives [[neworder ], U ], where neworder is a reduced order and U is the unimodular
transformation matrix.

The library syntax is rnflllgram(nf , pol , order , prec).
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3.6.147 rnfnormgroup(bnr , pol): bnr being a big ray class field as output by bnrinit and pol a
relative polynomial defining an Abelian extension, computes the norm group (alias Artin or Takagi
group) corresponding to the Abelian extension of bnf = bnr[1] defined by pol , where the module
corresponding to bnr is assumed to be a multiple of the conductor (i.e. pol defines a subextension
of bnr). The result is the HNF defining the norm group on the given generators of bnr [5][3]. Note
that neither the fact that pol defines an Abelian extension nor the fact that the module is a multiple
of the conductor is checked. The result is undefined if the assumption is not correct.

The library syntax is rnfnormgroup(bnr , pol).

3.6.148 rnfpolred(nf , pol): relative version of polred. Given a monic polynomial pol with co-
efficients in nf , finds a list of relative polynomials defining some subfields, hopefully simpler and
containing the original field. In the present version 2.3.5, this is slower and less efficient than
rnfpolredabs.

The library syntax is rnfpolred(nf , pol , prec).

3.6.149 rnfpolredabs(nf , pol , {flag = 0}): relative version of polredabs. Given a monic polyno-
mial pol with coefficients in nf , finds a simpler relative polynomial defining the same field. The
binary digits of flag mean

1: returns [P, a] where P is the default output and a is an element expressed on a root of P
whose characteristic polynomial is pol

2: returns an absolute polynomial (same as rnfequation(nf ,rnfpolredabs(nf ,pol)) but
faster).

16: possibly use a suborder of the maximal order. This is slower than the default when the
relative discriminant is smooth, and much faster otherwise. See Section 3.6.115.

Remark. In the present implementation, this is both faster and much more efficient than rnf-

polred, the difference being more dramatic than in the absolute case. This is because the imple-
mentation of rnfpolred is based on (a partial implementation of) an incomplete reduction theory
of lattices over number fields, the function rnflllgram, which deserves to be improved.

The library syntax is rnfpolredabs(nf , pol , flag , prec).

3.6.150 rnfpseudobasis(nf , pol): given a number field nf as output by nfinit and a polynomial
pol with coefficients in nf defining a relative extension L of nf , computes a pseudo-basis (A, I) for
the maximal order ZL viewed as a ZK-module, and the relative discriminant of L. This is output
as a four-element row vector [A, I,D, d], where D is the relative ideal discriminant and d is the

relative discriminant considered as an element of nf ∗/nf ∗
2
.

The library syntax is rnfpseudobasis(nf , pol).

3.6.151 rnfsteinitz(nf , x): given a number field nf as output by nfinit and either a polynomial x
with coefficients in nf defining a relative extension L of nf , or a pseudo-basis x of such an extension
as output for example by rnfpseudobasis, computes another pseudo-basis (A, I) (not in HNF in
general) such that all the ideals of I except perhaps the last one are equal to the ring of integers
of nf , and outputs the four-component row vector [A, I,D, d] as in rnfpseudobasis. The name of
this function comes from the fact that the ideal class of the last ideal of I, which is well defined, is
the Steinitz class of the ZK-module ZL (its image in SK0(ZK)).

The library syntax is rnfsteinitz(nf , x).
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3.6.152 subgrouplist(bnr , {bound}, {flag = 0}): bnr being as output by bnrinit or a list of
cyclic components of a finite Abelian group G, outputs the list of subgroups of G. Subgroups are
given as HNF left divisors of the SNF matrix corresponding to G.

Warning: the present implementation cannot treat a group G where any cyclic factor has more
than 231, resp. 263 elements on a 32-bit, resp. 64-bit architecture. forsubgroup is a bit more
general and can handle G if all p-Sylow subgroups of G satisfy the condition above.

If flag = 0 (default) and bnr is as output by bnrinit, gives only the subgroups whose modulus
is the conductor. Otherwise, the modulus is not taken into account.

If bound is present, and is a positive integer, restrict the output to subgroups of index less than
bound . If bound is a vector containing a single positive integer B, then only subgroups of index
exactly equal to B are computed. For instance

? subgrouplist([6,2])

%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],

[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]

? subgrouplist([6,2],3) \\ index less than 3

%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]

? subgrouplist([6,2],[3]) \\ index 3

%3 = [[3, 0; 0, 1]]

? bnr = bnrinit(bnfinit(x), [120,[1]], 1);

? L = subgrouplist(bnr, [8]);

In the last example, L corresponds to the 24 subfields of Q(ζ120), of degree 8 and conductor 120∞
(by setting flag , we see there are a total of 43 subgroups of degree 8).

? vector(#L, i, galoissubcyclo(bnr, L[i]))

will produce their equations. (For a general base field, you would have to rely on bnrstark, or
rnfkummer.)

The library syntax is subgrouplist0(bnr , bound , flag), where flag is a long integer, and an
omitted bound is coded by NULL.

3.6.153 zetak(znf , x, {flag = 0}): znf being a number field initialized by zetakinit (not by
nfinit), computes the value of the Dedekind zeta function of the number field at the complex
number x. If flag = 1 computes Dedekind Λ function instead (i.e. the product of the Dedekind zeta
function by its gamma and exponential factors).

161



CAVEAT. This implementation is not satisfactory and must be rewritten. In particular

• The accuracy of the result depends in an essential way on the accuracy of both the zetakinit
program and the current accuracy. Be wary in particular that x of large imaginary part or, on the
contrary, very close to an ordinary integer will suffer from precision loss, yielding fewer significant
digits than expected. Computing with 28 eight digits of relative accuracy, we have

? zeta(3)

%1 = 1.202056903159594285399738161

? zeta(3-1e-20)

%2 = 1.202056903159594285401719424

? zetak(zetakinit(x), 3-1e-20)

%3 = 1.2020569031595952919 \\ 5 digits are wrong

? zetak(zetakinit(x), 3-1e-28)

%4 = -25.33411749 \\ junk

• As the precision increases, results become unexpectedly completely wrong:

? \p100

? zetak(zetakinit(x^2-5), -1) - 1/30

%1 = 7.26691813 E-108 \\ perfect

? \p150

? zetak(zetakinit(x^2-5), -1) - 1/30

%2 = -2.486113578 E-156 \\ perfect

? \p200

? zetak(zetakinit(x^2-5), -1) - 1/30

%3 = 4.47... E-75 \\ more than half of the digits are wrong

? \p250

? zetak(zetakinit(x^2-5), -1) - 1/30

%4 = 1.6 E43 \\ junk

The library syntax is glambdak(znf , x, prec) or gzetak(znf , x, prec).

3.6.154 zetakinit(x): computes a number of initialization data concerning the number field de-
fined by the polynomial x so as to be able to compute the Dedekind zeta and lambda functions
(respectively zetak(x) and zetak(x, 1)). This function calls in particular the bnfinit program.
The result is a 9-component vector v whose components are very technical and cannot really be
used by the user except through the zetak function. The only component which can be used if it
has not been computed already is v[1][4] which is the result of the bnfinit call.

This function is very inefficient and should be rewritten. It needs to computes millions of coef-
ficients of the corresponding Dirichlet series if the precision is big. Unless the discriminant is small
it will not be able to handle more than 9 digits of relative precision. For instance, zetakinit(x^8
- 2) needs 440MB of memory at default precision.

The library syntax is initzeta(x).

162



3.7 Polynomials and power series.

We group here all functions which are specific to polynomials or power series. Many other
functions which can be applied on these objects are described in the other sections. Also, some of
the functions described here can be applied to other types.

3.7.1 O(p^e): if p is an integer greater than 2, returns a p-adic 0 of precision e. In all other cases,
returns a power series zero with precision given by ev, where v is the X-adic valuation of p with
respect to its main variable.

The library syntax is zeropadic(p, e) for a p-adic and zeroser(v, e) for a power series zero in
variable v, which is a long. The precision e is a long.

3.7.2 deriv(x, {v}): derivative of x with respect to the main variable if v is omitted, and with
respect to v otherwise. The derivative of a scalar type is zero, and the derivative of a vector or
matrix is done componentwise. One can use x′ as a shortcut if the derivative is with respect to the
main variable of x.

By definition, the main variable of a t_POLMOD is the main variable among the coefficients from
its two polynomial components (representative and modulus); in other words, assuming a polmod
represents an element of R[X]/(T (X)), the variable X is a mute variable and the derivative is taken
with respect to the main variable used in the base ring R.

The library syntax is deriv(x, v), where v is a long, and an omitted v is coded as −1. When
x is a t_POL, derivpol(x) is a shortcut for deriv(x,−1).

3.7.3 eval(x): replaces in x the formal variables by the values that have been assigned to them
after the creation of x. This is mainly useful in GP, and not in library mode. Do not confuse this
with substitution (see subst).

If x is a character string, eval(x) executes x as a GP command, as if directly input from the
keyboard, and returns its output. For convenience, x is evaluated as if strictmatch was off. In
particular, unused characters at the end of x do not prevent its evaluation:

? eval("1a")

% 1 = 1

The library syntax is geval(x). The more basic functions poleval(q, x), qfeval(q, x), and
hqfeval(q, x) evaluate q at x, where q is respectively assumed to be a polynomial, a quadratic
form (a symmetric matrix), or an Hermitian form (an Hermitian complex matrix).

3.7.4 factorpadic(pol , p, r, {flag = 0}): p-adic factorization of the polynomial pol to precision r,
the result being a two-column matrix as in factor. The factors are normalized so that their leading
coefficient is a power of p. r must be strictly larger than the p-adic valuation of the discriminant
of pol for the result to make any sense. The method used is a modified version of the round 4
algorithm of Zassenhaus.

If flag = 1, use an algorithm due to Buchmann and Lenstra, which is usually less efficient.

The library syntax is factorpadic4(pol , p, r), where r is a long integer.
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3.7.5 intformal(x, {v}): formal integration of x with respect to the main variable if v is omitted,
with respect to the variable v otherwise. Since PARI does not know about “abstract” logarithms
(they are immediately evaluated, if only to a power series), logarithmic terms in the result will
yield an error. x can be of any type. When x is a rational function, it is assumed that the base
ring is an integral domain of characteristic zero.

The library syntax is integ(x, v), where v is a long and an omitted v is coded as −1.

3.7.6 padicappr(pol , a): vector of p-adic roots of the polynomial pol congruent to the p-adic
number a modulo p, and with the same p-adic precision as a. The number a can be an ordinary p-
adic number (type t_PADIC, i.e. an element of Zp) or can be an integral element of a finite extension
of Qp, given as a t_POLMOD at least one of whose coefficients is a t_PADIC. In this case, the result
is the vector of roots belonging to the same extension of Qp as a.

The library syntax is padicappr(pol , a).

3.7.7 polcoeff(x, s, {v}): coefficient of degree s of the polynomial x, with respect to the main
variable if v is omitted, with respect to v otherwise. Also applies to power series, scalars (polynomial
of degree 0), and to rational functions provided the denominator is a monomial.

The library syntax is polcoeff0(x, s, v), where v is a long and an omitted v is coded as −1.
Also available is truecoeff(x, v).

3.7.8 poldegree(x, {v}): degree of the polynomial x in the main variable if v is omitted, in the
variable v otherwise.

The degree of 0 is a fixed negative number, whose exact value should not be used. The degree
of a non-zero scalar is 0. Finally, when x is a non-zero polynomial or rational function, returns the
ordinary degree of x. Raise an error otherwise.

The library syntax is poldegree(x, v), where v and the result are longs (and an omitted v is
coded as −1). Also available is degree(x), which is equivalent to poldegree(x,-1).

3.7.9 polcyclo(n, {v = x}): n-th cyclotomic polynomial, in variable v (x by default). The integer
n must be positive.

The library syntax is cyclo(n, v), where n and v are long integers (v is a variable number,
usually obtained through varn).

3.7.10 poldisc(pol , {v}): discriminant of the polynomial pol in the main variable is v is omitted,
in v otherwise. The algorithm used is the subresultant algorithm.

The library syntax is poldisc0(x, v). Also available is discsr(x), equivalent to poldisc0(x,-

1).

3.7.11 poldiscreduced(f): reduced discriminant vector of the (integral, monic) polynomial f .
This is the vector of elementary divisors of Z[α]/f ′(α)Z[α], where α is a root of the polynomial f .
The components of the result are all positive, and their product is equal to the absolute value of
the discriminant of f .

The library syntax is reduceddiscsmith(x).
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3.7.12 polhensellift(x, y, p, e): given a prime p, an integral polynomial x whose leading coefficient
is a p-unit, a vector y of integral polynomials that are pairwise relatively prime modulo p, and whose
product is congruent to x modulo p, lift the elements of y to polynomials whose product is congruent
to x modulo pe.

The library syntax is polhensellift(x, y, p, e) where e must be a long.

3.7.13 polinterpolate(xa, {ya}, {v = x}, {&e}): given the data vectors xa and ya of the same
length n (xa containing the x-coordinates, and ya the corresponding y-coordinates), this function
finds the interpolating polynomial passing through these points and evaluates it at v. If ya is
omitted, return the polynomial interpolating the (i, xa[i]). If present, e will contain an error
estimate on the returned value.

The library syntax is polint(xa, ya, v,&e), where e will contain an error estimate on the
returned value.

3.7.14 polisirreducible(pol): pol being a polynomial (univariate in the present version 2.3.5),
returns 1 if pol is non-constant and irreducible, 0 otherwise. Irreducibility is checked over the
smallest base field over which pol seems to be defined.

The library syntax is gisirreducible(pol).

3.7.15 pollead(x, {v}): leading coefficient of the polynomial or power series x. This is computed
with respect to the main variable of x if v is omitted, with respect to the variable v otherwise.

The library syntax is pollead(x, v), where v is a long and an omitted v is coded as −1. Also
available is leading term(x).

3.7.16 pollegendre(n, {v = x}): creates the nth Legendre polynomial, in variable v.

The library syntax is legendre(n), where x is a long.

3.7.17 polrecip(pol): reciprocal polynomial of pol , i.e. the coefficients are in reverse order. pol
must be a polynomial.

The library syntax is polrecip(x).

3.7.18 polresultant(x, y, {v}, {flag = 0}): resultant of the two polynomials x and y with exact
entries, with respect to the main variables of x and y if v is omitted, with respect to the variable
v otherwise. The algorithm assumes the base ring is a domain.

If flag = 0, uses the subresultant algorithm.

If flag = 1, uses the determinant of Sylvester’s matrix instead (here x and y may have non-exact
coefficients).

If flag = 2, uses Ducos’s modified subresultant algorithm. It should be much faster than the
default if the coefficient ring is complicated (e.g multivariate polynomials or huge coefficients), and
slightly slower otherwise.

The library syntax is polresultant0(x, y, v, flag), where v is a long and an omitted v is coded
as −1. Also available are subres(x, y) (flag = 0) and resultant2(x, y) (flag = 1).
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3.7.19 polroots(pol , {flag = 0}): complex roots of the polynomial pol , given as a column vector
where each root is repeated according to its multiplicity. The precision is given as for transcendental
functions: in GP it is kept in the variable realprecision and is transparent to the user, but it
must be explicitly given as a second argument in library mode.

The algorithm used is a modification of A. Schönhage’s root-finding algorithm, due to and
implemented by X. Gourdon. Barring bugs, it is guaranteed to converge and to give the roots to
the required accuracy.

If flag = 1, use a variant of the Newton-Raphson method, which is not guaranteed to converge,
but is rather fast. If you get the messages “too many iterations in roots” or “INTERNAL ERROR:
incorrect result in roots”, use the default algorithm. This used to be the default root-finding
function in PARI until version 1.39.06.

The library syntax is roots(pol , prec) or rootsold(pol , prec).

3.7.20 polrootsmod(pol , p, {flag = 0}): row vector of roots modulo p of the polynomial pol . The
particular non-prime value p = 4 is accepted, mainly for 2-adic computations. Multiple roots are
not repeated.

If p is very small, you may try setting flag = 1, which uses a naive search.

The library syntax is rootmod(pol , p) (flag = 0) or rootmod2(pol , p) (flag = 1).

3.7.21 polrootspadic(pol , p, r): row vector of p-adic roots of the polynomial pol , given to p-adic
precision r. Multiple roots are not repeated. p is assumed to be a prime, and pol to be non-zero
modulo p. Note that this is not the same as the roots in Z/prZ, rather it gives approximations in
Z/prZ of the true roots living in Qp.

If pol has inexact t_PADIC coefficients, this is not always well-defined; in this case, the equation
is first made integral, then lifted to Z. Hence the roots given are approximations of the roots of a
polynomial which is p-adically close to the input.

The library syntax is rootpadic(pol , p, r), where r is a long.

3.7.22 polsturm(pol , {a}, {b}): number of real roots of the real polynomial pol in the interval
]a, b], using Sturm’s algorithm. a (resp. b) is taken to be −∞ (resp. +∞) if omitted.

The library syntax is sturmpart(pol , a, b). Use NULL to omit an argument. sturm(pol) is
equivalent to sturmpart(pol , NULL, NULL). The result is a long.

3.7.23 polsubcyclo(n, d, {v = x}): gives polynomials (in variable v) defining the sub-Abelian
extensions of degree d of the cyclotomic field Q(ζn), where d | φ(n).

If there is exactly one such extension the output is a polynomial, else it is a vector of polyno-
mials, eventually empty.

To be sure to get a vector, you can use concat([],polsubcyclo(n,d))

The function galoissubcyclo allows to specify more closely which sub-Abelian extension
should be computed.

The library syntax is polsubcyclo(n, d, v), where n, d and v are long and v is a variable
number. When (Z/nZ)∗ is cyclic, you can use subcyclo(n, d, v), where n, d and v are long and v
is a variable number.
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3.7.24 polsylvestermatrix(x, y): forms the Sylvester matrix corresponding to the two polynomi-
als x and y, where the coefficients of the polynomials are put in the columns of the matrix (which
is the natural direction for solving equations afterwards). The use of this matrix can be essential
when dealing with polynomials with inexact entries, since polynomial Euclidean division doesn’t
make much sense in this case.

