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PREFACE

Many people think of computers primarily as “number crunchers,” and think of word processors as generat-

ing form letters and boilerplate proposals. That computers can be used productively by writers, not just

research scientists, accountants, and secretaries, is not so widely recognized. Today, writers not only work

with words, they work with computers and the software programs, printers, and terminals that are part of a

computer system.

The computer has not simply replaced a typewriter; it has become a system for integrating many

other technologies. As these technologies are made available at a reasonable cost, writers may begin to find

themselves in new roles as computer programmers, systems integrators, data base managers, graphic

designers, typesetters, printers, and archivists.

The writer functioning in these new roles is faced with additional responsibilities. Obviously, it is

one thing to have a tool available and another thing to use it skillfully. Like a craftsman, the writer must

develop a number of specialized skills, gaining control over the method of production as well as the prod-

uct. The writer must look for ways to improve the process by integrating new technologies and designing

new tools in software.

In this book, we want to show how computers can be used effectively in the preparation of written

documents, especially in the process of producing book-length documents. Surely it is important to learn

the tools of the trade, and we will demonstrate the tools available in the UNIX environment. However, it is

also valuable to examine text processing in terms of problems and solutions: the problems faced by a writer

undertaking a large writing project and the solutions offered by using the resources and power of a com-

puter system.

In Chapter 1, we begin by outlining the general capabilities of word processing systems. We describe

in brief the kinds of things that a computer must be able to do for a writer, reg ardless of whether that writer

is working on a UNIX system or on an IBM PC with a word-processing package such as WordStar or Mul-

tiMate. Then, having defined basic word-processing capabilities, we look at how a  text-processing system

includes and extends these capabilities and benefits. Last, we introduce the set of text processing tools in

the UNIX environment. These tools, used individually or in combination, provide the basic framework for

a text-processing system, one that can be custom-tailored to supply additional capabilities.

Chapter 2 gives a brief review of UNIX fundamentals. We assume you are already somewhat

acquainted with UNIX, but we included this information to make sure that you are familiar with basic con-

cepts that we will be relying on later in the book.

Chapter 3 introduces the vi editor, a basic tool for entering and editing text. Although many other

editors and word processing programs are available with UNIX, vi has the advantage that it works, without

modification, on almost every UNIX system and with almost every type of terminal. If you learn vi, you

can be confident that your text editing skills will be completely transferable when you sit down at someone

else’s terminal or use someone else’s system.

Chapter 4 introduces the nroff and troff formatting programs. Because vi is a text editor, not a

word-processing program, it does only rudimentary formatting of the text you enter. You can enter special

formatting codes to specify how you want the document to look, then format the text using either nroff or

troff. (The nroff formatter is used for formatting documents to the screen or to typewriter-like print-

ers; troff uses much the same formatting language, but has additional constructs that allow it to produce

more elaborate effects on typesetters and laser printers).

In this chapter, we also describe the different types of output devices for printing your finished docu-

ments. With the wider availability of laser printers, you need to become familiar with many typesetting

terms and concepts to get the most out of troff’s capabilities.

xi



xii Unix Text Processing

The formatting markup language required by nroff and troff is quite complex, because it allows

detailed control over the placement of every character on the page, as well as a large number of program-

ming constructs that you can use to define custom formatting requests or macros. A number of macro

packages have been developed to make the markup language easier to use. These macro packages define

commonly used formatting requests for different types of documents, set up default values for page layout,

and so on.

Although someone working with the macro packages does not need to know about the underlying

requests in the formatting language used by nroff and troff, we believe that the reader wants to go

beyond the basics. As a result, Chapter 4 introduces additional basic requests that the casual user might not

need. However, your understanding of what is going on should be considerably enhanced.

There are two principal macro packages in use today, ms and mm (named for the command-line

options to nroff and troff used to invoke them). Both macro packages were available with most UNIX

systems; now, howev er, ms is chiefly available on UNIX systems derived from Berkeley 4.x BSD, and mm

is chiefly available on UNIX systems derived from AT&T System V. If you are lucky enough to have both

macro packages on your system, you can choose which one you want to learn. Otherwise, you should read

either Chapter 5, The ms Macros, or Chapter 6, The mm Macros, depending on which version you have

available.

Chapter 7 returns to vi to consider its more advanced features. In addition, it takes a look at how

some of these features can support easy entry of formatting codes used by nroff and troff.

Tables and mathematical equations provide special formatting problems. The low-level nroff and

troff commands for typesetting a complex table or equation are extraordinarily complex. However, no

one needs to learn or type these commands, because two preprocessors, tbl and eqn, take a high-level

specification of the table or equation and do the dirty work for you. They produce a “script” of nroff or

troff commands that can be piped to the formatter to lay out the table or equations. The tbl and eqn

preprocessors are described in Chapters 8 and 9, respectively.

More recent versions of UNIX (those that include AT&T’s separate Documenter’s Workbench soft-

ware) also support a preprocessor called pic that makes it easier to create simple line drawings with

troff and include them in your text. We talk about pic in Chapter 10.

Chapter 11 introduces a range of other UNIX text processing tools—programs for sorting, compar-

ing, and in various ways examining the contents of text files. This chapter includes a discussion of the stan-

dard UNIX spell program and the Writer’s Workbench programs style and diction.

This concludes the first part of the book, which covers the tools that the writer finds at hand in the

UNIX environment. This material is not elementary. In places, it grows quite complex. However, we

believe there is a fundamental difference between learning how to use an existing tool and developing skills

that extend a tool’s capabilities to achieve your own goals.

That is the real beauty of the UNIX environment. Nearly all the tools it provides are extensible,

either because they hav e built-in constructs for self-extension, like nroff and troff’s macro capability,

or because of the wonderful programming powers of the UNIX command interpreter, the shell.

The second part of the book begins with Chapter 12, on editing scripts. There are several editors in

UNIX that allow you to write and save what essentially amount to programs for manipulating text. The ex

editor can be used from within vi to make global changes or complex edits. The next step is to use ex on

its own; and after you do that, it is a small step to the even more powerful global editor sed. After you

have mastered these tools, you can build a library of special-purpose editing scripts that vastly extend your

power over the recalcitrant words you have put down on paper and now wish to change.

Chapter 13 discusses another program—awk— that extends the concept of a text editor even further

than the programs discussed in Chapter 12. The awk program is really a database programming language

that is appropriate for performing certain kinds of text-processing tasks. In particular, we use it in this book

to process output from troff for indexing.

The next fiv e chapters turn to the details of writing troff macros, and show how to customize the

formatting language to simplify formatting tasks. We start in Chapter 14 by looking at the basic requests

used to build macros, then go on in Chapter 15 to the requests for achieving various types of special effects.
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In Chapters 16 and 17, we’ll take a look at the basic structure of a macro package and focus on how to

define the appearance of large documents such as manuals. We’ll show you how to define different styles

of section headings, page headers, footers, and so on. We’ll also talk about how to generate an automatic

table of contents and index—two tasks that take you beyond troff into the world of shell programming

and various UNIX text processing utilities.

To complete these tasks, we need to return to the UNIX shell in Chapter 18 and examine in more

detail the ways that it allows you to incorporate the many tools provided by UNIX into an integrated text-

processing environment.

Numerous appendices summarize information that is spread throughout the text, or that couldn’t be

crammed into it.

* * *

Before we turn to the subject at hand, a few acknowledgments are in order. Though only two names appear

on the cover of this book, it is in fact the work of many hands. In particular, Grace Todino wrote the chap-

ters on tbl and eqn in their entirety, and the chapters on vi and ex are based on the O’Reilly & Asso-

ciates’ Nutshell Handbook, Learning the Vi Editor, written by Linda Lamb. Other members of the O’Reilly

& Associates staff—Linda Mui, Valerie Quercia, and Donna Woonteiler—helped tirelessly with copyedit-

ing, proofreading, illustrations, typesetting, and indexing.

Donna was new to our staff when she took on responsibility for the job of copyfitting—that final

stage in page layout made especially arduous by the many figures and examples in this book. She and

Linda especially spent many long hours getting this book ready for the printer. Linda had the special job of

doing the final consistency check on examples, making sure that copyediting changes or typesetting errors

had not compromised the accuracy of the examples.

Special thanks go to Steve Talbott of Masscomp, who first introduced us to the power of troff and

who wrote the first version of the extended ms macros, format shell script, and indexing mechanism

described in the second half of this book. Steve’s help and patience were invaluable during the long road to

mastery of the UNIX text-processing environment.

We’d also like to thank Teri Zak, the acquisitions editor at Hayden Books, for her vision of the Hay-

den UNIX series, and this book’s place in it.

In the course of this book’s dev elopment, Hayden was acquired by Howard Sams, where Teri’s role

was taken over by Jim Hill. Thanks also to the excellent production editors at Sams, Wendy Ford, Lou

Ke glovitz, and especially Susan Pink Bussiere, whose copyediting was outstanding.

Through it all, we have had the help of Steve Kochan and Pat Wood of Pipeline Associates, Inc., con-

sulting editors to the Hayden UNIX Series. We are grateful for their thoughtful and thorough review of this

book for technical accuracy. (We must, of course, make the usual disclaimer: any errors that remain are our

own).

Steve and Pat also provided the macros to typeset the book. Our working drafts were printed on an

HP LaserJet printer, using ditroff and TextWare International’s tplus postprocessor. Final typeset

output was prepared with Pipeline Associates’ devps, which was used to convert ditroff output to

PostScript, which was used in turn to drive a Linotronic L100 typesetter.

The UTP Revival

A lot of changes have occurred in the UNIX world since Unix Text Processing was first printed in 1987. In

the early 21st century, personal computers have become dirt cheap, and WYSIWYG word processors are

ev erywhere. Traditional commercial UNIX systems are being rapidly replaced—not only by Microsoft

operating systems, but by the free Linux and BSD implementations of UNIX. The most popular commer-

cial UNIX has become Apple’s MacOS X (ten). Who could have predicted this in 1987?

While personal computers became cheaper and more powerful, troff became an expensive add-on

item to an increasingly expensive operating system. WYSIWYG word processors were not nearly as pow-

erful as troff, and only now are beginning to approach troff’s capabilities at the high end, but were
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easy to learn and available at low cost. Thus, troff rapidly fell out of favor and nearly disappeared.

In the early 1990’s, James Clark single-handedly created the free groff (GNU roff) typesetting

suite, consisting of a ditroff replacement, clones of most of the preprocessors, and independently recre-

ated ms and man macro packages. In addition, groff provided some significant extensions to

ditroff—one of the most significant being the elimination of the two-character naming barrier. Some

time after James Clark abandoned further groff development, Werner Lemberg and Ted Harding took on

the task of maintaining and further extending the code.

When Tim O’Reilly and Dale Dougherty decided to make Unix Text Processing available under the

Open Book Project, they were unable to locate a copy of the original troff source for the book.

Undaunted, they scanned a proof copy (as bitmaps) and made that available for download. When the news

reached the groff mailing list (groff@ffii.org), some members began discussing the possibility of

transcribing the text and recreating the source code. People started claiming chapters, a list member opened

his mouth one time too many and became project coordinator, and “here we are.” After about a year of

manic activity punctuated with long naps, we have finally restored the book to its 1987 glory.

The following people lent a hand with transcription and markup (in alphabetical order): Ralph

Corderoy, Michael Hobgood (who did the bulk of the work), Larry Kollar, Manas Laha, Heinz-Jürgen Oer-

tel, Jack Redman (who joined late, yet just in time), Stewart Russell, and Colin Watson. Jon Snader (no

stranger to writing books with troff) recreated a version of the macros used for the original book.

Michael Hobgood and Andreas Kähäri have done most of the proofreading. While we caught and corrected

a few typos, we acknowledge that we may have introduced others—thus we now lay claim to any remaining

errors.

The PostScript file accompanying this release was built on an Apple iBook running MacOS X 10.2,

using groff 1.19.1; the PDF was then created using ps2pdf13 from AFPL GhostScript 8.00.

Another essential element in the UTP Revival was the emergence of free OCR software. While not

quite up to the commercial offerings, programs like gocr gave more people the opportunity to contribute.

Finally, we should recognize the efforts of the original authors and their gracious donation of their

book to the community. This wouldn’t hav e happened otherwise.

Larry Kollar

UTP Revival Project Coordinator

May 2004



Chapter 1

From Typewriters to Word Processors

Before we consider the special tools that the UNIX environment provides for text processing, we need to

think about the underlying changes in the process of writing that are inevitable when you begin to use a

computer.

The most important features of a computer program for writers are the ability to remember what is

typed and the ability to allow incremental changes—no more retyping from scratch each time a draft is

revised. For a writer first encountering word processing software, no other features even begin to compare.

The crudest command structure, the most elementary formatting capabilities, will be forgiven because of

the immense labor savings that take place.

Writing is basically an iterative process. It is a rare writer who dashes out a finished piece; most of

us work in circles, returning again and again to the same piece of prose, adding or deleting words, phrases,

and sentences, changing the order of thoughts, and elaborating a single sentence into pages of text.

A writer working on paper periodically needs to clear the deck—to type a clean copy, free of elabora-

tion. As the writer reads the new copy, the process of revision continues, a word here, a sentence there,

until the new draft is as obscured by changes as the first. As Joyce Carol Oates is said to have remarked:

“No book is ever finished. It is abandoned.”

Word processing first took hold in the office as a tool to help secretaries prepare perfect letters,

memos, and reports. As dedicated word processors were replaced with low-cost personal computers, writ-

ers were quick to see the value of this new tool. In a civilization obsessed with the written word, it is no

accident that WordStar, a word processing program, was one of the first best sellers of the personal com-

puter revolution.

As you learn to write with a word processor, your working style changes. Because it is so easy to

make revisions, it is much more forgivable to think with your fingers when you write, rather than to care-

fully outline your thoughts beforehand and polish each sentence as you create it.

If you do work from an outline, you can enter it first, then write your first draft by filling in the out-

line, section by section. If you are writing a structured document such as a technical manual, your outline

points become the headings in your document; if you are writing a free-flowing work, they can be sub-

sumed gradually in the text as you flesh them out. In either case, it is easy to write in small segments that

can be moved as you reorganize your ideas.

Watching a writer at work on a word processor is very different from watching a writer at work on a

typewriter. A typewriter tends to enforce a linear flow—you must write a passage and then go back later to

revise it. On a word processor, revisions are constant—you type a sentence, then go back to change the

sentence above. Perhaps you write a few words, change your mind, and back up to take a different tack; or

you decide the paragraph you just wrote would make more sense if you put it ahead of the one you wrote

before, and move it on the spot.

This is not to say that a written work is created on a word processor in a single smooth flow; in fact,

the writer using a word processor tends to create many more drafts than a compatriot who still uses a pen or

typewriter. Instead of three or four drafts, the writer may produce ten or twenty. There is still a certain edi-

torial distance that comes only when you read a printed copy. This is especially true when that printed copy

is nicely formatted and letter perfect.

This brings us to the second major benefit of word-processing programs: they help the writer with

simple formatting of a document. For example, a word processor may automatically insert carriage returns

at the end of each line and adjust the space between words so that all the lines are the same length. Even

more importantly, the text is automatically readjusted when you make changes. There are probably com-

mands for centering, underlining, and boldfacing text.

1
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The rough formatting of a document can cover a multitude of sins. As you read through your

scrawled markup of a preliminary typewritten draft, it is easy to lose track of the overall flow of the docu-

ment. Not so when you have a clean copy—the flaws of organization and content stand out vividly against

the crisp new sheets of paper.

However, the added capability to print a clean draft after each revision also puts an added burden on

the writer. Where once you had only to worry about content, you may now find yourself fussing with con-

sistency of margins, headings, boldface, italics, and all the other formerly superfluous impedimenta that

have now become integral to your task.

As the writer gets increasingly involved in the formatting of a document, it becomes essential that the

tools help revise the document’s appearance as easily as its content. Given these changes imposed by the

ev olution from typewriters to word processors, let’s take a  look at what a word-processing system needs to

offer to the writer.

A Workspace

One of the most important capabilities of a word processor is that it provides a space in which you can cre-

ate documents. In one sense, the video display screen on your terminal, which echoes the characters you

type, is analogous to a sheet of paper. But the workspace of a word processor is not so unambiguous as a

sheet of paper wound into a typewriter, that may be added neatly to the stack of completed work when fin-

ished, or torn out and crumpled as a false start. From the computer’s point of view, your workspace is a

block of memory, called a buffer, that is allocated when you begin a word-processing session. This buffer

is a temporary holding area for storing your work and is emptied at the end of each session.

To sav e your work, you have to write the contents of the buffer to a file. A file is a permanent storage

area on a disk (a hard disk or a floppy disk). After you have sav ed your work in a file, you can retrieve it

for use in another session.

When you begin a session editing a document that exists on file, a copy of the file is made and its

contents are read into the buffer. You actually work on the copy, making changes to it, not the original.

The file is not changed until you save your changes during or at the end of your work session. You can also

discard changes made to the buffered copy, keeping the original file intact, or save multiple versions of a

document in separate files.

Particularly when working with larger documents, the management of disk files can become a major

effort. If, like most writers, you save multiple drafts, it is easy to lose track of which version of a file is the

latest.

An ideal text-processing environment for serious writers should provide tools for saving and manag-

ing multiple drafts on disk, not just on paper. It should allow the writer to

• work on documents of any length;

• sav e multiple versions of a file;

• sav e part of the buffer into a file for later use;

• switch easily between multiple files;

• insert the contents of an existing file into the buffer;

• summarize the differences between two versions of a document.

Most word-processing programs for personal computers seem to work best for short documents such as the

letters and memos that offices churn out by the millions each day. Although it is possible to create longer

documents, many features that would help organize a large document such as a book or manual are missing

from these programs.

However, long before word processors became popular, programmers were using another class of

programs called text editors. Text editors were designed chiefly for entering computer programs, not text.

Furthermore, they were designed for use by computer professionals, not computer novices. As a result, a
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text editor can be more difficult to learn, lacking many on-screen formatting features available with most

word processors.

Nonetheless, the text editors used in program development environments can provide much better

facilities for managing large writing projects than their office word processing counterparts. Large pro-

grams, like large documents, are often contained in many separate files; furthermore, it is essential to track

the differences between versions of a program.

UNIX is a pre-eminent program development environment and, as such, it is also a superb document

development environment. Although its text editing tools at first may appear limited in contrast to sophisti-

cated office word processors, they are in fact considerably more powerful.

Tools for Editing

For many, the ability to retrieve a document from a file and make multiple revisions painlessly makes it

impossible to write at a typewriter again. However, before you can get the benefits of word processing,

there is a lot to learn.

Editing operations are performed by issuing commands. Each word-processing system has its own

unique set of commands. At a minimum, there are commands to

• move to a particular position in the document;

• insert new text;

• change or replace text;

• delete text;

• copy or move text.

To make changes to a document, you must be able to move to that place in the text where you want to make

your edits. Most documents are too large to be displayed in their entirety on a single terminal screen,

which generally displays 24 lines of text. Usually only a portion of a document is displayed. This partial

view of your document is sometimes referred to as a window.* If you are entering new text and reach the

bottom line in the window, the text on the screen automatically scrolls (rolls up) to reveal an additional line

at the bottom. A cursor (an underline or block) marks your current position in the window.

There are basically two kinds of movement:

• scrolling new text into the window

• positioning the cursor within the window

When you begin a session, the first line of text is the first line in the window, and the cursor is positioned on

the first character. Scrolling commands change which lines are displayed in the window by moving for-

ward or backward through the document. Cursor-positioning commands allow you to move up and down to

individual lines, and along lines to particular characters.

After you position the cursor, you must issue a command to make the desired edit. The command

you choose indicates how much text will be affected: a character, a word, a line, or a sentence.

Because the same keyboard is used to enter both text and commands, there must be some way to dis-

tinguish between the two. Some word-processing programs assume that you are entering text unless you

specify otherwise; newly entered text either replaces existing text or pushes it over to make room for the

new text. Commands are entered by pressing special keys on the keyboard, or by combining a standard key

with a special key, such as the control key (CTRL).

Other programs assume that you are issuing commands; you must enter a command before you can

type any text at all. There are advantages and disadvantages to each approach. Starting out in text mode is

*Some editors, such as emacs, can split the terminal screen into multiple windows. In addition, many high-

powered UNIX workstations with large bit-mapped screens have their own windowing software that allows

multiple programs to be run simultaneously in separate windows. For purposes of this book, we assume you are

using the vi editor and an alphanumeric terminal with only a single window.
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more intuitive to those coming from a typewriter, but may be slower for experienced writers, because all

commands must be entered by special key combinations that are often hard to reach and slow down typing.

(We’ll return to this topic when we discuss vi, a UNIX text editor).

Far more significant than the style of command entry is the range and speed of commands. For

example, though it is heaven for someone used to a typewriter to be able to delete a word and type in a

replacement, it is even better to be able to issue a command that will replace every occurrence of that word

in an entire document. And, after you start making such global changes, it is essential to have some way to

undo them if you make a mistake.

A word processor that substitutes ease of learning for ease of use by having fewer commands will

ultimately fail the serious writer, because the investment of time spent learning complex commands can

easily be repaid when they simplify complex tasks.

And when you do issue a complex command, it is important that it works as quickly as possible, so

that you aren’t left waiting while the computer grinds away. The extra seconds add up when you spend

hours or days at the keyboard, and, once having been given a taste of freedom from drudgery, writers want

as much freedom as they can get.

Te xt editors were developed before word processors (in the rapid evolution of computers). Many of

them were originally designed for printing terminals, rather than for the CRT-based terminals used by word

processors. These programs tend to have commands that work with text on a line-by-line basis. These

commands are often more obscure than the equivalent office word-processing commands.

However, though the commands used by text editors are sometimes more difficult to learn, they are

usually very effective. (The commands designed for use with slow paper terminals were often extraordinar-

ily powerful, to make up for the limited capabilities of the input and output device).

There are two basic kinds of text editors, line editors and screen editors, and both are available in

UNIX. The difference is simple: line editors display one line at a time, and screen editors can display

approximately 24 lines or a full screen.

The line editors in UNIX include ed, sed, and ex. Although these line editors are obsolete for gen-

eral-purpose use by writers, there are applications at which they excel, as we will see in Chapters 7 and 12.

The most common screen editor in UNIX is vi. Learning vi or some other suitable editor is the

first step in mastering the UNIX text-processing environment. Most of your time will be spent using the

editor.

UNIX screen editors such as vi and emacs (another editor available on many UNIX systems) lack

ease-of-learning features common in many word processors—there are no menus and only primitive on-line

help screens, and the commands are often complex and nonintuitive—but they are powerful and fast.

What’s more, UNIX line editors such as ex and sed give additional capabilities not found in word proces-

sors—the ability to write a script of editing commands that can be applied to multiple files. Such editing

scripts open new ranges of capability to the writer.

Document Formatting

Te xt editing is wonderful, but the object of the writing process is to produce a printed document for others

to read. And a printed document is more than words on paper; it is an arrangement of text on a page. For

instance, the elements of a business letter are arranged in a consistent format, which helps the person read-

ing the letter identify those elements. Reports and more complex documents, such as technical manuals or

books, require even greater attention to formatting. The format of a document conveys how information is

organized, assisting in the presentation of ideas to a reader.

Most word-processing programs have built-in formatting capabilities. Formatting commands are

intermixed with editing commands, so that you can shape your document on the screen. Such formatting

commands are simple extensions of those available to someone working with a typewriter. For example, an

automatic centering command saves the trouble of manually counting characters to center a title or other
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text. There may also be such features as automatic pagination and printing of headers or footers.

Te xt editors, by contrast, usually have few formatting capabilities. Because they were designed for

entering programs, their formatting capabilities tend to be oriented toward the formats required by one or

more programming languages.

Even programmers write reports, however. Especially at AT&T (where UNIX was developed), there

was a great emphasis on document preparation tools to help the programmers and scientists of Bell Labs

produce research reports, manuals, and other documents associated with their development work.

Word processing, with its emphasis on easy-to-use programs with simple on-screen formatting, was

in its infancy. Computerized phototypesetting, on the other hand, was already a developed art. Until quite

recently, it was not possible to represent on a video screen the variable type styles and sizes used in typeset

documents. As a result, phototypesetting has long used a markup system that indicates formatting instruc-

tions with special codes. These formatting instructions to the computerized typesetter are often direct

descendants of the instructions that were formerly given to a human typesetter—center the next line, indent

five spaces, boldface this heading.

The text formatter most commonly used with the UNIX system is called nroff. To use it, you must

intersperse formatting instructions (usually one- or two-letter codes preceded by a period) within your text,

then pass the file through the formatter. The nroff program interprets the formatting codes and reformats

the document “on the fly” while passing it on to the printer. The nroff formatter prepares documents for

printing on line printers, dot-matrix printers, and letter-quality printers. Another program called troff

uses an extended version of the same markup language used by nroff, but prepares documents for print-

ing on laser printers and typesetters. We’ll talk more about printing in a moment.

Although formatting with a markup language may seem to be a far inferior system to the “what you

see is what you get” (wysiwyg) approach of most office word processing programs, it actually has many

advantages.

First, unless you are using a very sophisticated computer, with very sophisticated software (what has

come to be called an electronic publishing system, rather than a mere word processor), it is not possible to

display everything on the screen just as it will appear on the printed page. For example, the screen may not

be able to represent boldfacing or underlining except with special formatting codes. WordStar, one of the

grandfathers of word-processing programs for personal computers, represents underlining by surrounding

the word or words to be underlined with the special control character ˆS (the character generated by hold-

ing down the control key while typing the letter S). For example, the following title line would be under-

lined when the document is printed:

ˆSWord Processing with WordStarˆS

Is this really superior to the following nroff construct?

.ul

Text Processing with vi and nroff

It is perhaps unfair to pick on WordStar, an older word-processing program, but very few word-processing

programs can complete the illusion that what you see on the screen is what you will get on paper. There is

usually some mix of control codes with on-screen formatting. More to the point, though, is the fact that

most word processors are oriented toward the production of short documents. When you get beyond a let-

ter, memo, or report, you start to understand that there is more to formatting than meets the eye.

Although “what you see is what you get” is fine for laying out a single page, it is much harder to

enforce consistency across a large document. The design of a large document is often determined before

writing is begun, just as a set of plans for a house are drawn up before anyone starts construction. The

design is a plan for organizing a document, arranging various parts so that the same types of material are

handled in the same way.

The parts of a document might be chapters, sections, or subsections. For instance, a technical manual

is often organized into chapters and appendices. Within each chapter, there might be numbered sections

that are further divided into three or four levels of subsections.

Document design seeks to accomplish across the entire document what is accomplished by the table

of contents of a book. It presents the structure of a document and helps the reader locate information.
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Each of the parts must be clearly identified. The design specifies how they will look, trying to

achieve consistency throughout the document. The strategy might specify that major section headings will

be all uppercase, underlined, with three blank lines above and two below, and secondary headings will be in

uppercase and lowercase, underlined, with two blank lines above and one below.

If you have ever tried to format a large document using a word processor, you have probably found it

difficult to enforce consistency in such formatting details as these. By contrast, a markup language—espe-

cially one like nroff that allows you to define repeated command sequences, or macros—makes it easy:

the style of a heading is defined once, and a code used to reference it. For example, a top-level heading

might be specified by the code .H1, and a secondary heading by .H2. Even more significantly, if you later

decide to change the design, you simply change the definition of the relevant design elements. If you have

used a word processor to format the document as it was written, it is usually a painful task to go back and

change the format.

Some word-processing programs, such as Microsoft WORD, include features for defining global doc-

ument formats, but these features are not as widespread as they are in markup systems.

Printing

The formatting capabilities of a word-processing system are limited by what can be output on a printer. For

example, some printers cannot backspace and therefore cannot underline. For this discussion, we are con-

sidering four different classes of printers: dot matrix, letter quality, phototypesetter, and laser.

A dot-matrix printer composes characters as a series of dots. It is usually suitable for preparing

interoffice memos and obtaining fast printouts of large files.

This paragraph was printed with a dot-matrix printer. It uses a print

head containing 9 pins, which are adjusted to produce the shape of each

character. More sophisticated dot-matrix printers have print heads

containing up to 24 pins. The greater the number of pins, the finer

the dots that are printed, and the more possible it is to fool the eye

into thinking it sees a solid character. Dot matrix printers are also

capable of printing out graphic displays.

A letter-quality printer is more expensive and slower. Its printing mechanism operates like a type-

writer and achieves a similar result.

This paragraph was printed with a letter-

quality printer. It is essentially a

computer-controlled typewriter and, like a

typewriter, uses a print ball or wheel

containing fully formed characters.

A letter-quality printer produces clearer, easier-to-read copy than a dot-matrix printer. Letter-quality print-

ers are generally used in offices for formal correspondence as well as for the final drafts of proposals and

reports.

Until very recently, documents that needed a higher quality of printing than that available with letter-

quality printers were sent out for typesetting. Even if draft copy was word-processed, the material was

often re-entered by the typesetter, although many typesetting companies can read the files created by popu-

lar word-processing programs and use them as a starting point for typesetting.

This paragraph, like the rest of this book, was phototypeset. In phototypesetting, a
photographic technique is used to print characters on film or photographic paper.
There is a wide choice of type styles, and the characters are much more finely
formed that those produced by a letter-quality printer. Characters are produced by
an arrangement of tiny dots, much like a dot-matrix printer—but there are over
1000 dots per inch.
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There are several major advantages to typesetting. The high resolution allows for the design of aestheti-

cally pleasing type. The shape of the characters is much finer. In addition, where dot-matrix and letter-

quality type is usually constant width (narrow letters like i take up the same amount of space as wide ones

like m), typesetters use variable-width type, in which narrow letters take up less space than wide ones. In

addition, it’s possible to mix styles (for example, bold and italic) and sizes of type on the same page.

Most typesetting equipment uses a markup language rather than a wysiwyg approach to specify point

sizes, type styles, leading, and so on. Until recently, the technology didn’t even exist to represent on a

screen the variable-width typefaces that appear in published books and magazines.

AT&T, a company with its own extensive internal publishing operation, developed its own typesetting

markup language and typesetting program—a sister to nroff called troff (typesetter-roff). Although

troff extends the capabilities of nroff in significant ways, it is almost totally compatible with it.

Until recently, unless you had access to a typesetter, you didn’t hav e much use for troff. The

development of low-cost laser printers that can produce near typeset quality output at a fraction of the cost

has changed all that.

This paragraph was produced on a laser printer. Laser printers produce
high-resolution characters—300 to 500 dots per inch—though they are not
quite as finely formed as phototypeset characters. Laser printers are not only
cheaper to purchase than phototypesetters, they also print on plain paper, just
like Xerox machines, and are therefore much cheaper to operate. However, as
is always the case with computers, you need the proper software to take ad-
vantage of improved hardware capabilities.

Word-processing software (particularly that developed for the Apple Macintosh, which has a high-resolu-

tion graphics screen capable of representing variable type fonts) is beginning to tap the capabilities of laser

printers. However, most of the microcomputer-based packages still have many limitations. Nonetheless, a

markup language such as that provided by troff still provides the easiest and lowest-cost access to the

world of electronic publishing for many types of documents.

The point made previously, that markup languages are preferable to wysiwyg systems for large docu-

ments, is especially true when you begin to use variable size fonts, leading, and other advanced formatting

features. It is easy to lose track of the overall format of your document and difficult to make overall

changes after your formatted text is in place. Only the most expensive electronic publishing systems (most

of them based on advanced UNIX workstations) give you both the capability to see what you will get on the

screen and the ability to define and easily change overall document formats.

Other UNIX Text-Processing Tools

Document editing and formatting are the most important parts of text processing, but they are not the whole

story. For instance, in writing many types of documents, such as technical manuals, the writer rarely starts

from scratch. Something is already written, whether it be a first draft written by someone else, a product

specification, or an outdated version of a manual. It would be useful to get a copy of that material to work

with. If that material was produced with a word processor or has been entered on another system, UNIX’s

communications facilities can transfer the file from the remote system to your own.

Then you can use a number of custom-made programs to search through and extract useful informa-

tion. Word-processing programs often store text in files with different internal formats. UNIX provides a

number of useful analysis and translation tools that can help decipher files with nonstandard formats. Other

tools allow you to “cut and paste” portions of a document into the one you are writing.

As the document is being written, there are programs to check spelling, style, and diction. The

reports produced by those programs can help you see if there is any detectable pattern in syntax or structure

that might make a document more difficult for the user than it needs to be.

Although many documents are written once and published or filed, there is also a large class of docu-

ments (manuals in particular) that are revised again and again. Documents such as these require special
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tools for managing revisions. UNIX program development tools such as SCCS (Source Code Control Sys-

tem) and diff can be used by writers to compare past versions with the current draft and print out reports

of the differences, or generate printed copies with change bars in the margin marking the differences.

In addition to all of the individual tools it provides, UNIX is a particularly fertile environment for

writers who aren’t afraid of computers, because it is easy to write command files, or shell scripts, that com-

bine individual programs into more complex tools to meet your specific needs. For example, automatic

index generation is a complex task that is not handled by any of the standard UNIX text-processing tools.

We will show you ways to perform this and other tasks by applying the tools available in the UNIX envi-

ronment and a little ingenuity.

We hav e two different objectives in this book. The first objective is that you learn to use many of the

tools available on most UNIX systems. The second objective is that you develop an understanding of how

these different tools can work together in a document preparation system. We’re not just presenting a

UNIX user’s manual, but suggesting applications for which the various programs can be used.

To take full advantage of the UNIX text-processing environment, you must do more than just learn a

few programs. For the writer, the job includes establishing standards and conventions about how docu-

ments will be stored, in what format they should appear in print, and what kinds of programs are needed to

help this process take place efficiently with the use of a computer. Another way of looking at it is that you

have to make certain choices prior to beginning a project. We want to encourage you to make your own

choices, set your own standards, and realize the many possibilities that are open to a diligent and creative

person.

In the past, many of the steps in creating a finished book were out of the hands of the writer. Proof-

readers and copy editors went over the text for spelling and grammatical errors. It was generally the printer

who did the typesetting (a service usually paid by the publisher). At the print shop, a typesetter (a person)

retyped the text and specified the font sizes and styles. A graphic artist, performing layout and pasteup,

made many of the decisions about the appearance of the printed page.

Although producing a high-quality book can still involve many people, UNIX provides the tools that

allow a writer to control the process from start to finish. An analogy is the difference between an assembly

worker on a production line who views only one step in the process and a craftsman who guides the product

from beginning to end. The craftsman has his own system of putting together a product, whereas the

assembly worker has the system imposed upon him.

After you are acquainted with the basic tools available in UNIX and have spent some time using

them, you can design additional tools to perform work that you think is necessary and helpful. To create

these tools, you will write shell scripts that use the resources of UNIX in special ways. We think there is a

certain satisfaction that comes with accomplishing such tasks by computer. It seems to us to reward careful

thought.

What programming means to us is that when we confront a problem that normally submits only to

tedium or brute force, we think of a way to get the computer to solve the problem. Doing this often means

looking at the problem in a more general way and solving it in a way that can be applied again and again.

One of the most important books on UNIX is The UNIX Programming Environment by Brian W.

Kernighan and Rob Pike. They write that what makes UNIX effective “is an approach to programming, a

philosophy of using the computer.” At the heart of this philosophy “is the idea that the power of a system

comes more from the relationships among programs than from the programs themselves.”

When we talk about building a document preparation system, it is this philosophy that we are trying

to apply. As a consequence, this is a system that has great flexibility and gives the builders a feeling of

breaking new ground. The UNIX text-processing environment is a system that can be tailored to the spe-

cific tasks you want to accomplish. In many instances, it can let you do just what a word processor does.

In many more instances, it lets you use more of the computer to do things that a word processor either can’t

do or can’t do very well.



Chapter 2

UNIX Fundamentals

The UNIX operating system is a collection of programs that controls and organizes the resources and activ-

ities of a computer system. These resources consist of hardware such as the computer’s memory, various

peripherals such as terminals, printers, and disk drives, and software utilities that perform specific tasks on

the computer system. UNIX is a multiuser, multitasking operating system that allows the computer to per-

form a variety of functions for many users. It also provides users with an environment in which they can

access the computer’s resources and utilities. This environment is characterized by its command inter-

preter, the shell.

In this chapter, we review a set of basic concepts for users working in the UNIX environment. As we

mentioned in the preface, this book does not replace a general introduction to UNIX. A complete overview

is essential to anyone not familiar with the file system, input and output redirection, pipes and filters, and

many basic utilities. In addition, there are different versions of UNIX, and not all commands are identical

in each version. In writing this book, we’ve used System V Release 2 on a Convergent Technologies’

Miniframe.

These disclaimers aside, if it has been a while since you tackled a general introduction, this chapter

should help refresh your memory. If you are already familiar with UNIX, you can skip or skim this chapter.

As we explain these basic concepts, using a tutorial approach, we demonstrate the broad capabilities

of UNIX as an applications environment for text-processing. What you learn about UNIX in general can be

applied to performing specific tasks related to text-processing.

The UNIX Shell

As an interactive computer system, UNIX provides a command interpreter called a shell. The shell accepts

commands typed at your terminal, invokes a program to perform specific tasks on the computer, and han-

dles the output or result of this program, normally directing it to the terminal’s video display screen.

UNIX commands can be simple one-word entries like the date command:

$ date
Tue Apr 8 13:23:41 EST 1987

Or their usage can be more complex, requiring that you specify options and arguments, such as filenames.

Although some commands have a peculiar syntax, many UNIX commands follow this general form:

command option(s) argument(s)

A command identifies a software program or utility. Commands are entered in lowercase letters.

One typical command, ls, lists the files that are available in your immediate storage area, or directory.

An option modifies the way in which a command works. Usually options are indicated by a minus

sign followed by a single letter. For example, ls -l modifies what information is displayed about a file.

The set of possible options is particular to the command and generally only a few of them are regularly

used. However, if you want to modify a command to perform in a special manner, be sure to consult a

UNIX reference guide and examine the available options.

An argument can specify an expression or the name of a file on which the command is to act. Argu-

ments may also be required when you specify certain options. In addition, if more than one filename is

being specified, special metacharacters (such as * and ?) can be used to represent the filenames. For

instance, ls -l ch* will display information about all files that have names beginning with ch.

9
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The UNIX shell is itself a program that is invoked as part of the login process. When you have prop-

erly identified yourself by logging in, the UNIX system prompt appears on your terminal screen.

The prompt that appears on your screen may be different from the one shown in the examples in this

book. There are two widely used shells: the Bourne shell and the C shell. Traditionally, the Bourne shell

uses a dollar sign ($) as a system prompt, and the C shell uses a percent sign (%). The two shells differ in

the features they provide and in the syntax of their programming constructs. However, they are fundamen-

tally very similar. In this book, we use the Bourne shell.

Your prompt may be different from either of these traditional prompts. This is because the UNIX

environment can be customized and the prompt may have been changed by your system administrator.

Whatever the prompt looks like, when it appears, the system is ready for you to enter a command.

When you type a command from the keyboard, the characters are echoed on the screen. The shell

does not interpret the command until you press the RETURN key. This means that you can use the erase

character (usually the DEL or BACKSPACE key) to correct typing mistakes. After you have entered a com-

mand line, the shell tries to identify and locate the program specified on the command line. If the command

line that you entered is not valid, then an error message is returned.

When a program is invoked and processing begun, the output it produces is sent to your screen,

unless otherwise directed. To interrupt and cancel a program before it has completed, you can press the

interrupt character (usually CTRL-C or the DEL key). If the output of a command scrolls by the screen too

fast, you can suspend the output by pressing the suspend character (usually CTRL-S) and resume it by

pressing the resume character (usually CTRL-Q).

Some commands invoke utilities that offer their own environment—with a command interpreter and a

set of special “internal” commands. A text editor is one such utility, the mail facility another. In both

instances, you enter commands while you are “inside” the program. In these kinds of programs, you must

use a command to exit and return to the system prompt.

The return of the system prompt signals that a command is finished and that you can enter another

command. Familiarity with the power and flexibility of the UNIX shell is essential to working productively

in the UNIX environment.

Output Redirection

Some programs do their work in silence, but most produce some kind of result, or output. There are gener-

ally two types of output: the expected result—referred to as standard output—and error messages—referred

to as standard error. Both types of output are normally sent to the screen and appear to be indistinguish-

able. However, they can be manipulated separately—a feature we will later put to good use.

Let’s look at some examples. The echo command is a simple command that displays a string of text

on the screen.

$ echo my name
my name

In this case, the input echo my name is processed and its output is my name. The name of the com-

mand—echo—refers to a program that interprets the command line arguments as a literal expression that

is sent to standard output. Let’s replace echo with a different command called cat:

$ cat my name
cat: Cannot open my

cat: Cannot open name

The cat program takes its arguments to be the names of files. If these files existed, their contents would be

displayed on the screen. Because the arguments were not filenames in this example, an error message was

printed instead.

The output from a command can be sent to a file instead of the screen by using the output redirection

operator (>). In the next example, we redirect the output of the echo command to a file named

reminders.
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$ echo Call home at 3:00 > reminders
$

No output is sent to the screen, and the UNIX prompt returns when the program is finished. Now the cat

command should work because we have created a file.

$ cat reminders
Call home at 3:00

The cat command displays the contents of the file named reminders on the screen. If we redirect again

to the same filename, we overwrite its previous contents:

$ echo Pick up expense voucher > reminders
$ cat reminders
Pick up expense voucher

We can send another line to the file, but we have to use a different redirect operator to append (>>) the new

line at the end of the file:

$ echo Call home at 3:00 > reminders
$ echo Pick up expense voucher >> reminders
$ cat reminders
Call home at 3:00

Pick up expense voucher

The cat command is useful not only for printing a file on the screen, but for concatenating existing files

(printing them one after the other). For example:

$ cat reminders todolist
Call home at 3:00

Pick up expense voucher

Proofread Chapter 2

Discuss output redirection

The combined output can also be redirected:

$ cat reminders todolist > do_now

The contents of both reminders and todolist are combined into do_now. The original files remain

intact.

If one of the files does not exist, an error message is printed, even though standard output is redi-

rected:

$ rm todolist
$ cat reminders todolist > do_now
cat: todolist: not found

The files we’ve created are stored in our current working directory.

Files and Directories

The UNIX file system consists of files and directories. Because the file system can contain thousands of

files, directories perform the same function as file drawers in a paper file system. They org anize files into

more manageable groupings. The file system is hierarchical. It can be represented as an inverted tree struc-

ture with the root directory at the top. The root directory contains other directories that in turn contain

other directories.*

On many UNIX systems, users store their files in the /usr file system. (As disk storage has become

cheaper and larger, the placement of user directories is no longer standard. For example, on our system,

/usr contains only UNIX software; user accounts are in a separate file system called /work).

*In addition to subdirectories, the root directory can contain other file systems. A file system is the skeletal

structure of a directory tree, which is built on a magnetic disk before any files or directories are stored on it. On

a system containing more than one disk, or on a disk divided into several partitions, there are multiple file sys-

tems. However, this is generally invisible to the user, because the secondary file systems are mounted on the

root directory, creating the illusion of a single file system.
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Fred’s home directory is /usr/fred. It is the location of Fred’s account on the system. When he

logs in, his home directory is his current working directory. Your working directory is where you are cur-

rently located and changes as you move up and down the file system.

A pathname specifies the location of a directory or file on the UNIX file system. An absolute path-

name specifies where a file or directory is located off the root file system. A relative pathname specifies the

location of a file or directory in relation to the current working directory.

To find out the pathname of our current directory, enter pwd.

$ pwd
/usr/fred

The absolute pathname of the current working directory is /usr/fred. The ls command lists the con-

tents of the current directory. Let’s list the files and subdirectories in /usr/fred by entering the ls com-

mand with the -F option. This option prints a slash (/) following the names of subdirectories. In the fol-

lowing example, oldstuff is a directory, and notes and reminders are files.

$ ls -F
reminders

notes

oldstuff/

When you specify a filename with the ls command, it simply prints the name of the file, if the file

exists. When you specify the name of directory, it prints the names of the files and subdirectories in that

directory.

$ ls reminders
reminders

$ ls oldstuff
ch01_draft

letter.212

memo

In this example, a relative pathname is used to specify oldstuff. That is, its location is specified in rela-

tion to the current directory, /usr/fred. You could also enter an absolute pathname, as in the following

example:

$ ls /usr/fred/oldstuff
ch01_draft

letter.212

memo

Similarly, you can use an absolute or relative pathname to change directories using the cd command. To

move from /usr/fred to /usr/fred/oldstuff, you can enter a relative pathname:

$ cd oldstuff
$ pwd
/usr/fred/oldstuff

The directory /usr/fred/oldstuff becomes the current working directory.

The cd command without an argument returns you to your home directory.

$ cd

When you log in, you are positioned in your home directory, which is thus your current working directory.

The name of your home directory is stored in a shell variable that is accessible by prefacing the name of the

variable (HOME) with a dollar sign ($). Thus:

$ echo $HOME
/usr/fred

You could also use this variable in pathnames to specify a file or directory in your home directory.

$ ls $HOME/oldstuff/memo
/usr/fred/oldstuff/memo

In this tutorial, /usr/fred is our home directory.

The command to create a directory is mkdir. An absolute or relative pathname can be specified.

$ mkdir /usr/fred/reports
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$ mkdir reports/monthly

Setting up directories is a convenient method of organizing your work on the system. For instance, in writ-

ing this book, we set up a directory /work/textp and, under that, subdirectories for each chapter in the

book (/work/textp/ch01, /work/textp/ch02, etc.). In each of those subdirectories, there are

files that divide the chapter into sections (sect1, sect2, etc.). There is also a subdirectory set up to hold

old versions or drafts of these sections.

Copying and Moving Files

You can copy, move, and rename files within your current working directory or (by specifying the full path-

name) within other directories on the file system. The cp command makes a copy of a file and the mv

command can be used to move a file to a new directory or simply rename it. If you give the name of a new

or existing file as the last argument to cp or mv, the file named in the first argument is copied, and the copy

given the new name. (If the target file already exists, it will be overwritten by the copy. If you give the

name of a directory as the last argument to cp or mv, the file or files named first will be copied to that

directory, and will keep their original names).

Look at the following sequence of commands:

$ pwd Print working directory
/usr/fred

$ ls -F List contents of current directory
meeting

oldstuff/

notes

reports/

$ mv notes oldstuff Move notes to oldstuff directory
$ ls List contents of current directory
meeting

oldstuff

reports/

$ mv meeting meet.306 Rename meeting

$ ls oldstuff List contents of oldstuff subdirectory
ch01_draft

letter.212

memo

notes

In this example, the mv command was used to rename the file meeting and to move the file notes from

/usr/fred to /usr/fred/oldstuff. You can also use the mv command to rename a directory

itself.

Permissions

Access to UNIX files is governed by ownership and permissions. If you create a file, you are the owner of

the file and can set the permissions for that file to give or deny access to other users of the system. There

are three different levels of permission:

r Read permission allows users to read a file or make a copy of it.

w Write permission allows users to make changes to that file.

x Execute permission signifies a program file and allows other

users to execute this program.

File permissions can be set for three different levels of ownership:

owner The user who created the file is its owner.
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group A group to which you are assigned, usually made up of those users

engaged in similar activities and who need to share files among them-

selves.

other All other users on the system, the public.

Thus, you can set read, write, and execute permissions for the three levels of ownership. This can be

represented as:

rwx rwx rwx

/ | \

owner group other

When you enter the command ls -l, information about the status of the file is displayed on the screen.

You can determine what the file permissions are, who the owner of the file is, and with what group the file

is associated.

$ ls -l meet.306
-rw-rw-r-- 1 fred techpubs 126 March 6 10:32 meet.306

This file has read and write permissions set for the user fred and the group techpubs. All others can

read the file, but they cannot modify it. Because fred is the owner of the file, he can change the permis-

sions, making it available to others or denying them access to it. The chmod command is used to set per-

missions. For instance, if he wanted to make the file writeable by everyone, he would enter:

$ chmod o+w meet.306
$ ls -l meet.306
-rw-rw-rw- 1 fred techpubs 126 March 6 10:32 meet.306

This translates to “add write permission (+w) to others (o).” If he wanted to remove write permission from

a file, keeping anyone but himself from accidentally modifying a finished document, he might enter:

$ chmod go-w meet.306
$ ls -l meet.306
-rw-r--r-- 1 fred techpubs 126 March 6 10:32 meet.306

This command removes write permission (-w) from group (g) and other (o).

File permissions are important in UNIX, especially when you start using a text editor to create and

modify files. They can be used to protect information you have on the system.

Special Characters

As part of the shell environment, there are a few special characters (metacharacters) that make working in

UNIX much easier. We won’t review all the special characters, but enough of them to make sure you see

how useful they are.

The asterisk (*) and the question mark (?) are filename generation metacharacters. The asterisk

matches any or all characters in a string. By itself, the asterisk expands to all the names in the specified

directory.

$ echo *
meet.306 oldstuff reports

In this example, the echo command displays in a row the names of all the files and directories in the cur-

rent directory. The asterisk can also be used as a shorthand notation for specifying one or more files.

$ ls meet*
meet.306

$ ls /work/textp/ch*
/work/textp/ch01

/work/textp/ch02

/work/textp/ch03

/work/textp/chapter_make

The question mark matches any single character.
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$ ls /work/textp/ch01/sect?
/work/textp/ch01/sectl

/work/textp/ch01/sect2

/work/textp/ch01/sect3

Besides filename metacharacters, there are other characters that have special meaning when placed in a

command line. The semicolon (;) separates multiple commands on the same command line. Each com-

mand is executed in sequence from left to right, one before the other.

$ cd oldstuff;pwd;ls
/usr/fred/oldstuff

ch01_draft

letter.212

memo

notes

Another special character is the ampersand (&). The ampersand signifies that a command should be pro-

cessed in the background, meaning that the shell does not wait for the program to finish before returning a

system prompt. When a program takes a significant amount of processing time, it is best to have it run in

the background so that you can do other work at your terminal in the meantime. We will demonstrate back-

ground processing in Chapter 4 when we look at the nroff/troff text formatter.

Environment Variables

The shell stores useful information about who you are and what you are doing in environment variables.

Entering the set command will display a list of the environment variables that are currently defined in

your account.

$ set
PATH .:bin:/usr/bin:/usr/local/bin:/etc

argv ()

cwd /work/textp/ch03

home /usr/fred

shell /bin/sh

status0

TERM wy50

These variables can be accessed from the command line by prefacing their name with a dollar sign:

$ echo $TERM
wy50

The TERM variable identifies what type of terminal you are using. It is important that you correctly define

the TERM environment variable, especially because the vi text editor relies upon it. Shell variables can be

reassigned from the command line. Some variables, such as TERM, need to be exported if they are reas-

signed, so that they are available to all shell processes.

$ TERM=tvi925; export TERM Tell UNIX I’m using a Televideo 925

You can also define your own environment variables for use in commands.

$ friends="alice ed ralph"
$ echo $friends
alice ed ralph

You could use this variable when sending mail.

$ mail $friends
A message to friends

<CTRL-D>

This command sends the mail message to three people whose names are defined in the friends environ-

ment variable. Pathnames can also be assigned to environment variables, shortening the amount of typing:

$ pwd
/usr/fred

$ book="/work/textp"
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$ cd $book
$ pwd
/work/textp

Pipes and Filters

Earlier we demonstrated how you can redirect the output of a command to a file. Normally, command input

is taken from the keyboard and command output is displayed on the terminal screen. A program can be

thought of as processing a stream of input and producing a stream of output. As we have seen, this stream

can be redirected to a file. In addition, it can originate from or be passed to another command.

A pipe is formed when the output of one command is sent as input to the next command. For exam-

ple:

$ ls | wc

might produce:

10 10 72

The ls command produces a list of filenames which is provided as input to wc. The wc command counts

the number of lines, words, and characters.

Any program that takes its input from another program, performs some operation on that input, and

writes the result to the standard output is referred to as a filter. Most UNIX programs are designed to work

as filters. This is one reason why UNIX programs do not print “friendly” prompts or other extraneous

information to the user. Because all programs expect—and produce—only a data stream, that data stream

can easily be processed by multiple programs in sequence.

One of the most common uses of filters is to process output from a command. Usually, the process-

ing modifies it by rearranging it or reducing the amount of information it displays. For example:

$ who List who is on the system, and at which terminal
peter tty001 Mar 6 17:12

walter tty003 Mar 6 13:51

chris tty004 Mar 6 15:53

val tty020 Mar 6 15:48

tim tty005 Mar 4 17:23

ruth tty006 Mar 6 17:02

fred tty000 Mar 6 10:34

dale tty008 Mar 6 15:26

$ who | sort List the same information in alphabetic order
chris tty004 Mar 6 15:53

dale tty008 Mar 6 15:26

fred ttY000 Mar 6 10:34

peter tty001 Mar 6 17:12

ruth tty006 Mar 6 17:02

tim tty005 Mar 4 17:23

val tty020 Mar 6 15:48

walter tty003 Mar 6 13:51

$

The sort program arranges lines of input in alphabetic or numeric order. It sorts lines alphabeti-

cally by default. Another frequently used filter, especially in text-processing environments, is grep, per-

haps UNIX’s most renowned program. The grep program selects lines containing a pattern:

$ who | grep tty001 Find out who is on terminal 1
peter tty001 Mar 6 17:12

One of the beauties of UNIX is that almost any program can be used to filter the output of any other. The

pipe is the master key to building command sequences that go beyond the capabilities provided by a single

program and allow users to create “custom” programs of their own to meet specific needs.

If a command line gets too long to fit on a single screen line, simply type a backslash followed by a

carriage return, or (if a pipe symbol comes at the appropriate place) a pipe symbol followed by a carriage
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return. Instead of executing the command, the shell will give you a secondary prompt (usually >) so you

can continue the line:

$ echo This is a long line shown here as a demonstration |
> wc

1 10 49

This feature works in the Bourne shell only.

Shell Scripts

A shell script is a file that contains a sequence of UNIX commands. Part of the flexibility of UNIX is that

anything you enter from the terminal can be put in a file and executed. To giv e a simple example, we’ll

assume that the last command example (grep) has been stored in a file called whoison:

$ cat whoison
who | grep tty001

The permissions on this file must be changed to make it executable. After a file is made executable,

its name can be entered as a command.

$ chmod +x whoison
$ ls -l whoison
-rwxrwxr-x 1 fred doc 123 Mar 6 17:34 whois

$ whoison
peter tty001 Mar 6 17:12

Shell scripts can do more than simply function as a batch command facility. The basic constructs of a pro-

gramming language are available for use in a shell script, allowing users to perform a variety of compli-

cated tasks with relatively simple programs.

The simple shell script shown above is not very useful because it is too specific. However, instead of

specifying the name of a single terminal line in the file, we can read the name as an argument on the com-

mand line. In a shell script, $1 represents the first argument on the command line.

$ cat whoison
who | grep $1

Now we can find who is logged on to any terminal:

$ whoison tty004
chris tty004 Mar 6 15:53

Later in this book, we will look at shell scripts in detail. They are an important part of the writer’s toolbox,

because they provide the “glue” for users of the UNIX system—the mechanism by which all the other tools

can be made to work together.





Chapter 3

Learning vi

UNIX has a number of editors that can process the contents of readable files, whether those files contain

data, source code, or text. There are line editors, such as ed and ex, which display a line of the file on the

screen, and there are screen editors, such as vi and emacs, which display a part of the file on your termi-

nal screen.

The most useful standard text editor on your system is vi. Unlike emacs, it is available in nearly

identical form on almost every UNIX system, thus providing a kind of text editing lingua franca. The same

might be said of ed and ex, but screen editors are generally much easier to use. With a screen editor you

can scroll the page, move the cursor, delete lines, insert characters, and more, while seeing the results of

your edits as you make them. Screen editors are very popular because they allow you to make changes as

you read a file, much as you would edit a printed copy, only faster.

To many beginners, vi looks unintuitive and cumbersome—instead of letting you type normally and

use special control keys for word-processing functions, it uses all of the regular keyboard keys for issuing

commands. You must be in a special insert mode before you can type. In addition, there seem to be so

many commands.

You can’t learn vi by memorizing every single vi command. Begin by learning some basic com-

mands. As you do, be aware of the patterns of usage that commands have in common. Be on the lookout

for new ways to perform tasks, experimenting with new commands and combinations of commands.

As you become more familiar with vi, you will find that you need fewer keystrokes to tell vi what

to do. You will learn shortcuts that transfer more and more of the editing work to the computer—where it

belongs. Not as much memorization is required as first appears from a list of vi commands. Like any

skill, the more editing you do, the more you know about it and the more you can accomplish.

This chapter has three sections, and each one corresponds to a set of material about vi that you

should be able to tackle in a single session. After you have finished each session, put aside the book for a

while and do some experimenting. When you feel comfortable with what you have learned, continue to the

next session.

Session 1: Basic Commands

The first session contains the basic knowledge you need to operate the vi editor. After a general descrip-

tion of vi, you are shown some simple operations. You will learn how to

• open and close a file;

• giv e commands and insert text;

• move the cursor;

• edit text (change, delete, and copy).

You can use vi to edit any file that contains readable text, whether it is a report, a series of shell com-

mands, or a program. The vi editor copies the file to be edited into a buffer (an area temporarily set aside

in memory), displays as much of the buffer as possible on the screen, and lets you add, delete, and move

text. When you save your edits, vi copies the buffer into a permanent file, overwriting the contents of the

old file.

19
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Opening a File

The syntax for the vi command is:

vi [filename]

where filename is the name of either an existing file or a new file. If you don’t specify a filename, vi will

open an unnamed buffer, and ask you to name it before you can save any edits you have made. Press

RETURN to execute the command.

A filename must be unique inside its directory. On AT&T (System V) UNIX systems, it cannot

exceed 14 characters. (Berkeley UNIX systems allow longer filenames). A filename can include any

ASCII character except /, which is reserved as the separator between files and directories in a pathname.

You can even include spaces in a filename by “escaping” them with a backslash. In practice, though, file-

names consist of any combination of uppercase and lowercase letters, numbers, and the characters . (dot)

and _ (underscore). Remember that UNIX is case-sensitive: lowercase filenames are distinct from upper-

case filenames, and, by convention, lowercase is preferred.

If you want to open a new file called notes in the current directory, enter:

$ vi notes

The vi command clears the screen and displays a new buffer for you to begin work. Because notes is a

new file, the screen displays a column of tildes (∼) to indicate that there is no text in the file, not even blank

lines.

∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
"notes" [New file].

If you specify the name of a file that already exists, its contents will be displayed on the screen. For exam-

ple:

$ vi letter

might bring a copy of the existing file letter to the screen.
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Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

Dear Mr. Fust.

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s manual

on the Alcuin product. Yesterday, I received the product

demo and other materials that you sent me.

∼
∼
∼
∼
"letter" 11 lines, 250 characters

The prompt line at the bottom of the screen echoes the name and size of the file.

Sometimes when you invoke vi, you may get either of the following messages:

[using open mode]

or:

Visual needs addressable cursor or upline capability

In both cases, there is a problem identifying the type of terminal you are using. You can quit the editing

session immediately by typing :q.

Although vi can run on almost any terminal, it must know what kind of terminal you are using. The

terminal type is usually set as part of the UNIX login sequence. If you are not sure whether your terminal

type is defined correctly, ask your system administrator or an experienced user to help you set up your ter-

minal. If you know your terminal type (wy50 for instance), you can set your TERM environment variable

with the following command:

TERM=wy50; export TERM

vi Commands

The vi editor has two modes: command mode and insert mode. Unlike many word processors, vi’s com-

mand mode is the initial or default mode. To insert lines of text, you must give a command to enter insert

mode and then type away.

Most commands consist of one or two characters. For example:

i insert

c change

Using letters as commands, you can edit a file quickly. You don’t hav e to memorize banks of func-

tion keys or stretch your fingers to reach awkward combinations of keys.

In general, vi commands

• are case-sensitive (uppercase and lowercase keystrokes mean different things; e.g., I is different

from i);

• are not echoed on the screen;

• do not require a RETURN after the command.
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There is also a special group of commands that echo on the bottom line of the screen. Bottom-line

commands are indicated by special symbols. The slash (/) and the question mark (?) begin search com-

mands, which are discussed in session 2. A colon (:) indicates an ex command. You are introduced to

one ex command (to quit a file without saving edits) in this chapter, and the ex line editor is discussed in

detail in Chapter 7.

To tell vi that you want to begin insert mode, press i. Nothing appears on the screen, but you can

now type any text at the cursor. To tell vi to stop inserting text, press ESC and you will return to command

mode.

For example, suppose that you want to insert the word introduction. If you type the keystrokes iin-

troduction, what appears on the screen is

introduction

Because you are starting out in command mode, vi interprets the first keystroke (i) as the insert command.

All keystrokes after that result in characters placed in the file, until you press ESC. If you need to correct a

mistake while in insert mode, backspace and type over the error.

While you are inserting text, press RETURN to break the lines before the right margin. An autowrap

option provides a carriage return automatically after you exceed the right margin. To move the right margin

in ten spaces, for example, enter :set wm=10.

Sometimes you may not know if you are in insert mode or command mode. Whenever vi does not

respond as you expect, press ESC. When you hear a beep, you are in command mode.

Saving a File

You can quit working on a file at any time, save the edits, and return to the UNIX prompt. The vi com-

mand to quit and save edits is ZZ. (Note that ZZ is capitalized).

Let’s assume that you create a file called letter to practice vi commands and that you type in 36

lines of text. To sav e the file, first check that you are in command mode by pressing ESC, and then give the

write and save command, ZZ. Your file is saved as a regular file. The result is:

"letter" [New file] 36 lines, 1331 characters

You return to the UNIX prompt. If you check the list of files in the directory, by typing ls at the prompt,

the new file is listed.

$ ls
ch01 ch02 letter

You now know enough to create a new file. As an exercise, create a file called letter and insert the text

shown in Figure 3-1. When you have finished, type ZZ to save the file and return to the UNIX prompt.

Moving the Cursor

Only a small percentage of time in an editing session may be spent adding new text in insert mode. Much

of the time, you will be editing existing text.

In command mode, you can position the cursor anywhere in the file. You start all basic edits (chang-

ing, deleting, and copying text) by placing the cursor at the text that you want to change. Thus, you want to

be able to quickly move the cursor to that place.

April 1, 1987

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159



Learning vi 23

Dear Mr. Fust:

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s

manual on the Alcuin product. Yesterday, I received

the product demo and other materials that you sent me.

Going through a demo session gave me a much better

understanding of the product. I confess to being

amazed by Alcuin. Some people around here, looking

over my shoulder, were also astounded by the

illustrated manuscript I produced with Alcuin. One

person, a student of calligraphy, was really impressed.

Today, I’ll start putting together a written plan

that shows different strategies for documenting

the Alcuin product. After I submit this plan, and

you have had time to review it, let’s arrange a

meeting at your company to discuss these strategies.

Thanks again for giving us the opportunity to bid on

this documentation project. I hope we can decide upon

a strategy and get started as soon as possible in order

to have the manual ready in time for the first customer

shipment. I look forward to meeting with you towards

the end of next week.

Sincerely,

Fred Caslon

Figure 3.1 A sample letter entered with vi

There are vi commands to move

• up, down, left, or right, one character at a time;

• forward or backward by blocks of text such as words, sentences, or paragraphs;

• forward or backward through a file, one screen at a time.

To move the cursor, make sure you are in command mode by pressing ESC. Giv e the command for moving

forward or backward in the file from the current cursor position. When you have gone as far in one direc-

tion as possible, you’ll hear a beep and the cursor stops. You cannot move the cursor past the tildes (∼) at

the end of the file.

Single Movements

The keys h, j, k, and l, right under your fingertips, will move the cursor:

h left one space

j down one line

k up one line

l right one space

You could use the cursor arrow keys (↑, ↓, →, ←) or the RETURN and BACKSPACE keys, but they are out

of the way and are not supported on all terminals.

You can also combine the h, j, k, and l keys with numeric arguments and other vi commands.
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Numeric Arguments

You can precede movement commands with numbers. The command 4l moves the cursor (shown as a

small box around a letter) four spaces to the right, just like typing the letter l four times (llll).

I_n our conversation 4l

move right

4 characters

In ou_r conversation

This one concept (being able to multiply commands) gives you more options (and power) for each com-

mand. Keep it in mind as you are introduced to additional commands.

Movement by Lines

When you saved the file letter, the editor displayed a message telling you how many lines were in that

file. A line in the file is not necessarily the same length as a physical line (limited to 80 characters) that

appears on the screen. A line is any text entered between carriage returns. If you type 200 characters

before pressing RETURN, vi regards all 200 characters as a single line (even though those 200 characters

look like sev eral physical lines on the screen).

Tw o useful commands in line movement are:

0 <zero> move to beginning of line

$ move to end of line

In the following file, the line numbers are shown. To get line numbers on your screen, enter :set nu.

1 With the screen editor you can scroll the page,

2 move the cursor, _delete lines, and insert characters,

while seeing the results of edits as you make them.

3 Screen editors are very popular.

The number of logical lines (3) does not correspond to the number of physical lines (4) that you see on the

screen. If you enter $, with the cursor positioned on the d in the word delete, the cursor would move to the

period following the word them.

1 With the screen editor you can scroll the page,

2 move the cursor, delete lines, and insert characters,

while seeing the results of edits as you make them_.

3 Screen editors are very popular .

If you enter 0 (zero), the cursor would move back to the letter m in the word move, at the beginning of the

line.

1 With the screen editor you can scroll the page,

2 _move the cursor, delete lines, and insert characters,

while seeing the results of edits as you make them.

3 Screen editors are very popular .

If you do not use the automatic wraparound option (:set wm=10) in vi, you must break lines with

carriage returns to keep the lines of manageable length.
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Movement by Text Blocks

You can also move the cursor by blocks of text (words, sentences, or paragraphs).

The command w moves the cursor forward one word at a time, treating symbols and punctuation

marks as equivalent to words. The following line shows cursor movement caused by ten successive w com-

mands:

m_ove t_he c_ursor,_ d_elete l_ines,_ a_nd i_nsert c_haracters,_

You can also move forward one word at a time, ignoring symbols and punctuation marks, using the com-

mand W (note the uppercase W). It causes the cursor to move to the first character following a blank space.

Cursor movement using W looks like this:

m_ove t_he c_ursor, d_elete l_ines, a_nd i_nsert c_haracters,

To move backward one word at a time, use the command b. The B command allows you to move backward

one word at a time, ignoring punctuation.

With either the w, W, b, or B commands, you can multiply the movement with numbers. For example,

2w moves forward two words; 5B moves back five words, ignoring punctuation. Practice using the cursor

movement commands, combining them with numeric multipliers.

Simple Edits

When you enter text in your file, it is rarely perfect. You find errors or want to improve a phrase. After you

enter text, you have to be able to change it.

What are the components of editing? You want to insert text (a forgotten word or a missing sen-

tence). And you want to delete text (a stray character or an entire paragraph). You also need to change let-

ters and words (correct misspellings or reflect a change of mind). You want to move text from one place to

another part of your file. And on occasion, you want to copy text to duplicate it in another part of your file.

There are four basic edit commands: i for insert (which you have already seen), c for change, d for

delete, d then p for move (delete and put), and y for yank (copy). Each type of edit is described in this sec-

tion. Table 3-1 gives a few simple examples.

Table 3.1 Basic Editing Commands

Object Change Delete Copy(Yank)

One word cw dw yw

Tw o words 2cW 2dW 2yW

Three words back 3cb 3db 3yb

One line cc dd yy or Y

To end of line c$ or C d$ or D y$

To beginning of line c0 d0 y0

Single character r x yl

Inserting New Text

You hav e already used the insert command to enter text into a new file. You also use the insert command

while editing existing text to add characters, words, and sentences. Suppose you have to insert Today, at

the beginning of a sentence. Enter the following sequence of commands and text:
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I’ll start putting

together a written

plan that shows

d_ifferent strategies

3k

move up 3

lines

I_’ll start putting

together a written

plan that shows

different strategies

I_’ll start putting

together a written

plan that shows

different strategies

iToday, <ESC>

insert

Today,

Today,_ I’ll start putting

together a written

plan that shows

different strategies

In the previous example, vi moves existing text to the right as the new text is inserted. That is because we

are showing vi on an “intelligent” terminal, which can adjust the screen with each character you type. An

insert on a “dumb” terminal (such as an adm3a) will look different. The terminal itself cannot update the

screen for each character typed (without a tremendous sacrifice of speed), so vi doesn’t rewrite the screen

until after you press ESC. Rather, when you type, the dumb terminal appears to overwrite the existing text.

When you press ESC, the line is adjusted immediately so that the missing characters reappear. Thus, on a

dumb terminal, the same insert would appear as follows:

I_’ll start putting

together a written

plan that shows

different strategies

iToday,

insert

Today,

Today, a_rt putting

together a written

plan that shows

different strategies

Today, a_rt putting

together a written

plan that shows

different strategies

<ESC>

leave

insert mode

Today,_I’ll start putting

together a written

plan that shows

different strategies

Changing Text

You can replace any text in your file with the change command, c. To identify the amount of text that you

want replaced, combine the change command with a movement command. For example, c can be used to

change text from the cursor

cw to the end of a word

2cb back two words

c$ to the end of a line

Then you can replace the identified text with any amount of new text: no characters at all, one word, or hun-

dreds of lines. The c command leaves you in insert mode until you press the ESC key.
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Words

You can replace a word (cw) with a longer word, a shorter word, or any amount of text. The cw command

can be thought of as “delete the word marked and insert new text until ESC is pressed.”

Suppose that you have the following lines in your file letter and want to change designing to

putting together. You only need to change one word.

I’ll start

d_esigning a

cw

change a

word

I’ll start

d_esignin$ a

Note that the cw command places a $ at the last character of the word to be changed.

I’ll start

d_esignin$ a

putting

together

<ESC>

enter change

I’ll start

putting together_ a

The cw command also works on a portion of a word. For example, to change putting to puts, posi-

tion the cursor on the second t, enter cw, then type s and press ESC. By using numeric prefixes, you can

change multiple words or characters immediately. For example:

3cw change three words to the right of the cursor

5cl change five letters to the right of the cursor

You don’t need to replace the specified number of words, characters, or lines with a like amount of text.

For example:

I’ll start

p_utting together a

2cw

designing

<ESC>

I’ll start

designing_ a

Lines

To replace the entire current line, there is the special change command cc. This command changes an

entire line, replacing that line with the text entered before an ESC. The cc command replaces the entire

line of text, regardless of where the cursor is located on the line.

The C command replaces characters from the current cursor position to the end of the line. It has the

same effect as combining c with the special end-of-line indicator, $ (as in c$).
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Characters

One other replacement edit is performed with the r command. This command replaces a single character

with another single character. One of its uses is to correct misspellings. You probably don’t want to use cw

in such an instance, because you would have to retype the entire word. Use r to replace a single character

at the cursor:

Ya_sterday, I received re

replace a

with e

Ye_sterday, I received

The r command makes only a single character replacement. You do not have to press ESC to finish the

edit. Following an r command, you are automatically returned to command mode.

Deleting Text

You can also delete any text in your file with the delete command, d. Like the change command, the delete

command requires an argument (the amount of text to be operated on). You can delete by word (dw), by

line (dd and D), or by other movement commands that you will learn later.

With all deletions, you move to where you want the edit to take p1ace and enter the delete command

(d) followed by the amount of text to be deleted (such as a text object, w for word).

Words

Suppose that in the following text you want to delete one instance of the word start in the first line.

Today, I’ll s_tart

start putting together

a written plan

thatth shows different

dw

delete word

Today, I’ll_

start putting together

a written plan

thatth shows different

The dw command deletes from the cursor’s position to the end of a word. Thus, dw can be used to delete a

portion of a word.

thatt_h shows different dw

delete word

thats_hows different

As you can see, dw deleted not only the remainder of the word, but also the space before any subsequent

word on the same line. To retain the space between words, use de, which will delete only to the end of the
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word.

thatt_h shows different de

delete to

word end

that_shows different

You can also delete backwards (db) or to the end or beginning of a line (d$ or d0).

Lines

The dd command deletes the entire line that the cursor is on. Using the same text as in the previous exam-

ple, with the cursor positioned on the first line as shown, you can delete the first two lines:

The X command deletes the character before the cursor. Prefix either of these commands with a number to

delete that number of characters. For example, 5X will delete the five characters to the left of the cursor.

Moving Text

You can move text by deleting it and then placing that deleted text elsewhere in the file, like a “cut and

paste.” Each time you delete a text block, that deletion is temporarily saved in a buffer. You can move to

another position in the file and use the put command to place the text in a new position. Although you can

move any block of text, this command sequence is more useful with lines than with words.

The put command, p, places saved or deleted text (in the buffer) after the cursor position. The upper-

case version of the command, P, puts the text before the cursor. If you delete one or more lines, p puts the

deleted text on a new line(s) below the cursor. If you delete a word, p puts the deleted text on the same line

after the cursor.

Suppose that in your file letter you have the following lines and you want to move the fourth line

of text. Using delete, you can make this edit. First delete the line in question:

Today, I’ll start

putting together a

plan for documenting

t_he Alcuin product

that shows

dd

delete line

Today, I’ll start

putting together a

plan for documenting

t_hat shows

Then use p to restore the deleted line at the next line below the cursor:

Today, I’ll start

putting together a

plan for documenting

t_hat shows

p

restore deleted

line

Today, I’ll start

putting together a

plan for documenting

that shows

t_he Alcuin product
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You can also use xp (delete character and put after cursor) to transpose two letters. For example, in the

word mvoe, the letters vo are transposed (reversed). To correct this, place the cursor on v and press x then

p.

After you delete the text, you must restore it before the next change or delete command. If you make

another edit that affects the buffer, your deleted text will be lost. You can repeat the put command over and

over, as long as you don’t make a new edit. In the advanced vi chapter, you will learn how to retrieve text

from named and numbered buffers.

Copying Text

Often, you can save editing time (and keystrokes) by copying part of your file to another place. You can

copy any amount of existing text and place that copied text elsewhere in the file with the two commands y

(yank) and p (put). The yank command is used to get a copy of text into the buffer without altering the

original text. This copy can then be placed elsewhere in the file with the put command.

Yank can be combined with any movement command (for example, yw, y$, or 4yy). Yank is most

frequently used with a line (or more) of text, because to yank and put a word generally takes longer than

simply inserting the word. For example, to yank five lines of text:

o_n the Alcuin product.

Yesterday, I received

the product demo

and other materials

that you sent me.

∼
∼
∼

5yy

yank 5

lines

o_n the Alcuin product.

Yesterday, I received

the product demo

and other materials

that you sent me.

∼
∼
5 lines yanked

To place the yanked text, move the cursor to where you want to put the text, and use the p command

to insert it below the current line, or P to insert it above the current line.

t_hat you sent me.

∼
∼
∼
∼
∼

P

place yanked

text

that you sent me.

o_n the Alcuin product.

Yesterday, I received

the product demo

and other materials

that you sent me.

5 more lines

The yanked text will appear on the line below the cursor. Deleting uses the same buffer as yanking. Delete

and put can be used in much the same way as yank and put. Each new deletion or yank replaces the previ-

ous contents of the yank buffer. As we’ll see later, up to nine previous yanks or deletions can be recalled

with put commands.
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Using Your Last Command

Each command that you give is stored in a temporary buffer until you give the next command. If you insert

the after a word in your file, the command used to insert the text, along with the text that you entered, is

temporarily saved. Anytime you are making the same editing command repeatedly, you can save time by

duplicating the command with . (dot). To duplicate a command, position the cursor anywhere on the

screen, and press . to repeat your last command (such as an insertion or deletion) in the buffer. You can

also use numeric arguments (as in 2.) to repeat the previous command more than once.

Suppose that you have the following lines in your file letter. Place the cursor on the line you

want to delete:

Yesterday, I received

the product demo.

Y_esterday, I received

other materials

dd

delete line

Yesterday, I received

the product demo.

o_ther materials

Yesterday, I received

the product demo.

o_ther materials

.

repeat last

command (dd)

Yesterday, I received

t_he product demo.

In some versions of vi, the command CTRL-@ (ˆ@) repeats the last insert (or append) command.

This is in contrast to the . command, which repeats the last command that changed the text, including

delete or change commands.

You can also undo your last command if you make an error. To undo a command, the cursor can be

anywhere on the screen. Simply press u to undo the last command (such as an insertion or deletion).

To continue the previous example:

Yesterday, I received

t_he product demo.

u

undo last

command

Yesterday, I received

the product demo.

o_ther materials

The uppercase version of u (U) undoes all edits on a single line, as long as the cursor remains on that line.

After you move off a line, you can no longer use U.

Joining Two Lines with J

Sometimes while editing a file, you will end up with a series of short lines that are difficult to read. When

you want to merge two lines, position the cursor anywhere on the first line and press J to join the two lines.
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Y_esterday,

I received

the product demo.

J

join lines

Y_esterday, I received

the product demo.

A numeric argument joins that number of consecutive lines.

Quitting without Saving Edits

When you are first learning vi, especially if you are an intrepid experimenter, there is one other command

that is handy for getting out of any mess that you might create. You already know how to sav e your edits

with ZZ, but what if you want to wipe out all the edits you have made in a session and return to the original

file?

You can quit vi without saving edits with a special bottom-line command based on the ex line edi-

tor. The ex commands are explained fully in the advanced vi chapter, but for basic vi editing you should

just memorize this command:

:q! <RETURN>

The q! command quits the file you are in. All edits made since the last time you saved the file are lost.

You can get by in vi using only the commands you have learned in this session. However, to harness

the real power of vi (and increase your own productivity) you will want to continue to the next session.

Session 2: Moving Around in a Hurry

You use vi not only to create new files but also to edit existing files. You rarely open to the first line in the

file and move through it line by line. You want to get to a specific place in a file and start work.

All edits begin with moving the cursor to where the edit begins (or, with ex line editor commands,

identifying the line numbers to be edited). This chapter shows you how to think about movement in a vari-

ety of ways (by screens, text, patterns, or line numbers). There are many ways to move in vi, because edit-

ing speed depends on getting to your destination with only a few keystrokes.

In this session, you will learn how to move around in a file by

• screens;

• text blocks;

• searches for patterns;

• lines.

Movement by Screens

When you read a book you think of “places” in the book by page: the page where you stopped reading or

the page number in an index. Some vi files take up only a few lines, and you can see the whole file at

once. But many files have hundreds of lines.

You can think of a vi file as text on a long roll of paper. The screen is a window of (usually) 24 lines

of text on that long roll. In insert mode, as you fill up the screen with text, you will end up typing on the

bottom line of the screen. When you reach the end and press RETURN, the top line rolls out of sight, and a

blank line for new text appears on the bottom of the screen. This is called scrolling. You can move through
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a file by scrolling the screen ahead or back to see any text in the file.

Scrolling the Screen

There are vi commands to scroll forward and backward through the file by full and halfscreens:

ˆF forward one screen

ˆB backward one screen

ˆD forward halfscreen

ˆU backward halfscreen

(The ˆ symbol represents the CTRL key. ˆF means to simultaneously press the CTRL key and the F key).

In our conversation last Thursday, we

discussed a documentation project that would

produce a user’s manual on the Alcuin product.

Yesterday, I received the product demo and

other materials that you sent me.

Going through a d_emo session gave me a

much better understanding of the product. I

confess to being amazed by Alcuin. Some

If you press ˆF, the screen appears as follows:

b_etter understanding of the product. I

confess to being amazed by Alcuin. Some

people around here, looking over my shoulder,

were also astounded by the illustrated

manuscript I produced with Alcuin. One

person, a student of calligraphy, was really

impressed.

Today, I’ll start putting together a written

There are also commands to scroll the screen up one line (ˆE) and down one line (ˆY). (These commands

are not available on small systems, such as the PDP-11 or Xenix for the PC-XT).

Movement within a Screen

You can also keep your current screen or view of the file and move around within the screen using:

H home—top line on screen

M middle line on screen

L last line on screen

nH to n lines below top line
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nL to n lines above last line

The H command moves the cursor from anywhere on the screen to the first, or home, line. The M command

moves to the middle line, L to the last. To move to the line below the first line, use 2H.

Today, I’ll start

putting together a

written plan that

s_hows the different

strategies for the

2H

move to

second line

Today, I’ll start

p_utting together a

written plan that

shows the different

strategies for the

These screen movement commands can also be used for editing. For example, dH deletes to the top line

shown on the screen.

Movement within Lines

Within the current screen there are also commands to move by line. You have already learned the line

movement commands $ and 0.

RETURN beginning of next line

ˆ to first character of current line

+ beginning of next line

- beginning of previous line

Going through a demo

session gave me_ a much

better understanding

of the product.

-

go to start

of previous

line

G_oing through a demo

session gave me a much

better understanding

of the product.

The ˆ command moves to the first character of the line, ignoring any spaces or tabs. (0, by contrast,

moves to the first position of the line, even if that position is blank).

Movement by Text Blocks

Another way that you can think of moving through a vi file is by text blocks—words, sentences, or para-

graphs. You have already learned to move forward and backward by word (w or b).

e end of word

E end of word (ignore punctuation)

( beginning of previous sentence

) beginning of next sentence

{ beginning of previous paragraph

} beginning of next paragraph

The vi program locates the end of a sentence by finding a period followed by at least two spaces, or

a period as the last nonblank character on a line. If you have left only a single space following a period, the

sentence won’t be recognized.

A paragraph is defined as text up to the next blank line, or up to one of the default paragraph macros

(.IP, .P, .PP, or .QP) in the mm or ms macro packages. The macros that are recognized as paragraph



Learning vi 35

separators can be customized with the :set command, as described in Chapter 7.

In our conversation

last Thursday, we ...

Going through a d_emo

session gave me ...

{

go to start

of previous

paragraph

I_n our conversation

last Thursday, we ...

Going through a demo

session gave me ...

Most people find it easier to visualize moving ahead, so the forward commands are generally more

useful.

Remember that you can combine numbers with movement. For example, 3) moves ahead three sen-

tences. Also remember that you can edit using movement commands. d) deletes to the end of the current

sentence, 2y} copies (yanks) two paragraphs ahead.

Movement by Searches

One of the most useful ways to move around quickly in a large file is by searching for text, or, more prop-

erly, for a pattern of characters. The pattern can include a “wildcard” shorthand that lets you match more

than one character. For example, you can search for a misspelled word or each occurrence of a variable in a

program.

The search command is the slash character (/). When you enter a slash, it appears on the bottom line

of the screen; then type in the pattern (a word or other string of characters) that you want to find:

/ text<RETURN> search forward for text

A space before or after text will be included in the search. As with all bottom-line commands, press

RETURN to finish.

The search begins at the cursor and moves forward, wrapping around to the start of the file if neces-

sary. The cursor will move to the first occurrence of the pattern (or the message “Pattern not found” will be

shown on the status line if there is no match).

If you wanted to search for the pattern shows:

Today, I’ll start

putting together a

written p_lan that

shows the different

∼
∼
∼

/shows<CR>

search for

shows

Today, I’ll start

putting together a

written plan that

s_hows the different

∼
∼
/shows

Today, I’ll start

putting together a

w_ritten plan that

shows the different

∼
∼
∼

/th<CR>

search for

th

Today, I’ll start

putting together a

written plan t_hat

shows the different

∼
∼
/th
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The search proceeds forward from the present position in the file. You can give any combination of charac-

ters; a search does not have to be for a complete word.

You can also search backwards using the ? command:

?text<RETURN> search backward for text

The last pattern that you searched for remains available throughout your editing session. After a

search, instead of repeating your original keystrokes, you can use a command to search again for the last

pattern.

n repeat search in same direction

N repeat search in opposite direction

/<RETURN> repeat search in forward direction

?<RETURN> repeat search in backward direction

Because the last pattern remains available, you can search for a pattern, do some work, and then

search again for the pattern without retyping by using n, N, /, or ?. The direction of your search (/=for-

wards, ?=backwards) is displayed at the bottom left of the screen.

Continuing the previous example, the pattern th is still available to search for:

Today, I’ll start

putting together a

written plan t_hat

shows the different

n

search for

next th

Today, I’ll start

putting together a

written plan that

shows t_he different

Today, I’ll start

putting together a

written plan that

shows t_he different

∼
∼
∼

?<CR>

search back

for th

Today, I’ll start

putting together a

written plan t_hat

shows the different

∼
∼
?the

Today, I’ll start

putting together a

written plan t_hat

shows the different

N

repeat search

in opposite

direction

Today, I’ll start

putting together a

written plan that

shows t_he different

This section has given only the barest introduction to searching for patterns. Chapter 7 will teach more

about pattern matching and its use in making global changes to a file.

Current Line Searches

There is also a miniature version of the search command that operates within the current line. The com-

mand f moves the cursor to the next instance of the character you name. Semicolons can then be used to

repeat the “find.” Note, however, that the f command will not move the cursor to the next line.

fx find (move cursor to) next occurrence of x in the line, where x can be any character
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; repeat previous find command

Suppose that you are editing on this line:

T_oday, I’ll start f’

find first ’

in line

Today, I’_ll start

Use df’ to delete up to and including the named character (in this instance ’ ). This command is useful in

deleting or copying partial lines.

The t command works just like f, except it positions the cursor just before the character searched

for. As with f and b, a numeric prefix will locate the nth occurrence. For example:

T_oday, I’ll start 2ta

place cursor

before 2nd a

in line

Today, I’ll st_art

Movement by Line Numbers

A file contains sequentially numbered lines, and you can move through a file by specifying line numbers.

Line numbers are useful for identifying the beginning and end of large blocks of text you want to edit. Line

numbers are also useful for programmers because compiler error messages refer to line numbers. Line

numbers are also used by ex commands, as you will learn in Chapter 7.

If you are going to move by line numbers, you need a way to identify line numbers. Line numbers

can be displayed on the screen using the :set nu option described in Chapter 7. In vi, you can also dis-

play the current line number on the bottom of the screen.

The command ˆG displays the following on the bottom of your screen: the current line number, the

total number of lines in the file, and what percentage of the total the present line number represents. For

example, for the file letter, ˆG might display:

"letter" line 10 of 40 --25%--

ˆG is used to display the line number to use in a command, or to orient yourself if you have been distracted

from your editing session.

The G (go to) command uses a line number as a numeric argument, and moves to the first position on

that line. For instance, 44G moves the cursor to the beginning of line 44. The G command without a line

number moves the cursor to the last line of the file.

Tw o single quotes (’’) return you to the beginning of the line you were originally on. Tw o back-

quotes (‘‘) return you to your original position exactly. If you have issued a search command (/ or ?), ‘‘

will return the cursor to its position when you started the search.

The total number of lines shown with ˆG can be used to give yourself a rough idea of how many lines

to move. If you are on line 10 of a 1000-line file:

"ch01" line 10 of 1000 --1%--

and know that you want to begin editing near the end of that file, you could give an approximation of your
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destination with.

800G

Movement by line number can get you around quickly in a large file.

Session 3: Beyond the Basics

You hav e already been introduced to the basic vi editing commands, i, c, d, and y. This session expands

on what you already know about editing. You will learn

• additional ways to enter vi;

• how to customize vi;

• how to combine all edits with movement commands;

• additional ways to enter insert mode;

• how to use buffers that store deletions, yanks, and your last command;

• how to mark your place in a file.

Command-Line Options

There are other options to the vi command that can be helpful. You can open a file directly to a specific

line number or pattern. You can also open a file in read-only mode. Another option recovers all changes to

a file that you were editing when the system crashes.

Advancing to a Specific Place

When you begin editing an existing file, you can load the file and then move to the first occurrence of a pat-

tern or to a specific line number. You can also combine the open command, vi, with your first movement

by search or by line number. For example:

$ vi +n letter

opens letter at line number n. The following:

$ vi + letter

opens letter at the last line. And:

$ vi +/pattern letter

opens letter at the first occurrence of pattern.

To open the file letter and advance directly to the line containing Alcuin, enter:

$ vi +/Alcuin letter
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Today I’ll start putting together a

written plan that presents the different

strategies for the A_lcuin

∼
∼
∼
∼
∼
∼
∼
∼
∼

There can be no spaces in the pattern because characters after a space are interpreted as filenames.

If you have to leave an editing session before you are finished, you can mark your place by inserting

a pattern such as ZZZ or HERE. Then when you return to the file, all you have to remember is /ZZZ or

/HERE.

Read-Only Mode

There will be times that you want to look at a file, but you want to protect that file from inadvertent

keystrokes and changes. (You might want to call in a lengthy file to practice vi movements, or you might

want to scroll through a command file or program). If you enter a file in read-only mode, you can use all

the vi movement commands, but you cannot change the file with any edits. To look at your file letter

in read-only mode, you can enter either:

$ vi -R letter

or:

$ view letter

Recovering a Buffer

Occasionally, there will be a system failure while you are editing a file. Ordinarily, any edits made after

your last write (save) are lost. However, there is an option, -r, which lets you recover the edited buffer at

the time of a system crash. (A system program called preserve saves the buffer as the system is going

down).

When you first log in after the system is running again, you will receive a mail message stating that

your buffer is saved. The first time that you call in the file, use the -r option to recover the edited buffer.

For example, to recover the edited buffer of the file letter after a system crash, enter:

$ vi -r letter

If you first call in the file without using the -r option, your buffered edits are lost.

You can force the system to preserve your buffer even when there is not a crash by using the com-

mand :pre. You may find this useful if you have made edits to a file, then discover you can’t sav e your

edits because you don’t hav e write permission. (You could also just write a copy of the file out under

another name or in a directory where you do have write permission.)
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Customizing vi

A number of options that you can set as part of your editing environment affect how vi operates. For

example, you can set a right margin that will cause vi to wrap lines automatically, so you don’t need to

insert carriage returns.

You can change options from within vi by using the :set command. In addition, vi reads an ini-

tialization file in your home directory called .exrc for further operating instructions. By placing set

commands in this file, you can modify the way vi acts whenever you use it.

You can also set up .exrc files in local directories to initialize various options that you want to use

in different environments. For example, you might define one set of options for editing text, but another set

for editing source programs. The .exrc file in your home directory will be executed first, then the one on

your current directory.

Finally, if the shell variable EXINIT is set in your environment (with the Bourne shell export

command, or the C shell setenv command), any commands it contains will be executed by vi on startup.

If EXINIT is set, it will be used instead of .exrc; vi will not take commands from both.

The set Command

There are two types of options that can be changed with the set command: toggle options, which are

either on or off, and options that take a numeric or string value (such as the location of a margin or the

name of a file).

Toggle options may be on or off by default. To turn a toggle option on, the command is:

:set option

To turn a toggle option off, the command is:

:set nooption

For example, to specify that pattern searches should ignore case, you type:

:set ic

If you want vi to return to being case-sensitive in searches, give the command:

:set noic

Some options have values. For example, the option window sets the number of lines shown in the

screen “window.” You set values for these options with an equals sign (=). For example:

:set window=20

During a vi session, you can check what options are available. The command:

:set all

displays the complete list of options, including options that you have set and defaults that vi has chosen.

The display will look something like this:
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noautoindent open tabstop=8

autoprint prompt taglength=0

noautowrite noreadonly term=wy50

nobeautify redraw noterse

directory=/tmp /remap timeout

noedcompatible report=5 ttytype=wy50

noerrorbells scrolls=11 warn

hardtabs=8 sections=AhBhChDh window=20

noignorecase shell=/bin/csh wrapscan

nolisp shiftwidth=8 wrapmargin=10

nolist noshowmatch nowriteany

magic noslowopen

mesg paragraphs=IPLPPPQP LIpp1pipbb

number tags=tags /usr/lib/tags

nooptimize

You can also ask about the setting for any individual option by name, using the command:

:set option?

The command :set shows options that you have specifically changed, or set, either in your .exrc file or

during the current session. For example, the display might look like this:

number window=20 wrapmargin=10

See Appendix A for a description of what these options mean.

The .exrc File

The .exrc file that controls the vi environment for you is in your home directory. Enter into this file the

set options that you want to have in effect whenever you use vi or ex.

The .exrc file can be modified with the vi editor, like any other file. A sample .exrc file might

look like this:

set wrapmargin=10 window=20

Because the file is actually read by ex before it enters visual mode (vi), commands in .exrc should not

have a preceding colon.

Alternate Environments

You can define alternate vi environments by saving option settings in an .exrc file that is placed in a

local directory. If you enter vi from that directory, the local .exrc file will be read in. If it does not

exist, the one in your home directory will be read in.

For example, you might want to have one set of options for programming:

set number lisp autoindent sw=4 tags=/usr/lib/tags terse

and another set of options for text editing:

set wrapmargin=15 ignorecase

Local .exrc files are especially useful when you define abbreviations, which are described in Chapter 7.
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Some Useful Options

As you can see when you type :set all, there are many options. Most options are used internally by vi

and aren’t usually changed. Others are important in certain cases, but not in others (for example, nore-

draw and window can be useful on a dialup line at a low baud rate). Appendix A contains a brief descrip-

tion of each option. We recommend that you take some time to play with option setting—if an option looks

interesting, try setting it (or unsetting it) and watch what happens while you edit. You may find some sur-

prisingly useful tools.

There is one option that is almost essential for editing nonprogram text. The wrapmargin option

specifies the size of the right margin that will be used to autowrap text as you type. (This saves manually

typing carriage returns). This option is in effect if its value is set to greater than 0. A typical value is 10 or

l5.

set wrapmargin=15

There are also three options that control how vi acts in conducting a search. By default, it differenti-

ates between uppercase and lowercase (foo does not match Foo), wraps around to the beginning of the file

during a search (this means you can begin your search anywhere in the file and still find all occurrences),

and recognizes wildcard characters when matching patterns. The default settings that control these options

are noignorecase, wrapscan, and magic, respectively. To change any of these defaults, set the

opposite toggles: ignorecase, nowrapscan, or nomagic.

Another useful option is shiftwidth. This option was designed to help programmers properly

indent their programs, but it can also be useful to writers. The >> and << commands can be used to indent

(or un-indent) text by shiftwidth characters. The position of the cursor on the line doesn’t matter—the

entire line will be shifted. The shiftwidth option is set to 8 by default, but you can use :set to change

this value.

Give the >> or << command a numeric prefix to affect more than one line. For example:

10>>

will indent the next 10 lines by shiftwidth.

Edits and Movement

You hav e learned the edit commands c, d, and y, and how to combine them with movements and numbers

(such as 2cw or 4dd). Since that point, you have added many more movement commands to your reper-

toire. Although the fact that you can combine edit commands with movement is not a “new” concept to

you, Table 3-2 gives you a feel for the many editing options you now hav e.

Table 3.2 Combining vi Commands

From Cursor to Change Delete Copy

Bottom of screen cL dL yL

Next line c+ d+ y+

Next sentence c) d) y)

Next paragraph c} d} y}

Pattern c/pattern d/pattern y/pattern

End of file cG dG yG

Line number 13 c13G d13G y13G

You can also combine numbers with any of the commands in Table 3-2 to multiply them. For exam-

ple, 2c) changes the next two sentences. Although this table may seem forbidding, experiment with com-

binations and try to understand the patterns. When you find how much time and effort you can save,
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combinations of change and movement keys will no longer seem obscure, but will readily come to mind.

More Ways to Insert Text

You hav e inserted text before the cursor with the sequence:

itext <ESC>

There are many insert commands. The difference between them is that they insert text at different positions

relative to the cursor:

a append text after cursor

A append text to end of current line

i insert text before cursor

I insert text at beginning of line

o open new line below cursor for text

O open new line above cursor for text

R overstrike existing characters with new characters

All these commands leave you in insert mode. After inserting text, remember to press ESC to escape back

to command mode.

The A (append) and I (insert) commands save you from having to move the cursor to the end or

beginning of the line before invoking insert mode. For example, A saves one keystroke over $a. Although

one keystroke might not seem like a timesaver, as you become a more adept (and impatient) editor, you’ll

want to omit any unnecessary keystrokes.

There are other combinations of commands that work together naturally. For example, ea is useful

for appending new text to the end of a word. (It sometimes helps to train yourself to recognize such fre-

quent combinations so that invoking them becomes automatic).

Using Buffers

While you are editing, you have seen that your last deletion (d or x) or yank ( y) is sav ed in a buffer (a

place in stored memory). You can access the contents of that buffer and put the saved text back in your file

with the put command (p or P).

The last nine deletions are stored by vi in numbered buffers. You can access any of these numbered

buffers to restore any (or all) of the last nine deletions. You can also place yanks (copied text) in buffers

identified by letters. You can fill up to 26 buffers (a through z) with yanked text and restore that text with a

put command any time in your editing session.

The vi program also saves your last edit command (insert, change, delete, or yank) in a buffer. Your

last command is available to repeat or undo with a single keystroke.

Recovering Deletions

Being able to delete large blocks of text at a single bound is all well and good, but what if you mistakenly

delete 53 lines that you need? There is a way to recover any of your past nine deletions, which are saved in

numbered buffers. The last deletion is saved in buffer 1; the second-to-last in buffer 2, and so on.
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To recover a deletion, type " (quotation mark), identify the buffered text by number, and then give

the put command. For example, to recover your second-to-last deletion from buffer 2, type:

"2p

Sometimes it’s hard to remember what’s in the last nine buffers. Here’s a trick that can help.

The . command (repeat last command) has a special meaning when used with p and u. The p com-

mand will print the last deletion or change, but 2p will print the last two. By combining p, . (dot), and u

(undo), you can step back through the numbered buffers.

The "1p command will put the last deletion, now stored in buffer 1, back into your text. If you then

type u, it will go away. But when you type the . command, instead of repeating the last command ("1p),

it will show the next buffer as if you’d typed "2p. You can thus step back through the buffers. For exam-

ple, the sequence:

"1pu.u.u.u.u.

will show you, in sequence, the contents of the last six numbered buffers.

Yanking to Named Buffers

With unnamed buffers, you have seen that you must put (p or P) the contents of the buffer before making

any other edit, or the buffer is overwritten. You can also use y with a set of 26 named buffers (a through z),

which are specifically for copying and moving text. If you name a buffer to store the yanked text, you can

place the contents of the named buffer at any time during your editing session.

To yank into a named buffer, precede the yank command with a quotation mark (") and the character

for the name of the buffer you want to load. For example:

"dyy yank current line into buffer d

"a6yy yank next six lines into buffer a

After loading the named buffers and moving to the new position, use p or P to put the text back.

"dP put buffer d before cursor

"ap put buffer a after cursor

I_n our conversation last

Thursday, we discussed a

documentation project

that would produce a

user’s manual on the

Alcuin product.

"a6yy

yank 6 lines

to buffer a

I_n our conversation last

Thursday, we discussed a

documentation project

that would produce a

user’s manual on the

Alcuin product.

6 lines yanked
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A_lcuin product. "ap

put buffer a

after cursor

Alcuin product.

I_n our conversation last

Thursday, we discussed a

documentation project

that would produce a

user’s manual on the

Alcuin product.

There is no way to put part of a buffer into the text—it is all or nothing.

Named buffers allow you to make other edits before placing the buffer with p. After you know how

to travel between files without leaving vi, you can use named buffers to selectively transfer text between

files.

You can also delete text into named buffers, using much the same procedure. For example:

"a5dd delete five lines into buffer a

If you specify the buffer name with a capital letter, yanked or deleted text will be appended to the current

contents of the buffer. For example:

"byy yank current line into buffer b

"B5dd delete five lines and append to buffer b

3} move down three paragraphs

"bP insert the six lines from buffer b above the cursor

When you put text from a named buffer, a  copy still remains in that buffer; you can repeat the put as often

as you like until you quit your editing session or replace the text in the buffer.

For example, suppose you were preparing a document with some repetitive elements, such as the

skeleton for each page of the reference section in a manual. You could store the skeleton in a named buffer,

put it into your file, fill in the blanks, then put the skeleton in again each time you need it.

Marking Your Place

During a vi session, you can mark your place in the file with an invisible “bookmark,” perform edits else-

where, then return to your marked place. In the command mode:

"mx marks current position with x (x can be any letter)

"´x moves cursor to beginning of line marked by x

"`x moves cursor to character marked by x

"`` returns to previous mark or context after a move

Today, I’ll start

putting together a_

written plan that

mxG

mark and move

to end of file

Sincerely,

F_red Caslon
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Sincerely,

F_red Caslon

‘x

return to mark

Today, I’ll start

putting together a_

written plan that

Place markers are set only during the current vi session; they are not stored in the file.

Other Advanced Edits

You may wonder why we hav en’t discussed global changes, moving text between files, or other advanced

ex topics. The reason is that, to use these tools, it helps to learn more about ex and a set of UNIX pattern-

matching tools that we discuss together in Chapter 7.
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nroff and troff

The vi editor lets you edit text, but it is not much good at formatting. A text file such as program source

code might be formatted with a simple program like pr, which inserts a header at the top of every page and

handles pagination, but otherwise prints the document exactly as it appears in the file. But for any applica-

tion requiring the preparation of neatly formatted text, you will use the nroff (“en-roff”) or troff (“tee-

roff”) formatting program.

These programs are used to process an input text file, usually coded or “marked up” with formatting

instructions. When you use a wysiwyg program like most word processors, you use commands to lay out

the text on the screen as it will be laid out on the page. With a markup language like that used by nroff

and troff, you enter commands into the text that tell the formatting program what to do.

Our purpose in this chapter is twofold. We want to introduce the basic formatting codes that you will

find useful. But at the same time, we want to present them in the context of what the formatter is doing and

how it works. If you find this chapter rough-going—especially if this is your first exposure to nroff/

troff— skip ahead to either Chapter 5 or Chapter 6 and become familiar with one of the macro packages,

ms or mm; then come back and resume this chapter. We assume that you are reading this book because you

would like more than the basics, that you intend to master the complexities of nroff/ troff. As a result,

this chapter is somewhat longer and more complex than it would be if the book were an introductory user’s

guide.

Conventions

To distinguish input text and requests shown in examples from formatter output, we have adopted the

convention of showing “page corners” around output from nroff or troff. Output from nroff is

shown in the same constant-width typeface as other examples:

Here is an example of nroff output.

Output from troff is shown in the same typeface as the text, but with the size of the type reduced by one

point, unless the example calls for an explicit type size:

Here is an example of troff output.

In representing output, compromises sometimes had to be made. For example, when showing nroff out-

put, we have processed the example separately with nroff, and read the results back into the source file.

However, from there, they hav e been typeset in a constant-width font by troff. As a result, there might

be slight differences from true nroff output, particularly in line length or page size. However, the context

should always make clear just what is being demonstrated.

47
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What the Formatter Does

Take a moment to think about the things you do when you format a page on a wysiwyg device such as a

typewriter:

• You set aside part of the page as the text area. This requires setting top, bottom, left, and right

margins.

• You adjust the lines that you type so they are all approximately the same length and fit into the

designated text area.

• You break the text into syntactic units such as paragraphs.

• You switch to a new page when you reach the bottom of the text area.

Left to themselves, nroff or troff will do only one of these tasks: they will adjust the length of the

lines in the input file so that they come out even in the output file. To do so, they make two assumptions:

• They assume that the line length is 6.5 inches.

• They assume that a blank line in the input signals the start of a new paragraph. The last line of

the preceding text is not adjusted, and a blank line is placed in the output.

The process of filling and adjusting is intuitively obvious—we’ve all done much the same thing manually

when using a typewriter or had it done for us by a wysiwyg word processor. Howev er, especially when it

comes to a typesetting program like troff, there are ramifications to the process of line adjustment that

are not obvious. Having a clear idea of what is going on will be very useful later. For this reason, we’ll

examine the process in detail.

Line Adjustment

There are three parts to line adjustment: filling, justification, and hyphenation. Filling is the process of

making all lines of text approximately equal in length. When working on a typewriter, you do this automat-

ically, simply by typing a carriage return when the line is full. Most word-processing programs automati-

cally insert a carriage return at the end of a line, and we have seen how to set up vi to do so as well.

However, nroff and troff ignore carriage returns in the input except in a special “no fill” mode.

They reformat the input text, collecting all input lines into even-length output lines, stopping only when

they reach a blank line or (as we shall see shortly) a formatting instruction that tells them to stop. Lines

that begin with one or more blank spaces are not filled, but trailing blank spaces are trimmed. Extra blank

spaces between words on the input line are preserved, and the formatter adds an extra blank space after

each period, question mark, or exclamation point.

Justification is a closely related feature that should not be confused with filling. Filling simply tries

to keep lines approximately the same length; justification adjusts the space between words so that the ends

of the lines match exactly.

By default, nroff and troff both fill and justify text. Justification implies filling, but it is possible

to have filling without justification. Let’s look at some examples. First, we’ll look at a paragraph entered

in vi. Here’s a paragraph from the letter you entered in the last chapter, modified so that it offers to pre-

pare not just a user’s guide for the Alcuin illuminated lettering software, but a reference manual as well. In

the course of making the changes, we’ve left a short line in the middle of the paragraph.

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s guide

and reference manual

for the Alcuin product. Yesterday, I received the product

demo and other materials that you sent me.

Now, let’s look at the paragraph after processing by nroff:
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In our conversation last Thursday, we discussed a

documentation project that would produce a user’s

guide and reference manual for the Alcuin product.

Yesterday, I received the product demo and other

materials that you sent me.