The library syntax is sylvestermatrix(x, y).

3.7.25 polsym(x, n): creates the vector of the symmetric powers of the roots of the polynomial x
up to power n, using Newton’s formula.

The library syntax is polsym(x).

3.7.26 poltchebi(n, {v = x}): creates the nth Chebyshev polynomial Tn of the first kind in variable
v.

The library syntax is tchebi(n, v), where n and v are long integers (v is a variable number).

3.7.27 polzagier(n,m): creates Zagier’s polynomial P
(m)
n used in the functions sumalt and sumpos

(with flag = 1). One must have m ≤ n. The exact definition can be found in “Convergence
acceleration of alternating series”, Cohen et al., Experiment. Math., vol. 9, 2000, pp. 3–12.

The library syntax is polzagreel(n,m, prec) if the result is only wanted as a polynomial with
real coefficients to the precision prec, or polzag(n,m) if the result is wanted exactly, where n and
m are longs.

3.7.28 serconvol(x, y): convolution (or Hadamard product) of the two power series x and y; in
other words if x =

∑
ak ∗Xk and y =

∑
bk ∗Xk then serconvol(x, y) =

∑
ak ∗ bk ∗Xk.

The library syntax is convol(x, y).

3.7.29 serlaplace(x): x must be a power series with non-negative exponents. If x =
∑

(ak/k!)∗Xk

then the result is
∑
ak ∗Xk.

The library syntax is laplace(x).

3.7.30 serreverse(x): reverse power series (i.e. x−1, not 1/x) of x. x must be a power series whose
valuation is exactly equal to one.

The library syntax is recip(x).

3.7.31 subst(x, y, z): replace the simple variable y by the argument z in the “polynomial” ex-
pression x. Every type is allowed for x, but if it is not a genuine polynomial (or power series, or
rational function), the substitution will be done as if the scalar components were polynomials of
degree zero. In particular, beware that:

? subst(1, x, [1,2; 3,4])

%1 =

[1 0]

[0 1]

? subst(1, x, Mat([0,1]))

*** forbidden substitution by a non square matrix

If x is a power series, z must be either a polynomial, a power series, or a rational function.

The library syntax is gsubst(x, y, z), where y is the variable number.
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3.7.32 substpol(x, y, z): replace the “variable” y by the argument z in the “polynomial” expression
x. Every type is allowed for x, but the same behaviour as subst above apply.

The difference with subst is that y is allowed to be any polynomial here. The substitution is
done as per the following script:

subst_poly(pol, from, to) =

{ local(t = ’subst_poly_t, M = from - t);

subst(lift(Mod(pol,M), variable(M)), t, to)

}

For instance

? substpol(x^4 + x^2 + 1, x^2, y)

%1 = y^2 + y + 1

? substpol(x^4 + x^2 + 1, x^3, y)

%2 = x^2 + y*x + 1

? substpol(x^4 + x^2 + 1, (x+1)^2, y)

%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)

The library syntax is gsubstpol(x, y, z).

3.7.33 substvec(x, v, w): v being a vector of monomials (variables), w a vector of expressions
of the same length, replace in the expression x all occurences of vi by wi. The substitutions are
done simultaneously; more precisely, the vi are first replaced by new variables in x, then these are
replaced by the wi:

? substvec([x,y], [x,y], [y,x])

%1 = [y, x]

? substvec([x,y], [x,y], [y,x+y])

%2 = [y, x + y] \\ not [y, 2*y]

The library syntax is gsubstvec(x, v, w).

3.7.34 taylor(x, y): Taylor expansion around 0 of x with respect to the simple variable y. x can
be of any reasonable type, for example a rational function. The number of terms of the expansion
is transparent to the user in GP, but must be given as a second argument in library mode.

The library syntax is tayl(x, y, n), where the long integer n is the desired number of terms in
the expansion.

3.7.35 thue(tnf , a, {sol}): solves the equation P (x, y) = a in integers x and y, where tnf was
created with thueinit(P ). sol , if present, contains the solutions of Norm(x) = a modulo units
of positive norm in the number field defined by P (as computed by bnfisintnorm). If the result
is conditional (on the GRH or some heuristic strenghtening), a Warning is printed. Otherwise,
the result is unconditional, barring bugs. For instance, here’s how to solve the Thue equation
x13 − 5y13 = −4:

? tnf = thueinit(x^13 - 5);

? thue(tnf, -4)

%1 = [[1, 1]]

Hence, the only solution is x = 1, y = 1 and the result is unconditional. On the other hand:
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? tnf = thueinit(x^3-2*x^2+3*x-17);

? thue(tnf, -15)

*** thue: Warning: Non trivial conditional class group.

*** May miss solutions of the norm equation.

%2 = [[1, 1]]

This time the result is conditional. All results computed using this tnf are likewise conditional,
except for a right-hand side of ±1.

The library syntax is thue(tnf , a, sol), where an omitted sol is coded as NULL.

3.7.36 thueinit(P, {flag = 0}): initializes the tnf corresponding to P . It is meant to be used
in conjunction with thue to solve Thue equations P (x, y) = a, where a is an integer. If flag is
non-zero, certify the result unconditionnally. Otherwise, assume GRH, this being much faster of
course.

If the conditional computed class group is trivial or you are only interested in the case a = ±1,
then results are unconditional anyway. So one should only use the flag is thue prints a Warning
(see the example there).

The library syntax is thueinit(P, flag , prec).

3.8 Vectors, matrices, linear algebra and sets.

Note that most linear algebra functions operating on subspaces defined by generating sets
(such as mathnf, qflll, etc.) take matrices as arguments. As usual, the generating vectors are
taken to be the columns of the given matrix.

Since PARI does not have a strong typing system, scalars live in unspecified commutative
base rings. It is very difficult to write robust linear algebra routines in such a general setting.
The developpers’s choice has been to assume the base ring is a domain and work over its field of
fractions. If the base ring is not a domain, one gets an error as soon as a non-zero pivot turns out
to be non-invertible. Some functions, e.g. mathnf or mathnfmod, specifically assume the base ring
is Z.

3.8.1 algdep(x, k, {flag = 0}): x being real/complex, or p-adic, finds a polynomial of degree at
most k with integer coefficients having x as approximate root. Note that the polynomial which is
obtained is not necessarily the “correct” one. In fact it is not even guaranteed to be irreducible.
One can check the closeness either by a polynomial evaluation (use subst), or by computing the
roots of the polynomial given by algdep (use polroots).

Internally, lindep([1, x, . . . , xk], flag) is used. If lindep is not able to find a relation and returns
a lower bound for the sup norm of the smallest relation, algdep returns that bound instead. A
suitable non-zero value of flag may improve on the default behaviour:

\\\\\\\\\ LLL

? \p200

? algdep(2^(1/6)+3^(1/5), 30); \\ wrong in 3.8s

? algdep(2^(1/6)+3^(1/5), 30, 100); \\ wrong in 1s

? algdep(2^(1/6)+3^(1/5), 30, 170); \\ right in 3.3s

? algdep(2^(1/6)+3^(1/5), 30, 200); \\ wrong in 2.9s

? \p250
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? algdep(2^(1/6)+3^(1/5), 30); \\ right in 2.8s

? algdep(2^(1/6)+3^(1/5), 30, 200); \\ right in 3.4s

\\\\\\\\\ PSLQ

? \p200

? algdep(2^(1/6)+3^(1/5), 30, -3); \\ failure in 14s.

? \p250

? algdep(2^(1/6)+3^(1/5), 30, -3); \\ right in 18s

Proceeding by increments of 5 digits of accuracy, algdep with default flag produces its first correct
result at 205 digits, and from then on a steady stream of correct results. Interestingly enough, our
PSLQ also reliably succeeds from 205 digits on (and is 5 times slower at that accuracy).

The above example is the testcase studied in a 2000 paper by Borwein and Lisonek, Appli-
cations of integer relation algorithms, Discrete Math., 217, p. 65–82. The paper conludes in the
superiority of the PSLQ algorithm, which either shows that PARI’s implementation of PSLQ is
lacking, or that its LLL is extremely good. The version of PARI tested there was 1.39, which
succeeded reliably from precision 265 on, in about 60 as much time as the current version.

The library syntax is algdep0(x, k, flag , prec), where k and flag are longs. Also available is
algdep(x, k, prec) (flag = 0).

3.8.2 charpoly(A, {v = x}, {flag = 0}): characteristic polynomial of A with respect to the variable
v, i.e. determinant of v ∗ I − A if A is a square matrix. If A is not a square matrix, it returns the
characteristic polynomial of the map “multiplication by A” if A is a scalar, in particular a polmod.
E.g. charpoly(I) = x^2+1.

The value of flag is only significant for matrices.

If flag = 0, the method used is essentially the same as for computing the adjoint matrix,
i.e. computing the traces of the powers of A.

If flag = 1, uses Lagrange interpolation which is almost always slower.

If flag = 2, uses the Hessenberg form. This is faster than the default when the coefficients are
intmod a prime or real numbers, but is usually slower in other base rings.

The library syntax is charpoly0(A, v, flag), where v is the variable number. Also available
are the functions caract(A, v) (flag = 1), carhess(A, v) (flag = 2), and caradj(A, v, pt) where, in
this last case, pt is a GEN* which, if not equal to NULL, will receive the address of the adjoint matrix
of A (see matadjoint), so both can be obtained at once.

3.8.3 concat(x, {y}): concatenation of x and y. If x or y is not a vector or matrix, it is considered
as a one-dimensional vector. All types are allowed for x and y, but the sizes must be compatible.
Note that matrices are concatenated horizontally, i.e. the number of rows stays the same. Using
transpositions, it is easy to concatenate them vertically.

To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), use Mat

instead (see the example there). Concatenating a row vector to a matrix having the same number
of columns will add the row to the matrix (top row if the vector is x, i.e. comes first, and bottom
row otherwise).

The empty matrix [;] is considered to have a number of rows compatible with any operation,
in particular concatenation. (Note that this is definitely not the case for empty vectors [ ] or
[ ]~.)
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If y is omitted, x has to be a row vector or a list, in which case its elements are concatenated,
from left to right, using the above rules.

? concat([1,2], [3,4])

%1 = [1, 2, 3, 4]

? a = [[1,2]~, [3,4]~]; concat(a)

%2 =

[1 3]

[2 4]

? concat([1,2; 3,4], [5,6]~)

%3 =

[1 2 5]

[3 4 6]

? concat([%, [7,8]~, [1,2,3,4]])

%5 =

[1 2 5 7]

[3 4 6 8]

[1 2 3 4]

The library syntax is concat(x, y).

3.8.4 lindep(x, {flag = 0}):x being a vector with p-adic or real/complex coefficients, finds a small
integral linear combination among these coefficients.

If x is p-adic, flag is meaningless and the algorithm LLL-reduces a suitable (dual) lattice.

Otherwise, the value of flag determines the algorithm used; in the current version of PARI, we
suggest to use non-negative values, since it is by far the fastest and most robust implementation.
See the detailed example in Section 3.8.1 (algdep).

If flag ≥ 0, uses a floating point (variable precision) LLL algorithm. This is in general much
faster than the other variants. If flag = 0 the accuracy is chosen internally using a crude heuristic.
If flag > 0 the computation is done with an accuracy of flag decimal digits. In that case, the
parameter flag should be between 0.6 and 0.9 times the number of correct decimal digits in the
input.

If flag = −1, uses a variant of the LLL algorithm due to Hastad, Lagarias and Schnorr (STACS
1986). If the precision is too low, the routine may enter an infinite loop.

If flag = −2, x is allowed to be (and in any case interpreted as) a matrix. Returns a non
trivial element of the kernel of x, or 0 if x has trivial kernel. The element is defined over the field
of coefficients of x, and is in general not integral.

If flag = −3, uses the PSLQ algorithm. This may return a real number B, indicating that the
input accuracy was exhausted and that no relation exist whose sup norm is less than B.

If flag = −4, uses an experimental 2-level PSLQ, which does not work at all. (Should be
rewritten.)

The library syntax is lindep0(x, flag , prec). Also available is lindep(x, prec) (flag = 0).
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3.8.5 listcreate(n): creates an empty list of maximal length n.

This function is useless in library mode.

3.8.6 listinsert(list , x, n): inserts the object x at position n in list (which must be of type t_LIST).
All the remaining elements of list (from position n+ 1 onwards) are shifted to the right. This and
listput are the only commands which enable you to increase a list’s effective length (as long as it
remains under the maximal length specified at the time of the listcreate).

This function is useless in library mode.

3.8.7 listkill(list): kill list . This deletes all elements from list and sets its effective length to 0.
The maximal length is not affected.

This function is useless in library mode.

3.8.8 listput(list , x, {n}): sets the n-th element of the list list (which must be of type t_LIST)
equal to x. If n is omitted, or greater than the list current effective length, just appends x. This
and listinsert are the only commands which enable you to increase a list’s effective length (as
long as it remains under the maximal length specified at the time of the listcreate).

If you want to put an element into an occupied cell, i.e. if you don’t want to change the effective
length, you can consider the list as a vector and use the usual list[n] = x construct.

This function is useless in library mode.

3.8.9 listsort(list , {flag = 0}): sorts list (which must be of type t_LIST) in place. If flag is non-
zero, suppresses all repeated coefficients. This is much faster than the vecsort command since no
copy has to be made.

This function is useless in library mode.

3.8.10 matadjoint(x): adjoint matrix of x, i.e. the matrix y of cofactors of x, satisfying x ∗ y =
det(x) ∗ Id. x must be a (non-necessarily invertible) square matrix.

The library syntax is adj(x).

3.8.11 matcompanion(x): the left companion matrix to the polynomial x.

The library syntax is assmat(x).

3.8.12 matdet(x, {flag = 0}): determinant of x. x must be a square matrix.

If flag = 0, uses Gauss-Bareiss.

If flag = 1, uses classical Gaussian elimination, which is better when the entries of the ma-
trix are reals or integers for example, but usually much worse for more complicated entries like
multivariate polynomials.

The library syntax is det(x) (flag = 0) and det2(x) (flag = 1).
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3.8.13 matdetint(x): x being an m × n matrix with integer coefficients, this function computes
a multiple of the determinant of the lattice generated by the columns of x if it is of rank m, and
returns zero otherwise. This function can be useful in conjunction with the function mathnfmod

which needs to know such a multiple. To obtain the exact determinant (assuming the rank is
maximal), you can compute matdet(mathnfmod(x, matdetint(x))).

Note that as soon as one of the dimensions gets large (m or n is larger than 20, say), it will
often be much faster to use mathnf(x, 1) or mathnf(x, 4) directly.

The library syntax is detint(x).

3.8.14 matdiagonal(x): x being a vector, creates the diagonal matrix whose diagonal entries are
those of x.

The library syntax is diagonal(x).

3.8.15 mateigen(x): gives the eigenvectors of x as columns of a matrix.

The library syntax is eigen(x).

3.8.16 matfrobenius(M, {flag = 0}, {v = x}): returns the Frobenius form of the square matrix
M. If flag = 1, returns only the elementary divisors as a vectr of polynomials in the variable v. If
flag = 2, returns a two-components vector [F,B] where F is the Frobenius form and B is the basis
change so that M = B−1FB.

The library syntax is matfrobenius(M, flag , v), where v is the variable number.

3.8.17 mathess(x): Hessenberg form of the square matrix x.

The library syntax is hess(x).

3.8.18 mathilbert(x): x being a long, creates the Hilbert matrixof order x, i.e. the matrix whose
coefficient (i,j) is 1/(i+ j − 1).

The library syntax is mathilbert(x).

3.8.19 mathnf(x, {flag = 0}): if x is a (not necessarily square) matrix with integer entries, finds
the upper triangular Hermite normal form of x. If the rank of x is equal to its number of rows, the
result is a square matrix. In general, the columns of the result form a basis of the lattice spanned
by the columns of x.

If flag = 0, uses the naive algorithm. This should never be used if the dimension is at all large
(larger than 10, say). It is recommanded to use either mathnfmod(x, matdetint(x)) (when x has
maximal rank) or mathnf(x, 1). Note that the latter is in general faster than mathnfmod, and
also provides a base change matrix.

If flag = 1, uses Batut’s algorithm, which is much faster than the default. Outputs a two-
component row vector [H,U ], where H is the upper triangular Hermite normal form of x defined
as above, and U is the unimodular transformation matrix such that xU = [0|H]. U has in general
huge coefficients, in particular when the kernel is large.

If flag = 3, uses Batut’s algorithm, but outputs [H,U, P ], such that H and U are as before
and P is a permutation of the rows such that P applied to xU gives H. The matrix U is smaller
than with flag = 1, but may still be large.
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If flag = 4, as in case 1 above, but uses a heuristic variant of LLL reduction along the way.
The matrix U is in general close to optimal (in terms of smallest L2 norm), but the reduction is
slower than in case 1.

The library syntax is mathnf0(x, flag). Also available are hnf(x) (flag = 0) and hnfall(x)
(flag = 1). To reduce huge (say 400× 400 and more) relation matrices (sparse with small entries),
you can use the pair hnfspec / hnfadd. Since this is rather technical and the calling interface may
change, they are not documented yet. Look at the code in basemath/alglin1.c.

3.8.20 mathnfmod(x, d): if x is a (not necessarily square) matrix of maximal rank with integer
entries, and d is a multiple of the (non-zero) determinant of the lattice spanned by the columns of
x, finds the upper triangular Hermite normal form of x.

If the rank of x is equal to its number of rows, the result is a square matrix. In general, the
columns of the result form a basis of the lattice spanned by the columns of x. This is much faster
than mathnf when d is known.