The paragraph has been both filled and justified. If the formatter were told to fill, but not to justify, the

paragraph would look like this:

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s guide

and reference manual for the Alcuin product. Yesterday,

I received the product demo and other materials that

you sent me.

As you can see, nroff justified the text in the first example by adding extra space between words.

Most typewritten material is filled but not justified. In printer’s terms, it is typed ra g g ed right.

Books, magazines, and other typeset materials, by contrast, are usually right justified. Occasionally, you

will see printed material (such as ad copy) in which the right end of each line is justified, but the left end is

ragged. It is for this reason that we usually say that text is right or left justified, rather than simply justified.

When it is difficult to perform filling or justification or both because a long word falls at the end of a

line, the formatter has another trick to fall back on (one we are all familiar with)—hyphenation.

The nroff and troff programs perform filling, justification, and hyphenation in much the same

way as a human typesetter used to set cold lead type. Human typesetters used to assemble a line of type by

placing individual letters in a tray until each line was filled. There were several options for filling as the

typesetter reached the end of the line:

• The next word might fit exactly.

• The next word might fit if the typesetter squeezed the words a little closer together.

• The next word could be hyphenated, with part put on the current 1ine and part on the next line.

If, in addition to being filled, the text was to be justified, there was one additional issue: after the line was

approximately the right length, space needed to be added between each word so that the line length came

out even.

Just like the human typesetter they replace, nroff and troff assemble one line of text at a time,

measuring the length of the line and making adjustments to the spacing to make the line come out even

(assuming that the line is to be justified). Input lines are collected into a temporary storage area, or buffer,

until enough text has been collected for a single output line. Then that line is output, and the next line col-

lected.

It is in the process of justification that you see the first significant difference between the two pro-

grams. The nroff program was designed for use with typewriter-like printers; troff was designed for

use with phototypesetters.

A typewriter-style printer has characters all of the same size—an i takes up the same amount of space

as an m. (Typical widths are 1/10 or 1/12 inch per character). And although some printers (such as daisy-

wheel printers) allow you to change the style of type by changing the daisywheel or thimble, you can usu-

ally have only one typeface at a time.



50 Unix Text Processing

A typesetter, by contrast, uses typefaces in which each letter takes up an amount of space propor-

tional to its outline. The space allotted for an i is quite definitely narrower than the space allotted for an m.

The use of variable-width characters makes the job of filling and justification much more difficult for

troff than for nroff. Where nroff only needs to count characters, troff has to add up the width of

each character as it assembles the line. (Character widths are defined by a “box” around the character,

rather than by its natural, somewhat irregular shape).

The troff program also justifies by adding space between words, but because the variable-width

fonts it uses are much more compact, it fits more on a line and generally does a much better job of justifica-

tion.*

There’s another difference as well. Left to itself, nroff will insert only full spaces between

words—that is, it might put two spaces between one pair of words, and three between another, to fill the

line. If you call nroff with the -e option, it will attempt to make all interword spaces the same size

(using fractional spaces if possible). But even then, nroff will only succeed if the output device allows

fractional spacing. The troff program always uses even interword spacing.

Here’s the same paragraph filled and justified by troff:

In our conversation last Thursday, we discussed a documentation project that
would produce a user’s guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other materials that you sent me.

To make matters still more difficult, typeset characters come in a variety of different designs, or fonts.

A font is a set of alphabetic, numeric, and punctuation characters that share certain design elements. Typi-

cally, fonts come in families of several related typefaces. For example, this book is typeset for the most

part in the Times Roman family of typefaces. There are three separate fonts:

roman
bold
italic

Typesetting allows for the use of multiple fonts on the same page, as you can see from the mixture of fonts

throughout this book. Sometimes the fonts are from the same family, as with the Times Roman, Times

Bold, and Times Italic just shown. However, you can see other fonts, such as Helvetica, in the running

headers on each page. Bold and italic fonts are generally used for emphasis; in computer books such as

this, a constant-width typewriter font is used for examples and other “computer voice” statements.

Even within the same font family, the width of the same character varies from font to font. For

example, a bold “m” is slightly wider than a Roman “m.”

To make things still more complicated, the same font comes in different sizes. If you look at this

book, you will notice that the section headings within each chapter are slightly larger for emphasis. Type

sizes are measured in units called points. We’ll talk more about this later, but to get a rough idea of what

type sizes mean, simply look at the current page. The body type of the book is 10-point Times Roman; the

next heading is 12-point Times Bold. The spacing between lines is generally proportional to the point size,

instead of fixed, as it is with nroff.

The troff program gets information about the widths of the various characters in each font from

tables stored on the system in the directory /usr/lib/font. These tables tell troff how far to move

over after it has output each character on the line.

We’ll talk more about troff later. For the moment, you should be aware that the job of the format-

ting program is much more complicated when typesetting than it is when preparing text for typewriter-style

*The very best typesetting programs have the capability to adjust the space between individual characters as

well. This process is called kerning. SoftQuad Publishing Software in Toronto sells an enhanced version of

troff called SQroff that does support kerning.
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printers.

Using nroff

As mentioned previously, left to themselves, nroff and troff perform only rudimentary formatting.

They will fill and justify the text, using a default line length of 6.5 inches, but they leave no margins, other

than the implicit right margin caused by the line length. To make this clearer, let’s look at the sample letter

from the last chapter (including the edit we made in this chapter) as it appears after formatting with nroff.

First, let’s look at how to inv oke the formatter. The nroff program takes as an argument the name

of a file to be formatted:

$ nroff letter

Alternatively, it can take standard input, allowing you to preprocess the text with some other program

before formatting it:

$ tbl report | nroff

There are numerous options to nroff. They are described at various points in this book (as appropriate to

the topic) and summarized in Appendix B.

One basic option is -T, which specifies the terminal (printer) type for which output should be pre-

pared. Although nroff output is fairly straightforward, some differences between printers can signifi-

cantly affect the output. (For example, one printer may perform underlining by backspacing and printing

an underscore under each underlined letter, and another may do it by suppressing a newline and printing the

underscores in a second pass over the line). The default device is the Teletype Model 37 terminal—a fairly

obsolete device. Other devices are listed in Appendix B. If you don’t recognize any of the printers or ter-

minals, the safest type is probably lp:

$ nroff -Tlp file

In examples in this book, we will leave off the -T option, but you may want to experiment, and use which-

ev er type gives the best results with your equipment.

Like most UNIX programs, nroff prints its results on standard output. So, assuming that the text is

stored in a file called letter, all you need to do is type:

$ nroff letter

A few moments later, you should see the results on the screen. Because the letter will scroll by quickly,

you should pipe the output of nroff to a paging program such as pg or more:

$ nroff letter | pg

or out to a printer using lp or lpr:

$ nroff letter | lp

Using troff

The chief advantage of troff over nroff is that it allows different types of character sets, or fonts, and

so lets you take full advantage of the higher-quality printing available with typesetters and laser printers.

There are a number of requests, useful only in troff, for specifying fonts, type sizes, and the vertical

spacing between lines. Before we describe the actual requests though, we need to look at a bit of history.

The troff program was originally designed for a specific typesetter, the Wang C/A/T. Later, it was

modified to work with a wide range of output devices. We’ll discuss the original version of troff (which

is still in use at many sites) first, before discussing the newer versions. The C/A/T typesetter was designed

in such a way that it could use only four fonts at one time.
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(Early phototypesetters worked by projecting light through a film containing the outline of the vari-

ous characters. The film was often mounted on a wheel that rotated to position the desired character in

front of the light source as it flashed, thus photographing the character onto photographic paper or negative

film. Lenses enlarged and reduced the characters to produce various type sizes. The C/A/T typesetter had a

wheel divided into four quadrants, onto which one could mount four different typefaces).

Typically, the four fonts were the standard (roman), bold, and italic fonts of the same family, plus a

“special” font that contained additional punctuation characters, Greek characters (for equations), bullets,

rules, and other nonstandard characters. Figure 4-1 shows the characters available in these standard fonts.

The Coming of ditroff

Later, troff was modified to support other typesetters and, more importantly (at least from the perspec-

tive of many readers of this book), laser printers. The later version of troff is often called ditroff (for

device-independent troff), but many UNIX systems have changed the name of the original troff to

otroff and simply call ditroff by the original name, troff.

The ditroff program has not been universally available because, when it was developed, it was

“unbundled” from the basic UNIX distribution and made part of a separate product called Documenter’s

Workbench or DWB. UNIX system manufacturers have the option not to include this package, although

increasingly, they hav e been doing so. Versions of DWB are also available separately from third party ven-

dors.

The newer version of troff allows you to specify any number of different fonts. (You can mount

fonts at up to ten imaginary “positions” with .fp and can request additional fonts by name).

There may also be different font sizes available, and there are some additional commands for line drawing

(ditroff can draw curves as well as straight lines). For the most part, though, ditroff is very similar

to the original program, except in the greater flexibility it offers to use different output devices.

One way to find out which version of troff you have on your system (unless you have a program

explicitly called ditroff) is to list the contents of the directory /usr/lib/font:

$ls -F /usr/lib/font
devlj/

devps/

ftB

ftI

ftR

ftS

If there are one or more subdirectories whose name begins with the letters dev, your system is using

ditroff. Our system supports both ditroff and otroff, so we hav e both a device subdirectory (for

ditroff) and font files (for otroff) directly in /usr/lib/font.

We’ll talk more about font files later. For the moment, all you need to know is that they contain

information about the widths of the characters in various fonts for a specific output device.

Contrary to what a novice might expect, font files do not contain outlines of the characters them-

selves. For a proper typesetter, character outlines reside in the typesetter itself. All troff sends out to the

typesetter are character codes and size and position information.

However, troff has increasingly come to be used with laser printers, many of which use download-

able fonts. An electronic image of each character is loaded from the computer into the printer’s memory,

typically at the start of each printing job. There may be additional “font files” containing character outlines

in this case, but these files are used by the software that controls the printer, and have nothing to do with

troff itself. In other cases, font images are stored in ROM (read-only memory) in the printer.

If you are using a laser printer, it is important to remember that troff itself has nothing to do with

the actual drawing of characters or images on the printed page. In a case like this, troff simply formats

the page, using tables describing the widths of the characters used by the printer, and generates instructions

about page layout, spacing, and so on. The actual job of driving the printer is handled by another program,
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Figure 4.1 The Four Standard Fonts

generally referred to as a printer driver or troff postprocessor.

To use troff with such a postprocessor, you will generally need to pipe the output of troff to the

postprocessor and from there to the print spooler:

$ troff file | postprocessor | lp

If you are using the old version of troff, which expects to send its output directly to the C/A/T typesetter,

you need to specify the -t option, which tells troff to use standard output. If you don’t, you will get the

message:

Typesetter busy.

(Of course, if by any chance you are connected to a C/A/T typesetter, you don’t need this option. There are

several other options listed in Appendix B that you may find useful). When you use ditroff, on the

other hand, you will need to specify the -T command-line option that tells it what device you are using.

The postprocessor will then translate the device-independent troff output into instructions for that partic-

ular type of laser printer or typesetter. For example, at our site, we use troff with an Apple LaserWriter

and Pipeline Associates’ devps postprocessor, which translates troff output for the LaserWriter. Our

command line looks something like this:

$ ditroff -Tps files | devps | lp

You can print the same file on different devices, simply by changing the -T option and the postprocessor.

For example, you can print drafts on a laser printer, then switch to a typesetter for final output without mak-

ing extensive changes to your files. (To actually direct output to different printers, you will also have to
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specify a printer name as an option to the lp command. In our generic example, we simply use lp without

any options, assuming that the appropriate printer is connected as the default printer).

Like all things in life, this is not always as easy as it sounds. Because the fonts used by different out-

put devices have different widths even when the nominal font names and sizes are the same, pagination and

line breaks may be different when you switch from one device to another.

The job of interfacing ditroff to a wide variety of output devices is becoming easier because of

the recent development of industry-wide page description languages like Adobe Systems’ PostScript,

Xerox’s Interpress, and Imagen’s DDL. These page description languages reside in the printer, not the host

computer, and provide a device-independent way of describing placement of characters and graphics on the

page.

Rather than using a separate postprocessor for each output device, you can now simply use a postpro-

cessor to convert troff output to the desired page description language. For example, you can use Adobe

Systems’ TranScript postprocessor (or an equivalent postprocessor like devps from Pipeline Associates)

to convert troff output to PostScript, and can then send the PostScript output to any one of a number of

typesetters or laser printers.

From this point, whenever we say troff, we are generally referring to ditroff. In addition,

although we will continue to discuss nroff as it differs from troff, our emphasis is on the more capable

program. It is our opinion that the growing availability of laser printers will make troff the program of

choice for almost all users in the not too distant future.

However, you can submit a document coded for troff to nroff with entirely reasonable results.

For the most part, formatting requests that cannot be handled by nroff are simply ignored. And you can

submit documents coded for nroff to troff, though you will then be failing to use many of the charac-

teristics that make troff desirable.

The Markup Language

The nroff and troff markup commands (often called requests) typically consist of one or two lower-

case letters and stand on their own line, following a period or apostrophe in column one. Most requests are

reasonably mnemonic. For example, the request to leave space is:

.sp

There are also requests that can be embedded anywhere in the text. These requests are commonly called

escape sequences. Escape sequences usually begin with a backslash (\). For example, the escape sequence

\l will draw a  horizontal line. Especially in troff, escape sequences are used for line drawing or for

printing various special characters that do not appear in the standard ASCII character set. For instance, you

enter \(bu to get •, a bullet.

There are three classes of formatting instructions:

• Instructions that have an immediate one-time effect, such as a request to space down an inch

before outputting the next line of text.

• Instructions that have a persistent effect, such as requests to set the line length or to enable or

disable justification.

• Instructions that are useful for writing macros. There is a “programming language” built into

the formatter that allows you to build up complex requests from sequences of simpler ones. As

part of this language there are requests for storing values into variables called strings and num-

ber registers, for testing conditions and acting on the result, and so on.

For the most part, we will discuss the requests used to define macros, strings, and number registers

later in this book.

At this point, we want to focus on understanding the basic requests that control the basic actions of

the formatter. We will also learn many of the most useful requests with immediate, one-time effects. Table
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4-1 summarizes the requests that you will use most often.

Table 4.1 Basic nroff/troff Requests

Request Meaning Request Meaning

.ad Enable line adjustment .na No justification of lines

.br Line break .ne Need lines to end of page

.bp Page break .nf No filling of lines

.ce Center next line .nr Define and set number register

.de Define macro .po Set page offset

.ds Define string .ps Set point size

.fi Fill output lines .so Switch to source file and return

.ft Set current font .sp Space

.in Set indent .ta Set tab stop positions

.ls Set double or triple spacing .ti Set temporary indent

.ll Specify line length .vs Set vertical line spacing

Looking at nroff Output

When we discussed the basic operations of the text formatter, we saw that nroff and troff perform

rudimentary formatting. They will fill and justify the text, using a default line length of 6.5 inches, but they

leave no margins, other than the implicit right margin caused by the line length.

To make this clearer, let’s look at the sample letter from the last chapter as it appears after formatting

with nroff, without any embedded requests, and without using any macro package. From Figure 4-2, you

can see immediately that the formatter has adjusted all of the lines, so that they are all the same length—

ev en in the address block of the letter, where we would have preferred them to be left as they were. Blank

lines in the input produce blank lines in the output, and the partial lines at the ends of paragraphs are not

adjusted.

The most noticeable aspect of the raw formatting is a little difficult to reproduce here, though we’ve

tried. No top or left margin is automatically allocated by nroff.

Turning Filling On and Off

Even though filling of uneven text lines resulting from editing is probably the most basic action we want

from the formatter, it is not always desirable. For example, in our letter, we don’t want the address block to

be filled. There are two requests we could use to correct the problem: .br (break) and .nf (no fill).

A .br request following a line outputs the current contents of the line buffer and starts the next line,

ev en though the buffer is not yet full. To produce a properly formatted address block, we could enter the

following requests in the file:

Mr. John Fust

.br

Vice President, Research and Development

.br

Gutenberg Galaxy Software

.br

Waltham, Massachusetts 02159

Each individual input line will be output without filling or justification. We could also use the .nf request,

which tells nroff to stop filling altogether. Text following this request will be printed by the formatter

exactly as it appears in the input file. Use this request when you want text to be laid out as it was typed in.



56 Unix Text Processing

Because we do want the body of the letter to be filled, we must turn filling back on with the .fi (fill)

request:

April 1, 1987

.nf

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

.fi

Dear Mr. Fust:

April 1, 1987

Mr. John Fust Vice President, Research and

Development Gutenberg Galaxy Software Waltham,

Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s

guide and reference manual for the Alcuin product.

Yesterday, I received the product demo and other

materials that you sent me. After studying them,

I want to clarify a couple of points:

Going through a demo session gave me a much better

understanding of the product. I confess to being

amazed by Alcuin. Some people around here,

looking over my shoulder, were also astounded by

the illustrated manuscript I produced with Alcuin.

One person, a student of calligraphy, was really

impressed.

Tomorrow, I’ll start putting together a written

plan that presents different strategies for

documenting the Alcuin product. After I submit

this plan, and you have had time to review it,

let’s arrange a meeting at your company to discuss

these strategies.

Thanks again for giving us the opportunity to bid

on this documentation project. I hope we can

decide upon a strategy and get started as soon as

possible in order to have the manual ready in time

for first customer ship. I look forward to meeting

with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 4.2 A Raw nroff-formatted File
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If you look carefully at the previous example, you will probably notice that we entered the two formatting

requests on blank lines in the letter. If we were to format the letter now, here is what we’d get:

April 1, 1987

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

Dear Mr. Fust:

As you may notice, we’ve lost the blank lines that used to separate the date from the address block, and the

address block from the salutation. Lines containing formatting requests do not result in any space being

output (unless they are spacing requests), so you should be sure not to inadvertently replace blank lines

when entering formatting codes.

Controlling Justification

Justification can be controlled separately from filling by the .ad (adjust) request. (However, filling must

be on for justification to work at all). You can adjust text at either margin or at both margins.

Unlike the .br and .nf requests introduced, .ad takes an argument, which specifies the type of

justification you want:

l adjust left margin only

r adjust right margin only

b adjust both margins

c center filled line between margins

There is another related request, .na (no adjust). Because the text entered in a file is usually left jus-

tified to begin with, turning justification off entirely with .na produces similar results to .ad l in most

cases.

However, there is an important difference. Normally, if no argument is given to the .ad request,

both margins will be adjusted. That is, .ad is the same as .ad b. Howev er, following an .na request,

.ad reverts to the value last specified. That is, the sequence:

.ad r

Some text
.ad l

Some text
.ad

Some text

will adjust both margins in the third block of text. However, the sequence:

.ad r

Some text
.na

Some text
.ad

Some text

will adjust only the right margin in the third block of text.

It’s easy to see where you would use .ad b or .ad l. Let’s suppose that you would like a ragged

margin for the body of your letter, to make it look more like it was prepared on a typewriter. Simply follow
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the .fi request we entered previously with .ad l.

Right-only justification may seem a little harder to find a use for. Occasionally, you’ve probably seen

ragged-left copy in advertising, but that’s about it. However, if you think for a moment, you’ll realize that it

is also a good way to get a single line over to the right margin.

For example, in our sample letter, instead of typing all those leading spaces before the date (and hav-

ing it fail to come out flush with the margin anyway), we could enter the lines:

.ad r

April 1, 1987

.ad b

As it turns out, this construct won’t quite work. If you remember, when filling is enabled, nroff and

troff collect input in a one-line buffer and only output the saved text when the line has been filled. There

are some non-obvious consequences of this that will ripple all through your use of nroff and troff. If

you issue a request that temporarily sets a formatting condition, then reset it before the line is output, your

original setting may have no effect. The result will be controlled by the request that is in effect at the time

the line is output, not at the time that it is first collected in the line buffer.

Certain requests cause implicit line breaks (the equivalent of carriage returns on a typewriter) in the

output, but others do not. The .ad request does not cause a break. Therefore, a construction like:

.ad r

April 1, 1987

.ad b

Mr. John Fust

will result in the following output:

April 1, 1987 Mr. John Fust

and not:

April 1, 1987

Mr. John Fust

To make sure that you get the desired result from a temporary setting like this, be sure to follow the line to

be affected with a condition that will cause a break.* For instance, in the previous example, you would

probably follow the date with a blank line or an .sp request, either of which will normally cause a break.

If you don’t, you should put in an explicit break, as follows:

.ad r

April 1, 1987

.br

.ad b

Mr. John Fust

A final point about justification: the formatter adjusts a line by widening the blank space between words. If

*The following requests cause a break:

.bp .br .ce .fi .nf .sp .in .ti

All other requests can be interspersed with text without causing a break. In addition, as discussed later, even

these requests can be introduced with a specìal “no break” control character (’ instead of .) so that they too

will not cause a break.
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you do not want the space between two words adjusted or split across output lines, precede the space with a

backslash. This is called an unpaddable space.

There are many obscure applications for unpaddable spaces; we will mention them as appropriate.

Here’s a simple one that may come in handy: nroff and troff normally add two blank spaces after a

period, question mark, or exclamation point. The formatter can’t distinguish between the end of a sentence

and an abbreviation, so if you find the extra spacing unaesthetic, you might follow an abbreviation like Mr.

with an unpaddable space: Mr.\ John Fust.

Hyphenation

As pointed out previously, hyphenation is closely related to filling and justification, in that it gives nroff

and troff some additional power to produce filled and justified lines without large gaps.

The nroff and troff programs perform hyphenation according to a general set of rules. Occa-

sionally, you need to control the hyphenation of particular words. You can specify either that a word not be

hyphenated or that it be hyphenated in a certain way. You can also turn hyphenation off entirely.

Specifying Hyphenation for Individual Words

There are two ways to specify that a word be hyphenated a specific way: with the .hw request and with the

special hyphenation indicator \%.

The .hw (hyphenate word) request allows you to specify a small list of words that should be hyphen-

ated a specific way. The space available for the word list is small (about 128 characters), so you should use

this request only for words you use frequently, and that nroff and troff hyphenate badly.

To use .hw, simply specify the word or words that constitute the exception list, typing a hyphen at

the point or points in the word where you would like it to be hyphenated.

.hw hy-phen-a-tion

You can specify multiple words with one .hw request, or you can issue multiple .hw requests as you need

them.

However, if it is just a matter of making sure that a particular instance of a word is hyphenated the

way you want, you can use the hyphenation indication character sequence \%. As you type the word in

your text, simply type the two characters \% at each acceptable hyphenation point, or at the front of the

word if you don’t want the word to be hyphenated at all:

\%acknowledge the word acknowledge will not be hyphenated
ac\%know\%ledge the word acknowledge can be hyphenated only

at the specified points

This character sequence is the first instance we have seen of a formatting request that does not consist of a

request name following a period in column one. We will see many more of these later. This sequence is

embedded right in the text but does not print out.

In general, nroff and troff do a reasonable job with hyphenation. You will need to set specific

hyphenation points only in rare instances. In general, you shouldn’t even worry about hyphenation points,

unless you notice a bad break. Then use either .hw or \% to correct it.

The UNIX hyphen command can be used to print out all of the hyphenation points in a file format-

ted with nroff or troff -a.

$ nroff options files | hyphen

or:

$ troff options -a files | hyphen

If your system doesn’t hav e the hyphen command, you can use grep instead:
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$ nroff options files | grep ’-$’

(The single quotation marks are important because they keep grep from interpreting the - as the begin-

ning of an option).

Turning Hyphenation Off and On

If you don’t want any hyphenation, use the .nh (no hyphenation) request. Even if you do this, though, you

should be aware that words already containing embedded hyphens, em dashes (—), or hyphen indication

characters (\%) will still be subject to hyphenation.

After you’ve turned hyphenation off, you can turn it back on with the .hy (hyphenate) request. This

request has a few twists. Not only does it allow you to turn hyphenation on, it also allows you to adjust the

hyphenation rules that nroff and troff use. It takes the following numeric arguments:

0 turn hyphenation off

1 turn hyphenation on

2 do not hyphenate the last line on a page

4 do not hyphenate after the first two characters of a word

8 do not hyphenate before the last two characters of a word

Specifying .hy with no argument is the same as specifying .hy 1. The other numeric values are

additive. For example, .hy 12 (.hy 4 plus .hy 8) will keep nroff and troff from breaking short

syllables at the beginning or end of words, and .hy 14 will put all three hyphenation restrictions into

effect.

Page Layout

Apart from the adjusted address block, the biggest formatting drawback that you probably noticed when we

formatted the sample letter is that there was no left or top margin. Furthermore, though it is not apparent

from our one-page example, there is no bottom margin either. If there were enough text in the input file to

run onto a second page, you would see that the text ran continuously across the page boundary.

In normal use, these layout problems would be handled automatically by either the ms or mm macro

packages (described later). Here, though, we want to understand how the formatter itself works.

Let’s continue our investigation of the nroff and troff markup language with some basic page

layout commands. These commands allow you to affect the placement of text on the page. Some of them

(those whose descriptions begin with the word set) specify conditions that will remain in effect until they

are explicitly changed by another instance of the same request. Others have a one-time effect.

As shown in Table 4-2, there are two groups of page layout commands, those that affect horizontal

placement of text on the page and those that affect vertical placement. A moment’s glance at these requests

will tell you that, before anything else, we need to talk about units.
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Table 4.2 Layout Commands

.ll n Set the line length to n

.po n Set the left margin (page offset) to n

.in n Indent the left margin to n

.ti n Temporarily indent the left margin to n

.ce n Center the following n lines

Horizontal Layout

.pl n Set the page length to n

.sp n Insert n spaces

.bp n Start a new page

.wh n Specify when (at what vertical position

on the page) to execute a command

Vertical Layout

Units of Measure

By default, most nroff and troff commands that measure vertical distance (such as .sp) do so in

terms of a number of “lines” (also referred to as vertical spaces, or vs). The nroff program has constant,

device-dependent line spacing; troff has variable line spacing, which is generally proportional to the

point size. However, both programs do allow you to use a variety of other units as well. You can specify

spacing in terms of inches and centimeters, as well as the standard printer’s measures picas and points. (A

pica is 1/6 of an inch; a point is about 1/72 of an inch. These units were originally developed to measure

the size of type, and the relationship between these two units is not as arbitrary as it might seem. A stan-

dard 12-point type is 1 pica high).

Horizontal measures, such as the depth of an indent, can also be specified using any of these mea-

sures, as well as the printer’s measures ems and ens. These are relative measures, originally based on the

size of the letters m and n in the current type size and typeface. By default, horizontal measures are always

taken to be in ems.

There is also a relationship between these units and points and picas. An em is always equivalent in

width to the height of the character specified by the point size. In other words, an em in a 12-point type is

12 points wide. An en is always half the size of an em, or half of the current point size. The advantage of

using these units is that they are relative to the size of the type being used. This is unimportant in nroff,

but using these units in troff gives increased flexibility to change the appearance of the document with-

out recoding.

The nroff and troff programs measure not in any of these units, but in device-dependent basic

units. Any measures you specify are converted to basic units before they are used. Typically, nroff mea-

sures in horizontal units of 1/240 of an inch and otroff uses a unit of 1/432 inch. These units too are not

as arbitrary as they may seem. According to Joseph Osanna’s Nroff/Troff User’s Manual—the original,

dense, and authoritative documentation on troff published by AT&T as part of the UNIX Programmer’s

Manual—the nroff units were chosen as “the least common multiple of the horizontal and vertical reso-

lutions of various typewriter-like output devices.” The units for otroff were based on the C/A/T typeset-

ter (the device for which troff was originally designed), which could move in horizontal increments of

1/432 of an inch and in vertical increments of exactly one-third that, or 1/144 inch. Units for ditroff

depend on the resolution of the output device. For example, units for a 300 dot-per-inch (dpi) laser printer

will be 1/300 of an inch in either a vertical or a horizontal direction. See Appendix D for more information

on ditroff device units.

You don’t need to remember the details of all these measures now. You can generally use the units

that are most familiar to you, and we’ll come back to the others when we need them.

To specify units, you simply need to add the appropriate scale indicator from Table 4-3 to the

numeric value you supply to a formatting request. For example, to space down 3 inches rather than 3 lines,

enter the request:
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.sp 3i

The numeric part of any scale indicator can include decimal fractions. Before the specified value is used,

nroff and troff will round the value to the nearest number of device units.

Table 4.3 Units of Measure

Indicator Units

c Centimeters

i Inches

m Ems

n Ens

p Points

P Picas

u Device Units

v Vertical spaces (lines)

none Default

In fact, you can use any reasonable numeric expression with any request that expects a numeric argu-

ment. However, when using arithmetic expressions, you have to be careful about what units you specify.

All of the horizontally oriented requests—.ll, .in, .ti, .ta, .po, .lt, and .mc—assume you mean

ems unless you specify otherwise.

Vertically oriented requests like .sp assume v’s unless otherwise specified. The only exceptions to

this rule are .ps and .vs, which assume points by default—but these are not really motion requests any-

way.

As a result, if you make a request like:

.ll 7i/2

what you are really requesting is:

.ll 7i/2m

The request:

.ll 7i/2i

is not what you want either. In performing arithmetic, as with fractions, the formatter converts scaled val-

ues to device units. In otroff, this means the previous expression is really evaluated as:

.ll (7*432u)/(2*432u)

If you really want half of 7 inches, you should specify the expression like this:

.ll 7i/2u

You could easily divide 7 by 2 yourself and simply specify 3.5i. The point of this example is that when you

are doing arithmetic—usually with values stored in variables called number registers (more on these

later)—you will need to pay attention to the interaction between units. Furthermore, because fractional

device units are always rounded down, you should avoid expressions like 7i/2.5u because this is equiv-

alent to 7i/2u.

In addition to absolute values, many nroff and troff requests allow you to specify relative val-

ues, by adding a + or a - before the value. For example:

.ll -.5i

will subtract ½ inch from the current line length, whatever it is.



nroff and troff 63

Setting Margins

In nroff and troff, margins are set by the combination of the .po (page offset) and .ll (line length)

requests. The .po request defines the left margin. The .ll request defines how long each line will be

after filling, and so implicitly defines the right margin:

right

margin
po ll

The nroff program’s default line length of 6.5 inches is fairly standard for an 8½-by-11 page—it allows

for 1-inch margins on either side.

Assuming that we’d like 1¼-inch margins on either side of the page, we would issue the following

requests:

.ll 6i

.po 1.25i

This will give us 1¼ inches for both the right and left margins. The .po request specifies a left margin, or

page offset, of 1¼ inches. When the 6-inch line length is added to this, it will leave a similar margin on the

rlght side of the page.

Let’s take a look at how our sample letter will format now. One paragraph of the output should give

you the idea.

In our conversation last Thursday, we

discussed a documentation project that would

produce a user’s guide and reference manual for

the Alcuin product. Yesterday, I received the

product demo and other materials that you sent me.

As we saw earlier, nroff assumes a default page offset of 0. Either you or the macro package you are

using must set the page offset. In troff, though, there is a default page offset of 26/27 inch, so you can

get away without setting this value.

(Keep in mind that all nroff output examples are actually simulated with troff, and are reduced

to fit on our own 5-inch wide printed page. As a result, the widths shown in our example output are not

exact, but are suggestive of what the actual result would be on an 8½-by-11 inch page).

Setting Indents

In addition to the basic page offset, or left margin, you may want to set an indent, either for a single line or

an entire block of text. You may also want to center one or more lines of text.

To do a single-line indent, as is commonly used to introduce a paragraph, use the .ti (temporary

indent) request. For example, if you followed the blank lines between paragraphs in the sample letter with

the request .ti 5, you’d get a result like this from nroff:
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...Yesterday, I received the product demo and other

materials that you sent me.

Going through a demo session gave me a

much better understanding of the product. I

confess to being amazed by Alcuin...

The .in request, by contrast, sets an indent that remains in effect until it is changed. For example, if you

had entered the line .in 5 between the paragraphs, (instead of .ti 5), the result would have looked like

this:

...Yesterday, I received the product demo and other

materials that you sent me.

Going through a demo session gave me a

much better understanding of the product.

I confess to being amazed by Alcuin...

All succeeding paragraphs will continue to be indented, until the indent is reset. The default indent (the

value at the left margin) is 0.

These two indent requests can be combined to give a “hanging indent.” Remember that you can

specify negative values to many requests that take numeric arguments. Here is the first case where this

makes sense. Let’s say we would like to modify the letter so that it numbers the points and indents the

body of the numbered paragraph:

...Yesterday, I received the product demo and other materials

that you sent me. After studying them, I want to clarify

a couple of points:

.in 4

.ti -4

1. Going through a demo session gave me a much better

understanding of the product. I confess to being amazed by

Alcuin...

The first line will start at the margin, and subsequent lines will be indented:

...Yesterday, I received the product demo and other

materials that you sent me. After studying them,

I want to clarify a couple of points.

1. Going through a demo session gave me a much

better understanding of the product. I confess

to being amazed by Alcuin...

To line up an indented paragraph like this in nroff, just count the number of characters you want to space

over, then use that number as the size of the indent. But this trick is not so simple in troff. Because
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characters, and even spaces, are not of constant width, it is more difficult to create a hanging indent. Ens

are a good unit to use for indents. Like ems, they are relative to the point size, but they are much closer to

the average character width than an em. As a result, they are relatively intuitive to work with. An indent of

5n is about where you expect a 5-character indent to be from familiarity with a typewriter.

Centering Output Lines

Centering is another useful layout tool. To center the next line, use the .ce request:

.ce

This line will be centered.

Here’s the result:

This line will be centered.

Centering takes into account any indents that are in effect. That is, if you have used .in to specify an

indent of 1 inch, and the line length is 5 inches, text will be centered within the 4-inch span following the

indent.

To center multiple lines, specify a number as an argument to the request:

.ce 3

Documentation for the Alcuin Product

A Proposal Prepared by

Fred Caslon

Here’s the result:

Documentation for the Alcuin Product

A Proposal Prepared by

Fred Caslon

Notice that .ce centered all three text lines, ignoring the blank line between.

To center an indeterminately large number of lines, specify a very large number with the .ce

request, then turn it off by entering .ce 0:

.ce 1000

Many lines of text here.
.ce 0

In looking at the examples, you probably noticed that centering automatically disables filling and jus-

tification. Each line is centered individually. Howev er, there is also the case in which you would like to

center an entire filled and justified paragraph. (This paragraph style is often used to set off quoted material

in a book or paper). You can do this by using both the .in and .ll requests:

I was particularly interested by one comment that I

read in your company literature:
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.in +5n

.ll -5n

The development of Alcuin can be traced back to our

founder’s early interest in medieval manuscripts.

He spent several years in the seminary before

becoming interested in computers. After he became

an expert on typesetting software, he resolved to

put his two interests together.

.in -5n

.ll +5n

Here’s the result:

I was particularly interested by one comment that I

read in your company literature:

The development of Alcuin can be traced back to

our founder’s early interest in medieval

manuscripts. He spent several years in the

seminary before becoming interested in comput-

ers. After he became an expert on typesetting

software, he resolved to put his two interests

together.

Remember that a line centered with .ce takes into account any indents in effect at the time. You can visu-

alize the relationship between page offset, line length, indents, and centering as follows:

in ce

ll
po

Setting Tabs

No discussion of how to align text would be complete without a discussion of tabs. A tab, as anyone who

has used a typewriter well knows, is a horizontal motion to a predefined position on the line.

The problem with using tabs in nroff and troff is that what you see on the screen is very differ-

ent from what you get on the page. Unlike a typewriter or a wysiwyg word processor, the editor/formatter

combination presents you with two different tab settings. You can set tabs in vi, and you can set them in

nroff and troff, but the settings are likely to be different, and the results on the screen definitely unaes-

thetic.

However, after you get used to the fact that tabs will not line up on the screen in the same way as they

will on the printed page, you can use tabs quite effectively.

By default, tab stops are set every .8 inches in nroff and every .5 inches in troff. To set your

own tab stops in nroff or troff, use the .ta request. For example:

.ta 1i 2.5i 3i

will set three tab stops, at 1 inch, 2½ inches, and 3 inches, respectively. Any previous or default settings are

now no longer in effect.

You can also set incremental tab stops. The request:

.ta 1i +1.5i +.5i

will set tabs at the same positions as the previous example. Values preceded with a plus sign are added to
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the value of the last tab stop.

You can also specify the alignment of text at a tab stop. Settings made with a numeric value alone

are left adjusted, just as they are on a typewriter. Howev er, by adding either the letter R or C to the defini-

tion of a tab stop, you can make text right adjusted or centered on the stop.

For example, the following input lines (where a tab character is shown by the symbol |——|):

.nf

.ta 1i 2.5i 3.5i

|——|First|——|Second|——|Third

.fi

will produce the following output:

First Second Third

But:

.nf

.ta 1i 2.5iR 3.5iC

|——|First|——|Second|——|Third

.fi

will produce:

First Second Third

Right-adjusted tabs can be useful for aligning numeric data. This is especially true in troff, where

all characters (including blank spaces) have different sizes, and, as a result, you can’t just line things up by

eye. If the numbers you want to align have an uneven number of decimal positions, you can manually force

right adjustment of numeric data using the special escape sequence \0, which will produce a blank space

exactly the same width as a digit. For example:

.ta 1iR

|——|500.2\0

|——|125.35

|——|50.\0\0

will produce:

500.2

125.35

50.

As on a typewriter, if you have already spaced past a tab position (either by printing characters, or

with an indent or other horizontal motion), a tab in the input will push text over to the next available tab

stop. If you have passed the last tab stop, any tabs present in the input will be ignored.
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You must be in no-fill mode for tabs to work correctly. This is not just because filling will override

the effect of the tabs. Using .nf when specifying tabs is an important rule of thumb; we’ll look at the rea-

soning behind it in Chapter 15.

Underlining

We hav en’t yet described how to underline text, a primary type of emphasis in nroff, which lacks the

troff ability to switch fonts for emphasis.

There are two underlining requests: .ul (underline) and .cu (continuous underline). The .ul

request underlines only printable characters (the words, but not the spaces), and .cu underlines the entire

text string.

These requests are used just like .ce. Without an argument, they underline the text on the following

input line. You can use a numeric argument to specify that more than one line should be underlined.

Both of these requests produce italics instead of underlines in troff. Although there is a request,

.uf, that allows you to reset the underline font to some other font than italics,* there is no way to have

these requests produce underlining even in troff. (The ms and mm macro packages both include a macro

to do underlining in troff, but this uses an entirely different mechanism, which is not explained until

Chapter 15).

Inserting Vertical Space

As you have seen, a blank line in the input text results in a blank line in the output. You can leave blank

space on the page (for example, between the closing of a letter and the signature) by inserting a number of

blank lines in the input text.

However, particularly when you are entering formatting codes as you write, rather than going back to

code an existing file like our sample letter, it is often more convenient to specify the spacing with the .sp

request.

For example, you could type:

Sincerely,

.sp 3

Fred Caslon

In troff, the .sp request is even more important, because troff can space in much finer increments.

For example, if we were formatting the letter with troff, a full space between paragraphs would

look like this:

In our conversation last Thursday, we discussed a documentation project that
would produce a user’s guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other materials that you sent me.

Going through a demo session gav e me a better understanding of the product.
I confess to being amazed by Alcuin. Some people around here, looking
over my shoulder, were also astounded by the illuminated manuscript I pro-
duced with Alcuin. One person, a student of calligraphy, was really im-
pressed.

* This request is generally used when the document is being typeset in a font family other than Times Roman.

It might be used to set the “underline font” to Helvetica Italic, rather than the standard Italic.
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The output would probably look better if there was a smaller amount of space between the lines. If we

replace the line between the paragraphs with the request .sp .5, here is what we will get:

In our conversation last Thursday, we discussed a documentation project that
would produce a user’s guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other materials that you sent me.

Going through a demo session gav e me a much better understanding of the
product. I confess to being amazed by Alcuin. Some people around here,
looking over my shoulder, were also astounded by the illuminated manu-
script I produced with Alcuin. One person, a student of calligraphy, was re-
ally impressed.

Although it may not yet be apparent how this will be useful, you can also space to an absolute position on

the page, by inserting a vertical bar before the distance. The following:

.sp |3i

will space down to a position 3 inches from the top of the page, rather than 3 inches from the current posi-

tion.

You can also use negative values with ordinary relative spacing requests. For example:

.sp -3

will move back up the page three lines. Of course, when you use any of these requests, you have to know

what you are doing. If you tell nroff or troff to put one line on top of another, that’s exactly what

you’ll get. For example:

This is the first line.

.sp -2

This is the second line.

.br

This is the third line.

will result in:

This is the first line.

This is the second line.

This is the third line.

Sure enough, the second line is printed above the first, but because we haven’t restored the original posi-

tion, the third line is then printed on top of the first.

When you make neg ative vertical motions, you should always make compensatory positive motions,

so that you end up at the correct position for future output. The previous example would have avoided dis-

aster if it had been coded:

This is the first line.

.sp -2

This is the second line.

.sp

This is the third line.

(Notice that you need to space down one less line than you have spaced up because, in this case, printing

the second line “uses up” one of the spaces you went back on).
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These kind of vertical motions are generally used for line drawing (e.g., for drawing boxes around

tables), in which all of the text is output, and the formatter then goes back up the page to draw in the lines.

At this stage, it is unlikely that you will find an immediate use for this capability. Nonetheless, we are sure

that a creative person, knowing that it is there, will find it just the right tool for a job. (We’ll show a few

creative uses of our own later).

You probably aren’t surprised that a typesetter can go back up the page. But you may wonder how a

typewriter-like printer can go back up the page like this. The answer is that it can’t. If you do any rev erse

line motions (and you do when you use certain macros in the standard packages, or the tbl and eqn pre-

processors), you must pass the nroff output through a special filter program called col to get all of the

motions sorted out beforehand, so that the page will be printed in the desired order:

$ nroff files | col | lp

Double or Triple Spacing

Both nroff and troff provide a request to produce double- or triple-spaced output without individually

adjusting the space between each line. For example:

.ls 2

Putting this at the top of the file produces double-spaced lines. An argument of 3 specifies triple-spaced

lines.

Page Transitions

If we want space at the top of our one-page letter, it is easy enough to insert the command:

.sp 1i

before the first line of the text. However, nroff and troff do not provide an easy way of handling page

transitions in multipage documents.

By default, nroff and troff assume that the page length is 11 inches. However, neither program

makes immediate use of this information. There is no default top and bottom margin, so text output begins

on the first line, and goes to the end of the page.

The .bp (break page) request allows you to force a page break. If you do this, the remainder of the

current page will be filled with blank lines, and output will start again at the top of the second page. If you

care to test this, insert a .bp anywhere in the text of our sample letter, then process the letter with nroff.

If you save the resulting output in a file:

$ nroff letter > letter.out

you will find that the text following the .bp begins on line 67 (11 inches at 6 lines per inch equals 66 lines

per page).

To automatically leave space at the top and bottom of each page, you need to use the .wh (when)

request. In nroff and troff parlance, this request sets a trap—a position on the page at which a given

macro will be executed.

You’ll notice that we said macro, not request. There’s the rub. To use .wh, you need to know how to

define a macro. It doesn’t work with single requests.

There’s not all that much to defining macros, though. A macro is simply a sequence of stored

requests that can be executed all at once with a single command. We’ll come back to this later, after we’ve

looked at the process of macro definition.

For the moment, let’s assume that we’ve defined two macros, one containing the commands that will

handle the top margin, and another for the bottom margin. The first macro will be called .TM, and the sec-

ond .BM. (By convention, macros are often given names consisting of uppercase letters, to distinguish
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them from the basic nroff and troff requests. However, this is a convention only, and one that is not

always followed).

To set traps that will execute these macros, we would use the .wh request as follows:

.wh 0 TM

.wh -1i BM

The first argument to .wh specifies the vertical position on the page at which to execute the macro. An

argument of 0 always stands for the top of the page, and a negative value is always counted from the bottom

of the page, as defined by the page length.

In its simplest form, the .TM macro need only contain the single request to space down 1 inch, and

.BM need only contain the single request to break to a new page. If .wh allowed you to specify a single

request rather than a macro, this would be equivalent to:

.wh 0 .sp 1i

.wh -1i .bp

With an 11-inch page length, this would result in an effective 9-inch text area, because on every page, the

formatter’s first act would be to space down 1 inch, and it would break to a new page when it reached 1

inch from the bottom.

You might wonder why nroff and troff have made the business of page transition more compli-

cated than any of the other essential page layout tasks. There are two reasons:

• The nroff and troff programs were designed with the typesetting heritage in mind. Until

fairly recently, most typesetters produced continuous output on rolls of photographic paper or

film. This output was manually cut and pasted up onto pages.

• Especially in troff, page transition is inherently more complex than the other tasks we’ve

described. For example, books often contain headers and footers that are set in different type

sizes or styles. At every page transition, the software must automatically save information

about the current type style, switch to the style used by the header or footer, and then revert to

the original style when it returns to the main text. Or consider the matter of footnotes—the

position at which the page ends is different when a footnote is on the page. The page transition

trap must make some allowance for this.

In short, what you might like the formatter to do during page transitions can vary. For this reason, the

developers of nroff and troff have allowed users to define their own macros for handling this area.

When you start out with nroff or troff, we advise you to use one of the ready-made macro pack-

ages, ms or mm. The standard macro package for UNIX systems based on System V is mm; the standard on

Berkeley UNIX systems is ms. Berkeley UNIX systems also support a third macro package called me. In

addition, there are specialized macro packages for formatting viewgraphs, standard UNIX reference manual

pages (man), and UNIX permuted indexes (mptx). Only the ms and mm packages are described in this

book. The macro packages have already taken into account many of the complexities in page transition

(and other advanced formatting problems), and provide many capabilities that would take considerable time

and effort to design yourself.

Of course, it is quite possible to design your own macro package, and we will go into all of the

details later. (In fact, this book is coded with neither of the standard macro packages, but with one devel-

oped by Steve Kochan and Pat Wood of Pipeline Associates, the consulting editors of this series, for use

specifically with the Hayden UNIX library).

Page Length Revisited

Before we take a closer look at macros, let’s take a moment to make a few more points about page length,

page breaks, and the like.

Assuming that some provision has been made for handling page transitions, there are several wrin-

kles to the requests we have already introduced, plus several new requests that you will probably find
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useful.

First, let’s talk about page length. It’s important to remember that the printing area is defined by the

interaction of the page length and the location of the traps you define. For example, you could define a text

area 7.5 inches high (as we did in preparing copy for this book) either by

• changing the page length to 9.5 inches, and setting 1-inch margins at the top and bottom;

• leaving the page length at 11 inches, and setting 1.75-inch margins at the top and bottom.

In general, we prefer to think of .pl as setting the paper length, and use the page transition traps to set

larger or smaller margins.

However, there are cases where you really are working with a different paper size. A good example

of this is printing addresses on envelopes: the physical paper height is about 4 inches (24 lines on a type-

writer-like printer printing 6 lines per inch), and we want to print in a narrow window consisting of four or

five lines. A good set of definitions for this case would be:

.pl 4i

.wh 0 TM

.wh -9v BM

with .TM containing the request .sp 9v, and with .BM, as before, containing .bp.

There is more to say about traps, but it will make more sense later, so we’ll leave the subject for now.

Page Breaks without Line Breaks

Page breaks—we’ve talked about their use in page transition traps, but they also have a common use on

their own. Often, you will want to break a page before it would normally end. For example, if the page

breaks right after the first line of a paragraph, you will probably want to force the line onto the next page,

rather than leaving an “orphaned” line. Or you might want to leave blank space at the bottom of a page for

an illustration. To do this, simply enter a .bp at the desired point. A new page will be started immedi-

ately.

However, consider the case in which you need to force a break in the middle of a paragraph to pre-

vent a “widowed” line at the top of the next page. If you do this:

The medieval masters of calligraphy and illumination

are largely unknown to us. We thankfully have examples

of their work, and even

.bp

marginal notes by the copyists of some manuscripts,

but the men who produced these minute masterpieces

are anonymous.

the .bp request will also cause a line break, and the text will not be filled properly:

The medieval masters of calligraphy and illumination

are largely unknown to us. We thankfully have examples

of their work, and even

New page begins here

marginal notes by the copyists of some manuscripts, but

the men who produced these minute masterpieces are

anonymous.
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Fortunately, there is a way around this problem. If you begin a request with an apostrophe instead of a

period, the request will not cause a break.

The medieval masters of calligraphy and illumination

are largely unknown to us. We thankfully have examples

of their work, and even

’bp

marginal notes by the copyists of some manuscripts,

but the men who produced these minute masterpieces

are anonymous.

Now we hav e the desired result:

The medieval masters of calligraphy and illumination

are largely unknown to us. We thankfully have examples

New page begins here

of their work, and even marginal notes by the copyists

of some manuscripts, but the men who produced these

minute masterpieces are anonymous.

(In fact, most page transition macros use this feature to make paragraphs continue across page boundaries.

We’ll take a closer look at this in later chapters).

Another very useful request is the conditional page break, or .ne (need) request. If you want to

make sure an entire block of text appears on the same page, you can use this request to force a page break if

there isn’t enough space left. If there is sufficient space, the request is ignored.

For example, the two requests:

.ne 3.2i

.sp 3i

might be used to reserve blank space to paste in an illustration that is 3 inches high.

The .ne request does not cause a break, so you should be sure to precede it with .br or another

request that causes a break if you don’t want the remnants of the current line buffer carried to the next page

if the .ne is triggered.

It is often better to use .ne instead of .bp, unless you’re absolutely sure that you will always want a

page break at a particular point. If, in the course of editing, an .ne request moves away from the bottom of

the page, it will have no effect. But a .bp will always start a new page, sometimes leaving a page nearly

blank when the text in a file has been changed significantly.

There are other special spacing requests that can be used for this purpose. (Depending on the macro

package, these may have to be used). For example, .sv (save space) requests a block of contiguous space.

If the remainder of the page does not contain the requested amount of space, no space is output. Instead,

the amount of space requested is remembered and is output when an .os (output saved space) request is

encountered.

These are advanced requests, but you may need to know about them because most macro packages

include two other spacing requests in their page transition macros: .ns (no space) and .rs (restore

space). An .ns inhibits the effect of spacing requests; .rs restores the effectiveness of such requests.

Both the ms and mm macros include an .ns request in their page transition macros. As a result, if

you issue a request like:

.sp 3i

with 1 inch remaining before the bottom of the page, you will not get 1 inch at the bottom, plus 2 inches at

the top of the next page, but only whatever remains at the bottom. The next page will start right at the top.
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However, both macro packages also include an .os request in their page top macro, so if you truly want 3

inches, use .sv 3i, and you will get the expected result.

However, if you use .sv, you will also have another unexpected result: text following the spacing

request will “float” ahead of it to fill up the remainder of the current page.

We’ll talk more about this later. We introduced it now to prevent confusion when spacing requests

don’t always act the way you expect.

Page Numbering

The nroff and troff programs keep track of page numbers and make the current page number available

to be printed out (usually by a page transition macro). You can artificially set the page number with the

.pn request:

.pn 5 Set the current page number to 5

.pn +5 Increment the current page number by 5

.pn -5 Decrement the current page number by 5

You can also artificially set the number for the next page whenever you issue a .bp request, simply by

adding a numeric argument:

.bp 5 Break the page and set the next page number to 5

.bp +5 Break the page and increment the next page number by 5

.bp -5 Break the page and decrement the next page number by 5

In addition to inhibiting .sp, the .ns request inhibits the action of .bp, unless a page number is specified.

This means (at least in the existing macro packages), that the sequence:

.bp

.bp

will not result in a blank page being output. You will get the same effect as if you had specified only a sim-

ple .bp. Instead, you should specify:

.bp +1

The starting page number (usually 1) can also be set from the command line, using the -n option. For

example:

$ nroff -ms -n10 file

will start numbering file at page number 10. In addition, there is a command-line option to print only

selected pages of the output. The -o option takes a list of page numbers as its argument. The entire file

(up to the last page number in the list) is processed, but only the specified pages are output. The list can

include single pages separated by commas, or a range of pages separated by a hyphen, or both. A number

followed by a trailing hyphen means to output from that page to the end. For example:

$ nroff -ms -o1,5,7-9,13- file

will output pages 1, 5, 7 through 9, and from 13 to the end of the file. There should be no spaces anywhere

in the list.

Changing Fonts

In old troff (otroff), you were limited to four fonts at a time, because the fonts had to be physically

mounted on the C/A/T typesetter. With ditroff and a laser printer or a modern typesetter, you can use a

virtually unlimited number of fonts in the same document.
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In otroff you needed to specify the basic fonts that are in use with the .fp (font position) request.

Normally, at the front of a file (or, more likely, in the macro package), you would use this request to specify

which fonts are mounted in each of the four quadrants (positions) of the typesetter wheel. By default, the

roman font is mounted in position 1, the italic font in position 2, the bold font in position 3, and the special

font in position 4. That is, troff acts as though you had included the lines:

.fp 1 R

.fp 2 I

.fp 3 B

.fp 4 S

In ditroff, up to ten fonts are automatically mounted, with the special font in position 10. Which fonts

are mounted, and in which positions, depends on the output device. See Appendix D for details. The font

that is mounted in position 1 will be used for the body type of the text—it is the font that will be used if no

other specification is given. The special font is also used without any intervention on your part when a

character not in the normal character set is requested.

To request one of the other fonts, you can use either the .ft request, or the inline font-switch escape

sequence \f.

For example:

.ft B

This line will be set in bold type.

.br

.ft R

This line will again be set in roman type.

will produce:

This line will be set in bold type.
This line will again be set in roman type.

You can also change fonts using an inline font escape sequence. For example, the preceding sentence was

coded like this:

...an inline font \fIescape sequence\fP.

You may wonder at the \fP at the end, rather than \fR. The P command is a special code that can be used

with either the .ft request or the \f escape sequence. It means “return to the previous font, whatever it

was.” This is often preferable to an explicit font request, because it is more general.

All of this begs the question of fonts different than Times Roman, Bold, and Italic. There are two

issues: first, which fonts are available on the output device, and second, which fonts does troff have

width tables for. (As described previously, troff uses these tables to determine how far to space over

after it outputs each character). For otroff these width tables are in the directory /usr/lib/font, in

files whose names begin with ft. If you list the contents of this directory, you might see something like

this for otroff:

$ ls /usr/lib/font
ftB ftBC ftC ftCE ftCI

ftCK ftCS ftCW ftFD ftG

ftGI ftGM ftGR ftH ftHB

ftHI ftI ftL ftLI ftPA

ftPB ftPI ftR ftS ftSB

ftSI ftSM ftUD

You can pick out the familiar R, I, B, and S fonts, and may guess that ftH, ftHI, and ftHB refer to Hel-

vetica, Helvetica Italic, and Helvetica Bold fonts. However, unless you are familiar with typesetting, the

other names might as well be Greek to you. In any event, these width tables, normally supplied with
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troff, are for fonts that are commonly used with the C/A/T typesetter. If you are using a different device,

they may be of no use to you.

The point is that if you are using a different typesetting device, you will need to get information

about the font names for your system from whoever set up the equipment to work with troff. The con-

tents of /usr/lib/font will vary from installation to installation, depending on what fonts are sup-

ported.

For ditroff, there is a separate subdirectory in /usr/lib/font for each supported output

device. For example:

$ ls /usr/lib/font
devlj devps

$ ls /usr/lib/font/devps
B.out BI.out CB.out CI.out CW.out CX.out

DESC.out H.out HB.out HI.out HK.out HO.out

HX.out I.out LI.out PA.out PB.out PI.out

PX.out R.out O.out RS.out S.out S1.out

Here, the font name is followed by the string .out.

Again, the font names themselves are probably Greek to you. However, with ditroff, you can

actually use any of these names, and see what results they giv e you, because all fonts should be available at

any time.

For the sake of argument, let’s assume that your typesetter or other troff-compatible equipment

supports the Helvetica font family shown in Figure 4-3, with the names H, HI, and HB. (This is a fairly rea-

sonable assumption, because Helvetica is probably the most widely available font family after Times).

When specifying two-character font names with the \f escape sequence, you must add the ( prefix

as well. For example, you would specify Helvetica Italic by the inline sequence \f(HI, and Helvetica

Bold by \f(HB.

There is another issue when you are using fonts other than the Times Roman family. Assume that

you decide to typeset your document in Helvetica rather than Roman. You reset your initial font position

settings to read:

.fp 1 H

.fp 2 HI

.fp 3 HB

.fp 4 S

However, throughout the text, you have requests of the form:

.ft B

or:

\fB

You will need to make a set of global replacements throughout your file. To insulate yourself in a broader

way from overall font change decisions, troff allows you to specify fonts by position, even within .ft

and \f requests:

.ft 1 or \f1 Use the font mounted in position 1

.ft 2 or \f2 Use the font mounted in position 2

.ft 3 or \f3 Use the font mounted in position 3

.ft 4 or \f4 Use the font mounted in position 4

Because you don’t need to use the .fp request to set font positions with ditroff, and the range of fonts

is much greater, you may have a problem knowing which fonts are mounted in which positions. A quick

way to find out which fonts are mounted is to run ditroff on a short file, sending the output to the

screen. For example:

$ ditroff -Tps junk | more
x T ps

x res 720 1 1

x init

x font l R

x font 2 I
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Helvetica

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & ( ) ‘ ’ * + - . , / : ; = ? [ ] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ® ©

Helvetica Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & ( ) ‘ ’ * + - . , / : ; = ? [ ] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ® ©

Helvetica Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & ( ) ‘ ’ * + - . , / : ; = ? [ ] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ® ©

Special Mathematical Font

" ´ \ ^ ` ~ / 〈 〉 { } # @ + − = ∗
α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ ς τ υ φ χ ψ ω

Γ ∆ Θ Λ Ξ Π Σ ϒ Φ Ψ Ω
√ ≥ ≤ ≡ ∼ ≠ → ← ↑ ↓ × ÷ ± ∪ ∩ ⊂ ⊃ ⊆ ⊇ ∞ ∂
§ ∇ ¬ ∫ ∝ ∅  ∈ ‡ + +           

Figure 4.3 Helvetica Fonts

x font 3 B

x font 4 BI

x font 5 CW

x font 6 CB

x font 7 H

x font 8 HB

x font 9 HI

x font 10 S

...

The font positions should appear at the top of the file. In this example, you see the following fonts: (Times)

Roman, (Times) Bold, (Times) Italic, (Times) Bold Italic, Constant Width, Constant Bold, Helvetica, Hel-

vetica Bold, Helvetica Italic, and Special. Which font is mounted in which position is controlled by the file

DESC.out in the device subdirectory of /usr/lib/font. See Appendix D for details.

Special Characters

A variety of special characters that are not part of the standard ASCII character set are supported by nroff

and troff. These include Greek letters, mathematical symbols, and graphic characters. Some of these

characters are part of the font referred to earlier as the special font. Others are part of the standard typeset-

ter fonts.
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Regardless of the font in which they are contained, special characters are included in a file by means

of special four-character escape sequences beginning with \(.

Appendix B gives a complete list of special characters. However, some of the most useful are listed

in Table 4-4, because even as a beginner you may want to include them in your text. Although nroff

makes a valiant effort to produce some of these characters, they are really best suited for troff.

Table 4.4 Special Characters

Name Escape Sequence Output Character

em dash \(em —

bullet \(bu •

square \(sq

baseline rule \(ru

underrule \(ul

1/4 \(14 ¼

1/2 \(12 ½

3/4 \(34 ¾

degrees \(de °

dagger \(dg †

double dagger \(dd ‡

registered mark \(rg ®

copyright symbol \(co ©

section mark \(sc §

square root \(sr √
greater than or equal \(>= ≥
less than or equal \(<= ≤
not equal \(!= ≠
multiply \(mu ×
divide \(di ÷
plus or minus \(+- ±
right arrow \(-> →
left arrow \(<- ←
up arrow \(ua ↑
down arrow \(da ↓

We’ll talk more about some of these special characters as we use them. Some are used internally by

eqn for producing mathematical equations. The use of symbols such as the copyright, registered trade-

mark, and dagger is fairly obvious.

However, you shouldn’t limit yourself to the obvious. Many of these special characters can be put to

innovative use. For example, the square root symbol can be used to simulate a check mark, and the square

can become an alternate type of bullet. As we’ll show in Chapter 15, you can create additional, effective

character combinations, such as a checkmark in a box, with overstriking.

The point is to add these symbols to your repertoire, where they can wait until need and imagination

provide a use for them.

Type Size Specification

Typesetting also allows for different overall sizes of characters. Typesetting character sizes are described

by units called points. A point is approximately 1/72 of an inch. Typical type sizes range from 6 to 72

points. A few different sizes follow:
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This line is set in 6-point type.

This line is set in 8-point type.

This line is set in 10-point type.

This line is set in 12-point type.

This line is set in 14-point type.

This line is set in 18-point type.

(The exact size of a typeface does not always match its official size designation. For example, 12-point

type is not always 1/6 inch high, nor is 72-point type 1 inch high. The precise size will vary with the type-

face).

As with font changes, there are two ways to make size changes: with a request and with an inline

escape sequence. The .ps request sets the point size. For example:

.ps 10 Set the point size to 10 points

A .ps request that does not specify any point size reverts to the previous point size setting, whatever it

was:

.ps 10

Some text here

.ps Revert to the point size before we changed it

To switch point size in the middle of the line, use the \s escape sequence. For example, many books

reduce the point size when they print the word UNIX in the middle of a line. The preceding sentence was

produced by these input lines:

For example, many books reduce the point size when

they print the word \s8UNIX\s0 in the middle of a line.

As you can probably guess from the example, \s0 does not mean to use a point size of 0, but to revert to

the previous size.

In addition, you can use relative values when specifying point sizes. Knowing that the body of the

book is set in 10-point type, we could have achieved the same result by entering:

For example, many books reduce the point size when

they print the word \s-2UNIX\s0 in the middle of a line.

You can increment or decrement point sizes only using a single digit; that is, you can’t increment or decre-

ment the size by more than 9 points.

Only certain sizes may be available on the typesetter. (Legal point sizes in otroff are 6, 7, 8, 9, 10,

11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. Legal point sizes in ditroff depend upon the output device,

but there will generally be more sizes available). If you request a point size between two leg al sizes,

otroff will round up to the next legal point size; ditroff will round to the nearest available size.
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Vertical Spacing

In addition to its ability to change typefaces and type sizes on the same page, a typesetter allows you to

change the amount of vertical space between lines. This spacing is sometimes referred to as the baseline

spacing because it is the distance between the base of characters on successive lines. (The difference

between the point size and the baseline spacing is referred to as leading, from the old days when a human

compositor inserted thin strips of lead between successive lines of type).

A typewriter or typewriter-style printer usually spaces vertically in 1/6-inch increments (i.e., 6 lines

per inch). A typesetter usually adjusts the space according to the point size. For example, the type samples

shown previously were all set with 20 points of vertical space. More typically, the vertical space will vary

along with the type size, like this:

This line is set in 6-point type and 8-point spacing.

This line is set in 8-point type and 10-point spacing.

This line is set in 10-point type and 12-point spacing.

This line is set in 12-point type and 14-point spacing.

This line is set in 14-point type and 16-point spacing.

This line is set in 18-point type and 20-poi

Typically, the body of a book is set with a single size of type (usually 9 or 10 point, with vertical spacing

set to 11 or 12 points, respectively). Larger sizes are used occasionally for emphasis, for example, in chap-

ter or section headings. When the type size is changed, the vertical spacing needs to be changed too, or the

type will overrun the previous line, as follows, where 14-point type is shown with only 10-point spacing.

Here is type larger than
the space allotted for it.

Vertical spacing is changed with the .vs request. A vertical space request will typically be paired

with a point size request:

.ps 10

.vs 12

After you set the vertical spacing with .vs, this becomes the basis of the v unit for troff. For example,

if you enter .vs 12, the request .sp will space down 12 points; the request:

.sp 0.5v

will space down 6 points, or half the current vertical line spacing. However, if you change the baseline ver-

tical spacing to 16, the .sp request will space down 16 points. Spacing specified in any other units will be

unaffected. What all this adds up to is the commonsense observation that a blank line takes up the same

amount of space as one containing text.

When you use double and triple spacing, it applies a multiplication factor to the baseline spacing.

The request .ls 2 will double the baseline spacing. You can specify any multiplication factor you like,

though 2 and 3 are the most reasonable values.
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The .ls request will only affect the spacing between output lines of text. It does not change the def-

inition of v or affect vertical spacing requests.

A First Look at Macros

Although we won’t go into all the details of macro design until we have discussed the existing macro pack-

ages in the next two chapters, we’ll cover some of the basic concepts here. This will help you understand

what the macro packages are doing and how they work.

To define a macro, you use the .de request, followed by the sequence of requests that you want to

execute when the macro is invoked. The macro definition is terminated by the request .. (two dots). The

name to be assigned to the macro is given as an argument to the .de request.

You should consider defining a macro whenever you find yourself issuing a repetitive sequence of

requests. If you are not using one of the existing macro packages (which have already taken care of this

kind of thing), paragraphing is a good example of the kind of formatting that lends itself to macros.

Although it is certainly adequate to separate paragraphs simply by a blank line, you might instead

want to separate them with a blank line and a temporary indent. What’s more, to prevent “orphaned” lines,

you would like to be sure that at least two lines of each paragraph appear at the bottom of the page. So you

might define the following macro:

.de P

.sp

.ne 2

.ti 5n

..

This is the simplest kind of macro—a straightforward sequence of stored commands. However, macros can

take arguments, take different actions depending on the presence or absence of various conditions, and do

many other interesting and wonderful things.

We’ll talk more about the enormous range of potential in macros in later chapters. For the moment,

let’s just consider one or two points that you will need to understand in order to use the existing macro

packages.

Macro Arguments

Most basic troff requests take simple arguments—single characters or letters. Many macros take more

complex arguments, such as character strings. There are a few simple pointers you need to keep in mind

through the discussion of macro packages in the next two chapters.

First, a space is taken by default as the separator between arguments. If a single macro argument is a

string that contains spaces, you need to quote the entire string to keep it from being treated as a series of

separate arguments.

For example, imagine a macro to print the title of a chapter in this book. The macro call looks like

this:

.CH 4 "Nroff and Troff"

A second point: to skip an argument that you want to ignore, supply a null string (""). For example:

.CH "" "Preface"

As you can see, it does no harm to quote a string argument that doesn’t contain spaces ("Preface"), and

it is probably a good habit to quote all strings.
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Number Registers

When you use a specific value in a macro definition, you are limited to that value when you use the macro.

For example, in the paragraph macro definition shown previously, the space will always be 1, and the indent

always 5n.

However, nroff and troff allow you to save numeric values in special variables known as num-

ber registers. If you use the value of a register in a macro definition, the action of the macro can be

changed just by placing a new value in the register. For example, in ms, the size of the top and bottom mar-

gins is not specified with an absolute value, but with a number register. As a result, you don’t need to

change the macro definition to change these margins; you simply reset the value of the appropriate number

register. Just as importantly, the contents of number registers can be used as flags (a kind of message

between macros). There are conditional statements in the markup language of nroff and troff, so that

a macro can say: “If number register Y has the value x, then do thus-and-so. Otherwise, do this.” For

example, in the mm macros, hyphenation is turned off by default. To turn it on, you set the value of a certain

number register to 1. Various macros test the value of this register, and use it as a signal to re-enable

hyphenation.

To store a value into a number register, use the .nr request. This request takes two arguments: the

name of a number register,* and the value to be placed into it.

For example, in the ms macros, the size of the top and bottom margins is stored in the registers HM

(header margin) and FM (footer margin). To reset these margins from their default value of 1 inch to 1.75

inches (thus producing a shorter page like the one used in this book), all you would need to do is to issue

the requests:

.nr HM 1.75i

.nr FM 1.75i

You can also set number registers with single-character names from the command line by using the -r

option. (The mm macros make heavy use of this capability). For example:

$ nroff -mm -rN1 file

will format file using the mm macros, with number register N set to the value 1. We will talk more about

using number registers later, when we describe how to write your own macros. For the moment, all you

need to know is how to put new values into existing registers. The next two chapters will describe the par-

ticular number registers that you may find useful with the mm and ms macro packages.

Predefined Strings

The mm and ms macro packages also make use of some predefined text strings. The nroff and troff

programs allow you to associate a text string with a one- or two-character string name. When the formatter

encounters a special escape sequence including the string name, the complete string is substituted in the

output.

To define a string, use the .ds request. This request takes two arguments, the string name and the

string itself. For example:

.ds nt Nroff and Troff

The string should not be quoted. It can optionally begin with a quotation mark, but it should not end with

one, or the concluding quotation mark will appear in the output. If you want to start a string with one or

more blank spaces, though, you should begin the definition with a quotation mark. Even in this case, there

is no concluding quotation mark. As always, the string is terminated by a newline.

You can define a multiline string by hiding the newlines with a backslash. For example:

.ds LS This is a very long string that goes over \

*Number register names can consist of either one or two characters, just like macro names. However, they are

distinct—that is, a number register and a macro can be given the same name without conflict.
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more than one line.

When the string is interpolated, it will be subject to filling (unless no-fill mode is in effect) and may not be

broken into lines at the same points as you’ve specified in the definition. To interpolate the string in the

output, you use one of the following escape sequences:

\*a

\*(ab

where a is a one-character string name, and ab is a two-character string name.

To use the nt string we defined earlier, you would type:

\*(nt

It would be replaced in the output by the words Nroff and Troff.

Strings use the same pool of names as macros. Defining a string with the same name as an existing

macro will make the macro inoperable, so it is not advisable to go around wildly defining shorthand strings.

The vi editor’s abbreviation facility (described in Chapter 7) is a more effective way to save yourself work

typing.

Strings are useful in macro design in much the same way number registers are—they allow a macro

to be defined in a more general way. For example, consider this book, which prints the title of the chapter

in the header on each odd-numbered page. The chapter title is not coded into the page top macro. Instead,

a predefined string is interpolated there. The same macro that describes the format of the chapter title on

the first page of the chapter also defines the string that will appear in the header.

In using each of the existing macro packages, you may be asked to define or interpolate the contents

of an existing string. For the most part, though, string definitions are hidden inside macro definitions, so

you may not run across them. However, there are a couple of handy predefined strings you may find your-

self using, such as:

\*(DY

which always contains the current date in the ms macro package. (The equivalent string in mm is \*(DT).

For example, if you wanted a form letter to contain the date that it was formatted and printed rather than the

date it was written, you could interpolate this string.

Just What Is a Macro Package?

Before leaving the topic of macros, we ought to take a moment to treat a subject we have skirted up to this

point: just what is a macro package?

As the name suggests, a macro package is simply a collection of macro definitions. The fact that

there are command-line options for using the existing packages may seem to give them a special status, but

they are text files that you can read and modify (assuming that your system has the UNIX file permissions

set up so you can do so).

There is no magic to the options -ms and -mm. The actual option to nroff and troff is -mx,

which tells the program to look in the directory /usr/lib/tmac for a file with a name of the form

tmac.x. As you might expect, this means that there is a file in that directory called tmac.s or tmac.m

(depending on which package you have on your system). It also means that you can invoke a macro pack-

age of your own from the command line simply by storing the macro definitions in a file with the appropri-

ate pathname. This file will be added to any other files in the formatting run. This means that if you are

using the ms macros you could achieve the same result by including the line:

.so /usr/lib/tmac/tmac.s

at the start of each source file, and omitting the command-line switch -ms. (The .so request reads another

file into the input stream, and when its contents have been exhausted, returns to the current file. Multiple

.so requests can be nested, not just to read in macro definitions, but also to read in additional text files).

The macros in the standard macro packages are no different (other than in complexity) than the

macros you might write yourself. In fact, you can print out and study the contents of the existing macro
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packages to learn how they work. We’ll be looking in detail at the actions of the existing macro packages,

but for copyright reasons we can’t actually show their internal design. We’ll come back to all this later.

For now, all you need to know is that macros aren’t magic—just an assemblage of simple commands work-

ing together.



Chapter 5

The ms Macros

The UNIX shell is a user interface for the kernel, the actual heart of the operating system. You can choose

the C shell or Korn shell instead of the Bourne shell, without worrying about its effects on the low-level

operations of the kernel. Likewise, a macro package is a user interface for accessing the capabilities of the

nroff/troff formatter. Users can select either the ms or mm macro packages (as well as other packages

that are available on some systems) to use with nroff/troff.

The ms package was the original Bell labs macro package, and is available on many UNIX systems,

but it is no longer officially supported by AT&T. Our main reason for giving ms equal time is that many

Berkeley UNIX systems ship ms instead of mm. In addition, it is a less complex package, so it is much eas-

ier to learn the principles of macro design by studying ms than by studying mm.

A third general-purpose package, called me, is also distributed with Berkeley UNIX systems. It was

written by Eric Allman and is comparable to ms and mm. (Mark Horton writes us: I think of ms as the

FORTRAN of nroff, mm as the PL/I, and me as the Pascal). The me package is not described in this

book.

In addition, there are specialized packages—mv, for formatting viewgraphs, mptx, for formatting the

permuted index found in the UNIX Reference Manual, and man, for formatting the reference pages in that

same manual. These packages are simple and are covered in the standard UNIX documentation.

Regardless of which macro package you choose, the formatter knows only to replace each call of a

macro with its definition. The macro definition contains the set of requests that the formatter executes.

Whether a definition is supplied with the text in the input file or found in a macro package is irrelevant to

nroff/troff. The formatter can be said to be oblivious to the idea of a macro package.

You might not expect this rather freely structured arrangement between a macro package and

nroff/troff. Macros are application programs of sorts. They org anize the types of functions that you

need to be able to do. However, the actual work is accomplished by nroff/troff requests.

In other words, the basic formatting capabilities are inherent in nroff and troff; the user imple-

mentation of these capabilities to achieve particular formats is accomplished with a macro package. If a

macro doesn’t work the way you expect, its definition may have been modified. It doesn’t mean that

nroff/troff works differently on your system. It is one thing to say“ nroff/troff won’t let me do

it,” and another to say “I don’t hav e the macro to do it (but I could do it, perhaps).”

A general-purpose macro package like ms provides a way of describing the format of various kinds

of documents. Each document presents its own specific problems, and macros help to provide a simple and

flexible solution. The ms macro package is designed to help you format letters, proposals, memos, techni-

cal papers, and reports.

For simple documents such as letters, ms offers few advantages to the basic format requests

described in Chapter 4. But as you begin to format more complex documents, you will quickly see the

advantage of working with a macro package, which provides specialized tools for so many of the format-

ting tasks you will encounter.

A text file that contains ms macros can be processed by either nroff or troff, and the output can

be displayed on a terminal screen or printed on a line printer, a laser printer, or a typesetter.

85
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Formatting a Text File with ms

If you want to format an ms document for a line printer or for a terminal screen, enter this command line:

$ nroff -ms file(s)

To format for a laser printer or typesetter, enter this command line:

$ troff -ms file(s) | device postprocessor

Be sure to redirect the output to a file or pipe it to the printer; if you do not, the output will be sent to your

terminal screen.

Problems in Getting Formatted Output

There are two ways for a program to handle errors. One is to have the program terminate and issue an error

message. The other way is to have it keep going in hopes that the problems won’t affect the rest of the out-

put. The ms macros take this second approach.

In general, ms does its best to carry on no matter how scrambled the output looks. Sometimes the

problems do get corrected within a page or two; other times the problem continues, making the remaining

pages worthless. Usually, this is because the formatter had a problem executing the codes as they were

entered in the input file. Most of the time input errors are caused by not including one of the macros that

must be used in pairs.

Because ms allows formatting to continue unless the error is a “fatal” one, error correction is charac-

teristic of the ms macro definitions. Apart from the main function of the macro, some of them, such as the

paragraph macro, also invoke another macro called .RT to restore certain default values.

Thus, if you forget to reset the point size or indentation, you might notice that the problem continues

for a while and then stops.

Page Layout

As suggested in the last chapter, one of the most important functions of a macro package is that it provides

basic page layout defaults. This feature makes it worthwhile to use a macro package even if you don’t enter

a single macro into your source file.

At the beginning of Chapter 4, we showed how nroff alone formatted a sample letter. If we format

the same letter with ms, the text will be adjusted on a page that has a default top and bottom margin of 1

inch, a default left margin, or page offset, of about 1 inch, and a default line length of 6 inches.

All of these default values are stored in number registers so that you can easily change them:

LL Line Length

HM Header (top) Margin

FM Footer (bottom) Margin

PO Page offset (left margin)

For example, if you like larger top and bottom margins, all you need to do is insert the following

requests at the top of your file:

.nr HM 1.5i

.nr FM 1.5i

Registers such as these are used internally by a number of ms macros to reset the formatter to its

default state. They will not take effect until one of those “reset” macros is encountered. In the case of HM

and FM, they will not take effect until the next page unless they are specified at the very beginning of the
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file.*

Paragraphs

As we saw in the last chapter, paragraph transitions are natural candidates for macros because each para-

graph generally will require several requests (spacing, indentation) for proper formatting.

There are four paragraph macros in ms:

.LP Block paragraph

.PP First line of paragraph indented

.QP Paragraph indented from both margins

.IP Paragraph with hanging indent (list item)

The .LP macro produces a justified, block paragraph. This is the type of paragraph used for most

technical documentation. The .PP macro produces a paragraph with a temporary indent for the first line.

This paragraph type is commonly used in published books and magazines, as well as in typewritten corre-

spondence.

Let’s use the same letter to illustrate the use of these macros. In the original example (in Chapter 4),

we left blank lines between paragraphs, producing an effect similar to that produced by the .LP macro.

In contrast, .PP produces a standard indented paragraph. Let’s code the letter using .PP macros.

Because this is a letter, let’s also disable justification with an .na request. And of course, we want to print

the address block in no-fill mode, as shown in Chapter 4. Figure 5-1 shows the coded letter and Figure 5-2

shows the formatted output.

Spacing between Paragraphs

With nroff, all of the paragraph macros produce a full space between paragraphs. However, with

troff, the paragraph macros output a blank space of 0.3v. Basically, this means that a blank line will out-

put one full space and the paragraph macros will output about a third of that space.

The amount of spacing between paragraphs is contained in the number register PD (paragraph dis-

tance). If you want to change the amount of space generated by any of the paragraph macros, simply

change the contents of this register.

For example, if you don’t want to leave any space between paragraphs in the letter, you could put the

following line at the start of your file:

.nr PD 0

This flexibility afforded by macro packages is a major advantage. It is often possible to completely change

the appearance of a coded document by resetting only a few number registers at the start of a file. (As we’ll

see, this statement is even more true of mm than of ms).

*These “reset” macros (those that call the internal macro .RT) include .LP, .PP, .IP, .QP, .SH, .NH, .RS,

.RE, .TS, and .TE. The very first reset macro calls a special initialization macro called .BG that is used only

once, on the first page. This macro prints the cover sheet, if any (see “Cover Sheet Macros” later in this chap-

ter), as well as performing some special first-page initialization.
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.ad r

April 1, 1987

.sp 2

.ad

.nf

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

.fi

.sp

.na

Dear Mr. Fust:

.PP

In our conversation last Thursday, we discussed a documentation

project that would produce a user’s manual on the Alcuin

product. Yesterday, I received the product demo and other

materials that you sent me.

.PP

Going through a demo session gave me a much better understanding

of the product. I confess to being amazed by Alcuin.

Some people around here, looking over my shoulder, were also

astounded by the illustrated manuscript I produced with Alcuin.

One person, a student of calligraphy, was really impressed.

.PP

In the next couple of days, I’ll be putting together a written

plan that presents different strategies for documenting the

Alcuin product. After I submit this plan, and you have had time

to review it, let’s arrange a meeting at your company to discuss

these strategies.

.PP

Thanks again for giving us the opportunity to bid on this

documentation project. I hope we can decide upon a strategy

and get started as soon as possible in order to have the manual

ready in time for the first customer shipment. I look forward to

meeting with you towards the end of next week.

.sp

Sincerely,

.sp 3

Fred Caslon

Figure 5.1 Letter Coded with ms Macros
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April 1, 1987

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed

a documentation project that would produce a user’s

manual on the Alcuin product. Yesterday, I received

the product demo and other materials that you sent

me.

Going through a demo session gave me a much

better understanding of the product. I confess to

being amazed by Alcuin. Some people around here,

looking over my shoulder, were also astounded by the

illustrated manuscript I produced with Alcuin. One

person, a student of calligraphy, was really

impressed.

In the next couple of days, I’ll be putting

together a written plan that presents different

strategies for documenting the Alcuin product. After

I submit this plan, and you have had time to review

it, let’s arrange a meeting at your company to dis-

cuss these strategies.

Thanks again for giving us the opportunity to

bid on this documentation project. I hope we can

decide upon a strategy and get started as soon as

possible in order to have the manual ready in time

for the first customer shipment. I look forward to

meeting with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 5.2 Formatted Output

Quoted Paragraphs

A paragraph that is indented equally from the left and right margins is typically used to display quoted

material. It is produced by .QP. For example:

.QP

In the next couple of days, I’ll be putting together a ...

The .QP macro produces a paragraph indented on both sides. The pair of macros .QS and .QE can be

used to mark a section longer than one paragraph that is indented. This is useful in reports and proposals
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that quote at length from another source.

.LP

I was particularly interested in the following comment

found in the product specification:

.QS

Users first need a brief introduction to what

the product does. Sometimes this is more for the

benefit of people who haven’t yet bought the

product, and are just looking at the manual.

However, it also serves to put the rest of the

manual, and the product itself, in

the proper context.

.QE

The result of formatting is:

I was particularly interested in the following comment

found in the product specification:

Users first need a brief introduction to what

the product does. Sometimes this is more for

the benefit of people who haven’t yet bought

the product, and are just looking at the man-

ual. However, it also serves to put the rest

of the manual, and the product itself, in the

proper context.

Use the .QP macro inside a .QS/.QE block to break up paragraphs.

Indented Paragraphs

The .IP macro produces an entire paragraph indented from the left margin. This is especially useful for

constructing lists, in which a mark of some kind (e.g., a letter or number) extends into the left margin. We

call these labeled item lists.

The .IP macro takes three arguments. The first argument is a text label; if the label contains spaces,

it should be enclosed within quotation marks. The second argument is optional and specifies the amount of

indentation; a default of 5 is used if the second argument is not specified. A third argument of 0 inhibits

spacing before the indented paragraph.

Item lists are useful in preparing command reference pages that describe various syntax items, and in

glossaries that present a term in one column and its definition in the other. The following example shows a

portion of the input file for a reference page:

.IP figure 10

is the name of a cataloged figure. If

a figure has not been cataloged, you need to use

the LOCATE command.

.IP f:p 10

is the scale of the

figure in relation to the page.

.IP font 10

is the two-character abbreviation or

full name of one of the available fonts

from the Alcuin library.
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The following item list is produced:

figure is the name of a cataloged figure. If a figure

has not been cataloged, you need to use the

LOCATE command.

f:p is the scale of the figure in relation to the

page.

font is the two-character abbreviation or full name

of one of the available fonts from the Alcuin

library.

An .LP or .PP should be specified after the last item so that the text following the list is not also indented.

If you want to indent the label as well as the paragraph, you can use the .in request around the list.

The following example:

.in 10

.IP figure 10

is the name of a cataloged figure. If

a figure has not been cataloged, you need to use

the LOCATE command.

.in 0

will produce:

figure is the name of a cataloged figure. If a

figure has not been cataloged, you need to

use the LOCATE command.

You can specify an absolute or relative indent. To achieve the effect of a nested list, you can use the .RS

(you can think of this as either relative start or right shift) and .RE (relative end or retreat) macros:

.IP font 10

is the two-character abbreviation or

full name of one of the available fonts

from the Alcuin library.

.RS

.IP CU

Cursive

.IP RS

Slanted

.RS

.IP LH 5 0

Left handed

.IP RH 5 0

Right handed

.RE

.IP BL

Block

.RE



92 Unix Text Processing

The labels on the second level are aligned with the indented left margin of paragraphs on the first level.

font is the two-character abbreviation or full name of

one of the available fonts from the Alcuin

library.

CU Cursive

RS Slanted

LH Left handed

RH Right handed

BL Block

One thing you need to watch out for in using the .IP macro is not to include space in the label argument.

Because of the way the macro is coded, the space may be expanded when the finished line is adjusted. The

first line will not be aligned with the rest. For example:

.IP "font name" 10

is the two-character abbreviation or full name . . .

might produce the following:

font name is the two-character abbreviation or full

name of one of the available fonts from the

Alcuin library.

To avoid this problem, always use an unpaddable space (a backslash followed by a space) to separate words

in the label argument to .IP. This caution applies to many other formatting situations as well.

Automatically numbered and alphabetized lists are not provided for in ms. (Chapter 16 shows how

to write your own macros for this). However, by specifying the number or letter as a label, you can make

do with the .IP macro. For example:

User-oriented documentation recognizes three things:

.in +3n

.IP 1) 5n

that a new user needs

to learn the system in stages, getting a sense of the

system as a whole while becoming proficient in performing

particular tasks;

.IP 2) 5n

that there are different levels of users, and not

every user needs to learn all the capabilities

of the system in order to be productive;

.IP 3) 5n

that an experienced user must be able to rely on

the documentation for accurate and thorough reference

information.

.in -3n
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This produces:

User-oriented documentation recognizes three things:

1) that a new user needs to learn the system in

stages, getting a sense of the system as a

whole while becoming proficient in performing

particular tasks;

2) that there are different levels of users, and

not every user needs to learn all the capabil-

ities of the system in order to be productive;

3) that an experienced user must be able to rely on

the documentation for accurate and thorough

reference information.

The number is indented three ens and the text is indented five more ens. (Note: If you are using nroff,

you don’t need to specify units on the indents. However, if you are using troff, the default scaling for

both the .IP macro and the .in requests shown in the previous example is ems. Remember that you can

append a scaling indicator to the numeric arguments of most macros and troff requests).

Changing Font and Point Size

When you format with nroff and print on a line printer, you can put emphasis on individual words or

phrases by underlining or overstriking. When you are using troff and send your output to a laser printer

or typesetter, you can specify variations of type, font, and point size based on the capabilities of the output

devices.

Roman, Italic, and Bold Fonts

Most typefaces have at least three fonts available: roman, bold, and italic. Normal body copy is printed in

the roman font. You can change temporarily to a bold or italic font for emphasis. In Chapter 4, you learned

how to specify font changes using the .ft request and inline \f requests. The ms package provides a set

of mnemonic macros for changing fonts:

.B bold

.I italic

.R roman

Each macro prints a single argument in a particular font. You might code a single sentence as follows:

.B Alcuin

revitalizes an

.I age-old

tradition.

The printed sentence has one word in bold and one in italic.
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Alcuin revitalizes an age-old tradition.

If no argument is specified, the selected font is current until it is explicitly changed:

The art of

.B

calligraphy

.R

is, quite simply,

.I

beautiful

.R

handwriting;

The example produces:

The art of calligraphy is, quite simply, beautiful handwriting;

You’ve already seen that the first argument is changed to the selected font. If you supply a second

argument, it is printed in the previous font. (You are limited to two arguments, set off by a space; a phrase

must be enclosed within quotation marks to be taken as a single argument). A good use for the alternate

argument is to supply punctuation, especially because of the restriction that you cannot begin a line with a

period.

its opposite is

.B cacography .

This example produces:

its opposite is cacography.

If the second argument is a word or phrase, you must supply the spacing:

The ink pen has been replaced by a

.I light " pen."

This produces:

The ink pen has been replaced by a light pen.

If you are using nroff, specifying a bold font results in character overstrike; specifying an italic font

results in an underline for each character (not a continuous rule). Overstriking and underlining can cause
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problems on some printers and terminals.

The chief advantage of these macros over the corresponding troff constructs is the ease of entry. It

is easier to type:

.B calligraphy

than:

\fBcalligraphy\fP

However, you’ll notice that using these macros changes the style of your input considerably. As shown in

the examples on the preceding pages, these macros require you to code your input file using short lines that

do not resemble the resulting filled output text.

This style, which clearly divorces the form of the input from the form of the output, is recommended

by many nroff and troff users. They recommend that you use macros like these rather than inline

codes, and that you begin each sentence or clause on a new line. There are advantages in speed of editing.

However, there are others (one of the authors included) who find this style of input unreadable on the

screen, and prefer to use inline codes, and to keep the input file as readable as possible. (There is no differ-

ence in the output file).

Underlining

If you want to underline a single word, regardless of whether you are using nroff or troff, use the .UL

macro:

the

.UL art

of calligraphy.

It will print a continuous rule beneath the word. You cannot specify more than a single word with this

macro.

Changing Point Size

As discussed in Chapter 4, you can change the point size and vertical spacing with the .ps and .vs

requests. However, if you do this in ms, you will find that the point size and vertical spacing revert to 10

and 12 points, respectively, after the next paragraph macro. This is because the paragraph macro, in addi-

tion to other tasks, resets the point size and vertical spacing (along with various other values) to default val-

ues stored in number registers.

The default point size and vertical spacing for a document are kept in the registers PS and VS,

respectively. If you want to change the overall point size or vertical spacing, change the value in these reg-

isters. (The default values are 10 and 12, respectively). For example, to change the body type to 8 points

and the spacing to 10 points, enter the following requests at the top of your document:

.nr PS 8

.nr VS 10

At the top of a document, these settings will take effect immediately. Otherwise, you must wait for the next

paragraph macro for the new values to be recognized. If you need both immediate and long-lasting effects,

you may need a construct like:

.ps 8

.nr PS 8

.vs 10

.nr VS 10

There are also several macros for making local point size changes. The .LG macro increases the current

point size by 2 points; the .SM macro decreases the point size by 2 points. The new point size remains in
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effect until you change it. The .NL macro changes the point size back to its default or normal setting. For

example:

.LG

Alcuin

.NL

is a graphic arts product for

.SM

UNIX

.NL

systems.

The following line is produced:

Alcuin is a graphic arts product for UNIX systems.

The .LG and .SM macros simply increment or decrement the current point size by 2 points. Because

you change the point size relative to the current setting, repeating a macro adds or subtracts 2 more points.

If you are going to change the point size by more than 2, it makes more sense to use the .ps request. The

.NL macro uses the value of the number register PS to reset the normal point size. Its default value is 10.

In the following example, the .ps request changes the point size to 12. The .LG and .SM macros

increase and decrease the point size relative to 12 points. The .NL macro is not used until the end because

it changes the point size back to 10.

.ps 12

.LG

Alcuin

.SM

is a graphic arts product for

.SM

UNIX

.LG

systems.

.NL

It produces the following line:

Alcuin is a graphic arts product for UNIX systems.

A change in the point size affects how much vertical space is needed for the larger or smaller characters.

Vertical spacing is usually 2 points larger than the point size (10 on 12). Use the vertical spacing request to

temporarily change the vertical spacing, if necessary.
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Displays

A document often includes material—such as tables, figures, or equations—that are not part of the running

text, and must be kept together on the page. In ms and mm, such document elements are referred to generi-

cally as displays.

The macros .DS, .DE, .ID, .CD, .BD, and .LD are used to handle displays in ms. The display

macros can be relied upon to provide

• adequate spacing before and after the display;

• horizontal positioning of the display as a left-justified, indented, or centered block;

• proper page breaks, keeping the entire display together.

The default action of the .DS macro is to indent the block of text without filling lines:

Some of the typefaces that are currently available are:

.DS

Roman

Caslon

Baskerville

Helvetica

.DE

This produces:

Some of the typefaces that are currently available are:

Roman

Caslon

Baskerville

Helvetica

You can select a different format for a display by specifying a left-justified or centered display with

one of the following arguments:

I Indented (default)

L Left-justified

C Center each line

B Block (center entire display)

The L argument can be used for formatting an address block in a letter:

.DS L

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02154

.DE

The display macro prevents these lines from being filled; it “protects” the carriage returns as they were

entered in the file.

A display can be centered in two ways: either each individual line in the display is centered (C), or

the entire display is centered as a block (B) based on the longest line of the display.

The use of tabs often presents a problem outside of displays. Material that has been entered with tabs

in the input file should be formatted in no-fill mode, the default setting of the display macros. The
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following table was designed using tabs to provide the spacing.

.DS L

Dates Description of Task

June 30 Submit audience analysis

July 2 Meeting to review audience analysis

July 15 Submit detailed outline

August 1 Submit first draft

August 5 Return of first draft

August 8 Meeting to review comments

and establish revisions

.DE

This table appears in the output just as it looks in the file. If this material had not been processed inside a

display, the columns would be improperly aligned.

Static and Floating Displays

One of the basic functions of a display is to make sure the displayed material stays together on one page. If

the display is longer than the distance to the bottom of the page, there is a page break.

If the display is large, causing a page break can leave a large block of white space at the bottom of

the page. To avoid this problem, ms provides a set of macros for floating displays, as well as macros for the

static displays we’ve already discussed. If a floating display doesn’t fit on the page, the formatter doesn’t

force a page break. Instead, it simply holds the displayed text in reserve while it fills up the remainder of

the page with the text following the display. It prints the display at the top of the next page, then continues

where it left off.

We hav e already used .DS and .DE to mark the beginning and end of a static display. To specify a

floating display, the closing mark is the same but the beginning is marked by a different macro:

.ID Same as .DS I (indented) but floating

.LD Same as .DS L (left justified) but floating

.CD Same as .DS C (center each line) but floating

.BD Same as .DS B (center display) but floating

In the following example of an input file, numbers are used instead of actual lines of text to make the

placement of the display more obvious:

1

2

3

4

5

.LD

Long Display
.DE

6

7

8

9

10

The following two formatted pages might be produced, assuming that there are a sufficient number of lines

to cause a page break:
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- 1 -

1

2

3

4

5

6

7

- 2 -

Long Display

8

9

10

If there had been room on page 1 to fit the display, it would have been placed there, and lines 6 and 7 would

have followed the display, as they did in the input file.

If a static display had been specified in the previous example, the display would be placed in the

same position on the second page, and lines 6 and 7 would have followed it, leaving extra space at the bot-

tom of page 1. A floating display attempts to make the best use of the available space on a page.

The formatter maintains a queue to hold floating displays that it has not yet output. When the top of

a page is encountered, the next display in the queue is output. The queue is emptied in the order in which it

was filled (first in, first out).

The macros called by the display macros to control output of a block of text are available for other

uses. They are known as “keep and release” macros. The pair .KS/.KE keep a block together and output

it on the next available page. The pair .KF/.KE specify a floating keep; the block saved by the keep can

float and lines of text following the block may appear before it in the text.

Headings

In ms, you can have numbered and unnumbered headings. There are two heading macros: .NH for num-

bered headings and .SH for unnumbered section headings.

Let’s first look at how to produce numbered headings. The syntax for the .NH macro is:

.NH [level]
[heading text]
.LP

(The brackets indicate optional arguments). You can supply a numerical value indicating the level of the

heading. If no value is provided for level, then a top-level heading is assumed. The heading text begins on

the line following the macro and can extend over sev eral lines. You hav e to use one of the paragraph

macros, either .LP or .PP, after the last line of the heading. For example:

.NH

Quick Tour of Alcuin

.LP

The result is a heading preceded by a first-level heading number:

1. Quick Tour of Alcuin

The next time you use this macro the heading number will be incremented to 2, and after that, to 3.
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You can add levels by specifying a numeric argument. A second-level heading is indicated by 2:

.NH 2

Introduction to Calligraphy

.LP

The first second-level heading number is printed:

1.1 Introduction to Calligraphy

When another heading is specified at the same level, the heading number is automatically incremented. If

the next heading is at the second level:

.NH 2

Digest of Alcuin Commands

.LP

ms produces:

1.2 Digest of Alcuin Commands

Each time you go to a new lev el, .1 is appended to the number representing the existing level. That number

is incremented for each call at the same level. When you back out of a level (for instance, when you go

from level 5 to lev el 4) the counter for the level (in this case level 5) is reset to 0.

The macro for unnumbered headings is .SH:

.SH

Introduction to Calligraphy

.LP

Unnumbered headings and numbered headings can be intermixed without affecting the numbering scheme:

1. Quick Tour of Alcuin

Introduction to Calligraphy

1.1 Digest of Alcuin Commands

Headings are visible keys to your document’s structure. Their appearance can contribute signifi-

cantly to a reader recognizing that organization. If you are using unnumbered headings, it becomes even

more important to make headings stand out. A simple thing you can do is use uppercase letters for a first-

level heading.

Cover Sheet Macros

In their original incarnation at Bell Laboratories, the ms macros were called on to format many internal

AT&T documents. Accordingly, it is not surprising that there were quite a few macros that controlled the

format of specific internal document types. What is surprising is that these macros are still present in

copies of the ms macros distributed outside of AT&T.
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You hav e the option of specifying that your document contains Engineer’s Notes (.EG), an Internal

Memorandum (.IM), a Memorandum for Record (.MR), a Memorandum for File (.MF), a Released Paper

(.RP), a Technical Report (.TR), or a letter (.LT).

Many of these formats are quite useless outside of AT&T, unless you customize them heavily for

other institutions. We prefer simply to ignore them.

In general, what these document type macros control is the appearance of the document’s cover

sheet. The content of that cover sheet is specified using the following macros:

.TL Title

.AU Author

.AI Author’s Institution

.AB Abstract Start

.AE Abstract End

These macros are general enough that you can still use them even if you aren’t from Bell Laboratories.

Each macro takes its data from the following line(s) rather than from an argument. They are typi-

cally used together. For example:

.TL

UNIX Text Processing

.AU

Dale Dougherty

.AU

Tim O’Reilly

.AI

O’Reilly & Associates, Inc.

.AB

This book provides a comprehensive introduction to the major

UNIX text-processing tools. It includes a discussion of

vi, ex, nroff, and troff, as

well as many other text-processing programs.

.AE

.LP

Exactly how the output will look depends on which document type you have selected. If you don’t specify

any of the formats, you will get something like this:

UNIX Text Processing

Dale Dougherty

Tim O’Reilly

O’Reilly & Associates, Inc.

ABSTRACT

This book provides a comprehensive introduction to

the major UNIX text-processing tools. It includes a

discussion of vi, ex, nroff, and troff, as

well as many other text-processing programs.

You can specify as many title lines as you want following .TL. The macro will be terminated by any of the

other cover sheet macros, or by any paragraph macro. For multiple authors, .AU and .AI can be repeated

up to nine times.
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The cover sheet isn’t actually printed until a reset (such as that caused by any of the paragraph

macros) is encountered, so if you want to print only a cover page, you should conclude it with a paragraph

macro even if there is no following text.

In addition, if you use these macros without one of the overall document type macros like .RP, the

cover sheet will not be printed separately. Instead, the text will immediately follow. Insert a .bp if you

want a separate cover sheet.

Miscellaneous Features

Putting Information in a Box

Another way of handling special information is to place it in a box. Individual words can be boxed for

emphasis using the .BX command:

To move to the next menu, press the

.BX RETURN

key.

This draws a box around the word RETURN.

To move to the next menu, press the

RETURN

key.

As you can see, it might be a good idea to reduce the point size of the boxed word.

You can enclose a block of material within a box by using the pair of macros .B1 and .B2:

.B1

.B

.ce

Note to Reviewers

.R

.LP

Can you get a copy of a manuscript without annotations?

It seems to me that you should be

able to mark up a page with comments or

other scribbles while in Annotation Mode and

still obtain a printed copy without these marks.

Any ideas?

.sp

.B2

This example produces the following boxed section in troff:

Note to Reviewers

Can you get a copy of a manuscript without annotations? It seems to me that you should be able to mark

up a page with comments or other scribbles while in Annotation Mode and still obtain a printed copy

without these marks. Any ideas?

You may want to place boxed information inside a pair of keep or display macros. This will prevent the

box macro from breaking if it crosses a page boundary. If you use these macros with nroff, you must

also pipe your output through the col postprocessor as described in Chapter 4.
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Footnotes

Footnotes present special problems—the main is printing the text at the bottom of the page. The .FS

macro indicates the start of the text for the footnote, and .FE indicates the end of the text for the footnote.

These macros surround the footnote text that will appear at the bottom of the page. The .FS macro is put

on the line immediately following some kind of marker, such as an asterisk, that you supply in the text and

in the footnote.

... in an article on desktop publishing.*

.FS

* "Publish or Perish: Start-up grabs early page language

lead," Computerworld, April 21, 1986, p. 1.

.FE

All the footnotes are collected and output at the bottom of each page underneath a short rule. The footnote

text is printed in smaller type, with a slightly shorter line length than the body text. However, you can

change these if you want.

Footnotes in ms use an nroff/troff feature called environments (see Chapter 14), so that parame-

ters like line length or font that are set inside a footnote are saved independently of the body text. So, for

example, if you issued the requests:

.FS

.ft B

.ll -5n

.in +5n

Some text
∼
∼
∼
.FE

the text within the footnote would be printed in boldface, with a 5-en indent, and the line length would be

shortened by 5 ens. The text following the footnote would be unaffected by those formatting requests.

However, the next time a footnote was called, that special formatting would again be in effect.

* "Publish or Perish: Start-up grabs early page language
lead," Computerworld,April 21, 1986, p. 1.

If a footnote is too long to fit on one page, it will be continued at the bottom of the next page.

Tw o-Column Processing

One of the nice features of the ms macros is the ease with which you can create multiple columns and for-

mat documents, such as newsletters or data sheets, that are best suited to a multicolumn format.

To switch to two-column mode, simply insert the .2C macro. To return to single-column mode, use

.1C. Because of the way two-column processing works in ms, you can switch to two-column mode in the

middle of a page, but switching back to a single column forces a page break. (You’ll understand the reason

for this when we return to two-column processing in Chapter 16).

The default column width for two-column processing is 7/15th of the line length. It is stored in the

register CW (column width). The gutter between the columns is 1/15th of the line length, and is stored in the

register GW (gutter width). By changing the values in these registers, you can change the column and gutter
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width.

For more than two columns, you can use the .MC macro. This macro takes two arguments, the col-

umn width and the gutter width, and creates as many columns as will fit in the line length. For example, if

the line lengths are 7 inches, the request:

.MC 2i .3i

would create three columns 2 inches wide, with a gutter of .3 inches between the columns.

Again, .1C can be used to return to single-column mode. In some versions of ms, the .RC macro

can be used to break columns. If you are in the left column, following text will go to the top of the next

column. If you are in the right column, .RC will start a new page.

Page Headers and Footers

When you format a page with ms, the formatter is instructed to provide several lines at the top and the bot-

tom of the page for a header and a footer. Beginning with the second page, a page number appears on a sin-

gle line in the header and only blank lines are printed for the footer.

The ms package allows you to define strings that appear in the header or footer. You can place text in

three locations in the header or footer: left justified, centered, and right justified. For example, we could

place the name of the client, the title of the document, and the date in the page header and we could place

the page number in the footer.

.ds LH GGS

.ds CH Alcuin Project Proposal

.ds RH \*(DY

.ds CF Page %

You may notice that we use the string DY to supply today’s date in the header. In the footer, we use a spe-

cial symbol (%) to access the current page number. Here are the resulting header and footer:

GGS Alcuin Project Proposal April 26, 1987

.

.

.

Page 2

Normally, you would define the header and footer strings at the start of the document, so they would take

effect throughout. However, note that there is nothing to prevent you from changing one or more of them

from page to page. (Changes to a footer string will take effect on the same page; changes to a header string

will take effect at the top of the next page).
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Problems on the First Page

Because ms was originally designed to work with the cover sheet macros and one of the standard Bell doc-

ument types, there are a number of problems that can occur on the first page of a document that doesn’t use

these macros.*

First, headers are not printed on the first page, nor is it apparent how to get them printed there if you

want them. The trick is to invoke the internal .NP (new page) macro at the top of your text. This will not

actually start a new page, but will execute the various internal goings-on that normally take place at the top

of a page.

Second, it is not evident how to space down from the top if you want to start your text at some dis-

tance down the page. For example, if you want to create your own title page, the sequence:

.sp 3i

.ce

\s16The Invention of Movable Type\s0

will not work.

The page top macro includes an .ns request, designed to ensure that all leftover space from the bot-

tom of one page doesn’t carry over to the next, so that all pages start evenly. To circumvent this on all

pages after the first one, precede your spacing request with an .rs (restore spacing) request. On the first

page, a .fl request must precede a .rs request.

Extensions to ms

In many ways, ms can be used to give you a head start on defining your own macro package. Many of the

features that are missing in ms can be supplied by user-defined macros. Many of these features are covered

in Chapters 14 through 18, where, for example, we show macros for formatting numbered lists.

*This problem actually can occur on any page, but is most frequently encountered on the first page.





Chapter 6

The mm Macros

A macro package provides a way of describing the format of various kinds of documents. Each document

presents its own specific problems, and macros help to provide a simple and flexible solution. The mm

macro package is designed to help you format letters, proposals, memos, technical papers, and reports. A

text file that contains mm macros can be processed by either nroff or troff, the two text formatting pro-

grams in UNIX. The output from these programs can be displayed on a terminal screen or printed on a line

printer, a laser printer, or a typesetter.

Some users of the mm macro package learn only a few macros and work productively. Others choose

from a variety of macros to produce a number of different formats. More advanced users modify the macro

definitions and extend the capabilities of the package by defining their own special-purpose macros.