The library syntax is hnfmod(x, d).

3.8.21 mathnfmodid(x, d): outputs the (upper triangular) Hermite normal form of x concate-
nated with d times the identity matrix. Assumes that x has integer entries.

The library syntax is hnfmodid(x, d).

3.8.22 matid(n): creates the n× n identity matrix.

The library syntax is matid(n) where n is a long.

Related functions are gscalmat(x, n), which creates x times the identity matrix (x being a
GEN and n a long), and gscalsmat(x, n) which is the same when x is a long.

3.8.23 matimage(x, {flag = 0}): gives a basis for the image of the matrix x as columns of a
matrix. A priori the matrix can have entries of any type. If flag = 0, use standard Gauss pivot. If
flag = 1, use matsupplement.

The library syntax is matimage0(x, flag). Also available is image(x) (flag = 0).

3.8.24 matimagecompl(x): gives the vector of the column indices which are not extracted by
the function matimage. Hence the number of components of matimagecompl(x) plus the number
of columns of matimage(x) is equal to the number of columns of the matrix x.

The library syntax is imagecompl(x).

3.8.25 matindexrank(x): x being a matrix of rank r, gives two vectors y and z of length r giving
a list of rows and columns respectively (starting from 1) such that the extracted matrix obtained
from these two vectors using vecextract(x, y, z) is invertible.

The library syntax is indexrank(x).

3.8.26 matintersect(x, y): x and y being two matrices with the same number of rows each of
whose columns are independent, finds a basis of the Q-vector space equal to the intersection of the
spaces spanned by the columns of x and y respectively. See also the function idealintersect,
which does the same for free Z-modules.

The library syntax is intersect(x, y).
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3.8.27 matinverseimage(M,y): gives a column vector belonging to the inverse image z of the
column vector or matrix y by the matrix M if one exists (i.e such that Mz = y), the empty vector
otherwise. To get the complete inverse image, it suffices to add to the result any element of the
kernel of x obtained for example by matker.

The library syntax is inverseimage(x, y).

3.8.28 matisdiagonal(x): returns true (1) if x is a diagonal matrix, false (0) if not.

The library syntax is isdiagonal(x), and this returns a long integer.

3.8.29 matker(x, {flag = 0}): gives a basis for the kernel of the matrix x as columns of a matrix.
A priori the matrix can have entries of any type.

If x is known to have integral entries, set flag = 1.

Note: The library function FpM ker(x, p), where x has integer entries reduced mod p and p is prime,
is equivalent to, but orders of magnitude faster than, matker(x*Mod(1,p)) and needs much less
stack space. To use it under gp, type install(FpM ker, GG) first.

The library syntax is matker0(x, flag). Also available are ker(x) (flag = 0), keri(x) (flag = 1).

3.8.30 matkerint(x, {flag = 0}): gives an LLL-reduced Z-basis for the lattice equal to the kernel
of the matrix x as columns of the matrix x with integer entries (rational entries are not permitted).

If flag = 0, uses a modified integer LLL algorithm.

If flag = 1, uses matrixqz(x,−2). If LLL reduction of the final result is not desired, you can
save time using matrixqz(matker(x),-2) instead.

The library syntax is matkerint0(x, flag). Also available is kerint(x) (flag = 0).

3.8.31 matmuldiagonal(x, d): product of the matrix x by the diagonal matrix whose diagonal
entries are those of the vector d. Equivalent to, but much faster than x ∗ matdiagonal(d).

The library syntax is matmuldiagonal(x, d).

3.8.32 matmultodiagonal(x, y): product of the matrices x and y assuming that the result is a
diagonal matrix. Much faster than x∗y in that case. The result is undefined if x∗y is not diagonal.

The library syntax is matmultodiagonal(x, y).

3.8.33 matpascal(x, {q}): creates as a matrix the lower triangular Pascal triangle of order x+ 1
(i.e. with binomial coefficients up to x). If q is given, compute the q-Pascal triangle (i.e. using
q-binomial coefficients).

The library syntax is matqpascal(x, q), where x is a long and q = NULL is used to omit q.
Also available is matpascal(x).

3.8.34 matrank(x): rank of the matrix x.

The library syntax is rank(x), and the result is a long.
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3.8.35 matrix(m,n, {X}, {Y }, {expr = 0}): creation of the m × n matrix whose coefficients
are given by the expression expr . There are two formal parameters in expr , the first one (X)
corresponding to the rows, the second (Y ) to the columns, and X goes from 1 to m, Y goes from
1 to n. If one of the last 3 parameters is omitted, fill the matrix with zeroes.

The library syntax is matrice(GEN nlig,GEN ncol,entree *e1,entree *e2,char *expr).

3.8.36 matrixqz(x, p): x being an m× n matrix with m ≥ n with rational or integer entries, this
function has varying behaviour depending on the sign of p:

If p ≥ 0, x is assumed to be of maximal rank. This function returns a matrix having only
integral entries, having the same image as x, such that the GCD of all its n × n subdeterminants
is equal to 1 when p is equal to 0, or not divisible by p otherwise. Here p must be a prime number
(when it is non-zero). However, if the function is used when p has no small prime factors, it will
either work or give the message “impossible inverse modulo” and a non-trivial divisor of p.

If p = −1, this function returns a matrix whose columns form a basis of the lattice equal to
Zn intersected with the lattice generated by the columns of x.

If p = −2, returns a matrix whose columns form a basis of the lattice equal to Zn intersected
with the Q-vector space generated by the columns of x.

The library syntax is matrixqz0(x, p).

3.8.37 matsize(x): x being a vector or matrix, returns a row vector with two components, the
first being the number of rows (1 for a row vector), the second the number of columns (1 for a
column vector).

The library syntax is matsize(x).

3.8.38 matsnf(X, {flag = 0}): if X is a (singular or non-singular) matrix outputs the vector of
elementary divisors of X (i.e. the diagonal of the Smith normal form of X).

The binary digits of flag mean:

1 (complete output): if set, outputs [U, V,D], where U and V are two unimodular matrices
such that UXV is the diagonal matrix D. Otherwise output only the diagonal of D.

2 (generic input): if set, allows polynomial entries, in which case the input matrix must be
square. Otherwise, assume that X has integer coefficients with arbitrary shape.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1
will be deleted, i.e. outputs a shortened vector D′ instead of D. If complete output was required,
returns [U ′, V ′, D′] so that U ′XV ′ = D′ holds. If this flag is set, X is allowed to be of the form D
or [U, V,D] as would normally be output with the cleanup flag unset.

The library syntax is matsnf0(X, flag). Also available is smith(X) (flag = 0).

3.8.39 matsolve(x, y): x being an invertible matrix and y a column vector, finds the solution u of
x ∗u = y, using Gaussian elimination. This has the same effect as, but is a bit faster, than x−1 ∗ y.

The library syntax is gauss(x, y).
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3.8.40 matsolvemod(m, d, y, {flag = 0}): m being any integral matrix, d a vector of positive
integer moduli, and y an integral column vector, gives a small integer solution to the system of
congruences

∑
imi,jxj ≡ yi (mod di) if one exists, otherwise returns zero. Shorthand notation:

y (resp. d) can be given as a single integer, in which case all the yi (resp. di) above are taken to be
equal to y (resp. d).

? m = [1,2;3,4];

? matsolvemod(m, [3,4], [1,2]~)

%2 = [-2, 0]~
? matsolvemod(m, 3, 1) \\ m X = [1,1]~ over F_3

%3 = [-1, 1]~

If flag = 1, all solutions are returned in the form of a two-component row vector [x, u], where
x is a small integer solution to the system of congruences and u is a matrix whose columns give a
basis of the homogeneous system (so that all solutions can be obtained by adding x to any linear
combination of columns of u). If no solution exists, returns zero.

The library syntax is matsolvemod0(m, d, y, flag). Also available are gaussmodulo(m, d, y)
(flag = 0) and gaussmodulo2(m, d, y) (flag = 1).

3.8.41 matsupplement(x): assuming that the columns of the matrix x are linearly independent
(if they are not, an error message is issued), finds a square invertible matrix whose first columns
are the columns of x, i.e. supplement the columns of x to a basis of the whole space.

The library syntax is suppl(x).

3.8.42 mattranspose(x) or x˜: transpose of x. This has an effect only on vectors and matrices.

The library syntax is gtrans(x).

3.8.43 minpoly(A, {v = x}, {flag = 0}): minimal polynomial of A with respect to the variable v.,
i.e. the monic polynomial P of minimal degree (in the variable v) such that P (A) = 0.

The library syntax is minpoly(A, v), where v is the variable number.

3.8.44 qfgaussred(q): decomposition into squares of the quadratic form represented by the sym-
metric matrix q. The result is a matrix whose diagonal entries are the coefficients of the squares, and
the non-diagonal entries represent the bilinear forms. More precisely, if (aij) denotes the output,
one has

q(x) =
∑
i

aii(xi +
∑
j>i

aijxj)
2

The library syntax is sqred(x).

3.8.45 qfjacobi(x): x being a real symmetric matrix, this gives a vector having two components:
the first one is the vector of eigenvalues of x, the second is the corresponding orthogonal matrix of
eigenvectors of x. The method used is Jacobi’s method for symmetric matrices.

The library syntax is jacobi(x).
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3.8.46 qflll(x, {flag = 0}): LLL algorithm applied to the columns of the matrix x. The columns
of x must be linearly independent, unless specified otherwise below. The result is a unimodular
transformation matrix T such that x · T is an LLL-reduced basis of the lattice generated by the
column vectors of x.

If flag = 0 (default), the computations are done with floating point numbers, using House-
holder matrices for orthogonalization. If x has integral entries, then computations are nonetheless
approximate, with precision varying as needed (Lehmer’s trick, as generalized by Schnorr).

If flag = 1, it is assumed that x is integral. The computation is done entirely with integers.
In this case, x needs not be of maximal rank, but if it is not, T will not be square. This is slower
and no more accurate than flag = 0 above if x has small dimension (say 100 or less).

If flag = 2, x should be an integer matrix whose columns are linearly independent. Returns
a partially reduced basis for x, using an unpublished algorithm by Peter Montgomery: a basis is
said to be partially reduced if |vi ± vj | ≥ |vi| for any two distinct basis vectors vi, vj .

This is significantly faster than flag = 1, esp. when one row is huge compared to the other
rows. Note that the resulting basis is not LLL-reduced in general.

If flag = 4, x is assumed to have integral entries, but needs not be of maximal rank. The
result is a two-component vector of matrices: the columns of the first matrix represent a basis of
the integer kernel of x (not necessarily LLL-reduced) and the second matrix is the transformation
matrix T such that x · T is an LLL-reduced Z-basis of the image of the matrix x.

If flag = 5, case as case 4, but x may have polynomial coefficients.

If flag = 8, same as case 0, but x may have polynomial coefficients.

The library syntax is qflll0(x, flag , prec). Also available are lll(x, prec) (flag = 0), lllint(x)
(flag = 1), and lllkerim(x) (flag = 4).

3.8.47 qflllgram(G, {flag = 0}): same as qflll, except that the matrix G = x~ ∗ x is the Gram
matrix of some lattice vectors x, and not the coordinates of the vectors themselves. In particular, G
must now be a square symmetric real matrix, corresponding to a positive definite quadratic form.
The result is a unimodular transformation matrix T such that x · T is an LLL-reduced basis of the
lattice generated by the column vectors of x.

If flag = 0 (default): the computations are done with floating point numbers, using House-
holder matrices for orthogonalization. If G has integral entries, then computations are nonetheless
approximate, with precision varying as needed (Lehmer’s trick, as generalized by Schnorr).

If flag = 1: G has integer entries, still positive but not necessarily definite (i.e x needs not have
maximal rank). The computations are all done in integers and should be slower than the default,
unless the latter triggers accuracy problems.

flag = 4: G has integer entries, gives the kernel and reduced image of x.

flag = 5: same as case 4, but G may have polynomial coefficients.

The library syntax is qflllgram0(G, flag , prec). Also available are lllgram(G, prec) (flag = 0),
lllgramint(G) (flag = 1), and lllgramkerim(G) (flag = 4).
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3.8.48 qfminim(x, {b}, {m}, {flag = 0}): x being a square and symmetric matrix representing a
positive definite quadratic form, this function deals with the vectors of x whose norm is less than
or equal to b, enumerated using the Fincke-Pohst algorithm. The function searches for the minimal
non-zero vectors if b is omitted. The precise behaviour depends on flag .

If flag = 0 (default), seeks at most 2m vectors. The result is a three-component vector, the
first component being the number of vectors found, the second being the maximum norm found,
and the last vector is a matrix whose columns are the vectors found, only one being given for each
pair ±v (at most m such pairs). The vectors are returned in no particular order. In this variant,
an explicit m must be provided.

If flag = 1, ignores m and returns the first vector whose norm is less than b. In this variant,
an explicit b must be provided.

In both these cases, x is assumed to have integral entries. The implementation uses low
precision floating point computations for maximal speed, which gives incorrect result when x has
large entries. (The condition is checked in the code and the routine will raise an error if large
rounding errors occur.) A more robust, but much slower, implementation is chosen if the following
flag is used:

If flag = 2, x can have non integral real entries. In this case, if b is omitted, the “minimal”
vectors only have approximately the same norm. If b is omitted, m is an upper bound for the number
of vectors that will be stored and returned, but all minimal vectors are nevertheless enumerated.
If m is omitted, all vectors found are stored and returned; note that this may be a huge vector!

The library syntax is qfminim0(x, b,m, flag , prec), also available are minim(x, b,m) (flag =
0), minim2(x, b,m) (flag = 1). In all cases, an omitted b or m is coded as NULL.

3.8.49 qfperfection(x): x being a square and symmetric matrix with integer entries representing
a positive definite quadratic form, outputs the perfection rank of the form. That is, gives the rank
of the family of the s symmetric matrices viv

t
i , where s is half the number of minimal vectors and

the vi (1 ≤ i ≤ s) are the minimal vectors.

As a side note to old-timers, this used to fail bluntly when x had more than 5000 minimal
vectors. Beware that the computations can now be very lengthy when x has many minimal vectors.

The library syntax is perf(x).

3.8.50 qfrep(q,B, {flag = 0}): q being a square and symmetric matrix with integer entries repre-
senting a positive definite quadratic form, outputs the vector whose i-th entry, 1 ≤ i ≤ B is half
the number of vectors v such that q(v) = i. This routine uses a naive algorithm based on qfminim,
and will fail if any entry becomes larger than 231.

The binary digits of flag mean:

• 1: count vectors of even norm from 1 to 2B.

• 2: return a t_VECSMALL instead of a t_GEN

The library syntax is qfrep0(q,B, flag).

3.8.51 qfsign(x): signature of the quadratic form represented by the symmetric matrix x. The
result is a two-component vector.

The library syntax is signat(x).
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3.8.52 setintersect(x, y): intersection of the two sets x and y.

The library syntax is setintersect(x, y).

3.8.53 setisset(x): returns true (1) if x is a set, false (0) if not. In PARI, a set is simply a row
vector whose entries are strictly increasing. To convert any vector (and other objects) into a set,
use the function Set.

The library syntax is setisset(x), and this returns a long.

3.8.54 setminus(x, y): difference of the two sets x and y, i.e. set of elements of x which do not
belong to y.

The library syntax is setminus(x, y).

3.8.55 setsearch(x, y, {flag = 0}): searches if y belongs to the set x. If it does and flag is zero
or omitted, returns the index j such that x[j] = y, otherwise returns 0. If flag is non-zero returns
the index j where y should be inserted, and 0 if it already belongs to x (this is meant to be used
in conjunction with listinsert).

This function works also if x is a sorted list (see listsort).

The library syntax is setsearch(x, y, flag) which returns a long integer.

3.8.56 setunion(x, y): union of the two sets x and y.

The library syntax is setunion(x, y).

3.8.57 trace(x): this applies to quite general x. If x is not a matrix, it is equal to the sum of x
and its conjugate, except for polmods where it is the trace as an algebraic number.

For x a square matrix, it is the ordinary trace. If x is a non-square matrix (but not a vector),
an error occurs.

The library syntax is gtrace(x).

3.8.58 vecextract(x, y, {z}): extraction of components of the vector or matrix x according to
y. In case x is a matrix, its components are as usual the columns of x. The parameter y is a
component specifier, which is either an integer, a string describing a range, or a vector.

If y is an integer, it is considered as a mask: the binary bits of y are read from right to left,
but correspond to taking the components from left to right. For example, if y = 13 = (1101)2 then
the components 1,3 and 4 are extracted.

If y is a vector, which must have integer entries, these entries correspond to the component
numbers to be extracted, in the order specified.

If y is a string, it can be

• a single (non-zero) index giving a component number (a negative index means we start
counting from the end).

• a range of the form "a..b", where a and b are indexes as above. Any of a and b can be
omitted; in this case, we take as default values a = 1 and b = −1, i.e. the first and last components
respectively. We then extract all components in the interval [a, b], in reverse order if b < a.
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In addition, if the first character in the string is ^, the complement of the given set of indices
is taken.

If z is not omitted, x must be a matrix. y is then the line specifier, and z the column specifier,
where the component specifier is as explained above.

? v = [a, b, c, d, e];

? vecextract(v, 5) \\ mask
%1 = [a, c]

? vecextract(v, [4, 2, 1]) \\ component list
%2 = [d, b, a]

? vecextract(v, "2..4") \\ interval
%3 = [b, c, d]

? vecextract(v, "-1..-3") \\ interval + reverse order
%4 = [e, d, c]

? vecextract(v, "^2") \\ complement
%5 = [a, c, d, e]

? vecextract(matid(3), "2..", "..")

%6 =

[0 1 0]

[0 0 1]

The library syntax is extract(x, y) or matextract(x, y, z).

3.8.59 vecsort(x, {k}, {flag = 0}): sorts the vector x in ascending order, using a mergesort method.
x must be a vector, and its components integers, reals, or fractions.