Macros are the words that make up a format description language. Like words, the result of a macro

is often determined by context. That is, you may not always understand your output by looking up an indi-

vidual macro, just like you may not understand the meaning of an entire sentence by looking up a particular

word. Without examining the macro definition, you may find it hard to figure out which macro is causing a

particular result. Macros are interrelated; some macros call other macros, like a subroutine in a program, to

perform a particular function.

After finding out what the macro package allows you to do, you will probably decide upon a particu-

lar format that you like (or one that has evolved according to the decisions of a group of people). To

describe that format, you are likely to use only a few of the macros, those that do the job. In everyday use,

you want to minimize the number of codes you need to format documents in a consistent manner.

Formatting a Text File

To figure out the role of a macro package such as mm, it may help to consider the distinction between for-

matting and format. Formatting is an operation, a process of supplying and executing instructions. You can

achieve a variety of results, some pleasing, some not, by any combination of formatting instructions. A for-

mat is a consistent product, achieved by a selected set of formatting instructions. A macro package makes

it possible for a format to be recreated again and again with minimal difficulty. It encourages the user to

concentrate more on the requirements of a document and less on the operations of the text formatter.

Working with a macro package will help reduce the number of formatting instructions you need to

supply. This means that a macro package will take care of many things automatically. Howev er, you

should gradually become familiar with the operations of the nroff/troff formatter and the additional

flexibility it offers to define new formats. If you have a basic understanding of how the formatter works, as

described in Chapter 4, you will find it easier to learn the intricacies of a macro package.

Invoking nroff/troff with mm

The mm command is a shell script that invokes the nroff formatter and reads in the files that contain the

mm macro definitions before processing the text file(s) specified on the command line.

$ mm option(s) filename(s)

If more than one file is specified on the command line, the files are concatenated before processing. There

are a variety of options for invoking preprocessors and postprocessors, naming an output device, and setting

various number registers to alter default values for a document. Using the mm command is the same as

107
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invoking nroff explicitly with the -mm option.

Unless you specify otherwise, the mm command sets nroff’s -T option to the terminal type set in

your login environment. By default, output is sent to the terminal screen. If you have problems viewing

your output, or if you have a graphics terminal, you may want to specify another device name using the -T

option. For a list of available devices, see Appendix B. The mm command also has a -c option, which

invokes the col filter to remove rev erse linefeeds, and options to invoke tbl (-t) and eqn (-e).

When you format a file to the screen, the output usually streams by too swiftly to read, just as when

you cat a file to the screen. Pipe the output of the mm command through either of the paging programs,

pg or more, to view one screenful at a time. This will give you a general indication that the formatting

commands achieved the results you had expected. To print a file formatted with mm, simply pipe the out-

put to the print spooler (e.g., lp) instead of to a screen paging program.

Many of the actions that a text formatter performs are dependent upon how the document is going to

be printed. If you want your document to be formatted with troff instead of nroff, use the mmt

129 [mmt] command %key mmt command command (another shell script) or invoke troff directly,

using the -mm option. The mmt command prepares output for laser printers and typesetters. The formatted

output should be piped directly to the print spooler (e.g., lp) or directed to a file and printed separately.

You will probably need to check at your site for the proper invocation of mmt if your site supports more

than one type of laser printer or typesetter.

If you are using otroff, be sure you don’t let troff send the output to your terminal because, in

all probability, it will cause your terminal to hang, or at least to scream and holler.

In this chapter, we will generally show the results of the mm command, rather than mmt—that is,

we’ll be showing nroff rather than troff. Where the subject under discussion is better demonstrated by

troff, we will show troff output instead. We assume that by now, you will be able to tell which of the

programs has been used, without our mentioning the actual commands.

Problems in Getting Formatted Output

When you format an mm-coded document, you may only get a portion of your formatted document. Or you

may get none of it. Usually, this is because the formatter has had a problem executing the codes as they

were entered in the input file. Most of the time it is caused by omitting one of the macros that must be used

in pairs.

When formatting stops like this, one or more error messages might appear on your screen, helping

you to diagnose the problems. These messages refer to the line numbers in the input file where the prob-

lems appear to be, and try to tell you what is missing:

ERROR:(filename) line number
Error message

Sometimes, you won’t get error messages, but your output will break midway. Generally, you have to go in

the file at the point where it broke, or before that point, and examine the macros or a sequence of macros.

You can also run a program on the input file to examine the code you have entered. This program, available

at most sites, is called checkmm.

Default Formatting

In Chapter 4, we looked at a sample letter formatted by nroff. It might be interesting, before putting any

macros in the file, to see what happens if we format letter as it is, this time using the mm command to

read in the mm macro package.

Refer to Figure 6-1 and note that

• a page number appears in a header at the top of the page;
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• the address block still forms two long lines;

• lines of input text have been filled, forming block paragraphs;

• the right margin is ragged, not justified as with nroff;

• the text is not hyphenated;

• space has been allocated for a page with top, bottom, left, and right margins.

- 1 -

April 1, 1987

Mr. John Fust Vice President, Research and

Development Gutenberg Galaxy Software Waltham,

Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s

manual on the Alcuin product. Yesterday, I

received the product demo and other materials that

you sent me.

Going through a demo session gave me a much better

understanding of the product. I confess to being

amazed by Alcuin. Some people around here,

looking over my shoulder, were also astounded by

the illustrated manuscript I produced with Alcuin.

One person, a student of calligraphy, was really

impressed.

In the next couple of days, I’ll be putting

together a written plan that presents different

strategies for documenting the Alcuin product.

After I submit this plan, and you have had time to

review it, let’s arrange a meeting at your company

to discuss these strategies.

Thanks again for giving us the opportunity to bid

on this documentation project. I hope we can

decide upon a strategy and get started as soon as

possible in order to have the manual ready in time

for the first customer shipment. I look forward to

meeting with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 6.1 A Raw mm-formatted File
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Page Layout

When you format a page with mm, the formatter is instructed to provide several lines at the top and the bot-

tom of the page for a header and a footer. By default, a page number appears on a single line in the header

and only blank lines are printed for the footer.

There are basically two different ways to change the default header and footer. The first way is to

specify a command-line parameter with the mm or mmt commands to set the number register N. This allows

you to affect how pages are numbered and where the page number appears. The second way is to specify in

the input file a macro that places text in the header or footer. Let’s look at both of these techniques.

Setting Page Numbering Style

When you format a document, pages are numbered in sequence up to the end of the document. This page

number is usually printed in the header, set off by dashes.

-1-

Another style of page numbering, used in documents such as technical manuals, numbers pages specific to

a section. The first page of the second section would be printed as:

2-1

The other type of change affects whether or not the page number is printed in the header at the top of the

first page.

The number register N controls these actions. This register has a default setting of 0 and can take val-

ues from 0 through 5. Table 6-1 shows the effect of these values.

Table 6.1 Page Number Styles, Register N

Value Action

0 The page number prints in the header on all pages. This is the default

page numbering style.

1 On page 1, the page number is printed in place of the footer.

2 On page 1, the page number is not printed.

3 All pages are numbered by section, and the page number appears in the

footer. This setting affects the defaults of several section-related regis-

ters and macros. It causes a page break for a top-level heading (Ej=1),

and invokes both the .FD and .RP macros to reset footnote and refer-

ence numbering.

4 The default header containing the page number is suppressed, but it has

no effect on a header supplied by a page header macro.

5 All pages are numbered by section, and the page number appears in the

footer. In addition, labeled displays (.FC, .TB, .EX, and .EC) are

also numbered by section.

The register N can be set from the command line using the -r option. If we set it to 2, no page num-

ber will appear at the top of page 1 when we print the sample letter:

$ mm -rN2 letter | lp
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Header and Footer Macros

The mm package has a pair of macros for defining what should appear in a page header (.PH) and a page

footer (.PF). There is also a set of related macros for specifying page headers and footers for odd-num-

bered pages (.OH and .OF) or for even numbered pages (.EH and .EF). All of these macros have the

same form, allowing you to place text in three places in the header or footer: left justified, centered, and

right justified. This is specified as a single argument in double quotation marks, consisting of three parts

delimited by single quotation marks.

’left’center’right’

For example, we could place the name of a client, the title of the document, and the date in the page header,

and we could place the page number in the footer:

.PH "’GGS’Alcuin Project Proposal’\*(DT’"

.PF "’’Page % ’’"

You may notice that we use the string DT to supply today’s date in the header. The following header

appears at the top of the page.

GGS Alcuin Project Proposal April 26, 1987

In the footer, we use a special symbol (%) to access the current page number. Only text to be centered was

specified; however, the four delimiters were still required to place the text correctly. This footer appears at

the bottom of the page:

.

.

.

Page 2

The header and footer macros override the default header and footer.

Setting Other Page Control Registers

The mm package uses number registers to supply the values that control line length, page offset, point size,

and page length, as shown in Table 6-2.

These registers must be defined before the mm macro package is read by nroff or troff. Thus,

they can be set from the command line using the -r option, as we showed when we gav e a new value for

register N. Values of registers O and W for nroff must be given in character positions (depending on the

character size of the output device for nroff, .5i might translate as either 5 or 6 character positions), but

troff can accept any of the units described in Chapter 4. For example:

$ mm -rN2 -rW65 -rO10 file

but:

$ mmt -rN2 -rW6.5i -rO1i file
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Table 6.2 Number Registers

Register Contains troff Default nroff Default

O Page offset (left margin) .75i .5i

N Page numbering style 0 0

P Page length 66v 66 lines

S Point size (troff only) 10 NA

W Line length or width 6i 60

Or the page control registers can be set at the top of your file, using the .so request to read in the mm

macro package, as follows:

.nr N 2

.nr W 65

.nr O 10

.so /usr/lib/tmac/tmac.m

If you do it this way, you cannot use the mm command. Use nroff or troff without the -mm option.

Specifying -mm would cause the mm macro package to be read twice; mm would trap that error and bail out.

Paragraphs

The .P macro marks the beginning of a paragraph.

.P

In our conversation last Thursday, we discussed a

This macro produces a left-justified, block paragraph. A blank line in the input file also results in a left-jus-

tified, block paragraph, as you saw when we formatted an uncoded file.

However, the paragraph macro controls a number of actions in the formatter, many of which can be

changed by overriding the default values of several number registers. The .P macro takes a numeric argu-

ment that overrides the default paragraph type, which is a block paragraph. Specifying 1 results in an

indented paragraph:

.P 1

Going through a demo session gave me a much better

The first three paragraphs formatted for the screen follow:
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In our conversation last Thursday, we discussed a

documentation project that would produce a user’s manual

on the Alcuin product. Yesterday, I received the product

demo and other materials that you sent me.

Going through a demo session gave me a much better

understanding of the product. I confess to being amazed

by Alcuin. Some people around here, looking over my

shoulder, were also astounded by the illustrated

manuscript I produced with Alcuin. One person, a student

of calligraphy, was really impressed.

In the next couple of days, I’ll be putting together a

written plan that presents different strategies for

documenting the Alcuin product. After I submit this plan,

and you have had time to review it, let’s arrange a

meeting at your company to discuss these strategies.

The first line of the second paragraph is indented five spaces. (In troff the default indent is three ens).

Notice that the paragraph type specification changes only the second paragraph. The third paragraph,

which is preceded in the input file by .P without an argument, is a block paragraph.

If you want to create a document in which all the paragraphs are indented, you can change the num-

ber register that specifies the default paragraph type. The value of Pt is 0 by default, producing block para-

graphs. For indented paragraphs, set the value of Pt to 1. Now the .P macro will produce indented para-

graphs.

.nr Pt 1

If you want to obtain a block paragraph after you have changed the default type, specify an argument

of 0:

.P 0

When you specify a type argument, it overrides whatever paragraph type is in effect.

There is a third paragraph type that produces an indented paragraph with some exceptions. If Pt is

set to 2, paragraphs are indented except those following section headings, lists, and displays. It is the para-

graph type used in this book.

The following list summarizes the three default paragraph types.

0 Block

1 Indented

2 Indented with exceptions

Vertical Spacing

The paragraph macro also controls the spacing between paragraphs. The amount of space is specified in

the number register Ps. This amount differs between nroff and troff.

With nroff, the .P macro has the same effect as a blank line, producing a full space between para-

graphs. However, with troff, the .P macro outputs a blank space that is equal to one-half of the current

vertical spacing setting. Basically, this means that a blank line will cause one full space to be output, and

the .P macro will output half that space.

The .P macro invokes the .SP macro for vertical spacing. This macro takes a numeric argument

requesting that many lines of space.
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Sincerely,

.SP 3

Fred Caslon

Three lines of space will be provided between the salutation and the signature lines.

You do not achieve the same effect if you enter .SP macros on three consecutive lines. The vertical

space does not accumulate and one line of space is output, not three.

Tw o or more consecutive .SP macros with numeric arguments results in the spacing specified by the

greatest argument. The other arguments are ignored.

.SP 5

.SP

.SP 2

In this example, five lines are output, not eight.

Because the .P macro calls the .SP macro, it means that two or more consecutive paragraph macros

will have the same effect as one.

The .SP Macro versus the .sp Request

There are several differences between the .SP macro and the .sp request. A series of .sp requests does

cause vertical spacing to accumulate. The following three requests produce eight blank lines:

.sp 5

.sp

.sp 2

The argument specified with the .SP macro cannot be scaled nor can it be a negative number. The

.SP macro automatically works in the scale (v) of the current vertical spacing. However, both .SP and

.sp accept fractions, so that each of the following codes has the same result:

.sp .3v .SP .3 .sp .3

Justification

A document formatted by nroff with mm produces, by default, unjustified text (an uneven or ragged-right

margin). When formatted by troff, the same document is automatically justified (the right margin is

ev en).

If you are using both nroff and troff, it is probably a good idea to explicitly set justification on

or off rather than depend upon the default chosen by the formatter. Use the .SA macro (set adjustment) to

set document-wide justification. An argument of 0 specifies no justification; 1 specifies justification.

If you insert this macro at the top of your file:

.SA 1

both nroff and troff will produce right-justified paragraphs like the following:

In our conversation last Thursday, we discussed

a documentation project that would produce a user’s

manual on the Alcuin product. Yesterday, I received the

product demo and other materials that you sent me.
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Word Hyphenation

One way to achieve better line breaks and more evenly filled lines is to instruct the formatter to perform

word hyphenation.

Hyphenation is turned off in the mm macro package. This means that the formatter does not try to

hyphenate words to make them fit on a line unless you request it by setting the number register Hy to 1. If

you want the formatter to automatically hyphenate words, insert the following line at the top of your file:

.nr Hy 1

Most of the time, the formatter breaks up a word correctly when hyphenating. Sometimes, however, it does

not and you have to explicitly tell the formatter either how to split a word (using the .hy request) or not to

hyphenate at all (using the .nh request).

Displays

When we format a text file, the line breaks caused by carriage returns are ignored by nroff/troff. How

text is entered on lines in the input file does not affect how lines are formed in the output. It doesn’t really

matter whether information is typed on three lines or four; it appears the same after formatting.

You probably noticed that the name and address at the beginning of our sample file did not come out

in block form. The four lines of input ran together and produced two filled lines of output:

Mr. John Fust Vice President, Research and Development

Gutenberg Galaxy Software Waltham, Massachusetts 02159

The formatter, instead of paying attention to carriage returns, acts on specific macros or requests that cause

a break, such as .P, .SP, or a blank line. The formatter request .br is probably the simplest way to break

a line:

Mr. John Fust

.br

Vice President, Research and Development

The .br request is most appropriate when you are forcing a break of a single line. For larger blocks of

text, the mm macro package provides a pair of macros for indicating that a block of text should be output

just as it was entered in the input file. The .DS (display start) macro is placed at the start of the text, and

the .DE (display end) macro is placed at the end:

.DS

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

.DE

The formatter does not fill these lines, so the address block is output on four lines, just as it was typed. In

addition, the .DE macro provides a line of space following the display.

Our Coding Efforts, So Far

We hav e pretty much exhausted what we can do using the sample letter. Before going on to larger docu-

ments, you may want to compare the coded file in Figure 6-2 with the nroff-formatted output in Figure

6-3. Look them over and make sure you understand what the different macros are accomplishing.

We hav e worked through some of the problems presented by a very simple one-page letter. As we

move on, we will be describing specialized macros that address the problems of multiple page documents,



116 Unix Text Processing

.nr Pt 1

.SA 1

April 1, 1987

.SP 2

.DS

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

.DE

Dear Mr. Fust:

.P

In our conversation last Thursday, we discussed a

documentation project that would produce a user’s manual

on the Alcuin product. Yesterday, I received the product

demo and other materials that you sent me.

.P

Going through a demo session gave me a much better

understanding of the product. I confess to being amazed

by Alcuin. Some people around here, looking over my

shoulder, were also astounded by the illustrated

manuscript I produced with Alcuin. One person, a student

of calligraphy, was really impressed.

.P

In the next couple of days, I’ll be putting together a

written plan that presents different strategies for

documenting the Alcuin product. After I submit this plan,

and you have had time to review it, let’s arrange a

meeting at your company to discuss these strategies.

.P

Thanks again for giving us the opportunity to bid on this

documentation project. I hope we can decide upon a

strategy and get started as soon as possible in order to

have the manual ready in time for the first customer

shipment. I look forward to meeting with you towards the

end of next week.

.SP

Sincerely,

.SP 2

Fred Caslon

Figure 6.2 Coded File

such as proposals and reports. In many ways, the macros for more complex documents are the feature per-

formers in a macro package, the ones that really convince you that a markup language is worth learning.

Changing Font and Point Size

When you format with nroff and print on a line printer, you can put emphasis on individual words or

phrases by underlining or overstriking. When you are using troff and send your output to a laser printer

or typesetter, you can specify variations of type, font, and point size based on the capabilities of the output

device.
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- 1 -

April 1, 1987

Mr. John Fust

Vice President, Research and Development

Gutenberg Galaxy Software

Waltham, Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we

discussed a documentation project that would

produce a user’s manual on the Alcuin product.

Yesterday, I received the product demo and other

materials that you sent me.

Going through a demo session gave me a much

better understanding of the product. I confess to

being amazed by Alcuin. Some people around here,

looking over my shoulder, were also astounded by

the illustrated manuscript I produced with Alcuin.

One person, a student of calligraphy, was really

impressed.

In the next couple of days, I’ll be putting

together a written plan that presents different

strategies for documenting the Alcuin product.

After I submit this plan, and you have had time to

review it, let’s arrange a meeting at your company

to discuss these strategies.

Thanks again for giving us the opportunity to

bid on this documentation project. I hope we can

decide upon a strategy and get started as soon as

possible in order to have the manual ready in time

for the first customer shipment. I look forward to

meeting with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 6.3 Formatted Output

Roman, Italic, and Bold Fonts

Most typefaces have at least three fonts available: roman, bold, and italic. Normal body copy is printed in

the roman font. You can change temporarily to a bold or italic font for emphasis. In Chapter 4, you learned

how to specify font changes using the .ft request and inline \f requests. The mm package provides a set

of mnemonic macros for changing fonts:

.B Bold

.I Italic

.R Roman
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Each macro prints a single argument in a particular font. You might code a single sentence as follows:

.B Alcuin

revitalizes an

.I age-old

tradition.

The printed sentence has a word in bold and one in italic. (In nroff, bold space is simulated by overstrik-

ing, and italics by underlining).

Alcuin revitalizes an age-old tradition.

If no argument is specified, the selected font is current until it is explicitly changed:

The art of

.B

calligraphy

.R

is, quite simply,

.I

beautiful

.R

handwriting;

The previous example produces:

The art of calligraphy is, quite simply, beautiful handwriting;

You’ve already seen that the first argument is changed to the selected font. If you supply a second

argument, it is printed in the previous font. Each macro takes up to six arguments for alternating font

changes. (An argument is set off by a space; a phrase must be enclosed within quotation marks to be taken

as a single argument). A good use for the alternate argument is to supply punctuation, especially because of

the restriction that you cannot begin an input line with a period.

its opposite is

.B cacography .

This example produces:

its opposite is cacography.

If you specify alternate arguments consisting of words or phrases, you must supply the spacing:

The ink pen has been replaced by a

.I light " pen."

This produces:
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The ink pen has been replaced by a light pen.

Here’s an example using all six arguments:

Alcuin uses three input devices, a

.B "light pen" ", a " "mouse" ", and a " "graphics tablet."

This produces:

Alcuin uses three input devices, a light pen, a mouse, and a graphics tablet.

There are additional macros for selecting other main and alternate fonts. These macros also take up to six

arguments, displayed in alternate fonts:

.BR Alternate bold and roman

.IB Alternate italic and bold

.RI Alternate roman and italic

.BI Alternate bold and italic

.IR Alternate italic and roman

.RB Alternate roman and bold

If you are using nroff, specifying a bold font results in character overstrike; specifying an italic font

results in an underline for each character (not a continuous rule). Overstriking and underlining can cause

problems on some printers and terminals.

Changing Point Size

When formatting with troff, you can request a larger or smaller point size for the type. A change in the

point size affects how much vertical space is needed for the larger or smaller characters. Normal body copy

is set in 10-point type with the vertical spacing 2 points larger.

You learned about the .ps (point size) and .vs (vertical spacing) requests in Chapter 4. These will

work in mm; howev er, mm also has a single macro for changing both the point size and vertical space:

.S [point size] [vertical spacing]

The values for point size and vertical spacing can be set in relation to the current setting: + increments and

- decrements the current value. For example, you could specify relative point size changes:

.S +2 +2

or absolute ones:

.S 12 14

By default, if you don’t specify vertical spacing, a relation of 2 points greater than the point size will be

maintained. A null value ("") does not change the current setting.

The new point size and vertical spacing remain in effect until you change them. Simply entering the

.S macro without arguments restores the previous settings:

.S
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The mm package keeps track of the default, previous, and current values, making it easy to switch between

different settings using one of these three arguments:

D Default

P Previous

C Current

To restore the default values, enter:

.S D

The point size returns to 10 points and the vertical spacing is automatically reset to 12 points. To increase

the vertical space to 16 points while keeping the point size the same, enter:

.S C 16

In the following example for a letterhead, the company name is specified in 18-point type and a tag line in

12-point type; then the default settings are restored:

.S 18

Caslon Inc.

.S 12

Communicating Expertise

.S D

The result is:

Caslon Inc.
Communicating Expertise

You can also change the font along with the point size, using the .I macro described previously. Following

is the tag line in 12-point italic.

Communicating Expertise

A special-purpose macro in mm reduces by 1 point the point size of a specified string. The .SM macro can

be followed by one, two, or three strings. Only one argument is reduced; which one depends upon how

many arguments are given. If you specify one or two arguments, the first argument will be reduced by 1

point:

using

.SM UNIX ,

you will find

The second argument is concatenated to the first argument, so that the comma immediately follows the

word UNIX:

using UNIX, you will find
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If you specify three arguments:

.SM [ UNIX ]

The second argument is reduced by one point, but the first and third arguments are printed in the current

point size, and all three are concatenated:

[UNIX]

More about Displays

Broadly speaking, a display is any kind of information in the body of a document that cannot be set as a

normal paragraph. Displays can be figures, quotations, examples, tables, lists, equations, or diagrams.

The display macros position the display on the page. Inside the display, you might use other macros

or preprocessors such as tbl or eqn. You might simply have a block of text that deserves special treat-

ment.

The display macros can be relied upon to provide

• adequate spacing before and after the display;

• horizontal positioning of the display as a left justified, indented, or centered block;

• proper page breaks by keeping the entire display together.

The default action of the .DS macro is to left justify the text block in no-fill mode. It provides no indenta-

tion from the current margins.

You can specify a different format for a display by specifying up to three arguments with the .DS

macro. The syntax is:

.DS [format] [fill mode] [right indent]

The format argument allows you to specify an indented or centered display. The argument can be set by a

numeric value or a letter corresponding to the following options:

0 L No indent (default)

1 I Indented

2 C Center each line

3 CB Center entire display

For consistency, the indent of displays is initially set to be the same as indented paragraphs (five spaces in

nroff and three ens in troff), although these values are maintained independently in two different num-

ber registers, Pi and Si. (To change the defaults, simply use the .nr request to put the desired value in

the appropriate register).

A display can be centered in two ways: either each individual line in the display is centered (C) or the

entire display is centered as a block based on the longest line of the display (CB).

For instance, the preceding list was formatted using tbl, but its placement was controlled by the dis-

play macro.

.DS CB

.TS

table specifications
.TE

.DE
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The fill mode argument is represented by either a number or a letter.

0 N No-fill mode (default)

1 P Fill mode

The right indent argument is a numeric value that is subtracted from the right margin. In nroff,

this value is automatically scaled in ens. In troff, you can specify a scaled number; otherwise, the

default is ems.

The use of fill mode, along with other indented display options, can provide a paragraph indented on

both sides. This is often used in reports and proposals that quote at length from another source. For exam-

ple:

.P

I was particularly interested in the following comment

found in the product specification:

.DS I F 5

Users first need a brief introduction to what the product

does. Sometimes this is more for the benefit of people

who haven’t yet bought the product, and

are just looking at the manual.

However, it also serves to put the rest of

the manual, and the product itself, in the proper context.

.DE

The result of formatting is:

I was particularly interested in the following comment

found in the product specification:

Users first need a brief introduction to

what the product does. Sometimes this is

more for the benefit of people who haven’t

yet bought the product, and are just looking

at the manual. However, it also serves to

put the rest of the manual, and the product

itself, in the proper context.

The use of tabs often presents a problem outside of displays. Material that has been entered with tabs

in the input file should be formatted in no-fill mode, the default setting of the display macros. The follow-

ing table was designed using tabs to provide the spacing:

.DF I

Dates Description of Task

June 30 Submit audience analysis

July 2 Meeting to review audience analysis

July 15 Submit detailed outline

August 1 Submit first draft

August 5 Return of first draft

August 8 Meeting to review comments

.DE

This table appears in the output just as it looks in the file. If this material had not been processed inside a

display in no-fill mode, the columns would be improperly aligned.
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Static and Floating Displays

There are two types of displays, static and floating. The difference between them has to do with what hap-

pens when a display cannot fit in its entirety on the current page. Both the static and the floating display

output the block at the top of the next page if it doesn’t fit on the current page; however, only the floating

display allows text that follows the display to be used to fill up the preceding page. A static display main-

tains the order in which a display was placed in the input file.

We hav e already used .DS and .DE to mark the beginning and end of a static display. To specify a

floating display, the closing mark is the same, but the beginning is marked by the .DF macro. The options

are the same as for the .DS macro.

In the following example of an input file, numbers are used instead of actual lines of text:

1

2

3

4

5

.DF

Long Display
.DE

6

7

8

9

10

The following two formatted pages might be produced, assuming that there are a sufficient number of lines

in the display to cause a page break:

- 1 -

1

2

3

4

5

6

7

- 2 -

Long Display

8

9

10

If there had been room on page 1 to fit the display, it would have been placed there, and lines 6 and 7 would

have followed the display, as they did in the input file.

If a static display had been specified, the display would be placed in the same position on page 2, and

lines 6 and 7 would have to follow it, leaving extra space at the bottom of page 1. A floating display

attempts to make the best use of the available space on a page.

The formatter maintains a queue to hold floating displays that it has not yet output. When the top of

a page is encountered, the next display in the queue is output. The queue is emptied in the order in which it

was filled, (first in, first out). Tw o number registers, De and Df, allow you to control when displays are

removed from the queue and placed in position.

At the end of a section, as indicated by the section macros .H and .HU (which we will see shortly),

or at the end of the input file, any floating displays that remain in the queue will be placed in the document.
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Display Labels

You can provide a title or caption for tables, equations, exhibits, and figures. In addition, the display can be

labeled and numbered in sequence, as well as printed in a table of contents at the end of the file. The fol-

lowing group of macros are available:

.EC Equation

.EX Exhibit

.FG Figure

All of these macros work the same way and are usually specified within a pair of .DS/.DE macros,

so that the title and the display appear on the same page. Each macro can be followed by a title. If the title

contains spaces, it should be enclosed within quotation marks. The title of a table usually appears at the top

of a table, so it must be specified before the .TS macro that signals to tbl the presence of a table (see

Chapter 8).

.TB "List of Required Resources"

.TS

The label is centered:

Table 1. List of Required Resources

If the title exceeds the line length, then it will be broken onto several lines. Additional lines are

indented and begin at the first character of the title.

Table 1. List of Required Resources
Provided by Gutenberg Galaxy
Software

The label for equations, exhibits, and figures usually follows the display. The following:

.FG "Drawing with a Light Pen"

produces a centered line:

Figure 1. Drawing with a Light Pen

The default format of the label can be changed slightly by setting the number register Of to 1. This

replaces the period with a dash.
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Figure 1 — Drawing with a Light Pen

Second and third arguments, specified with the label macros, can be used to modify or override the

default numbering of displays. Basically, the second argument is a literal and the third argument a numeric

value that specifies what the literal means.

If the third argument is

0 then the second argument will be treated as a prefix;

1 then the second argument will be treated as a suffix;

2 then the second argument replaces the normal table number.

Thus, a pair of related tables could be specified as 1a and 1b using the following labels:

.TB "Estimated Hours: June, July, and August" a 1

.TB "Estimated Hours: September and November," 1b 2

(These labels show two different uses of the third argument. Usually, you would consistently use one tech-

nique or the other for a given set of tables).

For tbl, the delimiters for tables are .TS/.TE. For eqn, the delimiters for equations are .EQ/.EN.

For pic, the delimiters for pictures or diagrams are .PS/.PE. These pairs of delimiters indicate a block to

be processed by a specific preprocessor. You will find the information about each of the preprocessors in

Chapters 8 through 10. As mentioned, the preprocessor creates the display, the display macros position it,

and the label macros add titles and a number.

Although it may seem a minor point, each of these steps is independent, and because they are not

fully integrated, there is some overlap.

The label macros, being independent of the preprocessors, do not make sure that a display exists or

check whether a table has been created with tbl. You can create a two-column table using tabs or create a

figure using character symbols and still give it a label. Or you can create a table heading as the first line of

your table and let tbl process it (tbl won’t provide a number and the table won’t be collected for the ta-

ble of contents).

In tbl, you can specify a centered table and not use the .DS/.DE macros. But, as a consequence,

nroff/troff won’t make a very good attempt at keeping the table together on one page, and you may

have to manually break the page. It is recommended that you use the display macros throughout a docu-

ment, regardless of whether you can get the same effect another way, because if nothing else you will

achieve consistency.

Forcing a Page Break

Occasionally, you may want to force a page break, whether to ensure that a block of related material is kept

together or to allow sev eral pages for material that will be manually pasted in, such as a figure. The .SK

(skip) macro forces a page break. The text following this macro is output at the top of the next page. If

supplied with an argument greater than 0, it causes that number of pages to be skipped before resuming the

output of text. The “blank” pages are printed, and they hav e the normal header and footer.

On the next page, you will find a sample page from an

Alcuin manuscript printed with a 16-color plotter.

.SK 1
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Formatting Lists

The mm macro package provides a variety of different formats for presenting a list of items. You can select

from four standard list types:

• bulleted

• dashed

• numbered

• alphabetized

In addition, you have the flexibility to create lists with nonstandard marks or text labels. The list macros

can also be used to produce paragraphs with a hanging indent.

Each list item consists of a special mark, letter, number, or label in a left-hand column with a para-

graph of text indented in a right-hand column.

Structuring a List

The list macros help to simplify what could be a much larger and tedious formatting task. Here’s the cod-

ing for the bulleted list just shown:

.BL

.LI

bulleted

.LI

dashed

.LI

numbered

.LI

alphabetized

.LE

The structure of text in the input file has three parts: a list-initialization macro (.BL), an item-mark macro

(.LI), and a list-end macro (.LE).

First, you initialize the list, specifying the particular macro for the type of list that you want. For

instance, BL initializes a bulleted list.

You can specify arguments with the list-initialization macro that change the indentation of the text

and turn off the automatic spacing between items in the list. We will examine these arguments when we

look at the list-initialization macros in more detail later.

Next, you specify each of the items in the list. The item-mark macro, .LI, is placed before each

item. You can enter one or more lines of text following the macro.

.BL

.LI

Item 1

.LI

Item 2

.LI

Item 3

When the list is formatted, the .LI macro provides a line of space before each item. (This line can be

omitted through an argument to the list-initialization macro if you want to produce a more compact list.

We’ll be talking more about this in a moment).

The .LI macro can also be used to override or prefix the current mark. If a mark is supplied as the

only argument, it replaces the current mark. For example:

.LI o

Item 4
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If a mark is supplied as the first argument, followed by a second argument of 1, then the specified mark is

prefixed to the current mark. The following:

.LI - 1

Item 5

would produce:

-• Item 5

A text label can also be supplied in place of the mark, but it presents some additional problems for

the proper alignment of the list. We will look at text labels for variable-item lists.

The .LI macro does not automatically provide spacing after each list item. An argument of 1 can be

specified if a line of space is desired.

The end of the list is marked by the list-end macro .LE. It restores page formatting settings that

were in effect prior to the invocation of the last list-initialization macro. The .LE macro does not output

any space following the list unless you specify an argument of 1. (Don’t specify this argument when the

list is immediately followed by a macro that outputs space, such as the paragraph macro).

Be sure you are familiar with the basic structure of a list. A common problem is not closing the list

with .LE. Most of the time, this error causes the formatter to quit at this point in the file. A less serious,

but nonetheless frequent, oversight is omitting the first .LI between the list-initialization macro and the

first item in the list. The list is output but the first item will be askew.

Here is a sample list:

.BL

.LI

Item 1

.LI

Item 2

.LI

Item 3

.LI o

Item 4

.LI - 1

Item 5

.LE

The troff output produced by the sample list is:

• Item 1
• Item 2
• Item 3
o Item 4
-• Item 5

Complete list structures can be nested within other lists up to six levels. Different types of lists can

be nested, making it possible to produce indented outline structures. But, like nested if-then structures in a

program, make sure you know which level you are at and remember to close each list.



128 Unix Text Processing

For instance, we could nest the bulleted list inside a numbered list. The list-initialization macro .AL

generates alphabetized and numbered lists.

.AL

.LI

Don’t worry, we’ll get to the list-initialization macro .AL.

You can specify five different variations of

alphabetic and numbered lists.

.BL

.LI

Item 1

.LI

Item 2

.LI

Item 3

.LE

.LI

We’ll also look at variable-item lists.

.LE

This input produces the following formatted list from troff:

1. Don’t worry, we’ll get to the list-initialization macro .AL.
You can specify five different variations of alphabetic and
numbered lists.

• Item 1

• Item 2

• Item 3

2. We’ll also look at variable-item lists.

You may already realize the ease with which you can make changes to a list. The items in a list can

be easily put in a new order. New items can be added to a numbered list without readjusting the numbering

scheme. A bulleted list can be changed to an alphabetized list by simply changing the list-initialization

macro. And you normally don’t hav e to be concerned with a variety of specific formatting requests, such as

setting indentation levels or specifying spacing between items.

On the other hand, because the structure of the list is not as easy to recognize in the input file as it is

in the formatted output, you may find it difficult to interpret complicated lists, in particular ones that have

been nested to several levels. The code checking program, checkmm, can help; in addition, you may want

to format and print repeatedly to examine and correct problems with lists.

Marked Lists

Long a standby of technical documents, a marked list clearly organizes a group of related items and sets

them apart for easy reading. A list of items marked by a bullet (•) is perhaps the most common type of list.

Another type of marked list uses a dash (—). A third type of list allows the user to specify a mark, such as

a square ( ). The list-initialization macros for these lists are:

.BL [text indent] [1]

.DL [text indent] [1]

.ML [mark] [text indent] [1]
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With the .BL macro, the text is indented the same amount as the first line of an indented paragraph. A sin-

gle space is maintained between the bullet and the text. The bullet is right justified, causing an indent of

several spaces from the left margin.

As you can see from this nroff-formatted output, the bullet is simulated in nroff by a + overstrik-

ing an o:

Currently, the following internal documentatation is

available on the Alcuin product:

o+ GGS Technical Memo 3200

o+ GGS Product Marketing Spec

o+ Alcuin/UNIX interface definition

o+ Programmer’s documentation for Alcuin

If you specify a text indent, the first character of the text will start at that position. The position of the bul-

let is relative to the text, always one space to its left.

If the last argument is 1, the blank line of space separating items is omitted. If you want to specify

only this argument, you must specify either a value or a null value ("") for a text indent.

.BL "" 1

It produces a much more compact list:

o+ GGS Technical Memo 3200

o+ GGS Product Marketing Spec

o+ Alcuin/UNIX interface definition

o+ Programmer’s documentation for Alcuin

Because the bullets produced by nroff are not always appropriate due to the overstriking, a dashed

list provides a suitable alternative. With the .DL macro, the dash is placed in the same position as a bullet

in a bulleted list. A single space is maintained between the dash and the text, which, like the text with a

bulleted list, is indented by the amount specified in the number register for indented paragraphs (Pi).

The nroff formatter supplies a dash that is a single hyphen, and troff supplies an em dash.

Because the em dash is longer, and the dash is right justified, the alignment with the left margin is notice-

ably different. It appears left justified in troff; in nroff, the dash appears indented several spaces

because it is smaller.
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The third chapter on the principles of computerized

font design should cover the following topics:

- Building a Font Dictionary

- Loading a Font

- Scaling a Font

You can specify a text indent and a second argument of 1 to inhibit spacing between items.

With the .ML macro, you have to supply the mark for the list. Some possible candidates are the

square (enter \(sq to get ), the square root (enter \(sr to get √), which resembles a check mark, and the

gradient symbol (enter \(gr to get ∇). The user-specified mark is the first argument.

.ML \(sq

Not all of the characters or symbols that you can use in troff will have the same effect in nroff.

Unlike bulleted and dashed lists, text is not automatically indented after a user specified mark. How-

ev er, a space is added after the mark. The following example of an indented paragraph and a list, which

specifies a square as a mark, has been formatted using nroff. The square appears as a pair of brackets.

[] Remove old initialization files.

[] Run install program.

[] Exit to main menu and choose selection 3.

The user-supplied mark can be followed by a second argument that specifies a text indent and a third argu-

ment of 1 to omit spacing between items.

The following example was produced using the list-initialization command:

.ML \(sq 5 1

The specified indent of 5 aligns the text with an indented paragraph:

Check to see that you have completed the following

steps:

[] Remove old initialization files.

[] Run install program.

[] Exit to main menu and choose selection 3.
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Numbered and Alphabetic Lists

The .AL macro is used to initialize automatically numbered or alphabetized lists. The syntax for this

macro is:

.AL [type] [text indent] [1]

If no arguments are specified, the .AL macro produces a numbered list. For instance, we can code the fol-

lowing paragraph with the list-initialization macro .AL:

User-oriented documentation recognizes three things:

.AL

.LI

that a new user needs to learn the system in stages,

getting a sense of the system as a whole while becoming

proficient in performing particular tasks;

.LI

that there are different levels of users, and not every

user needs to learn all the capabilities of the system

in order to be productive;

.LI

that an experienced user must be able to rely on the

documentation for accurate and thorough reference

information.

.LE

to produce a numbered list:

User-oriented documentation recognizes three things:

1. that a new user needs to learn the system in stages,

getting a sense of the system as a whole while

becoming proficient in performing particular tasks;

2. that there are different levels of users, and not

every user needs to learn all the capabilities of

the system in order to be productive;

3. that an experienced user must be able to rely on the

documentation for accurate and thorough reference

information.

The number is followed by a period, and two spaces are maintained between the period and the first charac-

ter of text.

The level of text indent, specified in the number register Li, is 6 in nroff and 5 in troff. This

value is added to the current indent. If a text indent is specified, that value is added to the current indent,

but it does not change the value of Li.

The third argument inhibits spacing between items in the list. Additionally, the number register Ls

can be set to a value from 0 to 6 indicating a nesting level. Lists after this level will not have spacing

between items. The default is 6, the maximum nesting depth. If Ls were set to 2, lists only up to the sec-

ond level would have a blank line of space between items.

Other types of lists can be specified with .AL, using the first argument to specify the list type, as fol-

lows:

Value Sequence Description
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1 1, 2, 3 Numbered

A A, B, C Alphabetic (uppercase)

a a, b, c Alphabetic (lowercase)

I I, II, III Roman numerals (uppercase)

i i, ii, iii Roman numerals (lowercase)

You can produce various list types by simply changing the type argument. You can create a very useful out-

line format by nesting different types of lists. The example we show of such an outline is one that is nested

to four levels using I, A, 1, and a, in that order. The rather complicated looking input file is shown in Fig-

ure 6-4 (indented for easier viewing of each list, although it could not be formatted this way), and the

nroff-formatted output is shown in Figure 6-5.

Another list-initialization macro that produces a numbered list is .RL (reference list). The only dif-

ference is that the reference number is surrounded by brackets ([]).

.RL [text indent] [1]

The arguments have the same effect as those specified with the .AL macro. To initialize a reference list

with no spacing between items, use:

.RL "" 1

It produces the following reference list:

[1] The Main Menu

[2] Menus or Commands?

[3] Error Handling

[4] Getting Help

[5] Escaping to UNIX
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.AL I

.LI

Quick Tour of Alcuin

.AL A

.LI

Introduction to Calligraphy

.LI

Digest of Alcuin Commands

.AL 1

.LI

Three Methods of Command Entry

.AL a

.LI

Mouse

.LI

Keyboard

.LI

Light Pen

.LE

.LI

Starting a Page

.LI

Drawing Characters

.AL a

.LI

Choosing a Font

.LI

Switching Fonts

.LE

.LI

Creating Figures

.LI

Printing

.LE

.LI

Sample Illuminated Manuscripts

.LE

.LI

Using Graphic Characters

.AL A

.LI

Modifying Font Style

.LI

Drawing Your Own Font

.LE

.LI

Library of Hand-Lettered Fonts

.LE

Figure 6.4 Input for a Complex List
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- 1 -

I. Quick Tour of Alcuin

A. Introduction to Calligraphy

B. Digest of Alcuin Commands

1. Three Methods of Command Entry

a. Mouse

b. Keyboard

c. Light Pen

2. Starting a Page

3. Drawing Characters

a. Choosing a Font

b. Switching Fonts

4. Creating Figures

5. Printing

C. Sample Illuminated Manuscripts

II. Using Graphic Characters

A. Modifying Font Style

B. Drawing Your Own Font

III. Library of Hand-Lettered Fonts

Figure 6.5 Output of a Complex List

Variable-Item Lists

With a variable-item list, you do not supply a mark; instead, you specify a text label with each .LI. One or

more lines of text following .LI are used to form a block paragraph indented from the label. If no label is

specified, a paragraph with a hanging indent is produced. The syntax is:

.VL text indent [label indent] [1]

Unlike the other list-initialization macros, a text indent is required. By default, the label is left justified,

unless a label indent is given. If you specify both a text indent and a label indent, the indent for the text

will be added to the label indent.

Variable-item lists are useful in preparing command reference pages, which describe various syntax

items, and glossaries, which present a term in one column and its definition in the other. The text label

should be a single word or phrase. The following example shows a portion of the input file for a reference
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page:

.VL 15 5

.LI figure

is the name of a cataloged figure. If

a figure has not been cataloged, you need to use

the LOCATE command.

.LI f:p

is the scale of the

figure in relation to the page.

.LI font

is the two-character abbreviation or

full name of one of the available fonts

from the Alcuin library.

.LE

The following variable-item list is produced:

figure is the name of a cataloged figure. If a

figure has not been cataloged, you need to

use the LOCATE command.

f:p is the scale of the figure in relation to

the page.

font is the two-character abbreviation or full

name of one of the available fonts from the

Alcuin library.

If you don’t provide a text label with .LI or give a null argument (""), you will get a paragraph with

a hanging indent. If you want to print an item without a label, specify a backslash followed by a space (\ )

or \0 after .LI. Similarly, if you want to specify a label that contains a space, you should also precede the

space with a backslash and enclose the label within quotation marks:

.LI "point\ size"

or simply substitute a \0 for a space:

.LI point\0size

The first line of text is left justified (or indented by the amount specified in label indent) and the remaining

lines will be indented by the amount specified by text indent. This produces a paragraph with a hanging

indent:

.VL 15

.LI

There are currently 16 font dictionaries in the Alcuin

library. Any application may have up to 12 dictionaries

resident in memory at the same time.

.LE

When formatted, this item has a hanging indent of 15:
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There are currently 16 font dictionaries in the Alcuin

library. Any application may have up to

12 dictionaries resident in memory at the

same time.

Headings

Earlier we used the list macros to produce an indented outline. That outline, indented to four levels, is a

visual representation of the structure of a document. Headings perform a related function, showing how the

document is organized into sections and subsections. In technical documentation and book-length

manuscripts, having a structure that is easily recognized by the reader is very important.

Numbered and Unnumbered Headings

Using mm, you can have up to sev en lev els of numbered and unnumbered headings, with variable styles.

There are two heading macros: .H for numbered headings and .HU for unnumbered headings. A different

style for each level of heading can be specified by setting various number registers and defining strings.

Let’s first look at how to produce numbered headings. The syntax for the .H macro is:

.H level [heading text] [heading suffix]

The simplest use of the .H macro is to specify the level as a number between 1 and 7 followed by the text

that is printed as a heading. If the heading text contains spaces, you should enclose it within quotation

marks. A heading that is longer than a single line will be wrapped on to the next line. A multiline heading

will be kept together in case of a page break.

If you specify a heading suffix, this text or mark will appear in the heading but will not be collected

for a table of contents.

A top-level heading is indicated by an argument of 1:

.H 1 "Quick Tour of Alcuin"

The result is a heading preceded by a heading-level number. The first-level heading has the number 1.

1. Quick Tour of Alcuin

A second-level heading is indicated by an argument of 2:

.H 2 "Introduction to Calligraphy"

The first second-level heading number is printed:

1.1 Introduction to Calligraphy

When another heading is specified at the same level, the heading-level number is automatically incre-

mented. If the next heading is at the second level:

.H 2 "Digest of Alcuin Commands"

it produces:

1.2 Digest of Alcuin Commands

Each time you go to a new (higher-numbered) level, .1 is appended to the number representing the existing

level. That number is incremented for each call at the same level. When you back out of a level (for

instance, from level 5 to 4), the counter for the level (in this case level 5), is reset to 0.
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An unnumbered heading is really a zero-level heading:

.H 0 "Introduction to Calligraphy"

A separate macro, .HU, has been developed for unnumbered headings, although its effect is the same.

.HU "Introduction to Calligraphy"

Even though an unnumbered heading does not display a number, it increments the counter for second-level

headings. Thus, in the following example, the heading “Introduction to Calligraphy” is unnumbered, but it

has the same effect on the numbering scheme as if it had been a second-level heading (1.1).

1. Quick Tour of Alcuin

Introduction to Calligraphy

1.2 Digest of Alcuin Commands

If you are going to intermix numbered and unnumbered headings, you can change the number regis-

ter Hu to the lowest-level heading that is in the document. By changing Hu from 2 to a higher number:

.nr Hu 5

.H 1 "Quick Tour of Alcuin"

.HU "Introduction to Calligraphy"

.H 2 "Digest of Alcuin Commands"

the numbering sequence is preserved for the numbered heading following an unnumbered heading:

1. Quick Tour of Alcuin

Introduction to Calligraphy

1.1 Digest of Alcuin Commands

Headings are meant to be visible keys to your document’s structure. If you are using unnumbered head-

ings, it becomes even more important to make headings stand out. A simple thing you can do is use upper-

case letters for a first-level heading.

Here is a list of some of the other things you can do to affect the appearance of headings, although

some of the items depend upon whether you are formatting with nroff or troff:

• change to roman, italic, or bold font

• change the point size of the heading

• adjust spacing after the heading

• center or left justify the heading

• change the numbering scheme

• select a different heading mark

The basic issue in designing a heading style is to help the reader distinguish between different levels of

headings. For instance, in an outline form, different levels of indent show whether a topic is a section or

subsection. Using numbered headings is an effective way to accomplish this. If you use unnumbered
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headings, you probably want to vary the heading style for each level, although, for practical purposes, you

should limit yourself to two or three levels.

First, let’s look at what happens if we use the default heading style.

The first two lev els of headings are set up to produce italicized text in troff and underlined text in

nroff. After the heading, there is a blank line before the first paragraph of text. In addition, a top-level

heading has two blank lines before the heading; all the other levels have a single line of space.

1.2 Introduction to Calligraphy

Alcuin revitalizes an age-old tradition. Calligraphy, quite simply, is the art of
beautiful handwriting.

Levels three through seven all have the same appearance. The text is italicized or underlined and no line

break occurs. Tw o blank lines are maintained before and after the text of the heading. For example:

1.2.1.3 Light Pen The copyist’s pen and ink has been replaced by a light pen.

To change the normal appearance of headings in a document, you specify new values for the two

strings:

HF Heading font

HP Heading point size

You can specify individual settings for each level, up to seven values.

The font for each level of heading can be set by the string HF. The following codes are used to select

a font:

1 Roman

2 Italic

3 Bold

By default, the arguments for all seven lev els are set to 2, resulting in italicized headings in troff and

underlining in nroff. Here the HF string specifies bold for the top three levels followed by two italic lev-

els:

.ds HF 3 3 3 2 2

If you do not specify a level, it defaults to 1. Thus, in the previous example, level 6 and 7 headings would

be printed in a roman font.

The point size is set by the string HP. Normally, headings are printed in the same size as the body

copy, except for bold headings. A bold heading is reduced by 1 point when it is a standalone heading, as

are the top-level headings. The HP string can take up to sev en arguments, setting the point size for each

level.

.ds HP 14 14 12

If an argument is not given, or a null value or 0 is given, the default setting of 10 points is used for that

level. Point size can also be given relative to the current point size:

.ds HP +4 +4 +2
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A group of number registers control other default formats of headings:

Ej Eject page

Hb Break follows heading

Hc Center headings

Hi Align text after heading

Hs Vertical spacing after heading

For each of these number registers, you specify the number of the level at which some action is to be turned

on or off.

The Ej register is set to the highest-level heading, usually 1, that should start on a new page. Its

default setting is 0. This ensures that the major sections of a document will begin on their own page.

.nr Ej 1

The Hb register determines if a line break occurs after the heading. The Hs register determines if a blank

line is output after the heading. Both are set to 2 by default. Settings of 2 mean that, for levels 1 and 2, the

section heading is printed, followed by a line break and a blank line separating the heading from the first

paragraph of text. For lower-level headings (an argument greater than 2), the first paragraph follows imme-

diately on the same line.

The Hc register is set to the highest-level heading that you want centered. Normally, this is not used

with numbered headings and its default value is 0. However, unnumbered heads are often centered. A set-

ting of 2 will center first- and second-level headings:

.nr Hc 2

With unnumbered headings, you also have to keep in mind that the value of Hc must be greater than or

equal to Hb and Hu. The heading must be on a line by itself; therefore a break must be set in Hb for that

level. The Hu register sets the level of an unnumbered heading to 2, requiring that Hc be at least 2 to have

an effect on unnumbered headings.

There really is no way, using these registers, to get the first and second levels left justified and have

the rest of the headings centered.

The number register Hi determines the paragraph type for a heading that causes a line break (Hb). It

can be set to one of three values:

0 Left justified

1 Paragraph type determined by Pt

2 Indented to align with first character in heading

If you want to improve the visibility of numbered headings, set Hi to 2:

.nr Hi 2

It produces the following results:

4.1 Generating Output

An Alcuin manuscript is a computer representation

that has to be converted for output on various kinds

of devices, including plotters and laser printers.
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Changing the Heading Mark

Remember how the list-initialization macro .AL allowed you to change the mark used for a list, producing

an alphabetic list instead of a numbered list? These same options are available for headings using the .HM

macro.

The .HM macro takes up to seven arguments specifying the mark for each level. The following codes

can be specified:

1 Arabic

001 Arabic with leading zeros

A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase roman

i Lowercase roman

If no mark is specified, the default numbering system (arabic) is used. Uppercase alphabetic marks can be

used in putting together a series of appendices. You can specify A for the top level:

.HM A

and retain the default section numbering for the rest of the headings. This could produce sections in the

following series:

A, A.1, A.2, A.2.1, etc.

Marks can be mixed for an outline style similar to the one we produced using the list macros:

.HM I A 1 a i

Roman numerals can be used to indicate sections or parts. If you specify:

.HM I i

the headings for the first two lev els are marked by roman numerals. A third-level heading is shown to

demonstrate that the heading mark reverted to arabic by default:

I. Quick Tour of Alcuin

I.i Introduction to Calligraphy

I.ii Digest of Alcuin Commands

I.ii.1 Three Methods of Command Entry

When you use marks consisting of roman numerals or alphabetic characters, you might not want the mark

of the current level to be concatenated to the mark of the previous level. Concatenation can be suppressed

by setting the number register Ht to 1:

.HM I i

.nr Ht 1

Now, each heading in the list has only the mark representing that level:
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I. Quick Tour of Alcuin

i. Introduction to Calligraphy

ii. Digest of Alcuin Commands

1. Three Methods of Command Entry

Table of Contents

Getting a table of contents easily and automatically is almost reason enough to justify all the energy, yours

and the computer’s, that goes into text processing. You realize that this is something that the computer was

really meant to do.