If k is present and is an integer, sorts according to the value of the k-th subcomponents of
the components of x. Note that mergesort is stable, hence is the initial ordering of ”equal” entries
(with respect to the sorting criterion) is not changed.

k can also be a vector, in which case the sorting is done lexicographically according to the
components listed in the vector k. For example, if k = [2, 1, 3], sorting will be done with respect
to the second component, and when these are equal, with respect to the first, and when these are
equal, with respect to the third.

The binary digits of flag mean:

• 1: indirect sorting of the vector x, i.e. if x is an n-component vector, returns a permutation
of [1, 2, . . . , n] which applied to the components of x sorts x in increasing order. For example,
vecextract(x, vecsort(x,,1)) is equivalent to vecsort(x).

• 2: sorts x by ascending lexicographic order (as per the lex comparison function).

• 4: use descending instead of ascending order.

The library syntax is vecsort0(x, k, flag). To omit k, use NULL instead. You can also use the
simpler functions

sort(x) (= vecsort0(x, NULL, 0)).

indexsort(x) (= vecsort0(x, NULL, 1)).

lexsort(x) (= vecsort0(x, NULL, 2)).

Also available are sindexsort(x) and sindexlexsort(x) which return a t_VECSMALL v, where
v[1] . . . v[n] contain the indices.
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3.8.60 vector(n, {X}, {expr = 0}): creates a row vector (type t_VEC) with n components whose
components are the expression expr evaluated at the integer points between 1 and n. If one of the
last two arguments is omitted, fill the vector with zeroes.

Avoid modifying X within expr ; if you do, the formal variable still runs from 1 to n. In
particular, vector(n,i,expr) is not equivalent to

v = vector(n)

for (i = 1, n, v[i] = expr)

as the following example shows:

n = 3

v = vector(n); vector(n, i, i++) ----> [2, 3, 4]

v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4]

The library syntax is vecteur(GEN nmax, entree *ep, char *expr).

3.8.61 vectorsmall(n, {X}, {expr = 0}): creates a row vector of small integers (type t_VECSMALL)
with n components whose components are the expression expr evaluated at the integer points
between 1 and n. If one of the last two arguments is omitted, fill the vector with zeroes.

The library syntax is vecteursmall(GEN nmax, entree *ep, char *expr).

3.8.62 vectorv(n,X, expr): as vector, but returns a column vector (type t_COL).

The library syntax is vvecteur(GEN nmax, entree *ep, char *expr).

3.9 Sums, products, integrals and similar functions.

Although the gp calculator is programmable, it is useful to have preprogrammed a number of
loops, including sums, products, and a certain number of recursions. Also, a number of functions
from numerical analysis like numerical integration and summation of series will be described here.

One of the parameters in these loops must be the control variable, hence a simple variable name.
In the descriptions, the letter X will always denote any simple variable name, and represents the
formal parameter used in the function. The expression to be summed, integrated, etc. is any legal
PARI expression, including of course expressions using loops.
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Library mode. Since it is easier to program directly the loops in library mode, these functions
are mainly useful for GP programming. Using them in library mode is tricky and we will not give
any details, although the reader can try and figure it out by himself by checking the example given
for sum.

On the other hand, numerical routines code a function (to be integrated, summed, etc.) with
two parameters named

GEN (*eval)(GEN,void*)

void *E;

The second is meant to contain all auxilliary data needed by your function. The first is such
that eval(x, E) returns your function evaluated at x. For instance, one may code the family of
functions ft : x→ (x+ t)2 via

GEN f(GEN x, void *t) { return gsqr(gadd(x, (GEN)t)); }

One can then integrate f1 between a and b with the call

intnum((void*)stoi(1), &fun, a, b, NULL, prec);

Since you can set E to a pointer to any struct (typecast to void*) the above mechanism handles
arbitrary functions. For simple functions without extra parameters, you may set E = NULL and
ignore that argument in your function definition.

Numerical integration. Starting with version 2.2.9 the powerful “double exponential” univariate
integration method is implemented in intnum and its variants. Romberg integration is still available
under the name intnumromb, but superseded. It is possible to compute numerically integrals to
thousands of decimal places in reasonable time, as long as the integrand is regular. It is also
reasonable to compute numerically integrals in several variables, although more than two becomes
lengthy. The integration domain may be non-compact, and the integrand may have reasonable
singularities at endpoints. To use intnum, the user must split the integral into a sum of subintegrals
where the function has (possible) singularities only at the endpoints. Polynomials in logarithms
are not considered singular, and neglecting these logs, singularities are assumed to be algebraic (in
other words asymptotic to C(x − a)−α for some α such that α > −1 when x is close to a), or to
correspond to simple discontinuities of some (higher) derivative of the function. For instance, the
point 0 is a singularity of abs(x).

See also the discrete summation methods below (sharing the prefix sum).

3.9.1 intcirc(X = a,R, expr , {tab}): numerical integration of expr with respect to X on the circle
|X − a| = R, divided by 2iπ. In other words, when expr is a meromorphic function, sum of the
residues in the corresponding disk. tab is as in intnum, except that if computed with intnuminit

it should be with the endpoints [-1, 1].

? \p105

? intcirc(s=1, 0.5, zeta(s)) - 1

time = 3,460 ms.

%1 = -2.40... E-104 - 2.7... E-106*I

The library syntax is intcirc(void *E, GEN (*eval)(GEN,void*), GEN a,GEN R,GEN tab,

long prec).
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3.9.2 intfouriercos(X = a, b, z, expr , {tab}): numerical integration of expr(X) cos(2πzX) from a
to b, in other words Fourier cosine transform (from a to b) of the function represented by expr . a
and b are coded as in intnum, and are not necessarily at infinity, but if they are, oscillations (i.e.
[[±1], αI]) are forbidden.

The library syntax is intfouriercos(void *E, GEN (*eval)(GEN,void*), GEN a, GEN b,

GEN z, GEN tab, long prec).

3.9.3 intfourierexp(X = a, b, z, expr , {tab}): numerical integration of expr(X) exp(−2πzX) from
a to b, in other words Fourier transform (from a to b) of the function represented by expr . Note
the minus sign. a and b are coded as in intnum, and are not necessarily at infinity but if they are,
oscillations (i.e. [[±1], αI]) are forbidden.

The library syntax is intfourierexp(void *E, GEN (*eval)(GEN,void*), GEN a, GEN b,

GEN z, GEN tab, long prec).

3.9.4 intfouriersin(X = a, b, z, expr , {tab}): numerical integration of expr(X) sin(2πzX) from a
to b, in other words Fourier sine transform (from a to b) of the function represented by expr . a
and b are coded as in intnum, and are not necessarily at infinity but if they are, oscillations (i.e.
[[±1], αI]) are forbidden.

The library syntax is intfouriersin(void *E, GEN (*eval)(GEN,void*), GEN a, GEN b,

GEN z, GEN tab, long prec).

3.9.5 intfuncinit(X = a, b, expr , {flag = 0}, {m = 0}): initalize tables for use with integral
transforms such as intmellininv, etc., where a and b are coded as in intnum, expr is the function
s(X) to which the integral transform is to be applied (which will multiply the weights of integration)
and m is as in intnuminit. If flag is nonzero, assumes that s(−X) = s(X), which makes the
computation twice as fast. See intmellininvshort for examples of the use of this function, which
is particularly useful when the function s(X) is lengthy to compute, such as a gamma product.

The library syntax is intfuncinit(void *E, GEN (*eval)(GEN,void*), GEN a,GEN b,long

m, long flag, long prec). Note that the order of m and flag are reversed compared to the GP

syntax.

3.9.6 intlaplaceinv(X = sig, z, expr , {tab}): numerical integration of expr(X)eXz with respect
to X on the line <(X) = sig, divided by 2iπ, in other words, inverse Laplace transform of the
function corresponding to expr at the value z.

sig is coded as follows. Either it is a real number σ, equal to the abcissa of integration, and
then the function to be integrated is assumed to be slowly decreasing when the imaginary part of
the variable tends to ±∞. Or it is a two component vector [σ, α], where σ is as before, and either
α = 0 for slowly decreasing functions, or α > 0 for functions decreasing like exp(−αt). Note that
it is not necessary to choose the exact value of α. tab is as in intnum.

It is often a good idea to use this function with a value of m one or two higher than the one
chosen by default (which can be viewed thanks to the function intnumstep), or to increase the
abcissa of integration σ. For example:

? \p 105

? intlaplaceinv(x=2, 1, 1/x) - 1

time = 350 ms.

%1 = 7.37... E-55 + 1.72... E-54*I \\ not so good

184



? m = intnumstep()

%2 = 7

? intlaplaceinv(x=2, 1, 1/x, m+1) - 1

time = 700 ms.

%3 = 3.95... E-97 + 4.76... E-98*I \\ better
? intlaplaceinv(x=2, 1, 1/x, m+2) - 1

time = 1400 ms.

%4 = 0.E-105 + 0.E-106*I \\ perfect but slow.
? intlaplaceinv(x=5, 1, 1/x) - 1

time = 340 ms.

%5 = -5.98... E-85 + 8.08... E-85*I \\ better than %1
? intlaplaceinv(x=5, 1, 1/x, m+1) - 1

time = 680 ms.

%6 = -1.09... E-106 + 0.E-104*I \\ perfect, fast.
? intlaplaceinv(x=10, 1, 1/x) - 1

time = 340 ms.

%7 = -4.36... E-106 + 0.E-102*I \\ perfect, fastest, but why sig = 10?
? intlaplaceinv(x=100, 1, 1/x) - 1

time = 330 ms.

%7 = 1.07... E-72 + 3.2... E-72*I \\ too far now...

The library syntax is intlaplaceinv(void *E, GEN (*eval)(GEN,void*), GEN sig,GEN z,

GEN tab, long prec).

3.9.7 intmellininv(X = sig, z, expr , {tab}): numerical integration of expr(X)z−X with respect to
X on the line <(X) = sig, divided by 2iπ, in other words, inverse Mellin transform of the function
corresponding to expr at the value z.

sig is coded as follows. Either it is a real number σ, equal to the abcissa of integration, and
then the function to be integrated is assumed to decrease exponentially fast, of the order of exp(−t)
when the imaginary part of the variable tends to ±∞. Or it is a two component vector [σ, α], where
σ is as before, and either α = 0 for slowly decreasing functions, or α > 0 for functions decreasing
like exp(−αt), such as gamma products. Note that it is not necessary to choose the exact value of
α, and that α = 1 (equivalent to sig alone) is usually sufficient. tab is as in intnum.

As all similar functions, this function is provided for the convenience of the user, who could
use intnum directly. However it is in general better to use intmellininvshort.

? \p 105

? intmellininv(s=2,4, gamma(s)^3);

time = 1,190 ms. \\ reasonable.
? \p 308

? intmellininv(s=2,4, gamma(s)^3);

time = 51,300 ms. \\ slow because of Γ(s)3.

The library syntax is intmellininv(void *E, GEN (*eval)(GEN,void*), GEN sig, GEN z,

GEN tab, long prec).
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3.9.8 intmellininvshort(sig, z, tab): numerical integration of s(X)z−X with respect to X on the
line <(X) = sig, divided by 2iπ, in other words, inverse Mellin transform of s(X) at the value z.
Here s(X) is implicitly contained in tab in intfuncinit format, typically

tab = intfuncinit(T = [-1], [1], s(sig + I*T))

or similar commands. Take the example of the inverse Mellin transform of Γ(s)3 given in int-

mellininv:

? \p 105

? oo = [1]; \\ for clarity
? A = intmellininv(s=2,4, gamma(s)^3);

time = 2,500 ms. \\ not too fast because of Γ(s)3.
\\ function of real type, decreasing as exp(−3π/2 · |t|)
? tab = intfuncinit(t=[-oo, 3*Pi/2],[oo, 3*Pi/2], gamma(2+I*t)^3, 1);

time = 1,370 ms.

? intmellininvshort(2,4, tab) - A

time = 50 ms.

%4 = -1.26... - 3.25...E-109*I \\ 50 times faster than A and perfect.
? tab2 = intfuncinit(t=-oo, oo, gamma(2+I*t)^3, 1);

? intmellininvshort(2,4, tab2)

%6 = -1.2...E-42 - 3.2...E-109*I \\ 63 digits lost

In the computation of tab, it was not essential to include the exact exponential decrease of Γ(2+it)3.
But as the last example shows, a rough indication must be given, otherwise slow decrease is assumed,
resulting in catastrophic loss of accuracy.

The library syntax is intmellininvshort(GEN sig, GEN z, GEN tab, long prec).

3.9.9 intnum(X = a, b, expr , {tab}): numerical integration of expr on [a, b] (possibly infinite
interval) with respect to X, where a and b are coded as explained below. The integrand may have
values belonging to a vector space over the real numbers; in particular, it can be complex-valued
or vector-valued.

If tab is omitted, necessary integration tables are computed using intnuminit according to
the current precision. It may be a positive integer m, and tables are computed assuming the
integration step is 1/2m. Finally tab can be a table output by intnuminit, in which case it is used
directly. This is important if several integrations of the same type are performed (on the same kind
of interval and functions, and the same accuracy), since it saves expensive precomputations.

If tab is omitted the algorithm guesses a reasonable value for m depending on the current
precision. That value may be obtained as

intnumstep()

However this value may be off from the optimal one, and this is important since the integration
time is roughly proportional to 2m. One may try consecutive values of m until they give the same
value up to an accepted error.

The endpoints a and b are coded as follows. If a is not at ±∞, it is either coded as a scalar
(real or complex), or as a two component vector [a, α], where the function is assumed to have a
singularity of the form (x− a)α+ε at a, where ε indicates that powers of logarithms are neglected.
In particular, [a, α] with α ≥ 0 is equivalent to a. If a wrong singularity exponent is used, the result
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will lose a catastrophic number of decimals, for instance approximately half the number of digits
will be correct if α = −1/2 is omitted.

The endpoints of integration can be ±∞, which is coded as [±1] or as [[±1], α]. Here α codes
the behaviour of the function at ±∞ as follows.

• α = 0 (or no α at all, i.e. simply [±1]) assumes that the function to be integrated tends to
zero, but not exponentially fast, and not oscillating such as sin(x)/x.

• α > 0 assumes that the function tends to zero exponentially fast approximately as exp(−αx),
including reasonably oscillating functions such as exp(−x) sin(x). The precise choice of α, while
useful in extreme cases, is not critical, and may be off by a factor of 10 or more from the correct
value.

• α < −1 assumes that the function tends to 0 slowly, like xα. Here it is essential to give the
correct α, if possible, but on the other hand α ≤ −2 is equivalent to α = 0, in other words to no α
at all.

The last two codes are reserved for oscillating functions. Let k > 0 real, and g(x) a nonoscil-
lating function tending to 0, then

• α = kI assumes that the function behaves like cos(kx)g(x).

• α = −kI assumes that the function behaves like sin(kx)g(x).

Here it is critical to give the exact value of k. If the oscillating part is not a pure sine or cosine,
one must expand it into a Fourier series, use the above codings, and sum the resulting contribu-
tions. Otherwise you will get nonsense. Note that cos(kx) (and similarly sin(kx)) means that very
function, and not a translated version such as cos(kx+ a).

If for instance f(x) = cos(kx)g(x) where g(x) tends to zero exponentially fast as exp(−αx),
it is up to the user to choose between [[±1], α] and [[±1], kI], but a good rule of thumb is that if
the oscillations are much weaker than the exponential decrease, choose [[±1], α], otherwise choose
[[±1], kI], although the latter can reasonably be used in all cases, while the former cannot. To take
a specific example, in the inverse Mellin transform, the function to be integrated is almost always
exponentially decreasing times oscillating. If we choose the oscillating type of integral we perhaps
obtain the best results, at the expense of having to recompute our functions for a different value of
the variable z giving the transform, preventing us to use a function such as intmellininvshort.
On the other hand using the exponential type of integral, we obtain less accurate results, but we
skip expensive recomputations. See intmellininvshort and intfuncinit for more explanations.

Note. If you do not like the code [±1] for ±∞, you are welcome to set, e.g oo = [1] or INFINITY
= [1], then using +oo, -oo, -INFINITY, etc. will have the expected behaviour.

We shall now see many examples to get a feeling for what the various parameters achieve. All
examples below assume precision is set to 105 decimal digits. We first type

? \p 105

? oo = [1] \\ for clarity
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Apparent singularities. Even if the function f(x) represented by expr has no singularities, it
may be important to define the function differently near special points. For instance, if f(x) =
1/(exp(x)− 1)− exp(−x)/x, then

∫∞
0
f(x) dx = γ, Euler’s constant Euler. But

? f(x) = 1/(exp(x)-1) - exp(-x)/x

? intnum(x = 0, [oo,1], f(x)) - Euler

%1 = 6.00... E-67

thus only correct to 76 decimal digits. This is because close to 0 the function f is computed with
an enormous loss of accuracy. A better solution is

? f(x) = 1/(exp(x)-1)-exp(-x)/x

? F = truncate( f(t + O(t^7)) ); \\ expansion around t = 0
? g(x) = if (x > 1e-18, f(x), subst(F,t,x)) \\ note that 6 · 18 > 105
? intnum(x = 0, [oo,1], g(x)) - Euler

%2 = 0.E-106 \\ perfect

It is up to the user to determine constants such as the 10−18 and 7 used above.

True singularities. With true singularities the result is much worse. For instance

? intnum(x = 0, 1, 1/sqrt(x)) - 2

%1 = -1.92... E-59 \\ only 59 correct decimals

? intnum(x = [0,-1/2], 1, 1/sqrt(x)) - 2

%2 = 0.E-105 \\ better

Oscillating functions.

? intnum(x = 0, oo, sin(x) / x) - Pi/2

%1 = 20.78.. \\ nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2

%2 = 0.004.. \\ bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2

%3 = 0.E-105 \\ perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2 \\ oops, wrong k
%4 = 0.07...

? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2

%5 = 0.E-105 \\ perfect

? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4

%6 = 0.0092... \\ bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4

%7 = O(x^17)

We may use the above linearization and compute two oscillating integrals with “infinite endpoints”
[oo, -I] and [oo, -3*I] respectively, or notice the obvious change of variable, and reduce to the
single integral 1

2

∫∞
0

sin(x)/x dx. We finish with some more complicated examples:

? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2

%1 = -0.0004... \\ bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \

+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2

%2 = -2.18... E-106 \\ OK
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? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3

%3 = 5.45... E-107 \\ OK
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3

%4 = -1.33... E-89 \\ lost 16 decimals. Try higher m:
? m = intnumstep()

%5 = 7 \\ the value of m actually used above.
? tab = intnuminit(0,[oo,-I], m+1); \\ try m one higher.
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3

%6 = 5.45... E-107 \\ OK this time.

Warning. Like sumalt, intnum often assigns a reasonable value to diverging integrals. Use these
values at your own risk! For example:

? intnum(x = 0, [oo, -I], x^2*sin(x))

%1 = -2.0000000000...

Note the formula ∫ ∞
0

sin(x)/xs dx = cos(πs/2)Γ(1− s) ,

a priori valid only for 0 < <(s) < 2, but the right hand side provides an analytic continuation
which may be evaluated at s = −2. . .

Multivariate integration. Using successive univariate integration with respect to different formal
parameters, it is immediate to do naive multivariate integration. But it is important to use a suitable
intnuminit to precompute data for the internal integrations at least!

For example, to compute the double integral on the unit disc x2 + y2 ≤ 1 of the function
x2 + y2, we can write

? tab = intnuminit(-1,1);

? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab)

The first tab is essential, the second optional. Compare:

? tab = intnuminit(-1,1);

time = 30 ms.

? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));

time = 54,410 ms. \\ slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);

time = 7,210 ms. \\ faster

However, the intnuminit program is usually pessimistic when it comes to choosing the integration
step 2−m. It is often possible to improve the speed by trial and error. Continuing the above
example:

? test(M) =

{

tab = intnuminit(-1,1, M);

intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2,tab), tab) - Pi/2

}

? m = intnumstep() \\ what value of m did it take ?
%1 = 7

? test(m - 1)

189



time = 1,790 ms.

%2 = -2.05... E-104 \\ 4 = 22 times faster and still OK.
? test(m - 2)

time = 430 ms.

%3 = -1.11... E-104 \\ 16 = 24 times faster and still OK.
? test(m - 3)

time = 120 ms.

%3 = -7.23... E-60 \\ 64 = 26 times faster, lost 45 decimals.

The library syntax is intnum(void *E, GEN (*eval)(GEN,void*), GEN a,GEN b,GEN tab,

long prec), where an omitted tab is coded as NULL.

3.9.10 intnuminit(a, b, {m = 0}): initialize tables for integration from a to b, where a and b are
coded as in intnum. Only the compactness, the possible existence of singularities, the speed of
decrease or the oscillations at infinity are taken into account, and not the values. For instance
intnuminit(-1,1) is equivalent to intnuminit(0,Pi), and intnuminit([0,-1/2],[1]) is equiv-
alent to intnuminit([-1],[-1,-1/2]). If m is not given, it is computed according to the current
precision. Otherwise the integration step is 1/2m. Reasonable values of m are m = 6 or m = 7 for
100 decimal digits, and m = 9 for 1000 decimal digits.

The result is technical, but in some cases it is useful to know the output. Let x = φ(t) be
the change of variable which is used. tab[1] contains the integer m as above, either given by the
user or computed from the default precision, and can be recomputed directly using the function
intnumstep. tab[2] and tab[3] contain respectively the abcissa and weight corresponding to t = 0
(φ(0) and φ′(0)). tab[4] and tab[5] contain the abcissas and weights corresponding to positive
t = nh for 1 ≤ n ≤ N and h = 1/2m (φ(nh) and φ′(nh)). Finally tab[6] and tab[7] contain
either the abcissas and weights corresponding to negative t = nh for −N ≤ n ≤ −1, or may be
empty (but not always) if φ(t) is an odd function (implicitly we would have tab[6] = −tab[4] and
tab[7] = tab[5]).

The library syntax is intnuminit(GEN a, GEN b, long m, long prec).

3.9.11 intnumromb(X = a, b, expr , {flag = 0}): numerical integration of expr (smooth in ]a, b[),
with respect to X. This function is deprecated, use intnum instead.

Set flag = 0 (or omit it altogether) when a and b are not too large, the function is smooth,
and can be evaluated exactly everywhere on the interval [a, b].

If flag = 1, uses a general driver routine for doing numerical integration, making no particular
assumption (slow).

flag = 2 is tailored for being used when a or b are infinite. One must have ab > 0, and in fact
if for example b = +∞, then it is preferable to have a as large as possible, at least a ≥ 1.

If flag = 3, the function is allowed to be undefined (but continuous) at a or b, for example the
function sin(x)/x at x = 0.

The user should not require too much accuracy: 18 or 28 decimal digits is OK, but not much
more. In addition, analytical cleanup of the integral must have been done: there must be no
singularities in the interval or at the boundaries. In practice this can be accomplished with a
simple change of variable. Furthermore, for improper integrals, where one or both of the limits
of integration are plus or minus infinity, the function must decrease sufficiently rapidly at infinity.
This can often be accomplished through integration by parts. Finally, the function to be integrated
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should not be very small (compared to the current precision) on the entire interval. This can of
course be accomplished by just multiplying by an appropriate constant.

Note that infinity can be represented with essentially no loss of accuracy by 1e1000. However
beware of real underflow when dealing with rapidly decreasing functions. For example, if one wants
to compute the

∫∞
0
e−x

2

dx to 28 decimal digits, then one should set infinity equal to 10 for example,
and certainly not to 1e1000.

The library syntax is intnumromb(void *E, GEN (*eval)(GEN,void*), GEN a, GEN b,

long flag, long prec), where eval(x,E) returns the value of the function at x. You may store
any additional information required by eval in E, or set it to NULL.

3.9.12 intnumstep(): give the value of m used in all the intnum and sumnum programs, hence
such that the integration step is equal to 1/2m.

The library syntax is intnumstep(long prec).

3.9.13 prod(X = a, b, expr , {x = 1}): product of expression expr , initialized at x, the formal
parameter X going from a to b. As for sum, the main purpose of the initialization parameter x is
to force the type of the operations being performed. For example if it is set equal to the integer 1,
operations will start being done exactly. If it is set equal to the real 1., they will be done using real
numbers having the default precision. If it is set equal to the power series 1 +O(Xk) for a certain
k, they will be done using power series of precision at most k. These are the three most common
initializations.

As an extreme example, compare

? prod(i=1, 100, 1 - X^i); \\ this has degree 5050 !!
time = 3,335 ms.

? prod(i=1, 100, 1 - X^i, 1 + O(X^101))

time = 43 ms.

%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \

X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)

The library syntax is produit(entree *ep, GEN a, GEN b, char *expr, GEN x).

3.9.14 prodeuler(X = a, b, expr): product of expression expr , initialized at 1. (i.e. to a real
number equal to 1 to the current realprecision), the formal parameter X ranging over the prime
numbers between a and b.

The library syntax is prodeuler(void *E, GEN (*eval)(GEN,void*), GEN a,GEN b, long

prec).

3.9.15 prodinf(X = a, expr , {flag = 0}): infinite product of expression expr , the formal parameter
X starting at a. The evaluation stops when the relative error of the expression minus 1 is less than
the default precision. The expressions must always evaluate to an element of C.

If flag = 1, do the product of the (1 + expr) instead.

The library syntax is prodinf(void *E, GEN (*eval)(GEN, void*), GEN a, long prec)
(flag = 0), or prodinf1 with the same arguments (flag = 1).
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3.9.16 solve(X = a, b, expr): find a real root of expression expr between a and b, under the
condition expr(X = a)∗ expr(X = b) ≤ 0. This routine uses Brent’s method and can fail miserably
if expr is not defined in the whole of [a, b] (try solve(x=1, 2, tan(x)).

The library syntax is zbrent(void *E,GEN (*eval)(GEN,void*),GEN a,GEN b,long prec).

3.9.17 sum(X = a, b, expr , {x = 0}): sum of expression expr , initialized at x, the formal parameter
going from a to b. As for prod, the initialization parameter x may be given to force the type of the
operations being performed.

As an extreme example, compare

? sum(i=1, 5000, 1/i); \\ rational number: denominator has 2166 digits.
time = 1,241 ms.

? sum(i=1, 5000, 1/i, 0.)

time = 158 ms.

%2 = 9.094508852984436967261245533

The library syntax is somme(entree *ep, GEN a, GEN b, char *expr, GEN x). This is to
be used as follows: ep represents the dummy variable used in the expression expr

/* compute a^2 + . . . + b^2 */

{

/* define the dummy variable "i" */

entree *ep = is_entry("i");

/* sum for a <= i <= b */

return somme(ep, a, b, "i^2", gen_0);

}

3.9.18 sumalt(X = a, expr , {flag = 0}): numerical summation of the series expr , which should
be an alternating series, the formal variable X starting at a. Use an algorithm of F. Villegas as
modified by D. Zagier (improves on Euler-Van Wijngaarden method).

If flag = 1, use a variant with slightly different polynomials. Sometimes faster.

Divergent alternating series can sometimes be summed by this method, as well as series which
are not exactly alternating (see for example Section 2.6). If the series already converges geometri-
cally, suminf is often a better choice:

? \p28

? sumalt(i = 1, -(-1)^i / i) - log(2)

time = 0 ms.

%1 = -2.524354897 E-29

? suminf(i = 1, -(-1)^i / i)

*** suminf: user interrupt after 10min, 20,100 ms.

? \p1000

? sumalt(i = 1, -(-1)^i / i) - log(2)

time = 90 ms.

%2 = 4.459597722 E-1002

? sumalt(i = 0, (-1)^i / i!) - exp(-1)

time = 670 ms.

%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944

? suminf(i = 0, (-1)^i / i!) - exp(-1)
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time = 110 ms.

%4 = -8.39147638 E-1000 \\ faster and more accurate

The library syntax is sumalt(void *E, GEN (*eval)(GEN,void*),GEN a,long prec). Also
available is sumalt2 with the same arguments (flag = 1).

3.9.19 sumdiv(n,X, expr): sum of expression expr over the positive divisors of n.

Arithmetic functions like sigma use the multiplicativity of the underlying expression to speed
up the computation. In the present version 2.3.5, there is no way to indicate that expr is multi-
plicative in n, hence specialized functions should be preferred whenever possible.

The library syntax is divsum(entree *ep, GEN num, char *expr).

3.9.20 suminf(X = a, expr): infinite sum of expression expr , the formal parameter X starting at
a. The evaluation stops when the relative error of the expression is less than the default precision
for 3 consecutive evaluations. The expressions must always evaluate to a complex number.

If the series converges slowly, make sure realprecision is low (even 28 digits may be too
much). In this case, if the series is alternating or the terms have a constant sign, sumalt and
sumpos should be used instead.

? \p28

? suminf(i = 1, -(-1)^i / i)

*** suminf: user interrupt after 10min, 20,100 ms.

? sumalt(i = 1, -(-1)^i / i) - log(2)

time = 0 ms.

%1 = -2.524354897 E-29

The library syntax is suminf(void *E, GEN (*eval)(GEN,void*), GEN a, long prec).

3.9.21 sumnum(X = a, sig, expr , {tab}), {flag = 0}: numerical summation of expr , the variable
X taking integer values from ceiling of a to +∞, where expr is assumed to be a holomorphic
function f(X) for <(X) ≥ σ.

The parameter σ ∈ R is coded in the argument sig as follows: it is either

• a real number σ. Then the function f is assumed to decrease at least as 1/X2 at infinity,
but not exponentially;

• a two-component vector [σ, α], where σ is as before, α < −1. The function f is assumed to
decrease like Xα. In particular, α ≤ −2 is equivalent to no α at all.

• a two-component vector [σ, α], where σ is as before, α > 0. The function f is assumed
to decrease like exp(−αX). In this case it is essential that α be exactly the rate of exponential
decrease, and it is usually a good idea to increase the default value of m used for the integration
step. In practice, if the function is exponentially decreasing sumnum is slower and less accurate than
sumpos or suminf, so should not be used.

The function uses the intnum routines and integration on the line <(s) = σ. The optional
argument tab is as in intnum, except it must be initialized with sumnuminit instead of intnuminit.

When tab is not precomputed, sumnum can be slower than sumpos, when the latter is applicable.
It is in general faster for slowly decreasing functions.
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Finally, if flag is nonzero, we assume that the function f to be summed is of real type, i.e.
satisfies f(z) = f(z), which speeds up the computation.

? \p 308

? a = sumpos(n=1, 1/(n^3+n+1));

time = 1,410 ms.

? tab = sumnuminit(2);

time = 1,620 ms. \\ slower but done once and for all.
? b = sumnum(n=1, 2, 1/(n^3+n+1), tab);

time = 460 ms. \\ 3 times as fast as sumpos

? a - b

%4 = -1.0... E-306 + 0.E-320*I \\ perfect.
? sumnum(n=1, 2, 1/(n^3+n+1), tab, 1) - a; \\ function of real type
time = 240 ms.

%2 = -1.0... E-306 \\ twice as fast, no imaginary part.
? c = sumnum(n=1, 2, 1/(n^2+1), tab, 1);

time = 170 ms. \\ fast
? d = sumpos(n=1, 1 / (n^2+1));

time = 2,700 ms. \\ slow.
? d - c

time = 0 ms.

%5 = 1.97... E-306 \\ perfect.

For slowly decreasing function, we must indicate singularities:

? \p 308

? a = sumnum(n=1, 2, n^(-4/3));

time = 9,930 ms. \\ slow because of the computation of n−4/3.
? a - zeta(4/3)

time = 110 ms.

%1 = -2.42... E-107 \\ lost 200 decimals because of singularity at ∞
? b = sumnum(n=1, [2,-4/3], n^(-4/3), /*omitted*/, 1); \\ of real type
time = 12,210 ms.

? b - zeta(4/3)

%3 = 1.05... E-300 \\ better

Since the complex values of the function are used, beware of determination problems. For
instance:

? \p 308

? tab = sumnuminit([2,-3/2]);

time = 1,870 ms.

? sumnum(n=1,[2,-3/2], 1/(n*sqrt(n)), tab,1) - zeta(3/2)

time = 690 ms.

%1 = -1.19... E-305 \\ fast and correct
? sumnum(n=1,[2,-3/2], 1/sqrt(n^3), tab,1) - zeta(3/2)

time = 730 ms.

%2 = -1.55... \\ nonsense. However
? sumnum(n=1,[2,-3/2], 1/n^(3/2), tab,1) - zeta(3/2)

time = 8,990 ms.

%3 = -1.19... E-305 \\ perfect, as 1/(n ∗
√
n) above but much slower
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For exponentially decreasing functions, sumnum is given for completeness, but one of suminf
or sumpos should always be preferred. If you experiment with such functions and sumnum anyway,
indicate the exact rate of decrease and increase m by 1 or 2:

? suminf(n=1, 2^(-n)) - 1

time = 10 ms.

%1 = -1.11... E-308 \\ fast and perfect
? sumpos(n=1, 2^(-n)) - 1

time = 10 ms.

%2 = -2.78... E-308 \\ also fast and perfect
? sumnum(n=1,2, 2^(-n)) - 1

*** sumnum: precision too low in mpsc1 \\ nonsense
? sumnum(n=1, [2,log(2)], 2^(-n), /*omitted*/, 1) - 1 \\ of real type
time = 5,860 ms.

%3 = -1.5... E-236 \\ slow and lost 70 decimals
? m = intnumstep()

%4 = 9

? sumnum(n=1,[2,log(2)], 2^(-n), m+1, 1) - 1

time = 11,770 ms.

%5 = -1.9... E-305 \\ now perfect, but slow.

The library syntax is sumnum(void *E, GEN (*eval)(GEN,void*), GEN a,GEN sig,GEN

tab,long flag, long prec).

3.9.22 sumnumalt(X = a, sig, expr , {tab}, {flag = 0}): numerical summation of (−1)Xexpr(X),
the variable X taking integer values from ceiling of a to +∞, where expr is assumed to be a
holomorphic function for <(X) ≥ sig (or sig[1]).

Warning. This function uses the intnum routines and is orders of magnitude slower than sumalt.
It is only given for completeness and should not be used in practice.

Warning2. The expression expr must not include the (−1)X coefficient. Thus sumalt(n =
a, (−1)nf(n)) is (approximately) equal to sumnumalt(n = a, sig, f(n)).

sig is coded as in sumnum. However for slowly decreasing functions (where sig is coded as
[σ, α] with α < −1), it is not really important to indicate α. In fact, as for sumalt, the program
will often give meaningful results (usually analytic continuations) even for divergent series. On the
other hand the exponential decrease must be indicated.
tab

is as in intnum, but if used must be initialized with sumnuminit. If flag is nonzero, assumes
that the function f to be summed is of real type, i.e. satisfies f(z) = f(z), and then twice faster
when tab is precomputed.

? \p 308

? tab = sumnuminit(2, /*omitted*/, -1); \\ abcissa σ = 2, alternating sums.
time = 1,620 ms. \\ slow, but done once and for all.
? a = sumnumalt(n=1, 2, 1/(n^3+n+1), tab, 1);

time = 230 ms. \\ similar speed to sumnum

? b = sumalt(n=1, (-1)^n/(n^3+n+1));

time = 0 ms. \\ infinitely faster!
? a - b
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time = 0 ms.

%1 = -1.66... E-308 \\ perfect

The library syntax is sumnumalt(void *E, GEN (*eval)(GEN,void*), GEN a, GEN sig,

GEN tab, long flag, long prec).

3.9.23 sumnuminit(sig,m = 0, sgn = 1): initialize tables for numerical summation using sumnum

(with sgn = 1) or sumnumalt (with sgn = −1), sig is the abcissa of integration coded as in sumnum,
and m is as in intnuminit.

The library syntax is sumnuminit(GEN sig, long m, long sgn, long prec).

3.9.24 sumpos(X = a, expr , {flag = 0}): numerical summation of the series expr , which must be
a series of terms having the same sign, the formal variable X starting at a. The algorithm used is
Van Wijngaarden’s trick for converting such a series into an alternating one, and is quite slow. For
regular functions, the function sumnum is in general much faster once the initializations have been
made using sumnuminit.

If flag = 1, use slightly different polynomials. Sometimes faster.

The library syntax is sumpos(void *E, GEN (*eval)(GEN,void*),GEN a,long prec). Also
available is sumpos2 with the same arguments (flag = 1).

3.10 Plotting functions.

Although plotting is not even a side purpose of PARI, a number of plotting functions are
provided. Moreover, a lot of people suggested ideas or submitted patches for this section of the
code. Among these, special thanks go to Klaus-Peter Nischke who suggested the recursive plotting
and the forking/resizing stuff under X11, and Ilya Zakharevich who undertook a complete rewrite
of the graphic code, so that most of it is now platform-independent and should be easy to port or
expand. There are three types of graphic functions.

3.10.1 High-level plotting functions (all the functions starting with ploth) in which the user
has little to do but explain what type of plot he wants, and whose syntax is similar to the one used
in the preceding section.

3.10.2 Low-level plotting functions (called rectplot functions, sharing the prefix plot), where
every drawing primitive (point, line, box, etc.) is specified by the user. These low-level functions
work as follows. You have at your disposal 16 virtual windows which are filled independently, and
can then be physically ORed on a single window at user-defined positions. These windows are
numbered from 0 to 15, and must be initialized before being used by the function plotinit, which
specifies the height and width of the virtual window (called a rectwindow in the sequel). At all
times, a virtual cursor (initialized at [0, 0]) is associated to the window, and its current value can
be obtained using the function plotcursor.

A number of primitive graphic objects (called rect objects) can then be drawn in these windows,
using a default color associated to that window (which can be changed under X11, using the
plotcolor function, black otherwise) and only the part of the object which is inside the window
will be drawn, with the exception of polygons and strings which are drawn entirely. The ones
sharing the prefix plotr draw relatively to the current position of the virtual cursor, the others use
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absolute coordinates. Those having the prefix plotrecth put in the rectwindow a large batch of
rect objects corresponding to the output of the related ploth function.

Finally, the actual physical drawing is done using the function plotdraw. The rectwindows
are preserved so that further drawings using the same windows at different positions or different
windows can be done without extra work. To erase a window (and free the corresponding memory),
use the function plotkill. It is not possible to partially erase a window. Erase it completely,
initialize it again and then fill it with the graphic objects that you want to keep.

In addition to initializing the window, you may use a scaled window to avoid unnecessary
conversions. For this, use the function plotscale below. As long as this function is not called,
the scaling is simply the number of pixels, the origin being at the upper left and the y-coordinates
going downwards.

Note that in the present version 2.3.5 all plotting functions (both low and high level) are
written for the X11-window system (hence also for GUI’s based on X11 such as Openwindows and
Motif) only, though little code remains which is actually platform-dependent. It is also possible
to compile gp with either of the Qt or FLTK graphical libraries. A Suntools/Sunview, Macintosh,
and an Atari/Gem port were provided for previous versions, but are now obsolete.

Under X11, the physical window (opened by plotdraw or any of the ploth* functions) is
completely separated from gp (technically, a fork is done, and the non-graphical memory is imme-
diately freed in the child process), which means you can go on working in the current gp session,
without having to kill the window first. Under X11, this window can be closed, enlarged or reduced
using the standard window manager functions. No zooming procedure is implemented though (yet).

3.10.3 Functions for PostScript output: in the same way that printtex allows you to have
a TEX output corresponding to printed results, the functions starting with ps allow you to have
PostScript output of the plots. This will not be absolutely identical with the screen output, but
will be sufficiently close. Note that you can use PostScript output even if you do not have the
plotting routines enabled. The PostScript output is written in a file whose name is derived from
the psfile default (./pari.ps if you did not tamper with it). Each time a new PostScript output
is asked for, the PostScript output is appended to that file. Hence you probably want to remove
this file, or change the value of psfile, in between plots. On the other hand, in this manner, as
many plots as desired can be kept in a single file.

3.10.4 And library mode ? None of the graphic functions are available within the PARI library,
you must be under gp to use them. The reason for that is that you really should not use PARI
for heavy-duty graphical work, there are better specialized alternatives around. This whole set of
routines was only meant as a convenient, but simple-minded, visual aid. If you really insist on
using these in your program (we warned you), the source (plot*.c) should be readable enough for
you to achieve something.

3.10.5 plot(X = a, b, expr , {Ymin}, {Ymax}): crude ASCII plot of the function represented by
expression expr from a to b, with Y ranging from Ymin to Ymax . If Ymin (resp. Ymax ) is not
given, the minima (resp. the maxima) of the computed values of the expression is used instead.

3.10.6 plotbox(w, x2, y2): let (x1, y1) be the current position of the virtual cursor. Draw in the
rectwindow w the outline of the rectangle which is such that the points (x1, y1) and (x2, y2) are
opposite corners. Only the part of the rectangle which is in w is drawn. The virtual cursor does
not move.
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3.10.7 plotclip(w): ‘clips’ the content of rectwindow w, i.e remove all parts of the drawing that
would not be visible on the screen. Together with plotcopy this function enables you to draw on
a scratchpad before commiting the part you’re interested in to the final picture.

3.10.8 plotcolor(w, c): set default color to c in rectwindow w. In present version 2.3.5, this is
only implemented for the X11 window system, and you only have the following palette to choose
from:

1=black, 2=blue, 3=sienna, 4=red, 5=green, 6=grey, 7=gainsborough.

Note that it should be fairly easy for you to hardwire some more colors by tweaking the
files rect.h and plotX.c. User-defined colormaps would be nice, and may be available in future
versions.

3.10.9 plotcopy(w1, w2, dx, dy): copy the contents of rectwindow w1 to rectwindow w2, with
offset (dx, dy).

3.10.10 plotcursor(w): give as a 2-component vector the current (scaled) position of the virtual
cursor corresponding to the rectwindow w.

3.10.11 plotdraw(list): physically draw the rectwindows given in list which must be a vector
whose number of components is divisible by 3. If list = [w1, x1, y1, w2, x2, y2, . . .], the windows w1,
w2, etc. are physically placed with their upper left corner at physical position (x1, y1), (x2, y2),. . .
respectively, and are then drawn together. Overlapping regions will thus be drawn twice, and the
windows are considered transparent. Then display the whole drawing in a special window on your
screen.

3.10.12 ploth(X = a, b, expr , {flag = 0}, {n = 0}): high precision plot of the function y = f(x)
represented by the expression expr , x going from a to b. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving the coordinates of the
bounding box in the form [xmin, xmax , ymin, ymax ].

Important note: Since this may involve a lot of function calls, it is advised to keep the current
precision to a minimum (e.g. 9) before calling this function.

n specifies the number of reference point on the graph (0 means use the hardwired default
values, that is: 1000 for general plot, 1500 for parametric plot, and 15 for recursive plot).

If no flag is given, expr is either a scalar expression f(X), in which case the plane curve
y = f(X) will be drawn, or a vector [f1(X), . . . , fk(X)], and then all the curves y = fi(X) will be
drawn in the same window.

The binary digits of flag mean:

• 1 = Parametric: parametric plot. Here expr must be a vector with an even number of
components. Successive pairs are then understood as the parametric coordinates of a plane curve.
Each of these are then drawn.

For instance:

ploth(X=0,2*Pi,[sin(X),cos(X)],1) will draw a circle.

ploth(X=0,2*Pi,[sin(X),cos(X)]) will draw two entwined sinusoidal curves.
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ploth(X=0,2*Pi,[X,X,sin(X),cos(X)],1) will draw a circle and the line y = x.

• 2 = Recursive: recursive plot. If this flag is set, only one curve can be drawn at a time,
i.e. expr must be either a two-component vector (for a single parametric curve, and the parametric
flag has to be set), or a scalar function. The idea is to choose pairs of successive reference points,
and if their middle point is not too far away from the segment joining them, draw this as a local
approximation to the curve. Otherwise, add the middle point to the reference points. This is fast,
and usually more precise than usual plot. Compare the results of

ploth(X = −1, 1, sin(1/X), 2) and ploth(X = −1, 1, sin(1/X))

for instance. But beware that if you are extremely unlucky, or choose too few reference points,
you may draw some nice polygon bearing little resemblance to the original curve. For instance you
should never plot recursively an odd function in a symmetric interval around 0. Try

ploth(x = -20, 20, sin(x), 2)

to see why. Hence, it’s usually a good idea to try and plot the same curve with slightly different
parameters.

The other values toggle various display options:

• 4 = no Rescale: do not rescale plot according to the computed extrema. This is meant to
be used when graphing multiple functions on a rectwindow (as a plotrecth call), in conjunction
with plotscale.

• 8 = no X axis: do not print the x-axis.

• 16 = no Y axis: do not print the y-axis.

• 32 = no Frame: do not print frame.

• 64 = no Lines: only plot reference points, do not join them.

• 128 = Points too: plot both lines and points.

• 256 = Splines: use splines to interpolate the points.

• 512 = no X ticks: plot no x-ticks.

• 1024 = no Y ticks: plot no y-ticks.

• 2048 = Same ticks: plot all ticks with the same length.

3.10.13 plothraw(listx , listy , {flag = 0}): given listx and listy two vectors of equal length, plots
(in high precision) the points whose (x, y)-coordinates are given in listx and listy . Automatic
positioning and scaling is done, but with the same scaling factor on x and y. If flag is 1, join
points, other non-0 flags toggle display options and should be combinations of bits 2k, k ≥ 3 as in
ploth.

3.10.14 plothsizes(): return data corresponding to the output window in the form of a 6-
component vector: window width and height, sizes for ticks in horizontal and vertical directions
(this is intended for the gnuplot interface and is currently not significant), width and height of
characters.
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3.10.15 plotinit(w, x, y, {flag}): initialize the rectwindow w, destroying any rect objects you may
have already drawn in w. The virtual cursor is set to (0, 0). The rectwindow size is set to width
x and height y. If flag = 0, x and y represent pixel units. Otherwise, x and y are understood as
fractions of the size of the current output device (hence must be between 0 and 1) and internally
converted to pixels.

The plotting device imposes an upper bound for x and y, for instance the number of pixels
for screen output. These bounds are available through the plothsizes function. The following
sequence initializes in a portable way (i.e independent of the output device) a window of maximal
size, accessed through coordinates in the [0, 1000]× [0, 1000] range:

s = plothsizes();

plotinit(0, s[1]-1, s[2]-1);

plotscale(0, 0,1000, 0,1000);

3.10.16 plotkill(w): erase rectwindow w and free the corresponding memory. Note that if you
want to use the rectwindow w again, you have to use plotinit first to specify the new size. So
it’s better in this case to use plotinit directly as this throws away any previous work in the given
rectwindow.

3.10.17 plotlines(w,X, Y, {flag = 0}): draw on the rectwindow w the polygon such that the
(x,y)-coordinates of the vertices are in the vectors of equal length X and Y . For simplicity, the
whole polygon is drawn, not only the part of the polygon which is inside the rectwindow. If flag is
non-zero, close the polygon. In any case, the virtual cursor does not move.

X and Y are allowed to be scalars (in this case, both have to). There, a single segment will be
drawn, between the virtual cursor current position and the point (X,Y ). And only the part thereof
which actually lies within the boundary of w. Then move the virtual cursor to (X,Y ), even if it
is outside the window. If you want to draw a line from (x1, y1) to (x2, y2) where (x1, y1) is not
necessarily the position of the virtual cursor, use plotmove(w,x1,y1) before using this function.

3.10.18 plotlinetype(w, type): change the type of lines subsequently plotted in rectwindow w.
type −2 corresponds to frames, −1 to axes, larger values may correspond to something else. w = −1
changes highlevel plotting. This is only taken into account by the gnuplot interface.

3.10.19 plotmove(w, x, y): move the virtual cursor of the rectwindow w to position (x, y).

3.10.20 plotpoints(w,X, Y ): draw on the rectwindow w the points whose (x, y)-coordinates are
in the vectors of equal length X and Y and which are inside w. The virtual cursor does not move.
This is basically the same function as plothraw, but either with no scaling factor or with a scale
chosen using the function plotscale.

As was the case with the plotlines function, X and Y are allowed to be (simultaneously)
scalar. In this case, draw the single point (X,Y ) on the rectwindow w (if it is actually inside w),
and in any case move the virtual cursor to position (x, y).

3.10.21 plotpointsize(w, size): changes the “size” of following points in rectwindow w. If w = −1,
change it in all rectwindows. This only works in the gnuplot interface.

3.10.22 plotpointtype(w, type): change the type of points subsequently plotted in rectwindow w.
type = −1 corresponds to a dot, larger values may correspond to something else. w = −1 changes
highlevel plotting. This is only taken into account by the gnuplot interface.
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3.10.23 plotrbox(w, dx, dy): draw in the rectwindow w the outline of the rectangle which is such
that the points (x1, y1) and (x1 + dx, y1 + dy) are opposite corners, where (x1, y1) is the current
position of the cursor. Only the part of the rectangle which is in w is drawn. The virtual cursor
does not move.

3.10.24 plotrecth(w,X = a, b, expr , {flag = 0}, {n = 0}): writes to rectwindow w the curve
output of ploth(w,X = a, b, expr , flag , n).

3.10.25 plotrecthraw(w, data, {flag = 0}): plot graph(s) for data in rectwindow w. flag has the
same significance here as in ploth, though recursive plot is no more significant.
data

is a vector of vectors, each corresponding to a list a coordinates. If parametric plot is set, there
must be an even number of vectors, each successive pair corresponding to a curve. Otherwise, the
first one contains the x coordinates, and the other ones contain the y-coordinates of curves to plot.

3.10.26 plotrline(w, dx, dy): draw in the rectwindow w the part of the segment (x1, y1)− (x1 +
dx, y1+dy) which is inside w, where (x1, y1) is the current position of the virtual cursor, and move
the virtual cursor to (x1 + dx, y1 + dy) (even if it is outside the window).

3.10.27 plotrmove(w, dx, dy): move the virtual cursor of the rectwindow w to position (x1 +
dx, y1 + dy), where (x1, y1) is the initial position of the cursor (i.e. to position (dx, dy) relative to
the initial cursor).

3.10.28 plotrpoint(w, dx, dy): draw the point (x1 + dx, y1 + dy) on the rectwindow w (if it is
inside w), where (x1, y1) is the current position of the cursor, and in any case move the virtual
cursor to position (x1 + dx, y1 + dy).

3.10.29 plotscale(w, x1, x2, y1, y2): scale the local coordinates of the rectwindow w so that x goes
from x1 to x2 and y goes from y1 to y2 (x2 < x1 and y2 < y1 being allowed). Initially, after the
initialization of the rectwindow w using the function plotinit, the default scaling is the graphic
pixel count, and in particular the y axis is oriented downwards since the origin is at the upper left.
The function plotscale allows to change all these defaults and should be used whenever functions
are graphed.

3.10.30 plotstring(w, x, {flag = 0}): draw on the rectwindow w the String x (see Section 2.8), at
the current position of the cursor.
flag

is used for justification: bits 1 and 2 regulate horizontal alignment: left if 0, right if 2, center
if 1. Bits 4 and 8 regulate vertical alignment: bottom if 0, top if 8, v-center if 4. Can insert
additional small gap between point and string: horizontal if bit 16 is set, vertical if bit 32 is set
(see the tutorial for an example).

3.10.31 psdraw(list): same as plotdraw, except that the output is a PostScript program appended
to the psfile.

3.10.32 psploth(X = a, b, expr): same as ploth, except that the output is a PostScript program
appended to the psfile.

3.10.33 psplothraw(listx , listy): same as plothraw, except that the output is a PostScript pro-
gram appended to the psfile.
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3.11 Programming in GP.

3.11.1 Control statements.

A number of control statements are available in GP. They are simpler and have a syntax
slightly different from their C counterparts, but are quite powerful enough to write any kind of
program. Some of them are specific to GP, since they are made for number theorists. As usual,
X will denote any simple variable name, and seq will always denote a sequence of expressions,
including the empty sequence.

Caveat: in constructs like

for (X = a,b, seq)

the variable X is considered local to the loop, leading to possibly unexpected behaviour:

n = 5;

for (n = 1, 10,

if (something_nice(), break);

);

\\ at this point n is 5 !

If the sequence seq modifies the loop index, then the loop is modified accordingly:

? for (n = 1, 10, n += 2; print(n))

3

6

9

12

3.11.1.1 break({n = 1}): interrupts execution of current seq , and immediately exits from the n
innermost enclosing loops, within the current function call (or the top level loop). n must be bigger
than 1. If n is greater than the number of enclosing loops, all enclosing loops are exited.

3.11.1.2 for(X = a, b, seq): evaluates seq , where the formal variable X goes from a to b. Nothing
is done if a > b. a and b must be in R.

3.11.1.3 fordiv(n,X, seq): evaluates seq , where the formal variable X ranges through the divisors
of n (see divisors, which is used as a subroutine). It is assumed that factor can handle n, without
negative exponents. Instead of n, it is possible to input a factorization matrix, i.e. the output of
factor(n).

This routine uses divisors as a subroutine, then loops over the divisors. In particular, if n is
an integer, divisors are sorted by increasing size.