When the table of contents page comes out of the printer, a writer attains a state of happiness known

only to a statistician who can give the computer a simple instruction to tabulate vast amounts of data and, in

an instant, get a single piece of paper listing the results.

The reason that producing a table of contents seems so easy is that most of the work is performed in

coding the document. That means entering codes to mark each level of heading and all the figures, tables,

exhibits, and equations. Processing a table of contents is simply a matter of telling the formatter to collect

the information that’s already in the file.

There are only two simple codes to put in a file, one at the beginning and one at the end, to generate a

table of contents automatically.

At the beginning of the file, you have to set the number register Cl to the level of headings that you

want collected for a table of contents. For example, setting Cl to 2 saves first- and second-level headings.

Place the .TC macro at the end of the file. This macro actually does the processing and formatting of

the table of contents. The table of contents page is output at the end of a document.

A sample table of contents page follows. The header “CONTENTS” is printed at the top of the page.

At the bottom of the page, lowercase roman numerals are used as page numbers.

CONTENTS

1. Quick Tour of Alcuin ................................................................................................................... 1
1.1 Introduction to Calligraphy................................................................................................... 3
1.2 Digest of Alcuin Commands................................................................................................. 8
1.3 Sample Illuminated Manuscripts .......................................................................................... 21

2. Using Graphic Characters ............................................................................................................ 31
2.1 Scaling a Font ....................................................................................................................... 33
2.2 Modifying Font Style............................................................................................................ 37
2.3 Drawing Your Own Font ....................................................................................................... 41

3. Library of Hand-Lettered Fonts ................................................................................................... 51

- i -
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One blank line is output before each first-level heading. All first-level headings are left justified. Lower-

level headings are indented so that they line up with the start of text for the previous level.

If you have included various displays in your document, and used the macros .FG, .TB, and .EX to

specify captions and headings for the displays, this information is collected and output when the .TC

macro is invoked. A separate page is printed for each accumulated list of figures, tables, and exhibits. For

example:

LIST OF TABLES

TABLE 1. List of Required Resources .............................. 7

TABLE 2. List of Available Resources.............................. 16

If you want the lists of displays to be printed immediately following the table of contents (no page breaks),

you can set the number register Cp to 1.

If you want to suppress the printing of individual lists, you can set the following number registers to

0:

Lf If 0, no figures

Lt If 0, no tables

Lx If 0, no exhibits

In addition, there is a number register for equations that is set to 0 by default. If you want equations

marked by .EC to be listed, specify:

.nr Le 1

There are a set of strings, using the same names as the number registers, that define the titles used for the

top of the lists:

Lf LIST OF FIGURES

Lt LIST OF TABLES

Lx LIST OF EXHIBITS

Le LIST OF EQUATIONS

You can redefine a string using the .ds (define string) request. For instance, we can redefine the title for

figures as follows:

.ds Lf LIST OF ALCUIN DRAWINGS

Footnotes and References

Footnotes and references present special problems, as anyone who has ever typed a term paper knows. For-

tunately, mm has two pairs of specialized macros. Both of them follow a marker in the text and cause lines

of delimited text to be saved and output either at the bottom of the page, as a footnote, or at end of the doc-

ument, as a reference.
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Footnotes

A footnote is marked in the body of a document by the string \*F. It follows immediately after the text (no

spaces).

in an article on desktop publishing.\*F

The string F supplies the number for the footnote. It is printed (using troff) as a superscript in the text

and its value is incremented with each use.

The .FS macro indicates the start, and .FE the end, of the text for the footnote. These macros sur-

round the footnote text that will appear at the bottom of the page. The .FS macro is put on the line imme-

diately following the marker.

.FS

"Publish or Perish: Start-up grabs early page language lead,"

\fIComputerworld\fR, April 21, 1986, p. 1.

.FE

You can use labels instead of numbers to mark footnotes. The label must be specified as a mark in the text

and as an argument with .FS.

...in accord with the internal specs.[APS]

.FS [APS]

"Alcuin Product Specification," March 1986

.FE

You can use both numbered and labeled footnotes in the same document. All the footnotes are collected

and output at the bottom of each page underneath a short line rule. If you are using troff, the footnote

text will be set in a type size 2 points less than the body copy.

If you want to change the standard format of footnotes, you can specify the .FD macro. It controls

hyphenation, text adjustment, indentation, and justification of the label.

Normally, the text of a footnote is indented from the left margin and the mark or label is left justified

in relation to the start of the text. It is possible that a long footnote could run over to the next page.

Hyphenation is turned off so that a word will not be broken at a page break. These specifications can be

changed by giving a value between 0 and 11 as the first argument with .FD, as shown in Table 6-3.

Table 6.3 .FD Argument Values

Te xt Label

Argument Hyphenation Adjust Indent Justification

0 no yes yes left

1 yes yes yes left

2 no no yes left

3 yes no yes left

4 no yes no left

5 yes yes no left

6 no no no left

7 yes no no left

8 no yes yes right

9 no yes yes right

10 no no yes right

11 yes no yes right

The second argument for .FD, if 1, resets the footnote numbering counter to 1. This can be invoked

at the end of a section or paragraph to initialize a new numbering sequence. If specified by itself, the first

argument must be null:

.FD "" 1
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References

A reference differs from a footnote in that all references are collected and printed on a single page at the

end of the document. In addition, you can label a reference so that you can refer to it later.

A reference is marked where it occurs in the text with \*(Rf. The formatter converts the string into

a value printed in brackets, such as [1]. The mark is followed by a pair of macros surrounding the reference

text. The .RS macro indicates the start, and .RF the end, of the text for the reference.

You will find information on this page description language

in their reference manual, which has been published

as a book.\*(Rf

.RS

Adobe Systems, Inc. PostScript Reference Manual.

Reading, Massachusetts: Addison-Wesley; 1985.

.RF

You can also give as a string label argument to .RS the name of a string that will be assigned the current

reference number. This string can be referenced later in the document. For instance, if we had specified a

string label in the previous example:

.RS As

We could refer back to the first reference in another place:

The output itself is a readable file which you can interpret

with the aid of the PostScript manual.\*(As

At the end of the document, a reference page is printed. The title printed on the reference page is

defined in the string Rp. You can replace “REFERENCES” with another title simply by redefining this

string with .ds.

REFERENCES

1. Adobe Systems, Inc.; PostScript Reference Manual.
Reading, Massachusetts: Addison-Wesley; 1985.

In a large document, you might want to print a list of references at the end of a chapter or a long section.

You can invoke the .RP macro anywhere in a document.

.RP

.H 1 "Detailed Outline of User Guide"

It will print the list of references on a separate page and reset the reference counter to 0. A reset argument

and a paging argument can be supplied to change these actions. The reset argument is the first value speci-

fied with the .RP macro. It is normally 0, resetting the reference counter to 1 so that each section is num-

bered independently. If reference numbering should be maintained in sequence for the entire document,

specify a value of 1.

The paging argument is the second value specified. It controls whether or not a page break occurs

before and after the list. It is normally set to 0, putting the list on a new page. Specifying a value of 3 sup-

presses the page break before and after the list; the result is that the list of references is printed following

the end of the section and the next section begins immediately after the list. A value of 1 will suppress only

the page break that occurs after the list and a value of 2 will suppress only the page break that occurs before

the list.

If you want an effect opposite that of the default settings, specify:

.RP 1 3
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The first argument of 1 saves the current reference number for use in the next section or chapter. The sec-

ond argument of 3 inhibits page breaks before and after the list of references.

Extensions to mm

So far, we hav e covered most but not all of the features of the mm macro package.

We hav e not covered the Technical Memorandum macros, a set of specialized macros for formatting

technical memos and reports. Like the ones in the ms macro package, these macros were designed for

internal use at AT&T’s Bell Laboratories, reflecting a company-wide set of standards. Anyone outside of

Bell Labs will want to make some modifications to the macros before using them. The Technical Memo-

randum macros are a good example of employing a limited set of user macros to produce a standard format.

Seeing how they work will be especially important to those who are responsible for implementing docu-

mentation standards for a group of people, some of whom understand the basics of formatting and some of

whom do not.

Writing or rewriting macros is only one part of the process of customizing mm. The mm macros were

designed as a comprehensive formatting system. As we’ve seen, there are even macros to replace common

primitive requests, like .sp. The developers of mm recommend, in fact, that you not use nroff or troff

requests unless absolutely necessary, lest you interfere with the action of the macros.

Furthermore, as you will see if you print out the mm macros, the internal code of mm is extraordinarily

dense, and uses extremely un-mnemonic register names. This makes it very difficult for all but the most

experienced user to modify the basic structure of the package. You can always add your own macros, as

long as they don’t conflict with existing macro and number register names, but you can’t easily go in and

change the basic macros that make up the mm package.

At the same time, the developers of mm have made it possible for the user to make selective modifica-

tions—those which mm has allowed mechanisms for in advance. There are two such mechanisms:

• mm’s use of number registers to control all aspects of document formatting

• mm’s inv ocation of undefined (and therefore user-definable) macros at various places in the mm

code

The mm package is very heavily parameterized. Almost every feature of the formatting system—from the

fonts in which different levels of heading are printed to the size of indents and the amount of space above

and below displays—is controlled by values in number registers. By learning and modifying these number

registers, you can make significant changes to the overall appearance of your documents.

In addition, there are a number of values stored in strings. These strings are used like number regis-

ters to supply default values to various macros.

The registers you are most likely to want to change follow. Registers marked with a dagger can only

be changed on the command line with the -r option (e.g., -rN4).

Cl Level of headings saved for table of contents. See .TC macro. Default is 2.

Cp If set to 1, lists of figures and tables appear on same page as table of contents.

Otherwise, they start on a new page. Default is 1.

Ds Sets the pre- and post-space used for static displays.

Fs Vertical spacing between footnotes.

Hb Level of heading for which break occurs before output of body text. Default is 2

lines.

Hc Level of heading for which centering occurs. Default is 0.

Hi Indent type after heading. Default is 1 (paragraph indent). Legal values are:

0=left justified (default); 1=indented; 2=indented except after .H, .LC, .DE.
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Hs Level of heading for which space after heading occurs. Default is 2, i.e., space

will occur after first- and second-level headings.

Hy Sets hyphenation. If set to 1, enables hyphenation. Default is 0.

L† Sets length of page. Default is 66v.

Li Default indent of lists. Default is 5.

Ls List spacing between items by level. Default is 6, which is spacing between all

levels of list.

N† Page numbering style. 0=all pages get header; 1=header printed as footer on

page 1; 2=no header on page 1; 3=section page as footer; 4=no header unless

.PH defined; 5=section page and section figure as footer. Default is 0.

Np Numbering style for paragraphs. 0=unnumbered; 1=numbered.

O Offset of page. For nroff, this value is an unscaled number representing char-

acter positions. (Default is 9 characters; about .75i). For troff, this value is

scaled (.5i).

Of Figure caption style. 0=period separator; 1=hyphen separator. Default is 0.

Pi Amount of indent for paragraph. Default is 5 for nroff, 3n for troff.

Ps Amount of spacing between paragraphs. Default is 3v.

Pt Paragraph type. Default is 0.

S† Default point size for troff. Default is 10. Vertical spacing is \nS+2.

Si Standard indent for displays. Default is 5 for nroff, 3 for troff.

W Width of page (line and title length). Default is 6 in troff, 60 characters in

nroff.

There are also some values that you would expect to be kept in number registers that are actually kept

in strings:

HF Fonts used for each level of heading (1=roman, 2=italic, 3=bold)

HP Point size used for each level of heading

For example, placing the following register settings at the start of your document:

.nr Hc 1

.nr Hs 3

.nr Hb 4

.nr Hi 2

.ds HF 3 3 3 3 2 2 2

.ds HP 16 14 12 10 10 10 10

will have the following effects:

• Top-level headings (generated by .H1) will be centered.

• The first three levels of heading will be followed by a blank line.

• The fourth-level heading will be followed by a break.

• Fifth- through seventh-level headings will be run-in with the text.

• All headings will have the following text indented under the first word of the heading, so that

the section number hangs in the margin.

• The first five lev els of heading will be in bold type; the sixth and seventh will be italic.

• A first-level heading will be printed in 16-point type; a second-level heading in 14-point type; a

third-level heading in 12-point type; and all subsequent levels in 10-point type.

There isn’t space in this book for a comprehensive discussion of this topic. However, a complete list of

user-settable mm number registers is given in Appendix B. Study this list, along with the discussion of the
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relevant macros, and you will begin to get a picture of just how many facets of mm you can modify by

changing the values in number registers and strings.

The second feature—the provision of so-called “user exit macros” at various points—is almost as

ingenious. The following macros are available for user definition:

.HX .HY .HZ .PX .TX .TY

The .HX, .HY, and .HZ macros are associated with headings. The .HX macro is executed at the start of

each heading macro, .HY in the middle (to allow you to respecify any settings, such as temporary indents,

that were lost because of mm’s own processing), and .HZ at the end.

By default, these macros are undefined. And, when troff encounters an undefined macro name, it

simply ignores it. These macros thus lie hidden in the code until you define them. By defining these

macros, you can supplement the processing of headings without actually modifying the mm code. Before

you define these macros, be sure to study the mm documentation for details of how to use them.

Similarly, .PX is executed at the top of each page, just after .PH. Accordingly, it allows you to per-

form additional top-of-page processing. (In addition, you can redefine the .TP macro, which prints the

standard header, because this macro is relatively self-contained).

There is a slightly different mechanism for generalized bottom-of-page processing. The .BS/.BE

macro pair can be used to enclose text that will be printed at the bottom of each page, after any footnotes

but before the footer. To remove this text after you have defined it, simply specify an empty block.

The .VM (vertical margins) macro allows you to specify additional space at the top of the page, bot-

tom of the page, or both. For example:

.VM 3 3

will add three lines each to the top and bottom margins. The arguments to this macro should be unscaled.

The first argument applies to the top margin, the second to the bottom.

The .TX and .TY macros allow you to control the appearance of the table of contents pages. The

.TX macro is executed at the top of the first page of the table of contents, above the title; .TY is executed

in place of the standard title (“CONTENTS”).

In Chapter 14, you will learn about writing macro definitions, which should give you the information

you need to write these supplementary “user exit macros.”





Chapter 7

Advanced Editing

Sometimes, in order to advance, you have to go backward. In this chapter, we are going to demonstrate

how you can improve your text-editing skills by understanding how line editors work. This doesn’t mean

you’ll have to abandon full-screen editing. The vi editor was constructed on top of a line editor named ex,

which was an improved version of another line editor named ed. So in one sense we’ll be looking at the

ancestors of vi. We’ll look at many of the ways line editors attack certain problems and how that applies

to those of us who use full-screen editors.

Line editors came into existence for use on “paper terminals”, which were basically printers. This

was before the time of video display terminals. A programmer, or some other person of great patience,

worked somewhat interactively on a printer. Typically, you saw a line of your file by printing it out on

paper; you entered commands that would affect just that line; then you printed out the edited line again.

Line editors were designed for this kind of process, editing one line at a time.

People rarely edit files on paper terminals any more, but there are diehards who still prefer line edi-

tors. For one thing, it imposes less of a burden on the computer. Line editors display the current line; they

don’t update the entire screen.

On some occasions, a line editor is simpler and faster than a full-screen editor. Sometimes, a sys-

tem’s response can be so slow that it is less frustrating to work if you switch to a line editor. Or you may

have occasion to work remotely over a dial-up line operating at a baud rate that is too slow to work produc-

tively with a full-screen editor. In these situations, a line editor can be a way to improve your efficiency. It

can reduce the amount of time you are waiting for the computer to respond to your commands.

The truth is, however, that after you switch from a screen editor to a line editor, you are likely to feel

deprived. But you shouldn’t skip this chapter just because you won’t be using a full-screen editor. The pur-

pose of learning ex is to extend what you can do in vi.

The ex Editor

The ex editor is a line editor with its own complete set of editing commands. Although it is simpler to

make most edits with vi, the line orientation of ex is an advantage when you are making large-scale

changes to more than one part of a file. With ex, you can move easily between files and transfer text from

one file to another in a variety of ways. You can search and replace text on a line-by-line basis, or globally.

You can also save a series of editing commands as a macro and access them with a single keystroke.

Seeing how ex works when it is invoked directly will help take some of the “mystery” out of line

editors and make it more apparent to you how many ex commands work.

Let’s open a file and try a few ex commands. After you invoke ex on a file, you will see a message

about the total number of lines in the file, and a colon command prompt. For example:

$ ex intro
"intro" 20 lines, 731 characters

:

You won’t see any lines in the file, unless you give an ex command that causes one or more lines to be

printed.

All ex commands consist of a line address, which can simply be a line number, and a command.

You complete the command with a carriage return. A line number by itself is equivalent to a print com-

mand for that line. So, for example, if you type the numeral 1 at the prompt, you will see the first line of

the file:

149
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:1

Sometimes, to advance,

:

To print more than one line, you can specify a range of lines. Tw o line numbers are specified, separated by

commas, with no spaces in between them:

:1,3

Sometimes, to advance,

you have to go backward.

Alcuin is a computer graphics tool

The current line is the last line affected by a command. For instance, before we issued the command 1,3,

line 1 was the current line; after that command, line 3 became the current line. It can be represented by a

special symbol, a dot (.).

:.,+3

that lets you design and create hand-lettered, illuminated

manuscripts, such as were created in the Middle Ages.

The previous command results in three more lines being printed, starting with the current line. A + or -

specifies a positive or neg ative offset from the current line.

The ex editor has a command mode and an insert mode. To put text in a file, you can enter the

append or a command to place text on the line following the current line. The insert or i command

places text on the line above the current line. Type in your text and when you are finished, enter a dot (.)

on a line by itself:

:a

Monks, skilled in calligraphy,

labored to make copies of ancient

documents and preserve in a

library the works of many Greek and

Roman authors.

.

:

Entering the dot takes you out of insert mode and puts you back in command mode.

A line editor does not have a cursor, and you cannot move along a line of text to a particular word.

Apart from not seeing more of your file, the lack of a cursor (and therefore cursor motion keys) is probably

the most difficult thing to get used to. After using a line editor, you long to get back to using the cw com-

mand in vi.

If you want to change a word, you have to move to the line that contains the word, tell the editor

which word on the line you want to change, and then provide its replacement. You hav e to think this way

to use the substitute or s command. It allows you to substitute one word for another.

We can change the last word on the first line from tool to environment:

:1

Alcuin is a computer graphics tool

:s/tool/environment/

Alcuin is a computer graphics environment

:

The word you want to change and its replacement are separated by slashes (/). As a result of the substitute

command, the line you changed is printed.

With a line editor, the commands that you enter affect the current line. Thus, we made sure that the

first line was our current line. We could also make the same change by specifying the line number with the

command:

:1s/environment/tool/

Alcuin is a computer graphics tool

If you specify an address, such as a range of line numbers, then the command will affect the lines that you

specify:
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:1,20s/Alcuin/ALCUIN/

ALCUIN is named after an English scholar

The last line on which a substitution was made is printed.

Remember, when using a line editor, you have to tell the editor which line (or lines) to work on as

well as which command to execute.

Another reason that knowing ex is useful is that sometimes when you are working in vi, you might

unexpectedly find yourself using “open mode”. For instance, if you press Q while in vi, you will be

dropped into the ex editor. You can switch to vi by entering the command vi at the colon prompt:

:vi

After you are in vi, you can execute any ex command by first typing a : (colon). The colon appears

on the bottom of the screen and what you type will be echoed there. Enter an ex command and press

RETURN to execute it.

Using ex Commands in vi

Many ex commands that perform normal editing operations have equivalent vi commands that do the job

in a simpler manner. Obviously, you will use dw or dd to delete a single word or line rather than using the

delete command in ex. Howev er, when you want to make changes that affect numerous lines, you will

find that the ex commands are very useful. They allow you to modify large blocks of text with a single

command.

Some of these commands and their abbreviations follow. You can use the full command name or the

abbreviation, whichever is easier to remember.

delete d Delete lines

move m Move lines

copy co Copy lines

substitute s Substitute one string for another

The substitute command best exemplifies the ex editor’s ability to make editing easier. It giv es you the

ability to change any string of text every place it occurs in the file. To perform edits on a global replace-

ment basis requires a good deal of confidence in, as well as full knowledge of, the use of pattern matching

or “regular expressions”. Although somewhat arcane, learning to do global replacements can be one of the

most rewarding experiences of working in the UNIX text-processing environment.

Other ex commands give you additional editing capabilities. For all practical purposes, they can be

seen as an integrated part of vi. Examples of these capabilities are the commands for editing multiple files

and executing UNIX commands. We will look at these after we look at pattern-matching and global

replacements.

Write Locally, Edit Globally

Sometimes, halfway through a document or at the end of a draft, you recognize inconsistencies in the way

that you refer to certain things. Or, in a manual, some product that you called by name is suddenly

renamed (marketing!). Often enough, you have to go back and change what you’ve already written in sev-

eral places.

The way to make these changes is with the search and replace commands in ex. You can automati-

cally replace a word (or string of characters) wherever it occurs in the file. You hav e already seen one

example of this use of the substitute command, when we replaced Alcuin with ALCUIN.

:1,20s/Alcuin/ALCUIN/
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There are really two steps in using a search and replace command. The first step is to define the area in

which a search will take place. The search can be specified locally to cover a block of text or globally to

cover the entire file. The second step is to specify, using the substitute command, the text that will be

removed and the text that will replace it.

At first, the syntax for specifying a search and replace command may strike you as difficult to learn,

especially when we introduce pattern matching. Try to keep in mind that this is a very powerful tool, one

that can save you a lot of drudgery. Besides, you will congratulate yourself when you succeed, and every-

one else will think you are very clever.

Searching Text Blocks

To define a search area, you need to be more familiar with how line addressing works in ex. A line address

simply indicates which line or range of lines an ex command will operate on. If you don’t specify a line

address, the command only affects the current line. You already know that you can indicate any individual

line by specifying its number. What we want to look at now are the various ways of indicating a block of

text in a file.

You can use absolute or relative line numbers to define a range of lines. Identify the line number of

the start of a block of text and the line number of the end of the block. In vi, you can use ˆG to find the

current line number.

There are also special symbols for addressing particular places in the file:

. Current line

$ Last line

% All lines (same as 1,$)

The following are examples that define the block of text that the substitute command will act upon:

:.,$s Search from the current line to the end of the file

:20,.s Search from line 20 through the current line

:.,.+20s Search from the current line through the next 20 lines

:100,$s Search from line 100 through the end of the file

:%s Search all lines in the file

Within the search area, as defined in these examples, the substitute command will look for one string of text

and replace it with another string.

You can also use pattern matching to specify a place in the text. A pattern is delimited by a slash

both before and after it.

/pattern1/,/pattern2/s Search from the first line containing pattern1 through the first line con-

taining pattern2

:.,/pattern/s Search from the current line through the line containing pattern

It is important to note that the action takes place on the entire line containing the pattern, not simply the text

up to the pattern.

Search and Replace

You’ve already seen the substitute command used to replace one string with another one. A slash is used as

a delimiter separating the old string and the new. By prefixing the s command with an address, you can

extend its range beyond a single line:

:1,20s/Alcuin/ALCUIN/
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Combined with a line address, this command searches all the lines within the block of text. But it only

replaces the first occurrence of the pattern on each line. For instance, if we specified a substitute command

replacing roman with Roman in the following line:

after the roman hand. In teaching the roman script

only the first, not the second, occurrence of the word would be changed.

To specify each occurrence on the line, you have to add a g at the end of the command:

:s/roman/Roman/g

This command changes every occurrence of roman to Roman on the current line.

Using search and replace is much faster than finding each instance of a string and replacing it indi-

vidually. It has many applications, especially if you are a poor speller.

So far, we hav e replaced one word with another word. Usually, it’s not that easy. A word may have a

prefix or suffix that throws things off. In a while, we will look at pattern matching. This will really expand

what you are able to do. But first, we want to look at how to specify that a search and replace take place

globally in a file.

Confirming Substitutions

It is understandable if you are over-careful when using a search and replace command. It does happen that

what you get is not what you expected. You can undo any search and replacement command by entering u.

But you don’t always catch undesired changes until it is too late to undo them. Another way to protect your

edited file is to save the file with :w before performing a replacement. Then, at least you can quit the file

without saving your edits and go back to where you were before the change was made. You can also use

:e! to read in the previous version of the buffer.

It may be best to be cautious and know exactly what is going to be changed in your file. If you’d like

to see what the search turns up and confirm each replacement before it is made, add a c at the end of the

substitute command:

:1,30s/his/the/gc

It will display the entire line where the string has been located and the string itself will be marked by a

series of carets (ˆˆˆ).

copyists at his school

ˆˆˆ

If you want to make the replacement, you must enter y and press RETURN.

If you don’t want to make a change, simply press RETURN.

this can be used for invitations, signs, and menus.

ˆˆˆ

The combination of the vi commands // (repeat last search) and . (repeat last command) is also an

extraordinarily useful (and quick) way to page through a file and make repetitive changes that require a

judgment call rather than an absolute global replacement.

Global Search and Replace

When we looked at line addressing symbols, the percent symbol, %, was introduced. If you specify it with

the substitute command, the search and replace command will affect all lines in the file:

:%s/Alcuin/ALCUIN/g

This command searches all lines and replaces each occurrence on a line.
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There is another way to do this, which is slightly more complex but has other benefits. The pattern is

specified as part of the address, preceded by a g indicating that the search is global:

:g/Alcuin/s//ALCUIN/g

It selects all lines containing the pattern Alcuin and replaces every occurrence of that pattern with ALCUIN.

Because the search pattern is the same as the word you want to change, you don’t hav e to repeat it in the

substitute command.

The extra benefit that this gives is the ability to search for a pattern and then make a different substi-

tution. We call this context-sensitive replacement.

The gist of this command is globally search for a pattern:

:g/pattern/

Replace it:

:g/pattern/s//

or replace another string on that line:

:g/pattern/s/string/

with a new string:

:g/pattern/s/string/new/

and do this for every occurrence on the line.

:g/pattern/s/string/new/g

For example, we use the macro .BX to draw a box around the name of a special key. To show an ESCAPE

key in a manual, we enter:

.BX Esc

Suppose we had to change Esc to ESC, but we didn’t want to change any references to Escape in the text.

We could use the following command to make the change:

:g/BX/s/Esc/ESC/

This command might be phrased: “Globally search for each instance of BX and on those lines substitute the

Esc with ESC”. We didn’t specify g at the end of the command because we would not expect more than

one occurrence per line.

Actually, after you get used to this syntax, and admit that it is a little awkward, you may begin to like

it.

Pattern Matching

If you are familiar with grep, then you know something about regular expressions. In making global

replacements, you can search not just for fixed strings of characters, but also for patterns of words, referred

to as regular expressions.

When you specify a literal string of characters, the search might turn up other occurrences that you

didn’t want to match. The problem with searching for words in a file is that a word can be used in many

different ways. Regular expressions help you conduct a search for words in context.

Regular expressions are made up by combining normal characters with a number of special charac-

ters. The special characters and their use follow.*

. Matches any single character except newline.

* \( and \), and \{n,m\} are not supported in all versions of vi. \<, \>, \u, \U, \l, and \L are supported

only in vi/ex, and not in other programs using regular expressions.
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* Matches any number (including 0) of the single character (including a character

specified by a regular expression) that immediately precedes it. For example,

because . (dot) means any character, .* means match any number of any char-

acter.

[...] Matches any one of the characters enclosed between the brackets. For example,

[AB] matches either A or B. A range of consecutive characters can be specified

by separating the first and last characters in the range with a hyphen. For exam-

ple, [A-Z] will match any uppercase letter from A to Z and [0-9] will match

any digit from 0 to 9.

\{n,m}\ Matches a range of occurrences of the single character (including a character

specified by a regular expression) that immediately precedes it. The n and m are

integers between 0 and 256 that specify how many occurrences to match.

\{n\} will match exactly n occurrences, \{n,\} will match at least n occur-

rences, and \{n,m\} will match any number of occurrences between n and m.

For example, A\{2,3\} will match either AA (as in AARDVARK) or AAA but

will not match the single letter A.

ˆ Requires that the following regular expression be found at the beginning of the

line.

$ Requires that the preceding regular expression be found at the end of the line.

\ Treats the following special character as an ordinary character. For example, \.

stands for a period and \* for an asterisk.

\( Saves the pattern enclosed between \( and \) in a special holding space. Up to

nine patterns can be saved in this way on a single line. They can be “replayed”

in substitutions by the escape sequences \1 to \9.

\n Matches the nth pattern previously saved by \( and \), where n is a number

from 0 to 9 and previously saved patterns are counted from the left on the line.

\< \> Matches characters at the beginning (\<) or at the end (\>) of a word. The

expression \<ac would only match words that begin with ac, such as action but

not react.

& Prints the entire search pattern when used in a replacement string.

\u Converts the first character of the replacement string to uppercase.

\U Converts the replacement string to uppercase as in :/Unix/\U&/.

\l Converts the first character of the replacement string to lowercase, as in

:s/ Act/\l&/.

\L Converts the replacement string to lowercase.

Unless you are already familiar with UNIX’s wildcard characters, this list of special characters probably

looks complex. A few examples should make things clearer. In the examples that follow, a square ( ) is

used to mark a blank space.

Let’s follow how you might use some special characters in a replacement. Suppose you have a long

file and you want to substitute the word balls for the word ball throughout that file. You first save the

edited buffer with :w, then try the global replacement:

:g/ball/s//balls/g

When you continue editing, you notice occurrences of words such as ballsoon, globallsy, and ballss.

Returning to the last saved buffer with :e!, you now try specifying a space after ball to limit the search:

:g/ball /s//balls /g

But this command misses the occurrences ball., ball,, ball:, and so on.

:g/\<ball\>/s//balls/g
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By surrounding the search pattern with \< and \>, we specify that the pattern should only match entire

words, with or without a subsequent punctuation mark. Thus, it does not match the word balls if it already

exists.

Because the \< and \> are only available in ex (and thus vi), you may have occasions to use a

longer form:

:g/ball\([ ,.;:!?]\)/s//balls\1/g

This searches for and replaces ball followed by either a space (indicated by ) or any one of the punctua-

tion characters , . ; : ! ?. Additionally, the character that is matched is saved using \( and \) and

restored on the right-hand side with \1. The syntax may seem complicated, but this command sequence

can save you a lot of work in a similar replacement situation.

Search for General Classes of Words

The special character & is used in the replacement portion of a substitution command to represent the pat-

tern that was matched. It can be useful in searching for and changing similar but different words and

phrases.

For instance, a manufacturer decides to make a minor change to the names of their computer models,

necessitating a change in a marketing brochure. The HX5000 model has been renamed the Series HX5000,

along with the HX6000 and HX8500 models. Here’s a way to do this using the & character:

:g/HX[568][05]00/s//Series &/g

This changes HX8500 to Series HX8500. The & character is useful when you want to replay the entire

search pattern and add to it. If you want to capture only part of the search pattern, you must use \( and \)

and replay the saved pattern with \1 ... \n.

For instance, the same computer manufacturer decides to drop the HX from the model numbers and

place Series after that number. We could make the change using the following command:

:g/\(Series\) HX\([568])[05]00\)/s//\2 \1/g

This command replaces Series HX8500 with 8500 Series.

Suppose you have subroutine names beginning with the prefixes mgi, mgr, and mga.

mgibox routine

mgrbox routine

mgabox routine

If you want to save the prefixes, but want to change the name box to square, either of the following replace-

ment commands will do the trick:

:g/mg\([iar]\)box/s//mg\1square/

The global replacement keeps track of whether an i, a, or r is saved, so that only box is changed to square.

This has the same effect as the previous command:

:g/mg[iar]box/s/box/square/g

The result is:

mgisquare routine

mgrsquare routine

mgasquare routine
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Block Move by Patterns

You can edit blocks of text delimited by patterns. For example, assume you have a 150 page reference

manual. All reference pages are organized in the same way: a paragraph with the heading SYNTAX, fol-

lowed by DESCRIPTION, followed by PARAMETERS. A sample of one reference page follows:

.Rh 0 "Get status of named file" "STAT"

.Rh "SYNTAX"

.nf

integer*4 stat, retval

integer*4 status(11)

character*123 filename

...

retval = stat (filename, status)

.fi

.Rh "DESCRIPTION"

Writes the fields of a system data structure into the

status array. These fields contain (among other

things) information about the file’s location, access

privileges, owner, and time of last modification.

.Rh "PARAMETERS"

.IP "filename" 15n

A character string variable or constant containing

the UNIX pathname for the file whose status you want

to retrieve. You can give the...

Suppose that you decide to move DESCRIPTION above the SYNTAX paragraph. With pattern matching,

you can move blocks of text on all 150 pages with one command!

:g/SYNTAX/,/DESCRIPTION/-1,mo/PARAMETERS/-1

This command moves the block of text between the line containing the word SYNTAX and the line just

before the word DESCRIPTION (/DESCRIPTION/-1) to the line just before PARAMETERS. In a  case

like this, one command literally saves hours of work.

This applies equally well to other ex commands. For example, if you wanted to delete all DESCRIP-

TION paragraphs in the reference chapter, you could enter:

:g/DESCRIPTION/,/PARAMETERS/-1,d

This very powerful kind of change is implicit in the ex editor’s line addressing syntax, but is not readily

apparent. For this reason, whenever you are faced with a complex, repetitive editing task, take the time to

analyze the problem and find out if you can apply pattern-matching tools to do the job.

More Examples

Because the best way to learn pattern matching is by example, the following section gives a list of examples

with brief explanations. Study the syntax carefully, so that you understand the principles at work. You

should then be able to adapt them to your situation.

1. Delete all blank lines:

:g/ˆ$/d

What you are matching is the beginning of the line followed by the end of the line, with

nothing in between.
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2. Put troff italic codes around the word RETURN:

:g/RETURN/s//\\fIRETURN\\fR/g

Notice that two backslashes (\\) are needed in the replacement, because the backslash in

the troff italic code will be interpreted as a special character. (\fI alone would be

interpreted as fI; it takes \\fI to get \fI).

3. Modify a list of pathnames in a file:

:g/\/usr\/tim/s//\/usr\/linda/g

A slash (used as a delimiter in the global replacement sequence) must be escaped with a

backslash when it is part of the pattern or replacement; use \/ to get /. Another way to

achieve this same effect is to use a different character as the pattern delimiter. For exam-

ple, you could make the previous replacement as follows:

:g:/usr/tim:s::/usr/linda:g

4. Change all periods to semicolons in lines 1 to 10:

:1,10g/\./s//;/g

A period is a special character and must be escaped with a backslash.

5. Reverse the order of all hyphen-separated items in a list:

:g/\(.*\) - \(.*\)/s//\2 - \1/

The effect of this command on several items is:

more - display files becomes display files - more

lp - print files becomes print files - lp

6. Standardize various uses of a word or heading:

:g/ˆExample[ s:]/s//Examples: /g

Note that the brackets enclose three characters: a space (represented in the example by

), a colon, and the letter s. Therefore, this command searches for Example , Exam-

ples, or Example: at the beginning of a line and replaces it with Examples:. (If you don’t

include the space, Examples would be replaced with Exampless:).

As another similar example, change all occurrences of the word help (or Help) to HELP:

:g/[Hh]elp/s//HELP/g

7. Replace one or more spaces with a single space:

:g/ */s// /g

Make sure you understand how the asterisk works as a special character. An asterisk fol-

lowing any character (or any regular expression that matches a single character, such as .

or [a-z]) matches zero or more instances of that character. Therefore, you must specify

two spaces followed by an asterisk to match one or more spaces (one plus zero or more).

8. Replace one or more spaces following a colon with two spaces:

:g/: */s//: /g

9. Replace one or more spaces following a period or a colon with two spaces:

:g/\([:.]\) */s//\1 /g

Either of the two characters within brackets can be matched. This character is saved,

using parentheses, and restored on the right-hand side as 1. Note that a special character

such as a period does not need to be escaped within brackets.

10. Delete all leading blanks on a line:

:g/ˆ *\(.*\)/s//\1/g

Search for one or more blanks at the beginning of a line; save the rest of the line and

replace it without any leading blanks.
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11. Delete all trailing blanks:

:g/ *$/s///

12. Remove manual numbering from section headings (e.g., 1.1 Introduction) in a document:

:g/[1-9]\.[1-9]*\(.*\)/s//\1/g

A hyphen-separated pair of letters or digits enclosed in square brackets (e.g., [1-9])

specifies a range of characters.

13. Change manually numbered section heads (e.g., 1.1, 1.2) to a troff macro (e.g., .Ah

for an A-level heading):

:g/ˆ[1-9]\.[1-9]/s//\.Ah/

14. Show macros in the output by protecting them from interpretation. Putting \& in front of

a macro prevents troff from expanding them. This command was used frequently

throughout this book to print an example that contained macros. Three backslashes are

needed in the replacement pattern: two to print a backslash and one to have the first

ampersand interpreted literally:

:g/ˆ\./s//\\\&&/

Writing and Quitting Files

You hav e learned the vi command ZZ to quit and write (save) your file. But you will usually want to exit a

file using ex commands, because these commands give you greater control.

:w Writes (saves) the buffer to the file but does not exit. You can use :w throughout your

editing session to protect your edits against system failure or a major editing error.

:q Quits the file (and returns to the UNIX prompt).

:wq Both writes and quits the file.

The vi editor protects existing files and your edits in the buffer. For example, if you want to write

your buffer to an existing file, vi will give you a warning, because this would delete the original file. Like-

wise, if you have inv oked vi on a file, made edits, and want to quit without saving the edits, vi will give

you an error message such as:

No write since last change.

These warnings can prevent costly mistakes, but sometimes you want to proceed with the command any-

way. An exclamation mark (!) after your command overrides this warning:

:w! filename
:q!

The :q! command is an essential editing command that allows you to quit without affecting the original

file, regardless of any changes you made in the session. The contents of the buffer are discarded.

Renaming the Buffer

You can also use :w to save the entire buffer (the copy of the file you are editing) under a new filename.

Suppose that you have a file letter that contains 600 lines. You call in a copy and make extensive

edits. You want to quit and save both the old version of letter and your new edits for comparison. To

rename your buffer letter.new, giv e the command:

:wq letter.new
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Saving Part of a File

In an editing session, you will sometimes want to save just part of your file as a separate, new file. For

example, you might have entered formatting codes and text that you want to use as a header for several

files.

You can combine ex line addressing with the write command, w, to sav e part of a file. For example,

if you are in the file letter and want to save part of letter as the file newfile, you could enter:

:230,$w newfile

which saves from line 230 to the end of the file, or:

:.,600w newfile

which saves from the current line to line 600 in newfile.

Appending to a Saved File

You can use the UNIX redirect and append operator (>>) with w to append the contents of the buffer to an

existing file. For example:

:1,10w newfile

:340,$w>>newfile

The existing file, newfile, will contain lines 1 through 10, and from line 340 to the end of the buffer.

Reading In a File

Sometimes you want to copy text or data already entered on the system into the file you are editing. In vi,

you can read in the contents of another file with the ex command:

:read filename

or:

:r filename

This reads in the contents of filename on the line after the cursor position in the file.

Let’s suppose that you are editing the file letter, and want to read in data from a file in another

directory called /work/alcuin/ch01. Position the cursor just above the line where you want the new

data inserted, and enter:

:r /work/alcuin/ch01

The entire contents of /work/alcuin/ch01 are read into letter, beginning below your cursor posi-

tion.

Executing UNIX Commands

You can also display or read in the results of any UNIX command while you are editing in vi. An excla-

mation mark (!) tells ex to create a shell and regard what follows as a UNIX command.

:!command

So, if you are editing and want to check the time or date without exiting vi, you can enter:

:!date
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The time and date will appear on your screen; press RETURN to continue editing at the same place in your

file. If you want to give sev eral UNIX commands in a row, without returning to vi in between, you can

create a shell with the ex command:

:sh

When you want to exit the shell and return to vi, press ˆD.

You can combine :read with a call to UNIX, to read the results of a UNIX command into your file.

As a very simple example:

:r !date

This will read in the system’s date information into the text of your file.

Suppose that you are editing a file, and want to read in four phone numbers from a file called phone,

but in alphabetical order. The phone file is in the following order:

Willing, Sue 333-4444

Walsh, Linda 555-6666

Quercia, Valerie 777-8888

Dougherty, Nancy 999-0000

The command:

:r !sort phone

reads in the contents of phone after they hav e been passed through the sort filter:

Dougherty, Nancy 999-0000

Quercia, Valerie 777-8888

Walsh, Linda 555-6666

Willing, Sue 333-4444

Suppose that you are editing a file and want to insert text from another file in the directory, but you can’t

remember the new file’s name.

You could perform this task the long way: exit your file, give the ls command, note the correct file-

name, reenter your file, and search for your place.

Or, you could do the task in fewer steps. The command :!ls will display a list of files in the direc-

tory. Note the correct filename. Press RETURN to continue editing.

file1

file2

letter

newfile

The command:

:r newfile

will read in the new file:

"newfile" 35 lines, 949 characters

Filtering Text through a Command

You can also send a block of text as standard input to a UNIX command. The output from this command

replaces the block of text in the buffer. Filtering text through a command can be done either from ex or

vi. The main difference between the two methods is that the block of text is indicated with line addresses

in ex and with text objects in vi.

The first example demonstrates how to do this with ex. Assume that instead of being contained in a

separate file called phone, the list of names in the preceding example was already contained in the current

file, on lines 96 to 99.
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You simply type the addresses of the lines you want affected, followed by an exclamation mark and

the UNIX command line to be executed. For example, the command:

:96,99!sort

will pass lines 96 to 99 through the sort filter, and replace those lines with the output of sort.

In vi, this sequence is invoked by typing an exclamation mark followed by any vi objects that indi-

cate a block of text, and then the UNIX command line to be executed. For example:

!)command

will pass the next sentence through command.

There are some unusual features about how vi acts when you use this feature. First, the exclamation

mark that you type is not echoed right away. When you type the symbol for the text object to be affected,

the exclamation mark appears at the bottom of the screen, but the symbol you type to reference the object

does not.

Second, only objects that refer to more than one line of text (G, {}, (), []) can be used. A number

may precede either the exclamation mark or the object to repeat the effect. Objects such as w do not work

unless enough of them are specified so as to exceed a single line. A slash (/) followed by a pattern and a

RETURN can also be specified, taking the text up to the pattern as input to the command.

Third, there is a special object that is used only with this command syntax. The current line can be

specified by entering a second exclamation mark:

!!command

Either the entire sequence or the text object can be preceded by a number to repeat the effect. For instance,

to change the same lines as in the previous example, you could position the cursor on line 96, and enter:

4!!sort

or:

!4!sort

As another example, assume you have a portion of text in a file that you want to change from lower-

case to uppercase letters. You could process that portion with the tr command. In these examples, the

second sentence is the block of text that will be filtered to the command. An exclamation mark appears on

the last line to prompt you for the UNIX command:

of the product.

I_ confess to being

amazed by Alcuin.

Some people around

!)

!appears on

last line

of the product.

I_ confess to being

amazed by Alcuin.

Some people around

!_

Enter the UNIX command and press RETURN. The input is replaced by the output.
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of the product.

I_ confess to being

amazed by Alcuin.

Some people around

tr’[a-z]’

’[A-Z]’

input replaced

by output

of the product.

I_ CONFESS TO BEING

AMAZED BY ALCUIN.

Some people around

To repeat the previous command, the syntax is:

!block!

It is sometimes useful to send sections of a coded document to nroff to be replaced by formatted output.

However, remember that the “original” input is replaced by the output.

If there is a mistake, such as an error message being sent instead of the expected output, you can

undo the command and restore the lines.

Editing Multiple Files

The ex commands enable you to edit multiple files. The advantage to editing multiple files is speed. When

you are sharing the system with other users, it takes time to exit and reenter vi for each file you want to

edit. Staying in the same editing session and traveling between files is not only faster in access time: you

save abbreviations and command sequences you have defined and keep named buffers so that you can copy

text from one file to another.

Invoking vi on Multiple Files

When you first invoke vi, you can name more than one file to edit files sequentially, and then use ex com-

mands to travel between the files. The following:

$ vi file1 file2

invokes file1 first. After you have finished editing the first file, the ex command :w writes (saves) file1,

and :n calls in the next file (file2).

Suppose that you know you want to edit two files, letter and note. Open the two files by typing:

$ vi letter note

The message:

Two files to edit

appears on the screen. The first named file, letter, appears. Perform your edits to letter, and then

save it with the ex command :w. Call in the next file, note, with the ex command :n and press

RETURN. Perform any edits and use :wq to quit the editing session.

There is no practical limit to the number of files you can invoke vi on at one time. You can use any

of the shell’s pattern-matching characters, or even more complex constructions. Suppose you were writing

a program, and wanted to change the name of a function call, for example, getcursor. The command:

$ vi ‘grep -l getcursor *‘

would invoke vi on all of the files in the current directory containing the string getcursor. The com-

mand:

$ grep -l

prints the names of all files containing a string; using a command enclosed in backquotes (``) as an argu-

ment to another command causes the shell to use the output of the command in backquotes as the argument
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list for the first command.

The vi editor will print a message similar to:

5 files to edit

before displaying the first file.

If you try to quit without editing all of the files, vi will issue a warning message:

4 more files to edit

You must type :q! if you want to exit without editing all of the files.

Calling In New Files

You don’t hav e to call in multiple files at the beginning of your editing session. Any time in vi, you can

switch to another file with the ex command :e. If you want to edit another file within vi, first save your

current file (:w), then give the command:

:e filename

Suppose that you are editing the file letter, and want to edit the file note and then return to letter.

Save letter with w and press RETURN. The file letter is saved and remains on the screen.

You can now switch to another file, because your edits are saved. Call in the file note with :e and press

RETURN.

The vi editor “remembers” two filenames at a time as the current and alternate filenames. These can

be referred to by the symbols % (current filename) and # (alternate filename). The # symbol is particularly

useful with :e, because it allows you to switch easily back and forth between files. In the example just

given, you could return to the first file, letter, by typing the command :e#.

If you have not first saved the current file, vi will not allow you to switch files with :e or :n unless

you tell it imperatively to do so by adding an exclamation mark after the command. For example, if after

making some edits to note, you wanted to discard the edits and return to letter, you could type :e!#.

The command:

e!

is also useful. It discards your edits and returns to the last saved version of the current file. The % symbol,

by contrast, is useful mainly when writing out the contents of the buffer to a new file. For example, a few

pages earlier we showed how to sav e a second version of the file letter with the command:

:w letter.new

This could also have been typed:

:w %.new

Edits between Files

Named buffers provide one convenient way to move text from one file to another. Named buffers are not

cleared when a new file is loaded into the vi buffer with the :e command. Thus, by yanking text in one

file (into multiple named buffers if necessary), reading in a new file with :e, and putting the named buffer

into the new file, material can be transferred selectively between files.

The following example illustrates transferring text from one file to another.
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I_n our conversation

last Thursday, we

discussed a

documentation project

that would produce a

user’s manual on the...

"f6yy

yank 6 lines

to buffer f

I_n our conversation

last Thursday, we

discussed a

documentation project

that would produce a

user’s manual on the...

6 lines yanked

Save the file with the :w command. Enter the file note with :e, and move the cursor to where the copied

text will be placed.

D_ear Mr. Caslon,

Thank you...

"fp

put yanked text

below cursor

Dear Mr. Caslon,

I_n our conversation

last Thursday, we

discussed a

documentation project

that would produce a

user’s manual on the...

Thank you...

Word Abbreviation

Often, you will type the same long phrases over and over in a file. You can define abbreviations that vi

will automatically expand into the full text whenever you type the abbreviation in insert mode. To define an

abbreviation, use the ex command:

:ab abbr phrase

Where abbr is an abbreviation for the specified phrase. The sequence of characters that make up the abbre-

viation will be expanded in insert mode only if you type it as a full word; abbr will not be expanded within

a word.

Suppose that in the file letter you want to enter text that contains a frequently recurring phrase,

such as a difficult product or company name. The command:

:ab IMRC International Materials Research Center

abbreviates International Materials Research Center to the initials IMRC.

Now when you type IMRC in insert mode:

i the IMRC

IMRC expands to the full text:

the International Materials Research Center

When you are choosing abbreviations, select combinations of characters that don’t ordinarily occur while

you are typing text.
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Saving Commands with map

While you are editing, you may use a particular command sequence frequently, or you may occasionally

use a very complex command sequence. To sav e keystrokes, or the time that it takes to remember the

sequence, you can assign the sequence to an unused key.

The map command acts a lot like ab except that you define a macro for command mode instead of

insert mode.

:map x sequence Define character x as a sequence of editing commands

:unmap x Disable the sequence defined for x

:map List the characters that are currently mapped

Before you can start creating your own maps, you need to know the keys not used in command mode that

are available for user-defined commands:

ˆA g K ˆK

ˆO q ˆT v

V ˆW ˆX ˆZ

* \ _ (underscore)

Depending on your terminal, you may also be able to associate map sequences with special function keys.

With maps, you can create simple or complex command sequences. As a simple example, you could define

a command to reverse the order of words. In vi, with the cursor as shown:

you can t_he scroll page

the sequence to put the after scroll would be dwelp: delete word, dw; move to the end of next word, e;

move one space to the right, l; put the deleted word there, p. Saving this sequence:

:map v dwelp

enables you to reverse the order of two words anytime in the editing session with the single keystroke v.

Note that when defining a map, you cannot simply type certain keys, such as RETURN, ESC, TAB,

BACKSPACE, and DELETE, as part of the map command. If you want to include one of these keys as part

of the command sequence, preface that key with a ˆV. The keystroke ˆV appears in the map as the ˆ char-

acter. Characters following the ˆV also do not appear as you expect. For example, a carriage return

appears as ˆM, escape as ˆ[, tab as ˆI, and so on.

You can undo the effect of any map sequence with the u command. Fortunately, the undo restores

the file as it was before you executed the map sequence, treating the series of commands as though it were

a single vi command.

Unless you use unmap to remove a mapped key, its special meaning is in effect for as long as your

current session, even if you move between files. It can therefore be a convenient way of making the same

edits in a number of files.

All the vi and ex commands can be used in map sequences, with the exception that the p or put

command cannot be used to replace entire lines yanked in the same mapping. If you try to yank and then

put back a deleted line within a map, you will get the error message:

Cannot put inside global macro.

If you want to move lines from one place to another within a mapping, you can usually get around this

restriction using the ex editor’s copy or co command.
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Complex Mapping Example

Assume that you have a glossary with entries like this:

map - an ex command that allows you to associate

a complex command sequence with a single key.

You would like to convert this glossary list to nroff format, so that it looks like this:

.IP "map" 10n

An ex command...

The best way to do this is to perform the edit on one of the entries and write down the sequence of com-

mands. You want to:

1. Insert the macro for an indented paragraph at the beginning of the line.

2. Press ESC to terminate insert mode.

3. Move to the end of the word and add the size of the indent.

4. Press RETURN to insert a new line.

5. Press ESC to terminate insert mode.

6. Remove the hyphen and capitalize the next word.

That’s quite an editing chore if you have to repeat it more than a few times! With :map, you can save the

entire sequence so that it can be re-executed with a single key-stroke.

:map z I.IP "ˆ[ea" 10nˆMˆ[3x∼

The sequence ˆ[ appears when you type ˆV followed by ESC. The sequence ˆM is shown when you type

ˆV RETURN.

Now, simply typing z will perform the entire series of edits. On a slow terminal, you can actually

see the edits happening individually. On a fast terminal, it will seem to happen by magic.

Don’t be discouraged if your first attempt at key mapping fails. A small error in defining the map

can give you very different results than you expect. Simply type u to undo the edit, and try again.

Remember, the best way to define a complex map is to do the edit once manually, writing down each

keystroke that you must type.

Mapping Keys for Insert Mode

Normally, maps apply only to command mode—after all, in insert mode, keys stand for themselves, and

shouldn’t be mapped as commands.

However, by adding an exclamation mark (!) to the map command, you can force it to override the

ordinary meaning of a key and produce the map in insert mode. You may find this feature appropriate for

tying character strings to special keys that you wouldn’t otherwise use. It is especially useful with pro-

grammable function keys, as we’ll see in a minute. Many terminals have programmable function keys.

You can usually set up these keys to print whatever character or characters you want using a special setup

mode on the terminal. But this will limit you to a particular terminal, and may limit the actions of pro-

grams that want to set up those function keys themselves.