To avoid storing all divisors, possibly using a lot of memory, the following (much slower) routine
loops over the divisors using essentially constant space:

FORDIV(N)=

{ local(P, E);

P = factor(N); E = P[,2]; P = P[,1];

forvec( v = vector(#E, i, [0,E[i]]),

X = factorback(P, v)

\\ ...

);
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}

? for(i=1,10^5, FORDIV(i))

time = 3,445 ms.

? for(i=1,10^5, fordiv(i, d, ))

time = 490 ms.

3.11.1.4 forell(E, a, b, seq): evaluates seq , where the formal variable E ranges through all elliptic
curves of conductors from a to b. Th elldata database must be installed and contain data for the
specified conductors.

3.11.1.5 forprime(X = a, b, seq): evaluates seq , where the formal variable X ranges over the
prime numbers between a to b (including a and b if they are prime). More precisely, the value of X
is incremented to the smallest prime strictly larger than X at the end of each iteration. Nothing is
done if a > b. Note that a and b must be in R.

? { forprime(p = 2, 12,

print(p);

if (p == 3, p = 6);

)

}

2

3

7

11

3.11.1.6 forstep(X = a, b, s, seq): evaluates seq , where the formal variable X goes from a to b,
in increments of s. Nothing is done if s > 0 and a > b or if s < 0 and a < b. s must be in R∗

or a vector of steps [s1, . . . , sn]. In the latter case, the successive steps are used in the order they
appear in s.

? forstep(x=5, 20, [2,4], print(x))

5

7

11

13

17

19

3.11.1.7 forsubgroup(H = G, {B}, seq): evaluates seq for each subgroup H of the abelian group
G (given in SNF form or as a vector of elementary divisors), whose index is bounded by B. The
subgroups are not ordered in any obvious way, unless G is a p-group in which case Birkhoff’s
algorithm produces them by decreasing index. A subgroup is given as a matrix whose columns give
its generators on the implicit generators of G. For example, the following prints all subgroups of
index less than 2 in G = Z/2Zg1 × Z/2Zg2:

? G = [2,2]; forsubgroup(H=G, 2, print(H))

[1; 1]

[1; 2]

[2; 1]

[1, 0; 1, 1]

The last one, for instance is generated by (g1, g1 + g2). This routine is intended to treat huge
groups, when subgrouplist is not an option due to the sheer size of the output.
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For maximal speed the subgroups have been left as produced by the algorithm. To print them
in canonical form (as left divisors of G in HNF form), one can for instance use

? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))

[2, 1; 0, 1]

[1, 0; 0, 2]

[2, 0; 0, 1]

[1, 0; 0, 1]

Note that in this last representation, the index [G : H] is given by the determinant. See galois-

subcyclo and galoisfixedfield for nfsubfields applications to Galois theory.

Warning: the present implementation cannot treat a group G, if one of its p-Sylow subgroups has
a cyclic factor with more than 231, resp. 263 elements on a 32-bit, resp. 64-bit architecture.

3.11.1.8 forvec(X = v, seq , {flag = 0}): Let v be an n-component vector (where n is arbitrary) of
two-component vectors [ai, bi] for 1 ≤ i ≤ n. This routine evaluates seq , where the formal variables
X[1], . . . , X[n] go from a1 to b1,. . . , from an to bn, i.e. X goes from [a1, . . . , an] to [b1, . . . , bn]
with respect to the lexicographic ordering. (The formal variable with the highest index moves the
fastest.) If flag = 1, generate only nondecreasing vectors X, and if flag = 2, generate only strictly
increasing vectors X.

3.11.1.9 if(a, {seq1}, {seq2}): evaluates the expression sequence seq1 if a is non-zero, otherwise
the expression seq2 . Of course, seq1 or seq2 may be empty:

if (a,seq) evaluates seq if a is not equal to zero (you don’t have to write the second comma),
and does nothing otherwise,

if (a,,seq) evaluates seq if a is equal to zero, and does nothing otherwise. You could get the
same result using the ! (not) operator: if (!a,seq).

Note that the boolean operators && and || are evaluated according to operator precedence as
explained in Section 2.4, but that, contrary to other operators, the evaluation of the arguments is
stopped as soon as the final truth value has been determined. For instance

if (reallydoit && longcomplicatedfunction(), ...)%

is a perfectly safe statement.

Recall that functions such as break and next operate on loops (such as forxxx, while, until).
The if statement is not a loop (obviously!).

3.11.1.10 next({n = 1}): interrupts execution of current seq, resume the next iteration of the
innermost enclosing loop, within the current function call (or top level loop). If n is specified,
resume at the n-th enclosing loop. If n is bigger than the number of enclosing loops, all enclosing
loops are exited.

3.11.1.11 return({x = 0}): returns from current subroutine, with result x. If x is omitted, return
the (void) value (return no result, like print).

3.11.1.12 until(a, seq): evaluates seq until a is not equal to 0 (i.e. until a is true). If a is initially
not equal to 0, seq is evaluated once (more generally, the condition on a is tested after execution
of the seq , not before as in while).

3.11.1.13 while(a, seq): while a is non-zero, evaluates the expression sequence seq . The test is
made before evaluating the seq, hence in particular if a is initially equal to zero the seq will not be
evaluated at all.
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3.11.2 Specific functions used in GP programming.

In addition to the general PARI functions, it is necessary to have some functions which will
be of use specifically for gp, though a few of these can be accessed under library mode. Before we
start describing these, we recall the difference between strings and keywords (see Section 2.8): the
latter don’t get expanded at all, and you can type them without any enclosing quotes. The former
are dynamic objects, where everything outside quotes gets immediately expanded.

3.11.2.1 addhelp(S, str): changes the help message for the symbol S. The string str is expanded
on the spot and stored as the online help for S. If S is a function you have defined, its definition
will still be printed before the message str . It is recommended that you document global variables
and user functions in this way. Of course gp will not protest if you skip this.

Nothing prevents you from modifying the help of built-in PARI functions. (But if you do, we
would like to hear why you needed to do it!)

3.11.2.2 alias(newkey , key): defines the keyword newkey as an alias for keyword key . key must
correspond to an existing function name. This is different from the general user macros in that
alias expansion takes place immediately upon execution, without having to look up any function
code, and is thus much faster. A sample alias file misc/gpalias is provided with the standard
distribution. Alias commands are meant to be read upon startup from the .gprc file, to cope with
function names you are dissatisfied with, and should be useless in interactive usage.

3.11.2.3 allocatemem({x = 0}): this is a very special operation which allows the user to change
the stack size after initialization. x must be a non-negative integer. If x 6= 0, a new stack of size
16 ∗ dx/16e bytes is allocated, all the PARI data on the old stack is moved to the new one, and the
old stack is discarded. If x = 0, the size of the new stack is twice the size of the old one.

Although it is a function, allocatemem cannot be used in loop-like constructs, or as part of
a larger expression, e.g 2 + allocatemem(). Such an attempt will raise an error. The technical
reason is that this routine usually moves the stack, so objects from the current expression may not
be correct anymore, e.g. loop indexes.

The library syntax is allocatemoremem(x), where x is an unsigned long, and the return type
is void. gp uses a variant which makes sure it was not called within a loop.

3.11.2.4 default({key}, {val}): returns the default corresponding to keyword key . If val is present,
sets the default to val first (which is subject to string expansion first). Typing default() (or \d)
yields the complete default list as well as their current values. See Section 2.11 for a list of available
defaults, and Section 2.12 for some shortcut alternatives. Note that the shortcut are meant for
interactive use and usually display more information than default.

The library syntax is gp default(key, val), where key and val are char *.

3.11.2.5 error({str}∗): outputs its argument list (each of them interpreted as a string), then
interrupts the running gp program, returning to the input prompt. For instance

error("n = ", n, " is not squarefree !")

UNIX: 3.11.2.6 extern(str): the string str is the name of an external command (i.e. one you would type
from your UNIX shell prompt). This command is immediately run and its input fed into gp, just
as if read from a file.

The library syntax is extern0(str), where str is a char *.
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3.11.2.7 getheap(): returns a two-component row vector giving the number of objects on the
heap and the amount of memory they occupy in long words. Useful mainly for debugging purposes.

The library syntax is getheap().

3.11.2.8 getrand(): returns the current value of the random number seed. Useful mainly for
debugging purposes.

The library syntax is getrand(), returns a C long.

3.11.2.9 getstack(): returns the current value of top − avma, i.e. the number of bytes used up
to now on the stack. Should be equal to 0 in between commands. Useful mainly for debugging
purposes.

The library syntax is getstack(), returns a C long.

3.11.2.10 gettime(): returns the time (in milliseconds) elapsed since either the last call to get-

time, or to the beginning of the containing GP instruction (if inside gp), whichever came last.

The library syntax is gettime(), returns a C long.

3.11.2.11 global(list of variables): declares the corresponding variables to be global. From now
on, you will be forbidden to use them as formal parameters for function definitions or as loop
indexes. This is especially useful when patching together various scripts, possibly written with
different naming conventions. For instance the following situation is dangerous:

p = 3 \\ fix characteristic
...

forprime(p = 2, N, ...)

f(p) = ...

since within the loop or within the function’s body (even worse: in the subroutines called in that
scope), the true global value of p will be hidden. If the statement global(p = 3) appears at the
beginning of the script, then both expressions will trigger syntax errors.

Calling global without arguments prints the list of global variables in use. In particular,
eval(global) will output the values of all global variables.

3.11.2.12 input(): reads a string, interpreted as a GP expression, from the input file, usually
standard input (i.e. the keyboard). If a sequence of expressions is given, the result is the result
of the last expression of the sequence. When using this instruction, it is useful to prompt for the
string by using the print1 function. Note that in the present version 2.19 of pari.el, when using
gp under GNU Emacs (see Section 2.14) one must prompt for the string, with a string which ends
with the same prompt as any of the previous ones (a "? " will do for instance).

UNIX: 3.11.2.13 install(name, code, {gpname}, {lib}): loads from dynamic library lib the function name.
Assigns to it the name gpname in this gp session, with argument code code (see the Libpari Manual
for an explanation of those). If lib is omitted, uses libpari.so. If gpname is omitted, uses name.

This function is useful for adding custom functions to the gp interpreter, or picking useful
functions from unrelated libraries. For instance, it makes the function system obsolete:

? install(system, vs, sys, "libc.so")

? sys("ls gp*")

gp.c gp.h gp_rl.c
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But it also gives you access to all (non static) functions defined in the PARI library. For
instance, the function GEN addii(GEN x, GEN y) adds two PARI integers, and is not directly
accessible under gp (it’s eventually called by the + operator of course):

? install("addii", "GG")

? addii(1, 2)

%1 = 3

Re-installing a function will print a Warning, and update the prototype code if needed, but will
reload a symbol from the library, even it the latter has been recompiled.

Caution: This function may not work on all systems, especially when gp has been compiled
statically. In that case, the first use of an installed function will provoke a Segmentation Fault,
i.e. a major internal blunder (this should never happen with a dynamically linked executable).
Hence, if you intend to use this function, please check first on some harmless example such as the
ones above that it works properly on your machine.

3.11.2.14 kill(s): kills the present value of the variable, alias or user-defined function s. The
corresponding identifier can now be used to name any GP object (variable or function). This is the
only way to replace a variable by a function having the same name (or the other way round), as in
the following example:

? f = 1

%1 = 1

? f(x) = 0

*** unused characters: f(x)=0

^----

? kill(f)

? f(x) = 0

? f()

%2 = 0

When you kill a variable, all objects that used it become invalid. You can still display them,
even though the killed variable will be printed in a funny way. For example:

? a^2 + 1

%1 = a^2 + 1

? kill(a)

? %1

%2 = #<1>^2 + 1

If you simply want to restore a variable to its “undefined” value (monomial of degree one), use
the quote operator: a = ’a. Predefined symbols (x and GP function names) cannot be killed.

3.11.2.15 print({str}∗): outputs its (string) arguments in raw format, ending with a newline.

3.11.2.16 print1({str}∗): outputs its (string) arguments in raw format, without ending with a
newline (note that you can still embed newlines within your strings, using the \n notation !).

3.11.2.17 printp({str}∗): outputs its (string) arguments in prettyprint (beautified) format, ending
with a newline.

3.11.2.18 printp1({str}∗): outputs its (string) arguments in prettyprint (beautified) format,
without ending with a newline.

207



3.11.2.19 printtex({str}∗): outputs its (string) arguments in TEX format. This output can then
be used in a TEX manuscript. The printing is done on the standard output. If you want to print
it to a file you should use writetex (see there).

Another possibility is to enable the log default (see Section 2.11). You could for instance do:

default(logfile, "new.tex");

default(log, 1);

printtex(result);

3.11.2.20 quit(): exits gp.

3.11.2.21 read({filename}): reads in the file filename (subject to string expansion). If filename
is omitted, re-reads the last file that was fed into gp. The return value is the result of the last
expression evaluated.

If a GP binary file is read using this command (see Section 3.11.2.32), the file is loaded and
the last object in the file is returned.

3.11.2.22 readvec({str}): reads in the file filename (subject to string expansion). If filename is
omitted, re-reads the last file that was fed into gp. The return value is a vector whose components
are the evaluation of all sequences of instructions contained in the file. For instance, if file contains

1

2

3

then we will get:

? \r a

%1 = 1

%2 = 2

%3 = 3

? read(a)

%4 = 3

? readvec(a)

%5 = [1, 2, 3]

In general a sequence is just a single line, but as usual braces and \\ may be used to enter
multiline sequences.

3.11.2.23 reorder({x = [ ]}): x must be a vector. If x is the empty vector, this gives the vector
whose components are the existing variables in increasing order (i.e. in decreasing importance).
Killed variables (see kill) will be shown as 0. If x is non-empty, it must be a permutation of
variable names, and this permutation gives a new order of importance of the variables, for output
only . For example, if the existing order is [x,y,z], then after reorder([z,x]) the order of
importance of the variables, with respect to output, will be [z,y,x]. The internal representation
is unaffected.

3.11.2.24 setrand(n): reseeds the random number generator to the value n. The initial seed is
n = 1.

The library syntax is setrand(n), where n is a long. Returns n.

208



UNIX: 3.11.2.25 system(str): str is a string representing a system command. This command is executed,
its output written to the standard output (this won’t get into your logfile), and control returns to
the PARI system. This simply calls the C system command.

3.11.2.26 trap({e}, {rec}, {seq}): tries to evaluate seq , trapping error e, that is effectively pre-
venting it from aborting computations in the usual way; the recovery sequence rec is executed if
the error occurs and the evaluation of rec becomes the result of the command. If e is omitted, all
exceptions are trapped. Note in particular that hitting ^C (Control-C) raises an exception. See
Section 2.9.2 for an introduction to error recovery under gp.

? \\ trap division by 0
? inv(x) = trap (gdiver, INFINITY, 1/x)

? inv(2)

%1 = 1/2

? inv(0)

%2 = INFINITY

If seq is omitted, defines rec as a default action when catching exception e, provided no other
trap as above intercepts it first. The error message is printed, as well as the result of the evaluation
of rec, and control is given back to the gp prompt. In particular, current computation is then lost.

The following error handler prints the list of all user variables, then stores in a file their name
and their values:

? { trap( ,

print(reorder);

writebin("crash")) }

If no recovery code is given (rec is omitted) a break loop will be started (see Section 2.9.3). In
particular

? trap()

by itself installs a default error handler, that will start a break loop whenever an exception is raised.

If rec is the empty string "" the default handler (for that error if e is present) is disabled.

Note: The interface is currently not adequate for trapping individual exceptions. In the current
version 2.3.5, the following keywords are recognized, but the name list will be expanded and changed
in the future (all library mode errors can be trapped: it’s a matter of defining the keywords to gp,
and there are currently far too many useless ones):

accurer: accuracy problem

archer: not available on this architecture or operating system

errpile: the PARI stack overflows

gdiver: division by 0

invmoder: impossible inverse modulo

siginter: SIGINT received (usually from Control-C)

talker: miscellaneous error

typeer: wrong type

user: user error (from the error function)
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3.11.2.27 type(x): this is useful only under gp. Returns the internal type name of the PARI
object x as a string. Check out existing type names with the metacommand \t. For example
type(1) will return ”t_INT”.

The library syntax is type0(x ), though the macro typ is usually simpler to use since it return
an integer that can easily be matched with the symbols t_*. The name type was avoided due to
the fact that type is a reserved identifier for some C(++) compilers.

3.11.2.28 version(): Returns the current version number as a t_VEC with three integer compo-
nents: major version number, minor version number and patchlevel. To check against a particular
version number, you can use:

if (lex(version(), [2,2,0]) >= 0,

\\ code to be executed if we are running 2.2.0 or more recent.

,

\\ compatibility code

);

3.11.2.29 whatnow(key): if keyword key is the name of a function that was present in GP version
1.39.15 or lower, outputs the new function name and syntax, if it changed at all (387 out of 560
did).

3.11.2.30 write(filename, {str}∗): writes (appends) to filename the remaining arguments, and
appends a newline (same output as print).

3.11.2.31 write1(filename, {str}∗): writes (appends) to filename the remaining arguments with-
out a trailing newline (same output as print1).

3.11.2.32 writebin(filename, {x}): writes (appends) to filename the object x in binary format.
This format is not human readable, but contains the exact internal structure of x, and is much
faster to save/load than a string expression, as would be produced by write. The binary file format
includes a magic number, so that such a file can be recognized and correctly input by the regular
read or \r function. If saved objects refer to (polynomial) variables that are not defined in the
new session, they will be displayed in a funny way (see Section 3.11.2.14).

If x is omitted, saves all user variables from the session, together with their names. Reading
such a “named object” back in a gp session will set the corresponding user variable to the saved
value. E.g after

x = 1; writebin("log")

reading log into a clean session will set x to 1. The relative variables priorities (see Section 2.5.4)
of new variables set in this way remain the same (preset variables retain their former priority, but
are set to the new value). In particular, reading such a session log into a clean session will restore
all variables exactly as they were in the original one.