The ex editor allows you to map function keys by number, using the syntax:

:map #1 commands

for function key number 1, and so on. (It can do this because the editor has access to the entry for that ter-

minal found in either the termcap or terminfo database and knows the escape sequence normally out-

put by the function key).

As with other keys, maps apply by default to command mode, but by using the map! commands as

well, you can define two separate values for a function key—one to use in command mode, the other in
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insert mode. For example, if you are a troff user, you might want to put font-switch codes on function

keys. For example:

:map #1 i\fIˆ[

:map! #1 \fI

If you are in command mode, the first function key will enter insert mode, type in the three characters \fI,

and return to command mode. If you are already in insert mode, the key will simply type the three-charac-

ter troff code.

Note: If function keys hav e been redefined in the terminal’s setup mode, the #n syntax might not

work because the function keys no longer put out the expected control or escape sequence as described in

the terminal database entry. You will need to examine the termcap entry (or terminfo source) for your

terminal and check the definitions for the function keys. The terminal capabilities k1, k2 through k9, k0

describe the first ten function keys. The capabilities l1, l2 through l9, l0 describe the remaining func-

tion keys. Using your terminal’s setup mode, you can change the control or escape sequence output by the

function key to correspond with the termcap or terminfo entry. (If the sequence contains ˆM, which is

a carriage return, press ˆM, not the RETURN key.) For instance, to have function key 1 available for map-

ping, the terminal database entry for your terminal must have a definition of k1, such as k1=ˆA@. In turn,

the definition ˆA@ must be what is output when you press that key. To test what the function key puts out,

press the key at the UNIX prompt, followed by a RETURN if necessary. The shell should display the

sequence output by the function key after trying unsuccessfully to execute it as a command.

@ Functions

Named buffers provide yet another way to create macros—complex command sequences that you can

repeat with only a few keystrokes.

If you type a command line in your text (either a vi sequence or an ex command preceded by a

colon), then yank or delete it into a named buffer, you can execute the contents of that buffer with the @

command. It works in the same way as a map sequence, except that you enter the command line in the file

instead of at the colon prompt; this is helpful if the command sequence is long and might need editing to

work properly. Let’s look at a simple but not very useful example of an @ function. In your file, enter this

key sequence:

cw\fIgadfly\fRˆVESC

This will appear on your screen as:

cw\fIgadfly\fRˆ[

Then delete your command line into buffer g by typing "gdd. Now, whenever you place the cursor at the

beginning of a word and type @g, that word in your text will be changed to gadfly. Because @ is interpreted

as a vi command, . will repeat the entire sequence, even if it is an ex command. The command @@ repeats

the last @, and u or U can be used to undo the effect of @. The @ function is useful because you can create

very specific commands. It is especially useful when you are making specific editing commands between

files, because you can store the commands in named buffers and access them in any file you edit.
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Formatting with tbl

Some information is best presented in tabular format, that is, displayed in rows and columns. You can

structure data in columns using tabs, but that can be difficult, especially if the table consists of long lines of

text. The tbl preprocessor was designed to make it easier to prepare complicated tables, such as the fol-

lowing.

Production of Audio Equipment

(units: 1000 sets)

Product 1984 1985

General radio 8,895 8,770

Clock radio 5,467 6,500

Radio/cassette 29,734 27,523

Tape deck 11,788 14,300

Car radio 9,450 10,398

Car stereo 15,670 17,456

With tbl, you can center, left justify, and right justify columns of data or align numeric data within a

column. You can put headings that span one or more columns or rows, and draw horizontal and vertical

lines to box individual entries or the whole table. An entry may contain equations or consist of several

lines of text, as is usually the case with descriptive tables. A table can have as many as 35 columns and

essentially an unlimited number of rows.

When you use tbl, you should have an idea or, better still, a written design of the table. Then, using

a few tbl specifications, you can define how a formatted table should look. The data is entered row by

row; each column is separated by ordinary tabs.

For example, the tbl description for the previous table looks like this:

.TS

center,box;

c s s

c s s

c c c

l r r.

Production of Audio Equipment

(units:1000 sets)

_

Product 1984 1985

_

General radio 8,895 8,770

Clock radio 5,467 6,500

Radio/cassette 29,734 27,523

Tape deck 11,788 14,300

Car radio 9,450 10,398

Car stereo 15,670 17,456

.TE

When tbl processes the specifications, it calculates all the values needed to produce the table and passes

these values to nroff or troff, which formats or outputs the final table.

In this chapter, we will show you how to use tbl to specify the general appearance of a table. We

begin with some very simple examples, then gradually work up to more complicated ones to show all of

tbl’s capabilities.
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Using tbl

The tbl description can be written in a file or as part of a larger file that contains other tables and text.

You can format a table in a file using the tbl command as in the following:

$ tbl file | troff
$ tbl file | nroff

The tbl command writes its results to standard output. Because you will probably not be interested in the

generated formatting requests, you would normally pipe the output to nroff or troff and then to a

printer.

The tbl command also accepts a list of filenames as input and processes them one by one in the

order in which they are named on the command line. If you don’t giv e any filenames, tbl reads from stan-

dard input. The standard input may also be read in the middle of a list of files by typing a minus sign at the

desired place.

If you’re using a line printer that doesn’t hav e fractional or reverse line motions, use the -T option of

nroff and give the type of output device you’re using. This is important when you’re using nroff

together with tbl to create boxed tables. For example, if you’re using a regular line printer, the option

should read -Tlp. You must also pipe the nroff output to a program called col, which filters the

reverse linefeeds. The command line for a table with boxes would then read:

$ tbl file | nroff -Tlp | col

tbl with eqn

When you have equations within your table and you use the eqn preprocessor to format them, invoke tbl

before eqn. The tbl command usually executes faster because eqn normally produces a larger amount of

output. To use eqn with tbl, use the following command line:

$ tbl file | eqn | troff

There is a possible complication that can occur with any of the preprocessors (tbl,eqn, or pic).

If you read in subsidiary files with the .so request, those files will never be passed through the preproces-

sor, since the .so request has not been encountered yet by the preprocessor. Some UNIX systems support

a program called soelim, which works just like cat, except that it reads in files called by .so requests.

If any subsidiary files contain data that must be processed, start your command line with soelim:

$ soelim file | tbl | eqn ... | nroff

Specifying Tables

A table is always indicated by a .TS (table start) at the beginning of the table description and a .TE ( table

end ) at the end. The general format of each table looks like this:

.TS

global options line;
format section.
data
.TE

These delimiters serve two functions. First, they signal to tbl the beginning and end of the table descrip-

tion. The tbl program processes the table, and enables formatting requests into the text of the table. The

.TS and .TE lines remain after processing by tbl. This allows them to be used as macro calls by nroff

and troff. Both ms and mm define these macros; however, an enterprising user can redefine them, and

surround a table with consistent formatting effects. If the macros are undefined, tbl will not suffer in any

way because the use of .TS/.TE as delimiters is separate from their secondary use as macros.
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As you can see from the general format, tbl sees a table in terms of three distinct parts:

1. The overall layout of the table described in the global options line. For example, this line

describes whether the table is to be centered on the page or made as wide as the rest of the doc-

ument. The global options line is optional.

2. The layout of each column in the table described in the format section. For example, in this

section, you specify whether a column is to be left or right justified. The format section is

required and may contain one or more format lines.

3. The actual text or numbers, data, to be entered in the table.

A Simple Table Example

Let’s start with a simple table like the following to show the different parts of the tbl description:

1 User console

2 Monochromatic graphics terminal

3 Color graphics terminal

4 Line printer

5 Digitizer

6 Laser printer

7 Unallocated

You can lay out this table using the following tbl requests:

.TS Table Start macro

tab (@); Options line

c l. Format line

1@User console

2@Monochromatic graphics terminal

3@Color graphics terminal

4@Line printer

5@Digitizer Table entries

6@Laser printer

7@Unallocated

.TE Table End macro

Now let’s see what these lines mean:

1. The .TS at the beginning says that a table follows.

2. The options line applies to the layout of the table as a whole. The option tab(@) means that

you will be using the @ character as a tab character when you input data to the table. Normally,

tbl expects the columns in the table to be separated by actual tabs. But it is much easier to

figure out whether you have the right number of columns if you use a visible character that is

not part of the data. This is useful in debugging a table error when the formatted data doesn’t

appear in the proper columns. The options line always ends with a semicolon (;).

3. The format section applies to the lines of data in the table. Each format line contains a key let-

ter for each column of the table. The layout of the key letters resembles the layout of actual

data in the table.

Each format line corresponds to a single line in the table. However, you can have fewer format

lines than lines in the table. In this case, the last line of the description applies to all remaining

lines of data. In our example, we have only one format line, so all lines in the table will follow

this format. For example:

c l.

means that there are two columns in each line. The first column will be centered (c), and the
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second left justified (l). The format section ends with a period at the end of the last format

line.

4. The data itself. Each line of data corresponds to one line in the table. If you have very long

input lines, they can be broken into smaller line segments. A backslash (\) at the end of a line

segment means that it continues to the next line and is part of a longer input line. Each of the

columns in our table is separated by an @ sign, which we are using in place of a tab character,

as we have specified in the options line.

5. A .TE signals the end of the table description.

Laying Out a Table

The global options line is an optional line that controls the overall appearance of the table. Normally, a ta-

ble is positioned on the left-hand side of the page. Because the table is probably part of a larger document,

you may want to center the table and enclose it in a box to make it stand out. Let’s modify the options line

in our example to produce this new layout:

.TS

center,box,tab(@); New options line
c l.

1@User console

2@Monochromatic graphics terminal

3@Color graphics terminal

etc.

When formatted, the table looks like this:

1 User console

2 Monochromatic graphics terminal

3 Color graphics terminal

4 Line printer

5 Digitizer

6 Laser printer

7 Unallocated

8 Pen plotter

9 Raster plotter

10,11,12 Unallocated

Now you know how to use three of the option names: center,box, and tab(). If you use one or

more option names, they must be separated by spaces, tabs, or commas. The options line, if present, must

immediately follow the .TS line. There are other options that you can use:

expand Make the table as wide as the current line length

allbox Enclose each item in the table in a box

doublebox Box the whole table with a double line

linesize (n) Set lines (for box, allbox, and doublebox) in n-

point type

delim (xy) Set x and y as eqn delimiters. See Chapter 9 for

information on the equation preprocessor eqn.

The difference between a table that is centered or left justified and one that is expanded is the amount

of space between columns. If you specify center or the default, the width between columns will be three

ens. If you specify expand, tbl will expand the width of the overall columns until the table is as wide as

the current margins.
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If the overall width of the table calculated by tbl is greater than the width of the text,

nroff/troff will ignore any positioning option you specify. The table will be printed as is necessary to

fit everything, even if the table runs to the edge of the paper.

The linesize option changes the width of the lines used in enclosing tables to a given point size.

Normally, the lines are 10 point. You can specify an absolute line size, such as linesize (24), to print

thicker box lines, or a relative size, such as linesize ( +14), to produce the same effect.

Let’s try one more example by enclosing all the data entries in boxes. The options line for the table

now reads:

center,allbox,tab(@);

The new table would look like this:

1 User console

2 Monochromatic graphics terminal

3 Color graphics terminal

4 Line printer

5 Digitizer

6 Laser printer

7 Unallocated

8 Pen plotter

9 Raster plotter

10,11,12 Unallocated

The tbl program isn’t very good at keeping boxed tables on one page. If you have a long table,

tbl may break it up at an awkward point (for example, placing the last line of a table on another page). To

keep a boxed table together on one page, enclose it in a .DS/.DE macro pair (in either ms or mm). Alter-

natively, you can give tbl the latitude to split a table and print each section with its own table heading

using the .TS H macro, as you will see later.

Describing Column Formats

Each column in the table is described by a key letter in the format section. Ke y letters are separated from

each other by spaces or tabs for readability. The basic set of key letters includes:

L or l Left justify the data within a column.

R or r Right justify the data within a column.

C or c Center the data within a column.

S or s Extend data in the previous column to this column (horizontal span).

N or n Align numbers by their decimal points. If there are no decimal points align them

by the units digit.

A or a Indent characters in the column from the standard left alignment by one em.

ˆ Extend entry from previous row down through this row (vertical span). Text will

be centered between the specified rows.

T or t Also vertical span, but text will appear at the top of the column instead of midway

within the specified area.

If all columns of the table follow the same format, you need only one format line for the entire table.

However, not all tables contain the same number of columns throughout. For example, you might have a

table where the upper half consists of three columns, and the lower half contains only two.
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The rule in writing format lines is to specify key letters for the largest number of columns in the table

and carry that number for all format lines. That way, if you specify three columns, and you’re using only

two, you can use two consecutive tab characters (with nothing in between) to denote an empty field for the

unused column. The longest format line defines the number of columns in the table.

Suppose you defined four columns in the first format line, and then defined only three columns in the

succeeding lines. The tbl program will still format your table, but it assumes that the undefined column is

left justified.

In the following sections, we will show some typical applications of these and other key letters to for-

mat table headings and columns of data.

Tables with Headers

You can think of a table header as an extra row of data that may or may not have the same format as the

actual data. If the format of the header is different, you must add another line at the beginning of your for-

mat section to describe the header.

For example, we’ll change the first column in the previous table to have the header Port and the sec-

ond to have the header Device, so that we get the following table.

Port Device

1 User console

2 Monochromatic graphics terminal

3 Color graphics terminal

4 Line printer

5 Digitizer

6 Laser printer

7 Unallocated

8 Pen plotter

9 Raster plotter

10,11,12 Unallocated

The relevant lines that produced this table follow:

.TS

center, box, tab(@);

c c

c l.

Port@Device

.sp

1@User console

2@Monochromatic graphics terminal

etc.

The first line of the format description (c c) says that there are two columns of data, each one centered

within each column. (Note that there is no period at the end of this line). Because this is the first line of the

format description, it applies to the first line of our data, which happens to be the table heading. This

means that the words Port and Device will be centered in each column. The second (and last) format line is

the same as in the previous example and applies to the rest of the table. Note the period at the end of this

line.

We used .sp to produce a blank line after the table header. The tbl command assumes that any

non-numeric string preceded by a dot is a troff or nroff request and passes it unchanged to the format-

ter. Thus, you can vary spacing between rows, or use other nroff/troff commands within a table.
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Tables with Spanned Headers

Our previous table now contains a header for each column. We now want to have an overall title or header

that spans the width of the table. As before, you can think of the spanned header as an extra data line with

its own format description.

We want the header to be only one column, centered across the whole table like the following.

Output Device Configuration

Port Device

1 User console

2 Monochromatic graphics terminal

3 Color graphics terminal

4 Line printer

5 Digitizer

6 Laser printer

7 Unallocated

8 Pen plotter

9 Raster plotter

10,11,12 Unallocated

Because we should keep the number of columns the same throughout the table, we use the span for-

mat option (s) to tell tbl that the entry in a preceding column continues on to the other columns. The rel-

evant portion of our table description contains the following lines:

.TS

center, box, tab (@);

c s

c c

c l.

Output Device Configuration

.sp .5v

Port@Device

.sp .5v

1@User console

etc.

We now hav e three format lines: the first describes the main header, the second describes each column

header, and the third applies to the rest of the data in the table.

Numeric and Alphabetic Columns

You can align numeric data by the decimal point or the units digit using the key letter n in the format line.

When you use n, numbers in a column will be aligned as follows:

23.6

155

98.08.6

5.26

12798

0.2365

980.

You should never enter non-numeric data in a column that is designated as n. On the other hand, you

can enter numbers in columns that are aligned using any of the other key letters. The numbers will just be

treated as if they were ordinary alphabetic characters. Thus, a column of numbers might also be centered,
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left justified, or right justified.

You should also avoid putting equations in numeric columns because tbl attempts to split numeric

format items into two parts. To prevent this from happening, use the delim (xy) global option. For exam-

ple, if the eqn delimiters are $$, a delim ($$) option causes a numeric column such as:

79.909 $+- .157$

to be divided after 79.909 and not after .157.

Columns designated as a are always slightly indented relative to left-justified columns. If necessary,

tbl increases the column width to force this. Data in an a format is positioned so that the widest entry is

centered within the column.

A note about n and a: when you have sev eral command lines, do not use both n and a to format dif-

ferent rows in the same column. For example, the format lines:

r n r

r a r

are not allowed. This is because n and a share the same number register location in nroff/troff’s

memory.

The special nonprinting character string \& may be used to override the normal alignment of numeric

or alphabetic data. For example, if you use \& before a digit, then the digit will line up with the decimal

point and \& will not appear in the output. The effect of \& is as follows.

Input Form Output

9.65 9.65

12.4.8 12.4.8

15.\&7.32 15.7.32

2\&0.9.19 20.9.19

processor processor

half half

half\& half

Vertically Spanned Columns

Let’s see how the vertical span key (ˆ) is used in a table like the following.

kcal/

gram mol. wt.
Fuel Substance

Hydrogen 68.4

Methane 211

Butane 680

Ethane 368

Gases

Benzene 782

Ethyl alcohol 328

Methyl alcohol 171

Liquids

The tbl description for this table is:

.TS

tab(@);

c c c

ˆ ˆ c

l l n.

Fuel@Substance@kcal/
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@@gram mol. wt.

.sp

Gases@Hydrogen@68.4

\ˆ@Methane@211

\ˆ@Butane@680

\ˆ@Ethane@368

.sp

Liquids@Benzene@782

\ˆ@Ethyl alcohol@328

\ˆ@Methyl alcohol@171

.TE

There are three lines in the format section: the first two describe the column headings, and the last describes

the format of the data.

We can imagine the first line of the header as consisting of the words Fuel Substance kcal/ and the

second line as Fuel Substance gram mol. wt. The words Fuel Substance don’t actually appear twice, but

are centered relative to the two lines that form the third column header. We use the caret key (ˆ) in the

second format line to tell tbl that these two column names vertically span their respective columns. Note

the first two data lines that correspond to the first two format lines.

We could have also used the same approach to describe the rest of the data, but this would mean writ-

ing seven more format lines, one for each of the lines of data. The table really has three columns with the

same format throughout, so you can use just one format line to describe all of them. Then you can enter the

characters \ˆ in place of a column entry to tell tbl that the entry in the previous row for that column verti-

cally spans this row also.

You can use the ˆ key letter in the format section and at the same time enter \ˆ in the data section as

we did previously. You don’t lose anything by doing this and tbl doesn’t complain.

Another way of describing a vertically spanned column is by using the key letter t (or T) in the for-

mat line. Any corresponding vertically spanned item will begin at the top of its range. Thus, if we specify

t instead of ˆ in the format line, the words Fuel and Substance will be in line with kcal/.

Drawing Lines in Tables

Horizontal rules are specified by underscores and by equal signs entered between the appropriate lines of

data. An underscore on a line by itself entered between two rows of data produces a single rule running the

whole width of the table. An equal sign on a line by itself produces a double rule.

If you want a horizontal rule to be only as wide as the contents of the column, enter an underscore or

equal sign in that column as part of the data. The underscore or equal sign must be separated from the

other columns by tabs or the tab character we’ve specified in the options line. To print these characters

explicitly, they should be preceded by a \& or followed by a space before the usual tab or newline charac-

ter.

You can also use these two characters in place of a key letter in the format line. If an adjacent col-

umn contains a horizontal or vertical line, the horizontal line is extended to meet nearby lines. If you enter

any data in this column, the data will be ignored and you will get a warning message. The following table

has a fairly complicated heading:

1984 (Jan.-July)

1984/1983

(%)
Items Units

TV 3,889,543 145.7

Color 2,766,004 110.7

B/W 1,123,539 12.5
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The tbl description for this table looks like this:

.TS

center,box,tab(@);

c s s

c c _

ˆ ˆ | c

ˆ ˆ | c

l r n.

1984 (Jan.-July)

Items@Units

@@1984/1983

@@(%)

_

TV@3,889,543@145.7

Color@2,766,004@110.7

B/W@1,123,539@12.5

.TE

As you can see from the preceding description, vertical lines are drawn by specifying bars within the format

lines. A single vertical bar between two key letters draws a single vertical line between those two columns

in the table. You can enter the bar after the first key letter or before the second key letter. A vertical bar to

the left of the first key letter or to the right of the last one produces a vertical line at the edge of the table.

Tw o vertical bars (||) draw a double rule.

These characters are really more useful for drawing lines inside the table rather than for manually

enclosing a table in a box because there are global options that automatically do this. To draw vertical and

horizontal lines in our table “Fuels,” we modify the relevant format and data lines as follows:

c | |c |c

ˆ | |ˆ |c

l | |l |n.

Fuel@Substance@kcal/

@@gram mol. wt.

=

Gases@Hydrogen@68.4

etc.
_

Liquids@Benzene@782

etc

This input produces the following table:

kcal/

gram mol. wt.
Fuel Substance

Hydrogen 68.4

Methane 211

Butane 680

Ethane 368

Gases

Benzene 782

Ethyl alcohol 328

Methyl alcohol 171

Liquids

Changing Fonts and Sizes

The tbl program assumes that the table is always set in roman type. However, you can always change the

typeface of all entries in a column to italic or boldface. You can add one of the following letters after the

column key letter:

fb fB b B Boldface
fi fI i I Italic
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fcw fCW cw CW Constant width

If you want to change the font of only some of the entries, you should use explicit nroff/troff requests

rather than specifying the font in the format line. For example, let’s change the headers in the previous ta-

ble to boldface and the words Gases and Liquids to italic. The format lines would look like this:

c | |cB |cB

ˆ | |ˆ |cB

l | |l |n.

Gases will be written as \fIGases\fR and Liquids as \fILiquids\fR. The effect would be as fol-

lows:

kcal/

gram mol. wt.
Fuel Substance

Hydrogen 68.4

Methane 211

Butane 680

Ethane 368

Gases

Benzene 782

Ethyl alcohol 328

Methyl alcohol 171

Liquids

The type size in which headings and data are printed is normally 10 points. You can also change the

size of the type by using the key letter p and an absolute or relative point size. To specify a change in size

relative to the existing point size, use a + or - before the value. For example, a column specification of

cp12 or cp+2 will both result in a centered column using 12-point type.

Changing the Column Width

When you’re not using the expand option, the normal spacing between any two columns is three ens. You

can change the spacing by specifying a numeric value between the key letters representing those columns.

The number specifies the separation in ens. When you’re using the expand option and you specify a col-

umn space, the number is multiplied by a constant such that the table is as wide as the current line length.

If you don’t want any spaces between the columns, simply write 0, as in:

r0 l

which yields:

Hydrogen68.4

Methane211

Butane680

These spacings are only nominal spacings. The data may be so irregular in length that no two col-

umns will actually appear to be separated by the specified distance. However, varying the amount of sepa-

ration between two columns still leaves tbl free to make each column as wide or as narrow as is neces-

sary.

You can specify a minimum width for any column by entering the letter w (or W) after the key letter,

followed by the desired width in parentheses. You can use any unit of measurement recognized by

nroff/troff when specifying a width dimension. You can also enter a value without a unit of measure-

ment, in which case tbl assumes the value is in ens. Thus the format:

rw (15)

specifies a column that is 15 ens wide with the text right justified within the column, and:

lw(2.25i)
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specifies a left-justified column that is 2.25 inches wide.

You can also force tbl to make the width of particular columns equal by using the letter e (or E)

after the key letter for those columns. This allows a group of regularly spaced columns.

To show that tbl can be used for any text that needs to be laid out in columns (as opposed to tables),

we can print the following text:

Signature

August 31, J. White K. Kimura

1987

using this tbl description:

.TS

expand, tab(@);

c c c

cew(1.3i) ce ce.

Signature@@

\_@\_@\_

August 31,@J. White@K. Kimura

1987@@

.TE

In the last format line, we specified that all three columns be 1.3i wide. Because all columns will be of

equal width, we need to specify the width only once.

Other Key Letters

We already showed you some of the more widely used key letters. Additional features that can be used

with the basic set of key letters are:

V or v Used with a number to indicate the vertical line spacing used within a table entry.

Used only with text blocks (discussed in a later section).

U or u Move the corresponding entry up by one-half line to produce staggered columns.

This doesn’t work with the allbox global option.

Z or z Ignore the data entry in calculating column width. This is useful in allowing head-

ings to run across adjacent columns where spanned headings might be inappropri-

ate.

Ke y letters for a column can be written in any order. They do not need to be separated, except when

you specify both a point size (p) and a column separation number. Thus, a numeric column entered in bold

18-point type with a minimum column width of 1.5 inches and separated from the next column by 12 ens

can be written as:

np18w(1.5i)B 12

Tw o or more format lines can also be written on one line by separating them with commas. For example,

the format lines:

c c c

l l n.

can be written as:

c c c, l l n.
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Changing the Format within a Table

All our examples so far have shown tables that consist of somewhat complicated headings followed by

identical rows of data. Thus, we can keep the number of format lines comparatively small. This may not

be the case when a table is divided into sections, each of which has its own heading. Let’s look at the fol-

lowing table (from AT&T’s Documenter’s Workbench Text Formatter’s Reference):

Horizontal Local Motions

Effect in

troff nroff
Function

\h’N’ Move distance N

\(space) Unpaddable space-size space

\0 Digit-size space

\| 1/6 em space ignored

\ˆ 1/12 em space ignored

It has both a main header and column headers. The body of the table is divided into two parts. The

upper part contains two columns, and the lower part contains three. To format each part correctly, we must

enter a command line for each row of data so that tbl can keep track of which rows of the table have

which format. This process is tedious and prone to error. Fortunately, tbl has a way around this.

To change the format of columns within a table, tbl has the table continue request .T&. We can

change the format of a table at any time by entering .T& followed by the new format line(s) and the addi-

tional data. The general format for the tbl description is as follows:

.TS

option line;
format section.
data
.T&

new format section.
data
.T&

another new format section.
data
.TE

There are two things we cannot change after a .T& request: the global options line and the number of col-

umns specified. Our original options line holds for the entire table.

Let’s see how we can use the .T& request to produce the previous table:

.TS

center,box,linesize (6),tab(@);

cB s s.

Horizontal Local Motions

_

.T&

cI | cI s

cI | cI s

cI | cI | cI

c | l s.

Function@Effect in

\eˆ@_

\eˆ@troff@nroff

_

\eh’N’@Move distance N

\e(space)@Unpaddable space-size space

\e0@Digit-size space

_

.T&
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c | l | l.

\e|@1/6 em space@ignored

\eˆ@1/12 em space@ignored

.TE

We take the largest number of columns in the table, which is three. We hav e two .T& requests to break up

the table into three parts with their own format sections. The first part applies to the main header only. The

second describes the column headers and the three-column segment of the table. Finally, the lower part

applies to the last part of the table.

Although you can have hundreds of lines in a table, tbl uses only the first 200 lines to set up the ta-

ble. Any format changes you make after the 200th line will not be processed by tbl. In this case, you

should break up the table into smaller table segments.

Should you specify .TS H but forget to follow it with .TH, some strange things will happen. One

recent instance of this caused the table to be output in a nearly endless succession of pages. (In troff

terms, a diversion created to capture the table heading filled up with the table instead; this caused the first

page break that triggered the output of the diversion at the top of the next page; each time the diversion was

output, it caused a new page break and the diversion was output again).

Putting Text Blocks in a Column

Some tables consist of column entries that cannot be conveniently typed as a simple string between tabs.

Descriptive tables, for example, require ordinary flowing text justified between the margins of the specific

column in which it appears in the table. These section of flowing text are called text blocks.

Each block of text is preceded by a T{ and followed by a T}. The T{ marker must be at the end of a

line, and the T} must be at the start of a line:

...T{

Block of
text
T}...

When a text block is included in a row that contains other columns of data or text, the T{ that marks the

beginning of the text block must appear at the end of the line in the text. Even a single blank space follow-

ing the T{ will cause the table to fail. Likewise, the T} symbol must always begin the line:

... Data@T{
Block of
text
T}@data ...

This makes it easy for you to revise text when necessary and also allows you to insert any special

nroff/troff commands before or after the text block.

Let’s lay out the following table:
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Some Pattern-Matching Characters in vi

Special Characters Usage

. Matches any single character except newline.

* Matches any number (including zero) of the single char-

acter (including a character specified by a regular expres-

sion) that immediately precedes it.

[...] Matches any one of the characters enclosed between the

brackets. A range of consecutive characters can be speci-

fied by separating the first and last characters in the range

with a hyphen.

$ Requires that the preceding regular expression be found at

the end of the line.

\{n,m\} Matches a range of occurrences of the single character

(including a character specified by a regular expression)

that immediately precedes it. n and m are integers

between 0 and 256 that specify how many occurrences to

match.

The tbl description of this table is:

.TS

box,tab(@);

cb s

cI| cI

cw(1.25i) | lw(3.25i).

Some Pattern-Matching Characters in \fIvi\fR

_

Special Characters@Usage

_

\fI.\fR@Matches any single character\

except \fInewline\fR.

*@T{

Matches any number (including zero) of the

single character (including

a character specified by a regular expression)

that immediately precedes it.

T}

[...]@T{

Matches any \fIone\fR of the characters enclosed

between the brackets.

A range of consecutive characters can be

specified by separating the

first and last characters in the range with a hyphen.

T}

$@T{

Requires that the preceding regular

expression be found at the end of the line.

T}

\{\fIn,m\fR\}@T{

Matches a range of occurrences of the

single character (including a

character specified by a regular expression)

that immediately precedes
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it. \fIn\fR and \fIm\fP are integers between

0 and 256 that specify how many occurrences to match.

T}

.TE

What might confuse you about this source text is that each block of text occupies two or more lines. Just

think of everything that comes between a T{ and a T} as a single entry that occupies a single column in

that row. It is separated from its neighbors by tabs. If you keep track of the tabs, you will be able to sort

out quite easily the sequence of columns.

In the previous description, we specified a minimum width for each column. If a width is not given,

tbl uses the default:

L * C/(N+1)

where L is the current line length, C is the number of table columns spanned by the text, and N is the total

number of columns in the table. It is sometimes better to define a column width because tbl might make

the table too narrow by default.

You can also use the nroff/troff commands .na and .ad to left justify text blocks if the output

doesn’t come out fully justified. The tbl description would be:

... T{

.na

Block of
text
.ad

T}

The nroff and troff formatters can accept only about twenty or thirty small text blocks in a table with-

out exceeding certain internal limits. If the limits are exceeded, you will get error messages like “too many

string/macro names” or “too many number registers.”

In this case, you should divide the table into two or more independent tables, each with its own .TS

and .TE requests. The final formatted sections can be “joined” and made to appear as one table by insert-

ing minus .sp requests (such as .sp -12p) between the sections. This will cause the formatter to draw

them together.

You can also change the vertical line spacing within a text block using a key letter followed by v (or

V) and a number. The number may be a signed digit and is taken as an increase or decrease from the cur-

rent vertical spacing.

Breaking Up Long Tables

If you have a very long table that will fill many pages, it might be helpful to break up the table into several

smaller ones, with the main heading reproduced at the top of each page. Then the reader doesn’t hav e to

keep returning to the first page to see what the columns indicate. The tbl program also automatically

breaks a boxed table if it runs over one page.

You can use the .TS H and .TH macros to reproduce the original heading at the top of each page of

the table:

.TS H

options;
format section.
main header
.TH

data
.TE

The .TH ( table header) macro is a feature of the ms macro package (not tbl). This macro can take the

letter N as an argument; this causes the table header to be printed only if it is the first table header on a

page. This is useful when you have to build a long table from smaller .TS H/.TE segments. For exam-

ple:
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.TS H

global options;
format section.
main header
.TH

data
.TE

.TS H

global options;
format section.
main header
.TH N

data

.TE

This causes the table header to appear at the top of the first table segment. The header will not appear on

top of the second segment when both segments appear on the same page. If the table continues to another

page, the heading will still appear at the top of the new page. This feature is useful when breaking a long

complex table into segments.

Putting Titles on Tables

The mm macro .TB can be used to automatically number and title a table. All tables with .TB are num-

bered consecutively. The title is centered above the table if it can fit on one line. If the title is longer than

one line, all succeeding lines of the title are indented to line up with the first character of the title. The .TB

macro is normally used inside a .DS/.DE pair.

The .TB macro is not part of tbl. Thus, it can be used to generate titles or headers for tables that

are created using only tabs and none of the tbl commands. The general format of the .TB macro is:

.TB [title] [n] [flag]

where n is used to override the normal numbering. The flag option can take one of the following values:

0 n is used as a prefix to the normal table number
1 n is used as a suffix to the normal table number
2 n replaces the normal table number

If you put the .TB macro before the .TS macro, the title is placed above the table. You can also put the

title below the table by using the .TB macro after .TE.

For example, we can modify one of our tables by adding a title and labeling it as Table 5. We add the

following lines before the .TS:

.DS

.TB "Horizontal Local Motions" "5" "2"

.sp

And we add a .DE after the .TE. The table now looks like this.

Table 5. Horizontal Local Motions

Effect in

troff nroff
Function

\h’N’ Move distance N

\(space) Unpaddable space-size space

\0 Digit-size space

\| 1/6 em space ignored

\ˆ 1/12 em space ignored

Another useful mm macro is the .TC macro. The .TC macro is placed at the end of the file. When

the file is formatted, .TC collects the titles of tables that were generated using .TB for the table of
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contents. Thus, if we had used .TB to put headers in our examples, the table of contents might look like

this:

LIST OF TABLES

TABLE 1. Production of Audio Equipment........2

TABLE 2. Output Device Configuration...........14

TABLE 3. Heating Value of Fuels.....................17

A tbl Checklist

Most table formatting errors come from specifying too few columns in the format section, forgetting a tab

character between column entries in a table, or omitting one or more of the characters that tbl expects in a

table description. After you’ve finished laying out a table, check that you have the following:

• a .TS with a .TE

• a .TH with a .TS H

• a semicolon at the end of the options line (if there is one)

• a period at the end of the last format line (including format sections with a .T&)

• in the format section, an item for each column and a format line for each line of the table

• a tab symbol for each column in each line of the table, except for the first column when hori-

zontally spanning, and within text blocks

• for text blocks, a T{ with every T}

• no extra blanks after:

any .TS, .TE, .TS H, .TH, or .T&

the end of the options and format lines

any T{ or T}

• no periods at the beginning of any “data” text lines (add a \& before the period, if necessary)

• a space after each table entry of _ and = unless you want the lines to extend across the column

Some Complex Tables

Surely, the best way to learn more about tbl is to study tables of greater complexity than the ones we’ve

looked at so far. The tbl article by M.E. Lesk in the UNIX Programmer’s Manual provides many fine

examples of difficult tables. Look at the formatted tables and try to “break” the code that produced them.

In this section, you’ll find two complicated tables followed by the tbl input for you to decipher.

The weight table shown in Figure 8-1 is taken from a manual that describes the safe operation of

mobile cranes. This table was coded by an associate, Daniel Gilly, over sev eral hours. The code is listed in

Figure 8-2. Look at how the vertical line indicator (|) is used between entries to draw a line at the end of

each column. Note also the use of the alphabetic (a) format specification to produce indented text.

The financial table shown in Figure 8-3 is adapted from a prospectus prepared by troff users at a

large New York law firm. The code for this table is listed in Figure 8-4. Note the use of a leader character

(\a) in the first entry, coupled with a fixed width specification for the first column, to produce leaders that

fill out the column. Also, notice how the table headings are printed in a smaller point size than the rest of

the table, using the format specification (p8).
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WEIGHTS OF MATERIALS (Based On Volume)

Approx. Approx.

Weight, Weight,

Lbs. Per Lbs. Per

Cubic Foot Cubic Foot

Material Material

METALS TIMBER, AIR-DRY

Aluminum 165 Cedar 22

Brass 535 Fir, Douglas, seasoned 34

Bronze 500 Fir, Douglas, unseasoned 40

Copper 560 Fir, Douglas, wet 50

Iron 480 Fir, Douglas, glue

Lead 710 laminated 34

Steel 490 Hemlock 30

Tin 460 Pine 30

MASONRY Poplar 30

Ashlar masonry 140-160 Spruce 28

Brick masonry, soft 110 LIQUIDS

Brick masonry, com- Alcohol, pure 49

mon (about 3 tons Gasoline 42

per thousand) 125 Oil 58

Brick masonry, pressed 140 Water 62

Clay tile masonry, EARTH

av erage 60 Earth, wet 100

Rubble masonry 130-155 Earth, dry (about 2050

Concrete, cinder, lbs. per cu. yd.) 75

haydite 100-110 Sand and gravel, wet 120

Concrete, slag 130 Sand and gravel, dry 105

Concrete, stone 144 River sand (about 3240

Concrete, stone, lbs. per cu. yd.) 120

reinforced (4050 lbs. VARIOUS BUILDING

per cu. yd.) 150 MATERIALS

ICE AND SNOW Cement, Portland, loose 94

Ice 56 Cement, Portland, set 183

Snow, dry, fresh fallen 8 Lime, gypsum, loose 53-64

Snow, dry, packed 12-25 Mortar, cement-lime,

Snow, wet 27-40 set 103

MISCELLANEOUS Crushed rock (about

Asphalt 80 2565 lbs. per

Tar 75 cu. yd.) 90-110

Glass 160

Paper 60

Figure 8.1 A Complex Table

.ps 8

.vs 10

.TS

center,box,tab(@);

cb s s s

c|c|c|c

ˆ|c|ˆ|c

ˆ|c|ˆ|c

ˆ|c|ˆ|c.

WEIGHTS OF MATERIALS (Based On Volume)

_

Material@Approx.@Material@Approx.

@Weight,@@Weight,

@Lbs. Per@@Lbs. Per

@Cubic Foot@@Cubic Foot

_

.sp .5

.T&

lb|c|lb|c.
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METALS@@TIMBER, AIR-DRY@

.T&

a|c|a|c.

Aluminum@165@Cedar@\022

Brass@535@Fir, Douglas, seasoned@\034

Bronze@500@Fir, Douglas, unseasoned@\040

Copper@560@Fir, Douglas, wet@\050

Iron@480@Fir, Douglas, glue@

Lead@710@\0\0laminated@\034

Steel@490@Hemlock@\030

Tin@460@Pine@\030

.T&

lb|c|a|c.

MASONRY@@Poplar@\030

.T&

a|c|a|c.

Ashlar masonry@140-160@Spruce@\028

.T&

a|c|lb|c.

Brick masonry, soft@110@LIQUIDS@

.T&

a|c|a|c.

Brick masonry, com-@@Alcohol, pure@\049

\0\0mon (about 3 tons@@Gasoline@\042

\0\0per thousand)@125@Oil@\058

Brick masonry, pressed@140@Water@\062

.T&

a|c|lb|a.

Clay tile masonry,@@EARTH@

.T&

a|c|a|c.

\0\0average@\060@Earth, wet@100

Rubble masonry@130-155@Earth, dry (about 2050@

Concrete, cinder,@@\0\0lbs. per cu. yd.)@\075

\0\0haydite@100-110@Sand and gravel, wet@120

Concrete, slag@130@Sand and gravel, dry@105

Concrete, stone@144@River sand (about 3240@

Concrete, stone,@@\0\0lbs. per cu. yd.)@120

.T&

a|c|lb|c.

\0\0reinforced (4050 lbs.@@VARIOUS BUILDING@

\0\0per cu. yd.)@150@\0\0MATERIALS@

.T&

lb|c|a|c.

ICE AND SNOW@@Cement, Portland, loose@\094

.T&

a|c|a|c.

Ice@\056@Cement, Portland, set@183

Snow, dry, fresh fallen@\0\08@Lime, gypsum, loose@53-64

Snow, dry, packed@12-25@Mortar, cement-lime,@

Snow, wet@27-40@\0\0set@103

.T&

lb|c|a|c.

MISCELLANEOUS@@Crushed rock (about@

.T&

a|c|a|c.

Asphalt@\080@\0\02565 lbs. per@

Tar@\075@\0\0cu. yd.)@90-110

Glass@160@@

Paper@\060@@

.sp .5

.TE

Figure 8.2 Input for Figure 8-1
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Year Ending December 31

1986 1985 1984 1983

(Dollars in millions)

Premiums .............................................. $ 10,922.7 $ 10,330.7 $ 9,252.4 $ 9,071.8

Investment income................................ 3,671.7 3,146.0 2,749.7 2,308.9

Federal income taxes ............................ 24.4 91.6 71.9 20.8

Operating income ................................. 359.8 346.1 342.6 309.6

Realized gains (losses) ......................... 15.4 27.0 (30.2) (15.2)

Net income ........................................... 375.2 373.1 312.4 295.8

Cash provided by operations ................ 4,123.2 3,560.8 3,514.9 3,067.4

Assets ................................................... 41,645.8 34,434.7 32,876.6 27,987.6

Figure 8.3 Financial Table

.TS

expand, tab(@);

lw(13P) cbp8 s s s

lw(13P) c s s s

lw(13P) cbp8 cbp8 cbp8 cbp8

lw(13P) cbp8 s s s

lw(13P) n n n n.

@Year Ending December 31

.sp .2v

@_

@1986@1985@1984@1983

@(Dollars in millions)

.sp .5v

Premiums\a@$\010,922.7@$\010,330.7@$\0\09,252.4@$\0\09,071.8

Investment income\a@3,671.7@3,146.0@2,749.7@2,308.9

Federal income taxes\a@24.4@91.6@71.9@20.8

Operating income\a@359.8@346.1@342.6@309.6

Realized gains (losses)\a@15.4@27.0@(30.2)@(15.2)

Net income\a@375.2@373.1@312.4@295.8

Cash provided by operations\a@4,123.2@3,560.8@3,514.9@3,067.4

Assets\a@41,645.8@34,434.7@32,876.6@27,987.6

.TE

Figure 8.4 Input for Figure 8-3





Chapter 9

Typesetting Equations with eqn

Typesetting mathematical equations has always been a problem for users who have a limited knowledge of

mathematics or typesetting. This is because mathematical expressions are often a mixture of standard text

and special characters in different point sizes. For example, the equation:

∞

i=0
Σ ci =

m→∞
lim

m

i=0
Σ ci

requires three special characters (Σ, ∞, and →) and roman and italic characters in two different sizes.

Expressions also may require horizontal and vertical printing motions (as in subscripts and superscripts).

You could code this example using troff requests, but the syntax for describing the printing

motions, sizes, and fonts are difficult to learn and difficult to type in correctly. UNIX has formatting tools

specifically designed for documents containing mathematical symbols—the programs eqn and neqn. The

eqn program is a preprocessor for troff; neqn is a preprocessor for nroff.

With eqn you can typeset both inline equations and equations that are set off from the body of the

text like the example shown. It takes an English-like description of a mathematical equation and generates

a troff script. You don’t need to understand what you are typing.

The eqn preprocessor was designed to be easy to learn and even easier to use. This implies that nor-

mal mathematical conventions such as operator precedence and parentheses cannot be used. Nor does eqn

assume that parentheses are always balanced, or that an expression is better written in another form. There

are only a few rules, keywords, special symbols, and operators to remember. If something works in one sit-

uation, it should work everywhere.

This section shows you how to typeset mathematical equations using a set of special words that

belong to the eqn vocabulary. With eqn, you can format the following quite easily:

• the Greek alphabet

• special symbols, such as summations (Σ), products (Π),integrals (∫ ), and square roots (√ )

• positional notation, such as subscripts and superscripts, fractions, matrices, and vertical piles

• diacritical marks

• sizes and fonts

• horizontal and vertical spacing

You can even define a string that appears repeatedly throughout the document so that you do not need to

type it in each time it appears.

A Simple eqn Example

To best illustrate how eqn works and how easy it is to learn the syntax, let’s take a simple example:

a2

b

If you were to read this mathematical expression aloud to another person, you might say “a sub 2 over b.”

This is exactly how you would describe the expression to eqn. The word sub denotes a subscript; the

word over denotes a fraction. You will see the other words that eqn treats as special (i.e., that belong to

the eqn vocabulary) as we move along in this section.

191



192 Unix Text Processing

When you use eqn, it assumes that you have a two-dimensional picture of how the equation should

appear in the document. The key in writing the eqn description is to familiarize yourself with the special

words used by eqn in printing mathematical characters. Then, describe the equation as if you were reading

it aloud to another person.

The eqn preprocessor takes care of the standard things that you would expect to happen automati-

cally, such as printing superscripts and subscripts in an appropriately smaller size, and adjusting the length

and size of fraction bars. Following mathematical convention, variables are made italic, parentheses, opera-

tors, and digits are made roman, and normal spacing is automatically adjusted to make the expression look

better.

Using eqn

The eqn preprocessor is used not only for typesetting equations, but also for typesetting nontechnical doc-

uments. For example, many documents contain subscripted or superscripted words. Using eqn can be eas-

ier than formatting the subscript or superscript using troff commands.

To format a document with eqn, you would enter:

$ eqn /usr/pub/eqnchar files | troff [options]

You can then pipe the output to the desired printer. The file /usr/pub/eqnchar contains definitions of

additional special characters that can be used by eqn. It is not essential that you use it, but you may get

better results with certain equations if you do.

If you use eqn with the tbl preprocessor to print tables containing mathematical expressions,

invoke tbl before eqn to minimize the data passed through the pipe:

$tbl /usr/pub/eqnchar file | eqn | troff

If you are using nroff instead of troff, you can get a reasonable approximation of eqn output by using

neqn. Howev er, printers used with nroff may be unable to print many of the special characters used in

equations.

Specifying Equations

Mathematical documents contain both displayed equations and standard text mixed with mathematical

expressions. The eqn preprocessor allows you to typeset both forms.

Displayed Equations

For equations that appear outside the body of the text, mark the beginning of each equation with an .EQ

and the end with an .EN. Note that these delimiters may or may not also be defined as macros. They are

recognized by eqn as flags to begin and end processing.

If they are not defined as macros by the package you are using, you can define them yourself, or can

simply supplement them with troff requests (such as .ce to center the equation) as desired.

If you are using the ms macro package, .EQ and .EN are defined as macros, and the equation is cen-

tered by default. Thus, if you type:

.EQ

C=Ax+By

.EN

the output will be:

C = Ax + By
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In ms, you can also left justify the equation using .EQ L or indent it using .EQ I. You can further

specify an arbitrary equation number or label that will be printed at the right margin. For example, the

lines:

.EQ I (13a)

C=Ax+By

.EN

produce the following:

C = Ax + By (13a)

The mathematical symbols +, -, = and () are typed in just as they appear in the equation.

If you’re using the mm macro package, put the .EQ/.EN pair inside a .DS/.DE pair so that the for-

mat looks like this:

.DS

.EQ

equation
.EN

.DE

This automatically centers the displayed equation. You can also use a break producing request (such as

.br or .sp) immediately following the .DS macro but before the .EQ macro to display the equation at

the left margin of the text.

Inline Expressions

If you are using ms or mm, .EQ and .EN imply a displayed equation and so cannot be used for short inline

expressions. But eqn provides a shorthand notation for displaying this type of expression. You can define

any two characters as delimiters to mark the beginning and end of an inline equation, and then type the

expression right in the middle of the text. To do this, define the equation delimiters within an .EQ and an

.EN at the beginning of your file.

For example, to set both delimiters to #, add the following lines:

.EQ

delim ##

.EN

If you’re using mm, do not use the .DS/.DE pair to enclose a .EQ/.EN pair that only defines the

delimiters for inline equations. If you do, extra blank lines will appear in the output.

Do not use braces ({}), a circumflex (ˆ), a tilde (∼), or double quotation marks (") as delimiters

because these have a special meaning to eqn. Choose characters that you are unlikely to use within any

equation in the document. After you have defined your delimiter, you can begin using it within a line of

text as in the following example:

The possible prices of an ice cream cone in cents are

#y sub 1 = 75#, #y sub 2 = 85#, and #y sub 3 = 95#.

This produces the line:

The possible prices of an ice cream cone in cents are
y1 = 75, y2 = 85, and y3 = 95.

The eqn program leaves enough room before and after a line containing inline expressions with fractions

or large characters so that they don’t interfere with the surrounding lines.

To turn off the delimiters, use:

.EQ

delim off

.EN

Throughout this section, we will use the delimiters ## in our eqn examples. However, we will typically

show the results as a displayed equation.
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Spaces in Equations

You may have noticed in the previous example that the word sub is surrounded by blanks, and the sub-

script is separated from the = sign with a blank. Spaces and new lines are used to tell eqn that certain

words belong to the eqn vocabulary and deserve special treatment. The spaces and new lines that you type

in the input equation do not appear in the printed output.

For example, all of the following equations:

#C=Ax+By#

#C = Ax + By#

#C= A x +

By#

produce the same output:

C = Ax + By

Note that the spaces and newlines were ignored by eqn.

You should use spaces as freely as possible to break up more complex equations and make your input

more readable and easier to edit. Remember that any spaces or newlines you enter within an equation are

not printed out. This is often a point of confusion for new users. If your equation doesn’t turn out the way

it should, chances are you missed typing in a space somewhere. A useful rule of thumb is: when in doubt,

use a space.

Printing Spaces in the Output

You may want to fine-tune the printed appearance of an equation by adding spaces between groups of

terms. If you want to print spaces in the output, use a tilde (∼) for each space. A circumflex (ˆ) giv es a

space half the width of a tilde. For example:

#C∼=∼Ax∼+∼By#

yields:

C = Ax + By

and:

#Cˆ=ˆAxˆ+ˆBy#

yields:

C = Ax + By

You can also use tabs to separate parts of an equation, but the tab stops must be set by the troff .ta

request. For example:

.ta 1i 1.5i 2i 2.5i

.EQ

x sub 1

+x sub 2

+s sub 1

=10

.EN

.EQ

-2x sub 1

+s sub 1

=42

.EN

yields:

x1 +x2 +s1 = 10
−2x1 +s1 = 42
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(Note that each equation must have its own pair of .EQ/.EN delimiters). Another way of aligning equa-

tions uses the eqn words mark and lineup, as you will see later.

Subscripts and Superscripts: A Common Use

Perhaps the most common application of eqn is in generating subscripts and superscripts within a line of

text or a table. As you have seen in previous examples, subscripts are denoted by the word sub. Super-

scripts are designated by sup. For example:

#y sub 1 = x sup 2ˆ+ˆ1#

yields:

y1 = x2 + 1

There are two simple rules to remember in writing subscripts and superscripts:

1. Put at least one space or space delimiter (such as ˆ or ∼) before and after the words sup and

sub.

2. Leave at least one space or space delimiter after the subscript or superscript.

Let’s see the effect on the output when you omit necessary spaces. For example:

#y sub 1 =x sup2ˆ+ˆ1#

yields:

y1 = xsup2 + 1

and

#y sub 1 =x sup 2+ˆ1#

yields:

y1 = x2+ 1

If you don’t leave a space after sub or sup (as in the first example), eqn will not recognize them as spe-

cial words, and so will not produce a subscript or superscript. Also, if you don’t leave a space after the sub-

script or superscript, eqn thinks that the character(s) following it are still part of the subscript or super-

script. This is a very common mistake made by new users.

You can also write subscripted subscripts and superscripted superscripts. If a superscript and sub-

script both appear for the same item, sub should come before sup. Therefore:

#a sub k sup 2#

yields:

a2
k

Reversing the order of the words:

#a sup 2 sub k#

yields:

a2k

Some equations also require you to type chemical symbols like:

2 He4

Because sup technically means a superscript on something, you must use a placeholder (a pair of double

quotation marks) before the word sup and write this expression as:

#"" sup 2 He sub 4#
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Using Braces for Grouping

Normally, you would use a blank or a space delimiter to signal the end of a subscript or superscript. But if

your subscript or superscript consists of two or more characters or words separated by blanks, or if you are

writing nested subscripts or superscripts, this will not work. In this case, use braces to mark the beginning

and end of your subscript or superscript.

For example, the line:

#r sub {i=5;t=10ˆyears}#

yields:

ri=5;t=10 years

In contrast, this line without the braces:

#r sub i=5;t=10ˆyears#

yields:

ri=5;t=10 years

In the first example, we used braces to force eqn to treat the string:

i=5;t=10 years

as a subscript. Use braces to make your intent perfectly clear whenever you are unsure of how eqn will

treat the equation. You can also use braces within braces, as in the line:

#e sup {i sup {k+1}}#

which yields:

eik+1

Make sure that a left brace always has a corresponding right brace.

If you have to print braces in your document, enclose them in double quotation marks like "{" and

"}".