User functions, installed functions and history objects can not be saved via this function. Just
as a regular input file, a binary file can be compressed using gzip, provided the file name has the
standard .gz extension.

In the present implementation, the binary files are architecture dependent and compatibility
with future versions of gp is not guaranteed. Hence binary files should not be used for long term
storage (also, they are larger and harder to compress than text files).

3.11.2.33 writetex(filename, {str}∗): as write, in TEX format.
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Appendix A:

Installation Guide for the UNIX Versions

1. Required tools.

Compiling PARI requires an ANSI C or a C++ compiler. If you do not have one, we suggest
that you obtain the gcc/g++ compiler. As for all GNU software mentioned afterwards, you can
find the most convenient site to fetch gcc at the address

http://www.gnu.org/order/ftp.html

(On Mac OS X, this is also provided in the Xcode tool suite.) You can certainly compile PARI
with a different compiler, but the PARI kernel takes advantage of optimizations provided by gcc.
This results in at least 20% speedup on most architectures.

Optional packages. The following programs and libraries are useful in conjunction with gp,
but not mandatory. In any case, get them before proceeding if you want the functionalities they
provide. All of them are free.

• GNU MP library. This provides an alternative multiprecision kernel, which is faster than
PARI’s native one, but unfortunately binary incompatible. To enable detection of GMP, use Con-

figure --with-gmp. You should really do this if you only intend to use GP, and probably also if
you will use libpari unless you have backwards compatibility requirements.

• GNU readline library. This provides line editing under GP, an automatic context-dependent
completion, and an editable history of commands. Note that it is incompatible with SUN com-
mandtools (yet another reason to dump Suntools for X Windows).

• GNU gzip/gunzip/gzcat package enables GP to read compressed data.

• GNU emacs. GP can be run in an Emacs buffer, with all the obvious advantages if you are
familiar with this editor. Note that readline is still useful in this case since it provides a better
automatic completion than is provided by Emacs GP-mode.

• perl provides extended online help (full text from this manual) about functions and concepts,
which can be used under GP or independently (http://www.perl.com will direct you to the nearest
CPAN archive site).

• A colour-capable xterm, which enables GP to use different (user configurable) colours for its
output. All xterm programs which come with current X11 distributions satisfy this requirement.
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2. Compiling the library and the GP calculator.

2.1. Basic configuration: First, have a look at the MACHINES file to see if anything funny applies
to your architecture or operating system. Then, type

./Configure

in the toplevel directory. This attempts to configure PARI/GP without outside help. Note that if
you want to install the end product in some nonstandard place, you can use the --prefix option,
as in

./Configure --prefix=/an/exotic/directory

(the default prefix is /usr/local). For example, to build a package for a Linux distribution, you
may want to use

./Configure --prefix=/usr

This phase extracts some files and creates a directory Oxxx where the object files and executa-
bles will be built. The xxx part depends on your architecture and operating system, thus you can
build GP for several different machines from the same source tree (the builds are independent and
can be done simultaneously).

Technical note: Configure accepts many other flags besides --prefix. See Configure --help

for a complete list. In particular, there are sets of flags related to GNU MP (--with-gmp*) and
GNU readline library (--with-readline*). Note that autodetection of GMP is disabled by default,
you probably want to enable it.

Decide whether you agree with what Configure printed on your screen, in particular the
architecture, compiler and optimization flags. Look for messages prepended by ###, which report
genuine problems. If anything should have been found and was not, consider that Configure failed
and follow the instructions in the next section. Look especially for the gmp, readline and X11

libraries, and the perl and gunzip (or zcat) binaries.

2.2. Compilation: To compile the GP binary and build the documentation, type

make all

To only compile the GP binary, type

make gp

in the toplevel directory. If your make program supports parallel make, you can speed up the
process by going to the Oxxx directory that Configure created and doing a parallel make here, for
instance make -j4 with GNU make. It should even work from the toplevel directory.
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2.3. Basic tests:

To test the binary, type make bench. This will build a static executable (the default, built by
make gp is probably dynamic) and run a series of comparative tests on those two. To test only the
default binary, use make dobench which starts the bench immediately.

The static binary should be slightly faster. In any case, this should not take more than a few
seconds on modern machines. See the file MACHINES to get an idea of how much time comparable
systems need. We would appreciate a short note in the same format in case your system is not
listed and you nevertheless have a working GP executable.

If a [BUG] message shows up, something went wrong. The testing utility directs you to files
containing the differences between the test output and the expected results. Have a look and decide
for yourself if something is amiss. If it looks like a bug in the Pari system, we would appreciate a
report (see the last section).

3. Troubleshooting and fine tuning.

In case the default Configure run fails miserably, try

./Configure -a

(interactive mode) and answer all the questions (there are not that many). Of course, Configure
still provides defaults for each answer but if you accept them all, it will fail just the same, so be
wary. In any case, we would appreciate a bug report (see the last section).

3.1. Installation directories: The precise default destinations are as follows: the gp binary,
the scripts gphelp and tex2mail go to $prefix/bin. The pari library goes to $prefix/lib and
include files to $prefix/include/pari. Other system-dependant data go to $prefix/lib/pari.

Architecture independent files go to various subdirectories of $share prefix, which defaults
to $prefix/share, and can be specified via the --share-prefix argument. Man pages go into
$share prefix/man, Emacs files into $share prefix/emacs/site-lisp/pari, and other system-
independant data to various subdirectories of $share prefix/pari: documentation, sample GP
scripts and C code, extra packages like elldata or galdata.

You can also set directly --bindir (executables), --libdir (library), --includedir (include
files), --mandir (manual pages), --datadir (other architecture-independent data), and finally
--sysdatadir (other architecture-dependent data).

3.2. Environment variables: Configure lets the following environment variable override the
defaults if set:

AS: Assembler.

CC: C compiler.

DLLD: Dynamic library linker.

LD: Static linker.

For instance, Configure may avoid /bin/cc on some architectures due to various problems which
may have been fixed in your version of the compiler. You can try

env CC=cc Configure
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and compare the benches. Also, if you insist on using a C++ compiler and run into trouble with a
fussy g++, try to use g++ -fpermissive.

The contents of the following variables are appended to the values computed by Configure:

CFLAGS: Flags for CC.

CPPFLAGS: Flags for CC (preprocessor).

LDFLAGS: Flags for LD.

The contents of the following variables are prepended to the values computed by Configure:

C INCLUDE PATH is prepended to the list of directories searched for include files. Note that
adding -I flags to CFLAGS is not enough since Configure sometimes relies on finding the include
files and parsing them, and it does not parse CFLAGS at this time.

LIBRARY PATH is prepended to the list of directories searched for libraries.

You may disable inlining by adding -DDISABLE INLINE to CFLAGS, and prevent the use of the
volatile keyword with -DDISABLE VOLATILE.

3.3. Debugging/profiling: If you also want to debug the PARI library,

Configure -g

creates a directory Oxxx.dbg containing a special Makefile ensuring that the GP and PARI library
built there is suitable for debugging. If you want to profile GP or the library, using gprof for
instance,

Configure -pg

will create an Oxxx.prf directory where a suitable version of PARI can be built.

The GP binary built above with make all or make gp is optimized. If you have run Configure

-g or -pg and want to build a special purpose binary, you can cd to the .dbg or .prf directory and
type make gp there. You can also invoke make gp.dbg or make gp.prf directly from the toplevel.

3.4. Multiprecision kernel: The kernel can be fully specified via the --kernel=fqkn switch.
The PARI kernel is build from two kernels, called level 0 (L0, operation on words) and level 1 (L1,
operation on multi-precision integer and real).

Available kernels:

L0: auto, none and

alpha hppa hppa64 ia64 ix86 x86_64 m68k ppc sparcv7

sparcv8_micro sparcv8_super

L1: auto, none and gmp

auto means to use the auto-detected value. L0=none means to use the portable C kernel (no
assembler), L1=none means to use the PARI L1 kernel.

• A fully qualified kernel name fqkn is of the form L0-L1.

• A name not containing a dash ’-’ is an alias. An alias stands for name-none, but gmp stand for
auto-gmp.

• The default kernel is auto-none.
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3.5. Problems related to readline: Configure does not try very hard to find the readline

library and include files. If they are not in a standard place, it will not find them. Nonetheless,
it first searches the distribution toplevel for a readline directory. Thus, if you just want to give
readline a try, as you probably should, you can get the source and compile it there (you do not
need to install it). You can also use this feature together with a symbolic link, named readline,
in the PARI toplevel directory if you have compiled the readline library somewhere else, without
installing it to one of its standard locations.

You can also invoke Configure with one of the following arguments:

--with-readline[=prefix to lib/libreadline.xx and include/readline.h]

--with-readline-lib=path to libreadline.xx

--with-readline-include=path to readline.h

Technical note: Configure can build GP on different architectures simultaneously from the same
toplevel sources. Instead of the readline link alluded above, you can create readline-osname-
arch, using the same naming conventions as for the Oxxx directory, e.g readline-linux-i686.

Known problems:

• on Linux: Linux distributions have separate readline and readline-devel packages. You
need both of them installed to compile gp with readline support. If only readline is installed,
Configure will complain. Configure may also complain about a missing libncurses.so, in which
case, you have to install the ncurses-devel package (some distributions let you install readline-
devel without ncurses-devel, which is a bug in their package dependency handling).

• on OS X.4: Tiger comes equipped with a fake readline, which is not sufficient for our
purpose. As a result, gp is built without readline support. Since readline is not trivial to install
in this environment, a step by step solution can be found in the PARI FAQ, see

http://pari.math.u-bordeaux.fr/

3.6. Testing

3.6.1. Known problems: if BUG shows up in make bench

• program: the GP function install may not be available on your platform, triggering an
error message (“not yet available for this architecture”). Have a look at the MACHINES files to check
if your system is known not to support it, or has never been tested yet.

• If when running gp-dyn, you get a message of the form

ld.so: warning: libpari.so.xxx has older revision than expected xxx

(possibly followed by more errors), you already have a dynamic PARI library installed and a broken
local configuration. Either remove the old library or unset the LD LIBRARY PATH environment
variable. Try to disable this variable in any case if anything very wrong occurs with the gp-dyn

binary, like an Illegal Instruction on startup. It does not affect gp-sta.

• Some implementations of the diff utility (on HPUX for instance) output No differences

encountered or some similar message instead of the expected empty input. Thus producing a
spurious [BUG] message.
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3.6.2. Some more testing [Optional]

You can test GP in compatibility mode with make test-compat. If you want to test the
graphic routines, use make test-ploth. You will have to click on the mouse button after seeing
each image. There will be eight of them, probably shown twice (try to resize at least one of them as
a further test). More generaly, typing make without argument will print the list of available extra
tests among all available targets.

The make bench and make test-compat runs produce a Postscript file pari.ps in Oxxx which
you can send to a Postscript printer. The output should bear some similarity to the screen images.

3.6.3. Heavy-duty testing [Optional] There are a few extra tests which should be useful only
for developpers.

make test-kernel checks whether the low-level kernel seems to work, and provides simple
diagnostics if it does not. Only useful if make bench fails horribly, e.g. things like 1+1 do not work.

make test-all runs all available test suites. Slow.

4. Installation.

When everything looks fine, type

make install

You may have to do this with superuser privileges, depending on the target directories. (Tip for
MacOS X beginners: use sudo make install.) In this case, it is advised to type make all first
to avoid running unnecessary commands as root.

Beware that, if you chose the same installation directory as before in the Configure process,
this will wipe out any files from version 1.39.15 and below that might already be there. Libraries
and executable files from newer versions (starting with version 1.900) are not removed since they
are only links to files bearing the version number (beware of that as well: if you are an avid gp fan,
do not forget to delete the old pari libraries once in a while).

This installs in the directories chosen at Configure time the default GP executable (probably
gp-dyn) under the name gp, the default PARI library (probably libpari.so), the necessary include
files, the manual pages, the documentation and help scripts and emacs macros.

To save on disk space, you can manually gzip some of the documentation files if you wish:
usersch*.tex and all dvi files (assuming your xdvi knows how to deal with compressed files); the
online-help system can handle it.

By default, if a dynamic library libpari.so could be built, the static library libpari.a will
not be created. If you want it as well, you can use the target make install-lib-sta. You can
install a statically linked gp with the target make install-bin-sta. As a rule, programs linked
statically (with libpari.a) may be slightly faster (about 5% gain), but use more disk space and
take more time to compile. They are also harder to upgrade: you will have to recompile them all
instead of just installing the new dynamic library. On the other hand, there is no risk of breaking
them by installing a new pari library.
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4.1. Extra packages: The following optional packages endow PARI with some extra capabilities
(only two packages for now!).

• elldata: This package contains the elliptic curves in John Cremona’s database. It is needed
by the functions ellidentify, ellsearch and can be used by ellinit to initialize a curve given
by its standard code.

• galdata: The default polgalois function can only compute Galois groups of polynomials
of degree less or equal to 7. Install this package if you want to handle polynomials of degree bigger
than 7 (and less than 11).

To install package pack , you need to fetch the separate archive: pack.tgz which you can
download from the pari server. Copy the archive in the PARI toplevel directory, then extract its
contents; these will go to data/pack/. Typing make install installs all such packages.

4.2. The GPRC file: Copy the file misc/gprc.dft (or gprc.dos if you are using GP.EXE) to
$HOME/.gprc. Modify it to your liking. For instance, if you are not using an ANSI terminal,
remove control characters from the prompt variable. You can also enable colors.

If desired, read $datadir/misc/gpalias from the gprc file, which provides some common
shortcuts to lengthy names; fix the path in gprc first. (Unless you tampered with this via Configure,
datadir is $prefix/share/pari.) If you have superuser privileges and want to provide system-
wide defaults, copy your customized .gprc file to /etc/gprc.

In older versions, gphelp was hidden in pari lib directory and was not meant to be used from
the shell prompt, but not anymore. If gp complains it cannot find gphelp, check whether your
.gprc (or the system-wide gprc) does contain explicit paths. If so, correct them according to the
current misc/gprc.dft.

5. Getting Started.

5.1. Printable Documentation: Building gp with make all also builds its documentation. You
can also type directly make doc. In any case, you need a working (plain) TEX installation.

After that, the doc directory contains various dvi files: libpari.dvi (manual for the PARI
library), users.dvi (manual for the gp calculator), tutorial.dvi (a tutorial), and refcard.dvi

(a reference card for GP). You can send these files to your favourite printer in the usual way,
probably via dvips. The reference card is also provided as a PostScript document, which may be
easier to print than its dvi equivalent (it is in Landscape orientation and assumes A4 paper size).

If the pdftex package is part of your TEX setup, you can produce these documents in PDF format,
which may be more convenient for online browsing (the manual is complete with hyperlinks); type

make docpdf

All these documents are available online from PARI home page (see the last section).
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5.2. C programming: Once all libraries and include files are installed, you can link your C
programs to the PARI library. A sample makefile examples/Makefile is provided to illustrate the
use of the various libraries. Type make all in the examples directory to see how they perform on
the extgcd.c program, which is commented in the manual.

This should produce a statically linked binary extgcd-sta (standalone), a dynamically linked
binary extgcd-dyn (loads libpari at runtime) and a shared library libextgcd, which can be used
from gp to install your new extgcd command.

The standalone binary should be bulletproof, but the other two may fail for various reasons. If
when running extgcd-dyn, you get a message of the form “DLL not found”, then stick to statically
linked binaries or look at your system documentation to see how to indicate at linking time where
the required DLLs may be found! (E.g. on Windows, you will need to move libpari.dll somewhere
in your PATH.)

5.3. GP scripts: Several complete sample GP programs are also given in the examples directory,
for example Shanks’s SQUFOF factoring method, the Pollard rho factoring method, the Lucas-
Lehmer primality test for Mersenne numbers and a simple general class group and fundamental
unit algorithm. See the file examples/EXPLAIN for some explanations.

5.4. EMACS: If you want to use gp under GNU Emacs, read the file emacs/pariemacs.txt. If
you are familiar with Emacs, we suggest that you do so.

5.5. The PARI Community: PARI’s home page at the address

http://pari.math.u-bordeaux.fr/

maintains an archive of mailing lists dedicated to PARI, documentation (including Frequently
Asked Questions), a download area and our Bug Tracking System (BTS). Bug reports should be
submitted online to the BTS, which may be accessed from the navigation bar on the home page or
directly at

http://pari.math.u-bordeaux.fr/Bugs

Further information can be found at that address but, to report a configuration problem, make
sure to include the relevant *.dif files in the Oxxx directory and the file pari.cfg.

There are three mailing lists devoted to PARI/GP (run courtesy of Dan Bernstein), and most
feedback should be directed to those. They are:

• pari-announce: to announce major version changes. You cannot write to this one, but you
should probably subscribe.

• pari-dev: for everything related to the development of PARI, including suggestions, tech-
nical questions, bug reports or patch submissions. (The BTS forwards the mail it receives to this
list.)

• pari-users: for everything else.

You may send an email to the last two without being subscribed. (You will have to confirm that your
message is not unsollicited bulk email, aka Spam.) To subscribe, send empty messages respectively
to

pari-announce-subscribe@list.cr.yp.to

pari-users-subscribe@list.cr.yp.to
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pari-dev-subscribe@list.cr.yp.to

You can also write to us at the address

pari@math.u-bordeaux.fr

but we cannot promise you will get an individual answer.

If you have used PARI in the preparation of a paper, please cite it in the following form
(BibTeX format):

@manual{PARI2,

organization = "{The PARI~Group}",

title = "{PARI/GP, Version 2.3.5}",

year = 2006,

address = "Bordeaux",

note = "available from {\tt http://pari.math.u-bordeaux.fr/}"

}

In any case, if you like this software, we would be indebted if you could send us an email message
giving us some information about yourself and what you use PARI for.

Good luck and enjoy!
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