Special Character Names

In many mathematical equations, you use the Greek alphabet to define variables. To print Greek letters,

spell them out in the case that you want. For example, delta produces δ , and DELTA gives ∆. Thus, you

only need to spell out the character π , as in:

#pi r sup 2#

to print:

π r2

Note that special names don’t exist for all uppercase Greek letters, such as ALPHA or ETA, because

they are identical to the equivalent English letters. See Table 9-1 for a list of Greek letters.
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Table 9.1 Names for Greek Letters

Name Character Name Character

DELTA ∆ iota ι

GAMMA Γ kappa κ

LAMBDA Λ lambda λ

OMEGA Ω mu µ

PHI Φ nu ν

PI Π omega ω

PSI Ψ omicron ο

SIGMA Σ phi φ

THETA Θ pi π

UPSILON ϒ psi ψ

XI Ξ rho ρ

alpha α sigma σ

beta β tau τ

chi χ theta θ

delta δ upsilon υ

epsilon ε xi ξ

eta η zeta ζ

gamma γ

A common mistake is to forget to put a space around the Greek name. For example, typing:

#f(theta)#

yields:

f (theta)

and not:

f (θ )

which is what we want. Because there are no spaces surrounding the word theta, eqn doesn’t recognize

it as a special word.

You can also use troff four-character names for characters, as in the description:

#c = a \(pl b#

which yields:

c = a + b

Special Symbols

The eqn program recognizes the sequences in Table 9-2 as belonging to the eqn vocabulary, and translates

them to the appropriate symbols.
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Table 9.2 eqn Special Symbols

Sequence Symbol Sequence Symbol

>= ≥ approx ≈
<= ≤ nothing

== ≡ cdot ⋅
!= ≠ times ×
+- ± del ∇
-> → grad ∇
<- ← ... . . .

<< << ,..., , . . . ,

>> >> sum Σ
inf ∞ int ∫

partial ∂ prod Π
half 1

2
union ∪

prime ′ inter ∩

The following examples illustrate the use of these character sequences.

#C sub O prime#

yields:

CO′

and:

#0 <= a <= 1#

yields:

0 ≤ a ≤ 1

and:

#del y / del x#

yields:

∇y/∇x

and:

#partial x / partial t#

yields:

∂x/∂t

Digits, parentheses, brackets, punctuation marks, and the following mathematical words are converted into

roman font instead of the italic font used for other text:

sin cos tan sinh cosh tanh arc

max min lim log ln exp

Re Im and if for det

Summations, Integrals, Products, and Limits

Summations, integrals, products, and limits often require an upper and lower part around the symbol. The

word from indicates the character sequence to be entered at the lower part; the word to indicates the

upper part. These parts are both optional, but if they are used, they should appear in that order. For exam-

ple, you would type:
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#Expected∼Value∼=∼sum from {i=1} to inf pi sub i X sub i#

to print the following expression:

Expected Value =
∞

i=1
Σ π i Xi

Notice that we used braces around the from part although this was not necessary because there were no

embedded blanks in the string i=1. But if the from and to parts contain any blanks to separate special

words, you must use braces around them.

A from does not necessarily need an accompanying to, as you will see in the following example:

#lim from {m -> inf} sum from i=0 to m c sup i#

which yields:

m→∞
lim

m

i=0
Σ ci

Square Root Signs

To draw a square root sign, use the word sqrt. For example:

#sqrt {b sup 2 - 4ac}#

yields:

√ b2 − 4ac

Square roots of tall quantities appear too dark and heavy. Big square root quantities are better written to the

power ½, as in:

2Co/D
1
2

Creating a cube root or a higher root sign requires a little imagination. You can think of a cube root sign,

for example, as consisting of two parts: a superscript 3 (with nothing before it) and a square root sign.

However, you can’t type:

#sup 3 sqrt x#

because a sup is a superscript on something. You must use a pair of double quotation marks as a place-

holder for sup. For example:

#"" sup 3 sqrt x#

yields:

3
√ x

Enclosing Braces and Brackets

You can generate big brackets [], braces {}, parentheses (), and bars | around quantities by using the

words left and right, followed by the desired character. For example:

#P∼=∼R∼left [ 1ˆ-ˆ{1+i sup n } over i right ]#

yields:

P = R



1 −

1 + in

i





The resulting brackets (and any character you specify) are made big enough to enclose the quantity.

(Braces are typically bigger than brackets and parentheses). Note the spaces surrounding the words left
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and right and the character to be expanded.

Tw o other characters that you can use are the floor and ceiling characters shown in the follow-

ing example:

#left floor a over b right floor !=

left ceiling x over y right ceiling#

which yields:




a

b



≠




x

y





A left does not need a corresponding right. If the right part is omitted, use braces to enclose the

quantity that you want the left bracket to cover. This is useful when you are making piles, as you will see

in the next section.

You can also omit the left part, although technically you can’t hav e a right without an accompa-

nying left. To get around this, you must type:

#left "" expression right )#

The left "" in this equation means a “left nothing”.

Other Positional Notation

1

0

1
2

−1

This produces a matrix with the first column left justified and the second column right justified. Each item

is separated from the item below it by the word above. You can also center the columns using ccol.

You can adjust each column separately and use as many columns as you like. However, each column must

have the same number of items in it as the other columns.

A matrix should be used when the items in the columns don’t all have the same height (for example,

when you have fractions mixed with whole numbers). This forces the items to line up because matrix

looks at the entire structure before deciding what spacing to use.

Vertical Piles

To make vertical piles or columns of items, use the word pile before the equation description and the

keyword above to separate the items. You can also enclose the piles in big braces or big brackets. For

example:

.EQ

P∼=∼left [
pile { nu sub 1 above nu sub 2 above cdot

above cdot above cdot above nu sub N }

right ]

.EN

yields:

P =










ν 1

ν 2

⋅

⋅

⋅

ν N









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The items are centered one above the other and separated by the word above. Braces enclose the entire

pile list. The items in the pile can themselves contain piles.

You can left justify (lpile), right justify (rpile), or center (cpile), the elements of the pile. (A

cpile is the same as a regular pile). However, the vertical spacing you get using these three forms will be

somewhat larger than the normal pile. For example:

.EQ

f sub x (x)ˆ=ˆleft {

rpile { 0 above 2x above 0 }

∼∼lpile { x < 0 above 0 <= x <= 1 above x > 1}
.EN

yields:

f x(x) =







0

2x

0

x < 0

0 ≤ x ≤ 1

x > 1

Note that in this example, we have a left brace without a corresponding right brace.

Diacritical Marks

With eqn, writing diacritical marks on top of letters is straightforward. The words known by eqn follow,

with examples of how they appear on top of the letter x:

bar x

under x

dot ẋ

dotdot ẍ

hat x̂

tilde x̃

vec
→
x

dyad
↔
x

The following examples show how these keywords are used:

#cr e hat pes#

yields:

crê pes

and:

#Citr o dotdot en#

yields:

Citr öen

and:

#a vec + b vec#

yields:

→
a +

→

b

and:

#X bar sub st#

yields:

Xst
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The eqn program positions the diacritical marks at the appropriate height. It also makes bar and under

the right length to cover the entire item. Other marks are centered above the character(s).

Typing words with diacritical marks may seem confusing at first because you have to leave spaces

around the letter and its corresponding mark. Just remember that eqn doesn’t print the spaces you type in.

Defining Terms

In some documents, you type a string of characters often, either within the text or within several equations.

If you notice a string that is frequently used, you can name it using a define statement within an .EQ and

.EN. Then you can use the name within an expression instead of typing the whole string.

Suppose you notice that the string 2 sup i appears repeatedly in equations. You can avoid retyp-

ing by naming it 2i, for example, as in the following commands:

.EQ

define 2i ’2 sup i’

.EN

You should enclose the string between single quotation marks or between any two characters that don’t

appear inside the definition. After you’ve defined a term, you can use it as a convenient shorthand in other

equations, just as if it were one of eqn’s special keywords.

A note about using definitions: although a definition can use a previous definition, do not define

something in terms of itself. Thus:

.EQ

define 2i ’2 sup i’

define 1/2i ’1 over 2i’

.EN

is acceptable, but:

.EQ

define X ’X bar’

.EN

is not because X is defined in terms of itself. If you want to do this, protect the X in the definition with dou-

ble quotation marks, as in:

.EQ

define X ’ "X" bar ’

.EN

You can also redefine eqn keywords. For example, you can make / mean over by typing:

.EQ

define / ’over’

.EN

Quoted Text

You hav e seen the use of double quotation marks as placeholders (in the sup, sqrt, and define exam-

ples) when eqn needs something grammatically but you don’t want anything in the output. Quotation

marks are also used to get braces and other eqn keywords printed in the output. For example:

#"{ size beta }"#

prints the words:

{ size beta }

instead of looking up the two words size and beta in the eqn vocabulary and converting them. (The

word size is used to change the size of the characters from the 10 point default).
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Any string entirely within quotation marks is not subject to font changes and spacing adjustments

normally done by troff or nroff on the equation. This provides for individual spacing and adjusting, if

needed. Thus, the line:

#italic "cos(x)" + cos (x)#

yields:

cos(x) + cos(x)

To print a literal quotation mark, you must escape it with a backslash character in the form \".

Fine-Tuning the Document

Typesetting a technical document is not only a matter of getting the eqn vocabulary right so you can print

the appropriate mathematical expressions. Although eqn tries to make some actions automatic and puts

items in the proper places, some fine-tuning is occasionally needed. With eqn, you can line up equations,

define font sizes and types, and vary horizontal and vertical spacing.

Lining Up Equations

Earlier we showed you how to line up pieces of an equation using tabs. Another method of doing this is to

use the commands mark and lineup. This is useful when you have to line up a series of equations at

some horizontal position, often at an equal sign.

For example, you would type in:

.EQ

mu∼mark =∼lambda t
.EN

.EQ

lineup =∼int from 0 to t lambda dz
.EN

to line up the two equations:

µ = λ t

=

t

0

∫ λ dz

The word mark can appear only once at any place in an equation. Successive equations should also con-

tain lineup only once. Thus, when you have a series of equations that require you to line up items in

more than one position, like the following:

a1 + a2 +x1 + x2 = 34

2a1 +4a2 = 28

3a1 +4x2 = 56

it might be better to line up the pieces of the equation on the left-hand side using tabs, and those on the

right-hand side using mark and lineup.

If at all possible, you should type in the longest expression first to serve as the marking point. If you

type in shorter expressions first, mark will not have enough room to line up successive longer expressions.
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Changing Fonts and Sizes

In eqn, equations are automatically set in 10-point type, with standard mathematical conventions to write

some characters as roman or italic. To change sizes and fonts, use the following keywords:

size Change to any of the following legal sizes:

12, 14, 16, 18, 20, 22, 24, 28, 36

You can also change the size by a relative amount, such as size +2 to make a

character 2 points bigger, or size -2 to make it 2 points smaller.

bold Change to bold.

fat Widen the current font by overstriking.

italic Change to italic.

roman Change to roman.

Like sup and sub, these keywords only apply to the character(s) immediately following them, and

revert to the original size and font at the next space. To affect more complex or longer strings (such as a

whole equation), use braces. Consider the following examples:

#bold qP# qP

#roman alpha∼beta# α β

#fat half#
1
2
1
2

#size +3 x =y# x = y

#size 8 {A + B}# A + B

If the entire paper is to be typeset in a nonstandard size or format, you can avoid redefining each and every

character sequence by setting a global size (gsize) or font (gfont) that will affect the whole document.

You can set this up at the top of your file (or wherever the font and size changes begin) within an .EQ and

.EN.

For example, to change the fonts to roman and the size to 12, you could enter:

.EQ

gfont R

gsize 12

.EN

The rest of the equations in the document (up to another gfont or gsize) will be set in 12-point roman

type. You can use any other troff font names in place of R.

Horizontal and Vertical Motions

You hav e already learned how to obtain small extra horizontal spaces in the output using ∼ and ˆ. To move

terms at some arbitrary length backward or forward, use the commands back n and fwd n, where n

denotes how far you want to move, in 1/100s of an em. (An em is about the width of the letter m).

You can also move items up or down using up n or down n, where n is the same unit of measure as

described. These local horizontal and vertical motions affect only the character(s) next to the keyword. To

move larger strings or whole expressions, enclose them in braces.
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Keywords and Precedence

Braces are used to group items or change the precedence of operations if you are unsure of how eqn will

treat multiple keywords in a single expression. If you don’t use braces, eqn performs the operations in the

following order:

dyad vec under bar tilde hat dot dotdot

fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

All operations group to the right, except for the following, which group to the left:

over sqrt left right

Problem Checklist

The eqn program usually displays self-explanatory messages when it encounters a syntax error or any

other formatting error. To check a document before printing, type:

$ eqn files > /dev/null

This discards the output but prints the error message. Some of the error messages you might encounter are:

eqn: syntax error between lines 14 and 42, file book

A syntax error (such as leaving out a brace, having one too many braces, having a sup with nothing before

it, or using a wrong delimiter) has occurred between lines 14 and 42, approximately, in the file book.

These line numbers are not accurate, so you have to look at nearby lines as well. If the following message

is displayed:

word overflow

you have exceeded the limits of troff’s internal buffer. If you print the equation as a displayed equation,

this message will usually go away. If the message is line overflow, the only solution is to break up

the equation across multiple lines, marking each with a separate .EQ and .EN. The eqn program does not

warn about equations that are too long for one line. If the following message is displayed:

eqn: fatal error: Unexpected end of input at 2 sub a

you forgot to put a closing quotation mark after the string 2 sub a when you named it in the define

statement.

It is also easy to leave out an ending delimiter in an equation. In this case, eqn thinks that successive

character sequences (which may run to hundreds of lines) are still part of the inline expression. You may

then get an overflow error or a garbled document. The checkeq program checks for misplaced or missing

inline delimiters and similar problems.

For example, when run on a draft of this chapter, checkeq produced the following report:

$ checkeq sect1
sect1:

New delims ##, line 6

2 line ##, lines 618-619

2 line ##, lines 619-620

2 line ##, lines 620-621

.

.

.

EQ in ##, line 689

EN in ##, line 691

13 line ##, lines 709-721

.

.
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.

2 line ##, lines 1300-1301

2 line ##, lines 1301-1302

Unfinished ##

This report (which ran to 66 lines) was telling us that somewhere before line 618 there was an unclosed

inline equation using the delimiter #. Sure enough, the following error was found:

B#f( theta )

Because there was only one delimiter, eqn gets “out of phase” and all subsequent delimiters are misplaced.

After we fixed this one error, checkeq printed the following “null” report:

$ checkeq sect1
sect1:

Because a simple problem like the one shown here can cause every subsequent equation in the file to be

garbled, and can waste an entire formatting run, it makes sense to run checkeq before you format any

files containing equations.
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Drawing Pictures

If you are one of those who can’t draw a straight line, let alone a decent picture or graph, you probably

replace pictures with verbal descriptions. Perhaps you know what it is like to describe a drawing to a per-

son who knows how to draw. The pic preprocessor requires you to follow the process of using “words” to

describe something pictorial.

The pic preprocessor has a dual purpose. The first is to provide a “natural language” method of

describing simple pictures and graphs in your documents. The second is to offer a “programming lan-

guage” for generating pictures and graphs with minimal user input. Learning pic is an iterative process:

describe what you want and then look at what you get. We hav e included many examples that show both

the description and the resulting picture or graph. Take the time to create variations of these descriptions,

making modifications and improvements.

The pic preprocessor was designed to produce output on a typesetter, which makes pic expensive

and difficult to learn. Fortunately, some graphics terminals and most laser printers can be set up to display

or print pic drawings. Access to one or the other is essential if you are going to get enough practice to

know how pic responds.

As a preprocessor, pic is a program that processes a specific portion of an input file before the

whole document goes to the troff formatter. (The nroff formatter cannot produce pic output for ter-

minals or line printers). The preprocessors translate your description into low-level formatter requests for

troff.

Just like with tbl and eqn, a pair of macros in the input file mark the beginning and end of input to

be processed by pic. The delimiters for pic are:

.PS

pic description
.PE

When you format a document that contains pic descriptions, you must invoke the pic preprocessor as fol-

lows:

$ pic file | troff | device

The pic Preprocessor

Imagine that you have to describe over the telephone the following picture:

207
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You might say: “There’s an ellipse at the top. Arrows are connected to two boxes and a circle below it.”

Now, think about describing this picture to someone who is attempting to draw it. No matter how careful

you are, you realize that it is difficult to translate a drawing into words.

“First, draw an ellipse. Move down and draw a circle below it. Then draw one box to the left

and draw another box of the same size to the right. Then draw an arrow from the bottom of the

ellipse to the top of the left-hand box. Then draw a line from the bottom of the ellipse to the

top of the right-hand box. The last thing to do is draw a line between the circle and the ellipse

and put arrowheads on both ends.”

Here’s what the actual pic description looks like:

.PS

down

ellipse

move down 1.25

circle radius .35

move left 1i from left of last circle; box

move right 1i from right of last circle; box

arrow from lower left of last ellipse to top of 1st box

arrow from lower right of last ellipse to top of 2nd box

arrow <-> from bottom of last ellipse to top of last circle

.PE

Even though you may know nothing about pic, you should be able to make some sense out of this descrip-

tion. It names several objects: an ellipse, two boxes, a circle, and three arrows. It specifies motion in

inches as well as changes in direction. It also arranges some objects in relation to others, locating the boxes

to the left and right of the circle and drawing arrows between the ellipse and the circle.

Having seen a full description of a pic drawing in this example, you should be able to get something

of the flavor of pic. The simpler the drawing, the less explaining you have to do. We won’t go into any

more detail about this pic description right now. We’ll look at it later in this chapter after we’ve covered

the basics of the pic language.

Naming Objects

The pic program is easy to use if you are describing only a single box or a circle. To draw a circle, you

name that object within the .PS/.PE macros:

.PS

circle

.PE

When this description is processed by pic it produces:

There are seven graphic primitives: arc, arrow, box, circle, ellipse, line, and spline.

We will show these primitives in examples that present additional aspects of pic.

In using a computer language, you have to be precise, using as few words as possible to get the pic-

ture you want. This means that you allow the program to make as many of the decisions about the drawing

as is practical. After you understand pic’s normal behavior, you will know what pic will do on its own.

For instance, we didn’t specify the size of the circle in the last example. By default, pic draws a cir-

cle with a diameter of ½ inch (or a radius of .25 inch). You can get a circle of a different size, but you have

to specify the size.
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.PS

circle radius .5

.PE

The pic program understands any number to be in inches. You specify the size of a circle by giving its

radius, which can be abbreviated as rad, or its diameter, which can be abbreviated as diam. The

previous input produces a circle twice the size of the standard circle:

Similarly, if you specify box, you will get a box with a height of .5 inch and a width of .75 inch.

You can get a larger or smaller box by changing its dimensions:

.PS

box height 1i width .5

.PE

The output for this example is a box twice as high as it is wide:

You can also use the abbreviations ht and wid for these attributes. The order in which you specify

the dimensions does not matter, and you can change one attribute without changing the other. That is how

we can draw a square:

.PS

box ht .75

.PE

The default width is already .75 inch, so this pic description produces:

With the attribute same, you can reuse the dimensions specified for a previous object of the same

type. For instance, after you had described the square box, box same would duplicate a square of the

same size.
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Labeling Objects

To provide a label for any object, specify the text within double quotation marks after the name of the

object. The label is placed at the center of the object.

.PS

box ht .75 "Square One"

.PE

This pic description produces:

Square One

Even if a label does not contain blank spaces, you must enclose it within double quotation marks. Each

individually quoted item will be output on a new line.

box wid .5 "Second" "Square"

This description produces:

Second

Square

Because troff, not pic, actually handles the text, pic doesn’t really try to fit a label inside an object.

You must determine the amount of text that will fit. The pic program ignores lines beginning with a

period, permitting you to use troff requests to change the point size, font, or typeface. It is best to avoid

spacing requests, and be sure to reset any change in point size.

When you specify a single text label with a line, pic centers it on the line. For instance, inline

troff requests can be used to print a label in 14-point italic (i.e., 4 points larger than the current point

size).

.PS

line "\fI\s14pic\s10\fR"

.PE

It produces:

pic

Because the standard placement of labels is not always useful, you can specify the attributes above or

below. In the following example, the point size is specified using the following .ps request:

.ps +2

line "\fIPIC\fR" above

.ps -2

It produces:

PIC

If you supply two quoted arguments with line, the first will be printed above the line and the second

printed below.

You can also select a line or box that is dotted or dashed, as you can see in the next example:

box dotted "\f(CWbox dotted\fP" above
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Note the inline request to invoke the constant-width font for the label. The above keyword places the

label above the center line of the box. This description produces:

box dotted

The box, composed of dots, contains a label printed in constant-width font. It is obvious here that pic

made no attempt to fit the label “inside” the box. The above attribute does not place text above the box,

but rather above the center of the box. The description:

line dashed "sign here" below

produces a dashed line:

sign here

If the attributes of texture are followed by a value, pic will try to keep that amount of spacing between the

dashes or dots. The description dashed .1 will result in dashes spaced .1 inch apart.

pic’s Drawing Motion

After you have named an object and determined its size, you have to think about where pic is going to

draw it. (Indentation and other matters concerning the placement of the drawing on the page are supplied

by either the .PS/.PE or .DS/.DE macros. The pic program places a single object at the left margin. If

you name three objects in the same description, where will pic draw them?

.PS

circle "A"

line "1" "2"

box "B"

.PE

The following output is produced:

A
1

2
B

Objects are placed one after another from left to right. The pic program assumes that objects should be

connected, as in the following example:

.PS

box ht 1.25

box ht 1

box ht .75

box ht .5

.PE

This description produces a row of boxes of decreasing size:
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If you don’t want objects to be connected, you can move before specifying the next object. In the next

example, move places a box to the right of a circle:

.PS

circle "A" ; move ; box "B"

.PE

As shown in this example, pic commands can be entered on the same line, separated by semicolons,

instead of on separate lines. This description produces:

A B

Changing Direction

As you have seen, pic places objects in a continuous motion from left to right. You can also get pic to

change direction using the attributes left, right, up, or down. We’ll see examples of their use shortly.

The distance of a move is the same length as a line (.5 inch). If you want to change the distance of

a move or the length of a line, then the change must be accompanied by an attribute of direction.

Although it seems natural to write:

line 2; move 1; arrow 1 Wrong

pic does not accept this command unless you specify directions for all three cases. When pic objects to

your choice of words, it will display the offending line, using a caret (ˆ) to mark the error.

pic: syntax error near line 1, file test

context is

line 2 ˆ; move 1

Only the first error on the line is marked. (It is acceptable to write line; move, using the standard length

and distance). The next example shows how to draw a line of a specified length and how to move a speci-

fied distance. The pic program assumes that any value is in inches; thus you can say 2i or simply 2 to

indicate 2 inches.

line up 2; move down 1; arrow right 1

Note that the attribute of direction precedes the distance. The preceding description produces:

You cannot specify down 1 or right 1 without also specifying either a line or move. These

attributes change the direction of the motion used to draw objects. They do not cause movement. The

attributes of direction affect the position of the objects that follow it, as shown in the next example.
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.PS

down; circle "A"; line; box "B"

.PE

These objects are drawn from top to bottom:

A

B

If you describe a change of motion, it affects the points where objects are connected. Look what hap-

pens if we specify the attribute down after the circle:

.PS

circle "A"; down; line; box "B"

.PE

Now the line begins at a different position:

A

B

The pic program keeps track of the start and end points for each object, and their relationship to the

direction in which objects are being drawn. The next object is drawn from the exit point of the previous

object. Entry and exit points may seem obvious for a line, but not so obvious with circles. When the

motion is from left to right, a circle’s entry point is at 9 o’clock and its exit point is at 3 o’clock. When we

specified down after the circle in the first example, the exit point of the circle did not change; only the

direction in which the line was drawn from that point changed. Entry and exit points are reversed when the

motion is from right to left, as specified by the left attribute.

left; arrow; circle "A"; arrow; box "B"

This description produces:

AB

You can draw a diagonal line by applying two changes in direction. Look at how we describe a right

triangle:
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.PS

line down 1i

line right 1i

line up 1i left 1i

.PE

This description produces:

The diagonal line is drawn by combining two attributes of direction, up and left. You can describe a

continuous line using then. In the next example we use arrow to demonstrate that we are describing a

single object.

.PS

arrow down 1i then right 1i then up 1i left 1i

.PE

When using then, you have to define the motion on a single line or escape the end of the line with a back-

slash (\). It produces:

If the description ended with:

then up 1i then left 1i

we would have a 1-inch square instead of a right triangle.

An arc is a portion of a circle. Naming four arcs consecutively will draw a circle. An arc is drawn

counterclockwise from the current position (from 6 o’clock to 3 o’clock, for instance). The next example

uses arcs to produce a box with rounded corners:

line right 1; arc; line up ; arc

line left 1; arc; line down; arc

This description starts with the bottom line of the curved box. The motion is counterclockwise.

The attribute cw draws an arc in a clockwise direction:

arc "A"; arc "B" cw

This description produces:
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A B

Note that text is placed at what pic considers to be the center of the arc, which is the center of the corre-

sponding circle.

A spline is a cross between an arc and a line. It is used to draw smoothed curves. In this

example, a spline traces a path between two circles.

circle rad .25

spline right 1 then down .5 left 1 then right 1

circle same

This description produces:

A spline is used in the same way as a line. When drawn continuously using then, a spline that

changes direction draws a curve. (Similarly, a line would produce an angle). We’ll see more examples of

spline later.

Placing Objects

It isn’t always useful to place objects in a continuous motion. Look at the following example, which seems

like it ought to work but doesn’t:

.PS

down; arrow; box

right; arrow; ellipse; arrow

.PE

This pic description produces:

Note the short arrow, drawn from the box to the circle. What happened? The end point of the box was not

on the right, but on the bottom, because the motion in effect where the box is drawn is down. Changing

direction (right) affects only the direction in which the arrow is drawn; it does not change where the

arrow begins. Thus, the arrow is drawn along the bottom line of the box.

Sometimes, it is best to place an object in relation to previously placed objects. The pic program

provides a natural way to locate objects that have been drawn. For example, the attribute first locates

the first occurrence of an object, and the attribute from specifies that the object serves as a starting point
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for the next object drawn.

.PS

circle ; move; circle ; arrow up from first circle

.PE

It produces:

You can reference each type of object using an ordinal number. Referring to the order in which an object is

drawn, you can say first box (1st box is also acceptable) or 2nd circle. You can also work

back from the last object, specifying the last box or 2nd last box.

The center of each object is used as the reference point. In the last example, the arrow was drawn

from the center of the circle. The attribute chop can be used to chop off the part of the line that would

extend to the center of each circle. In the next example, a chopped line is drawn between the first and third

circles:

.PS

circle "1" ; move down from last circle

circle "2" ; move right from last circle; circle "3"

line from 1st circle to last circle chop

.PE

This description produces:

1

2 3

The amount that is chopped is by default equal to the radius of the circle. You can specify how much of the

line is chopped, for use with other objects or text, by supplying either one or two values after the attribute.

If a single value is given, then both ends of the line are chopped by that amount. If two values are given,

the start of the line is chopped by the first amount and the end of the line chopped by the second amount.

It is important to remember that movement from a referenced object is measured from its center,

unless otherwise specified. Look at these four circles:

1 2 3

4

The second circle is produced by the description:

move right from last circle; circle "2"

Because the distance (.5 inch by default) is measured from the center of the circle, there is only .25 inch

between the two circles. The third circle is produced by the description:
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move right from right of last circle; circle "3"

Now the distance is measured from the right of the second circle. There is twice as much space between

the second and third circle as between the first and second. The fourth circle is produced by the descrip-

tion:

move right from bottom of last circle; circle "4"

The starting point of the fourth circle (its left “side”) is .5 inch from the bottom of the previous circle.

Using bottom, top, right, and left, you can locate specific points on any object. In the next

example, we solve the problem of turning a corner by specifying the place from which the arrow will be

drawn:

.PS

down; arrow; box

right; arrow from right of last box; ellipse; arrow ; box

up; arrow from top of last box

.PE

In our earlier example, the arrow was drawn from the bottom of the box; now we change the starting point

of the arrow to the right of the previous box. This description produces:

With boxes and ellipses, you can refer to an upper or lower position:

.PS

box; arrow from upper right of last box;

arrow down from lower left of last box

.PE

This description produces:

With objects like lines and arcs, it is more useful to refer to the start and end of the object. For exam-

ple, here’s another way to draw a triangle:

.PS

line down 1i

line right

line from start of 1st line to end of 2nd line

.PE

The last line could also be written:

line to start of 1st line
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The pic description produces:

You now know enough of the basic features of pic to benefit from a second look at the pic description

shown at the beginning of this chapter. The only thing we haven’t covered is how to get a double-headed

arrow. Because an arrow can also be specified as line -> or line <-, you can get a double-headed

arrow with line <->.

.PS

1 down

2 ellipse

3 move down 1.25

4 circle radius .35

5 move left 1i from left of last circle; box

6 move right 1i from right of last circle; box

7 arrow from lower left of last ellipse to top of \

1st box

8 arrow from lower right of last ellipse to top of \

2nd box

9 line <-> from bottom of last ellipse to top of last \

circle

.PE

The lines in this description are numbered for easy reference in the following exercise.

As is true with almost anything you describe, a pic description could be written in several different

ways. In fact, you will learn a lot about pic by making even minor changes and checking the results. See

if you can answer these questions:

• Why is down specified before the ellipse? If you removed down, would the circle be cen-

tered underneath the ellipse?

• down changes direction of movement. Does pic allow you to say move 1.25 as well as

move down 1.25?

• Where is the exit point of the circle when it is drawn with a downward motion in effect? If

lines 5 and 6 were replaced by:

move left 1i; box

move right 2i; box

where would the boxes be drawn?

• There is 1 inch between the circle and each box. How much space would there be if lines 5

and 6 were replaced by:

move left from last circle; box

move right from last circle; box

Hint: The distance of a move is .5 inch, and this would be measured from the center of the cir-

cle, which has a radius of .35 inch.

• Line 8 draws an arrow from the lower right of the ellipse to the top of the right-hand box. If it

were simplified to:

arrow from last ellipse to 2nd box

where would the beginning and ending of the arrow be?

• This drawing can present an interesting problem if the circle is omitted. How would you draw

the two boxes if the circle was not there as a reference point?
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Fortunately, there is a simple way to deal with the problem presented in the last question. Lacking a refer-

ence object, you can create an invisible one using the invis attribute. This lets you specify a circle that is

not drawn but still holds a place that you can reference.

.PS

down

ellipse

move down 1.25

circle radius .35 invis

move left 1i from left of last circle; box

move right 1i from right of last circle; box

arrow from lower left of last ellipse to top of 1st box

arrow from lower right of last ellipse to top of 2nd box

.PE

This pic description produces:

One thing that seems hard to get used to is that your current position always changes after an object is

drawn, based on the motion in effect. This means you have to keep in mind the location of the starting

point for the next object that you are going to draw.

You can use braces to enclose an object (or a series of objects or motions) so that the starting point is

unchanged. In the last drawing, if the invis attribute didn’t solve the problem so easily, we could have

used braces to maintain a central point below the ellipse from which you can move to draw the boxes.

Here’s a different example that illustrates how braces can be used to control your position:

.PS

{arrow down}

{arrow up}

{arrow left}

arrow right

.PE

Each object, except the last, is enclosed in braces; all objects share the same starting point. This description

produces:
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Placing Text

Te xt can be placed in a drawing just like an object. You have to take care in placing text, as in the next

example, where we specify a move so that the compass points are not drawn on top of the arrowheads:

.PS

{arrow down; move; "S" }

{arrow up; move; "N" }

{arrow left; move; "W" }

{arrow right; move; "E" }

.PE

Notice that the attributes of direction cause the object to be drawn in that direction and establish a new

motion for successive objects. This description produces:

S

N

W E

As mentioned, pic does not really handle text, allowing troff to do the work. In some ways, this is

unfortunate. The thing to remember is that pic does not know where the text begins or ends. (You can use

the attributes ljust or rjust to have the text left justified—the first character is positioned at that

point—or right justified—the last character is at that point. These attributes can also be used with text

labels).

The pic program does not keep track of the start and the end of a text object. It only knows a single

point which is the point where troff centers the text. In other words, a text item does not cause a change

in position. Tw o consecutive quoted items of text (not used as labels to another object) will overwrite one

another. Objects are drawn without regard to where the text item is, as shown in the next example:

"Start"; line;arrow;line; "Finish"

This description produces:

Start Finish

This example can be improved by right justifying the first text item ("Start" rjust) and left justifying

the last text item ( "Finish" ljust). As you’ll notice, though, the picture starts at the margin, and the

label is forced out where it doesn’t belong.

Start Finish

The location of the point that pic knows about is unchanged. Most of the time, you will have to use the

move command before and after inserting text.

Because pic works better with objects than text, the invis attribute can be used to disguise the

object behind the text, and give you a way to place text where you can point to it.

.PS

down



Drawing Pictures 221

ellipse invis "DECISION?"

move down 1.25

circle rad .35 invis "Maybe"

move left 1i from left of last circle; box invis "Yes"

move right 1i from right of last circle; box invis "No"

arrow from lower left of last ellipse to top of 1st box

arrow from lower right of last ellipse to top of 2nd box

line <-> from bottom of last ellipse to top of last circle

.PE

This description produces:

DECISION?

MaybeYes No

You may have recognized that the description for this drawing is basically the same one that produced the

drawing at the beginning of this chapter. The invis attribute makes text labels, not objects, the subject of

this picture. This should lead you to the idea that pic descriptions can be reused. Try to think of the form

of a drawing separately from its content. Most drawings contain forms that can be reworked in the service

of new material.

Place and Position Notation

Can you locate the starting points of the arrows on this ellipse?

To write the description for this example is a test of patience and thoroughness, if nothing else. We start at

the upper left of the ellipse and move clockwise around the ellipse.

.PS

ellipse

arrow up left from upper left of last ellipse

arrow up from top of last ellipse
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arrow up right from upper right of last ellipse

arrow right from right of last ellipse

arrow right down from lower right of last ellipse

arrow down from bottom of last ellipse

arrow left down from lower left of last ellipse

arrow left from left of last ellipse

.PE

Although you can say upper left or lower left, you cannot say top left or bottom right.

Sometimes pic’s English-like input can get to be cumbersome. Fortunately, pic supports several

different kinds of place and position notations that shorten descriptions.

You can reduce the phrase:

from bottom of last ellipse

to either of the following:

from .b of last ellipse

from last ellipse.b

You can use this notation for the primary points of any object. You can also refer to the compass points of

an object, which provides a way to specify corners. Table 10-1 lists the placename notations.

Table 10.1 pic Placename Notations

Value Position

t Top

b Bottom

l Left

r Right

n North

e East

w West

s South

nw Northwest

sw Southwest

ne Northeast

se Southeast

Instead of writing:

from lower left of last ellipse

you might write:

from last ellipse.sw

Another simple way to shorten a description is to give an object its own name. The name must begin with

an uppercase letter. If we assign the placename Elp to the ellipse:

Elp: ellipse

then we have either of the following ways to refer to specific points:

arrow up left from upper left of Elp

arrow up left from Elp.nw

Here’s the condensed version of the description for the previous example:

.PS

Elp: ellipse

arrow up left from Elp.nw

arrow up from Elp.n

arrow up right from Elp.ne

arrow right from Elp.e

arrow right down from Elp.se
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arrow down from Elp.s

arrow left down from Elp.sw

arrow left from Elp.w

.PE

At least it helps to keep you from confusing the placement of the arrow with the drawing motion.

If you want to specify a point that is not at one of the compass points, you can indicate a point some-

where in between two places. You can use the following kind of construction:

fraction of the way between first.position and second.position

or use the following notation:

fraction < first.position,second.position >

The following example shows both forms:

box

arrow down left from 1/2 of the way between last box.sw \

and last box.w

arrow down right from 1/2 < last box.se, last box.e >

Although you may not want to intermix different forms for the sake of someone reading the description,

pic does allow it. The preceding description produces:

The at attribute can be used to position objects in a drawing.

box "A"; box with .se at last box.nw "B"

box with .sw at last box.ne "C"

This description produces:

A

B

C

The next example illustrates again the problem of placing text. This time we want to position call-

outs above and below the text.
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PATH=.:/bin:/usr/bin:/usr/local/bin:/usr/fred/bin

Current

Directory

UNIX System

Programs

Site-Specific

Programs

We position the text inside a long box. Because the callout lines will point to the box that surrounds the

text rather than to the text itself, we try to specify approximately where to draw the lines.

.PS

# "#" introduces a comment

#

# Describe box; escape end of line to include

# text on separate line

#

Path: box ht .25 wid 4 \

"\f(CWPATH=.:/bin:/usr/bin:/usr/local/bin:/usr/fred/bin\fR"

#

# Describe line down from box and put top of ellipse

# at end of last line; label will be printed

# in 9-point italic.

#

line down from 1/3 <Path.sw, Path.s>

ellipse "\fI\s9Current" "Directory\s0\fP" with .t at \

end of last line

#

# Describe two lines, one up from box

# and a second down to the point right of it.

#

line up from 1/2 <Path.nw, Path.n>

line to 2/3 <Path.nw, Path.n>

ellipse "\fI\s9UNIX System" "Programs\s0\fP" with .b at \

start of last line

#

# Describe the third callout below the box.

#

line down from Path.s

ellipse "\fI\s9Site-Specific" "Programs\s0\fP" with .t at \

end of last line

.PE

Admittedly, positioning callouts is guesswork; it took several iterations to align the callouts with the appro-

priate text.

Defining Object Blocks

You can describe any sequence of motions or objects as a block. A block is defined between a pair of

brackets ([]). You can also give the block a placename, beginning with an uppercase letter. Some of the

objects that we have created in this chapter, such as a square, triangle, or compass, could be defined as

blocks and named so that we can refer to each one as a single object.
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Rtriangle: [

linewid = 1

line down then right then up left

]

.ps 18

.ft I

"1" at Rtriangle.w

"2" at Rtriangle.s

"3" at Rtriangle

.ft R

.ps 10

This description produces:

1
2
3

We are able to refer to the compass points of the block, although these points may not always be where you

expect. The number 3 is printed at the center of Rtriangle according to pic. But in fact its position is

the side opposite the right angle. The “center” of this block is at the center of a box that shares the bottom

and left sides of the right triangle.

You can also refer to positions for a single block using brackets. The reference [].w is a position at

the west end of the block.

In this example, instead of specifying individual line lengths, we redefined the variable linewid.

This is the variable that pic accesses to determine how long a line should be. Shortly, we’ll look at all the

variables preset by pic. Generally, what you describe within a block remains local to the block. Thus,

linewid would not affect other lines outside the block. Otherwise, resetting a variable has an effect not

only on other objects in that drawing but also on other drawings in that file.

The best use of blocks in a drawing is to define significant portions so that you can position them

accurately. Blocks usually relate to the content of a drawing. In the next example, we describe a two-

dimensional box to represent a modem.

MOD: [

BOXA: box wid 1 ht .25 " \(bu \(bu \(bu \(bu \(bu "

line from BOXA.nw up 1 right .5

then right 1 then down 1 left .5 to BOXA.ne

line from BOXA.se up 1 right .5 then up .25

]

The block, named MOD, consists of a box followed by a series of lines. The box is given a name, BOXA.

The special character sequence \(bu represents a bullet (interpreted by troff, not pic). This descrip-

tion produces:

• • • • •

The next block, named WALL, describes a drawing of a telephone wall socket. It contains two objects, a

box named BOXB and a circle inside the box named CIR.

WALL: [

BOXB: box wid .25 ht .5
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CIR: circle at center of BOXB radius .05

] with .s at MOD.ne + (.5,1)

To position this block in relation to MOD, we describe a position 1 inch up and .5 inch to the left of the top

right-hand corner of MOD. Then we draw a spline from the modem to the wall socket. This introduces us to

the fact that no matter how we specify an object, pic locates that object in a Cartesian coordinate system.

We’ll look at this in more detail in a later section. For now, it is sufficient to note how we change position

by adding or subtracting from the position on the x-axis and y-axis. MOD.ne+(.5,1) adds .5 to the x-

axis (moving to the right) and 1 to the y-axis (moving up) from the coordinates of MOD.ne.

spline from MOD.n up .25 right .5 then right 1 to center \

of WALL.CIR

Notice that we can refer to objects inside a block. If we had not named the circle, we could still refer to it

as WALL.circle.

The last thing to do is to position the text:

move right 1 from WALL.e; " Telephone Line"

move down .5 from MOD.s "Modem"

This entire description produces the following drawing:

• • • • •

Telephone Line

Modem

Resetting Standard Dimensions

The pic program has a number of built-in variables that define the values used to draw standard pic

objects.

Refer to Table 10-2. You can redefine these variables anywhere in a pic description. A variable set

inside one pic description will remain in effect for other descriptions within the same file. One exception

is a variable defined within a block; that definition is local to the block.

For instance, we can specify an oversize arrow by changing the following variables:

arrowwid = 1

arrowht = 1

linewid = 2

arrow
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Table 10.2 pic System Variables

Variable Default Value Meaning

arcrad .25 Radius of arc

arrowwid .05 Width or thickness of arrowhead

arrowht .1 Height or length of arrowhead

boxwid .75 Width of box

boxht .5 Height of box

circlerad .25 Radius of circle

dashwid .05 Width of dash

ellipseht .5 Height of ellipse

linewid .5 Length of horizontal line

lineht .5 Length of vertical line

movewid .5 Distance of horizontal motion

moveht .5 Distance of vertical motion

scale 1 Scale dimensions

textwid 0 Width of area used for drawing

textht 0 Height of area used for drawing

It produces the following pic drawing:

Controlling the Dimensions of a Drawing

The textwid and textht variables control the width and height respectively, of the area use by pic on

a page. (It doesn’t refer to the amount of space occupied by an item of text). These values can also be set

as arguments to the .PS macro.

.PS width height

When you specify the width or height or both, pic scales the drawing to that size regardless of the absolute

dimensions that are specified within the drawing. The only thing it doesn’t scale adequately is text. It can

be easier to describe a drawing with simple units and have them scaled more precisely to fit on the page

than to work with exact sizes.

A good example of scaling is turning the rounded box described previously in this chapter into a rep-

resentation of a terminal screen.

.PS 2 4

line right 1; arc; line up ; arc

line left 1; arc; line down; arc

.PE

Although the pic description is made up of 1-inch lines, the actual screen produced by pic will be 4

inches wide and 2 inches high.

Normally, you want troff to output the regular lines of text on lines that follow the pic drawing.

If the .PF (F for flyback) macro is used in place of .PE, troff will return to the position it held before

the pic drawing was output. This feature is useful if we want to put formatted text within our large screen.

.PS 2 4

line right 1; arc; line up ; arc
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line left 1; arc; line down; arc

.PE

.ft CW

.sp 2

Alcuin Development System 5/31/87

.sp

Please login:

.sp 6

This description produces:

Alcuin Development System 5/31/87

Please login:

You hav e to remember to provide the space after the text to push the current position past the end of the

screen. Otherwise subsequent text will also appear within the box.

Debugging pic Descriptions

You can invoke the pic preprocessor on its own to have it check through your file and report any syntax

errors. This can save a lot of time, especially if your file contains other text that will be sent to troff,

assuming that you wouldn’t want the file processed unless the pic descriptions succeeded. If you have the

file circles, for example, that contains a pic description, you can invoke pic as:

$ pic circles

If processing is successful, pic output will stream past on your terminal screen. If pic finds an error in

your description, it will print the error message.

If you have sev eral pic descriptions in a file, or you have regular text surrounding a pic descrip-

tion, you can send the output to /dev/null, and only the error messages will be displayed on your

screen.

You may want to invoke pic on its own simply to look at the output pic produces. For a discussion

of the output that pic sends to troff, read about line drawing in Chapter 14.

From Describing to Programming Drawings

As we look at more advanced examples of pic, you may begin to question the amount of description that

is required to produce a drawing. You may be amazed that drawings that look so simple require so many

words. After you realize that you are approaching the limits of what can be described using an English-like

syntax, you may want to look at pic from another perspective. You can view pic as a programming lan-

guage for generating graphics.

Looking at this other side of pic, you will find that the descriptions are perhaps more difficult to

read but much easier to write. The purpose of a “programmed” pic description is not to imitate a verbal

description, but to minimize user input, to provide structures that can be used to produce several kinds of
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drawings and to make it easier to change a drawing.

The focus of the rest of this chapter will be to introduce many of these special features of pic,

including variables, expressions, and macros. But there are more possibilities than we can attempt to

describe. The pic program follows the general UNIX philosophy that any program should be able to

accept input from any program and direct its output to another program, troff. Thus, pic descriptions

can be built by other UNIX utilities. For instance, you might develop an awk program specifically

designed for creating flow charts.

Locating Objects Using Cartesian Coordinates

For more exact positioning of objects and text, pic uses a standard Cartesian coordinate system. The first

object drawn, including a move, starts at position 0,0. The x and y position of a circle, an ellipse, or a box

is at the center of the object. For lines, this position refers to the beginning. For arcs, this position is at the

center point of the related circle. You can position objects using the at attribute:

circle "0,0" at 0,0

circle "1,1" at 1,1

circle "1,0" at 1,0

circle "2,1" at 2,1

This description produces:

0,0

1,1

1,0

2,1

The center of the circle is placed at the specified coordinates. You could also write:

circle with .t at 1,1

and it would place the top of the circle at that position. A reference to last circle would still locate

the center of the circle, but a line drawn from 1,1 would begin at the top of the circle.

Note that the position of 0,0 will not always be the same place on the page. The first object drawn is

the point of reference; movement to the left of that point will cause 0,0 to be moved over tow ard the center

of the page.

box ht 0.3 wid 0.3 "0,0"

move to 1,0

box "1,0" same

move to -1,0

box "-1,0" same

This description produces:

0,0 1,0-1,0

It may be helpful to sketch a drawing on graph paper and then translate it into a pic description. Standard

graph paper is divided into quarter-inch squares. When you use graph paper, you might find it useful to set

the scale variable to 4. All dimensions and positions will be divided by the value of scale, which is 1
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by default.

It is much easier to describe a drawing in full units rather than fractions. Look at the following

description:

scale=4

line from 0,0 to 0,3 then to 6,3 then to 6,0 then to 0,0

line from 6,0 to 8,1 then to 8,4 then to 2,4 then to 0,3

line from 6,3 to 8,4

The distance between 0 and 1 is normally 1 inch. Because we are scaling this drawing by 4, the actual dis-

tance is ¼ inch. It seems easier to describe a point as 2,3 rather than 5,.75. This description produces a

two-dimensional box:

Although pic scales the location of text, it is your responsibility to reduce the size of the text to fit a

scaled object. You can also use scale to change the basic unit of measurement from inches to any other

unit. For instance, setting scale to 6 will cause all dimensions and coordinates to be interpreted in picas

(6 picas to the inch).

Splines and arcs are much easier to draw using coordinates. In the following example, we use a

spline to draw a smooth curve between several points on a crude graph.

The graph is produced by the following description:

scale=4

line from 0,0 to 0,4

line from 0,0 to 9,0

spline from 0,0 to 3,3 then to 5,.25 then to 8,1.5

You can also specify relative coordinates as an expression within parentheses. It has the effect of

adding or subtracting from the absolute coordinates of a particular place.

circle rad .5

circle same at last circle+(.25,0)

The same attribute allows us to duplicate the size of a previous object. The expression circle same

means “the same size as the last circle.” This description produces:
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Similarly, you can achieve finer control over positioning by moving from a compass point:

box with .sw at last box.ne+(.05,-.05)

Expressions and User-Defined Variables

An expression can be used to supply the dimensions or the position of an object. Any of the following

operators can be used in an expression: +, -, *, /, and % (modulo). Expressions can be used to manipulate

the built-in variables as follows:

circle rad circlerad/2

This will draw a circle with a radius that is half the size of the default radius. An expression can also refer

to the value of placenames. The coordinates of any object can be specified as .x and .y. Here’s a list of

some of the possibilities:

BoxA.x The x-coordinate of the center of BoxA

last box.y The y-coordinate of the center of the last box

BoxA.s.y The y-coordinate of the southern compass point of BoxA

BoxA.wid The width of BoxA

last circle.rad The radius of the last circle

The next description defines a box and then divides the specified height and width of that box to produce a

second box half that size.

Boxa: box ht 2 wid 3; arrow

box ht Boxa.ht/2 wid Boxa.wid/2

The pic program also has a number of functions that can be evaluated in an expression, as shown in Table

10-3:

Table 10.3 pic Functions

Function Description

sin(a) Sine of a

cos(a) Cosine of a

atan2(a,b) Arctangent of a/b

log(a) Natural logarithm of a

sqrt(a) Square root of a

int(a) Integer a

max(a,b) Maximum value of a,b

min(a,b) Minimum value of a,b

rand(a) Random number generator

In giving the size or length of an object, you can name and define your own variables. A variable is

any lowercase name that is not reserved as part of the pic language. A variable can be defined as a con-

stant or an expression.

a=ellipsewid*3

b=ellipseht/2

ellipse wid a ht b

This description produces:
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Defining Macros

With macros, you can predefine a series of objects or motions that will be included in the description each

time you refer to the macro by name.

define name %
definition

%

A percent sign (%) is used here as the delimiter but any character not in the definition can be used. The for-

mat of the define statement is shown on three lines for readability only; a simple macro could be put on a

single line. The definition can extend across as many lines as necessary.

When you refer to name in your description, the pic program will replace it with the definition.

Macros can also take arguments. These arguments are specified in the definition as $1 thru $9. They

will be replaced by the arguments supplied when the macro is invoked.

name(arg1, arg2, arg3)

A macro does not exist as a place or position as far as pic is concerned. The pic program simply

replaces the macro name with the lines defined in the macro. You cannot refer to the macro as you would

refer to a block. However, you can set positions from within a macro.

In the following example, the “tail” hanging down from the box and the list of items drawn to the

right of it were produced by a macro.

Alcuin Product Operation

Controller

Marketing

Engineering

Documentation

Quality Assurance

Customer Support

In the pic description that produced this drawing, the box is drawn explicitly and a short line is started

down from the bottom of the box. Then a macro named dept is invoked to produce each item on the list.

define dept %

line down .25

{ line right .15; move right .2; "$1" ljust }

%

In this macro, after a line down is described, the rest of the description is put within braces to reserve the

starting position for the next macro call. A short line is drawn, followed by a move to place the text in the

correct position. Quotation marks are placed around the argument because the argument will contain a text

label.

This macro is invoked for the first item as:

dept(Controller)

Controller is supplied as the first argument, which the macro inserts as a text object. Notice that the

argument in the definition is quoted ("$1") so that the actual text when specified does not have to be

quoted.
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The previous drawing was modeled after an example shown in Estimating Illustration Costs: A Guide

published by the Society for Technical Communication. The guide considered this drawing to be of

medium difficulty and estimated that it would require an hour of an illustrator’s time. It took ten to fifteen

minutes to design and execute this description for pic, including correcting some syntax errors and for-

matting for the laser printer. Here’s the complete description of the drawing:

.PS

box ht .75 wid 1.75 "Alcuin Product Operation"

line down .25 from bottom of last box

define dept %

line down .25

{ line right .15; move right .2; "$1" ljust }

%

dept(Controller)

dept(Marketing)

dept(Engineering)

dept(Documentation)

dept(Quality Assurance)

dept(Customer Support)

.PE

The second example of macro use is probably harder to read than it is to write. Let’s look at it in por-

tions. The purpose of the drawing is to represent a network of computers. We decided to use three types of

objects to represent each type of computer: a square, a triangle, and small circle. These objects will appear

in a hierarchy and lines will be drawn to connect an object on one level with an object on the level below it.

Before starting to describe it in pic terms, we prepared a rough sketch of the drawing on graph paper.

This made us realize that we could easily determine the coordinate points of objects; thus, all the macros

are set up to accept coordinate positions.

Comments, beginning with #, describe the user-supplied arguments. Following are the definitions for

three macros: backbone (a box), local (a triangle), and endpt (a small circle).

scale = 4

top = 10

define backbone %

# $1 = x coordinate ; $2 = label

ycoord = top-2

BB$1: box wid 1 ht 1 with .sw at $1,ycoord

"$2" at ($1,ycoord)+(2,1) ljust

%

define local %

# $1 = x coordinate; $2 = label

ycoord = top-5

LO$1: move to $1,ycoord

line down 1 left 1 then right 2 then up 1 left 1

"$2" at ($1,ycoord)-(0,.7)

%

define endpt %

# $1 = x coordinate

ycoord = top-8

circle rad .125 with .n at $1,yccord

EP$1: last circle.n

%

Because each type of object maintained the same height (or position on the y-axis), a variable ycoord was

set up to supply that position from the top of the drawing. (The top of the drawing is defined by another

variable).

Each of these macros requires that you supply an x-axis coordinate as the first argument. This argu-

ment is also used to assign a unique placename that is used later when we draw lines between objects.

The backbone and local macros also take a second argument for a label. Handling text inside a

macro definition is especially convenient if you are going to change the font and point size.

The next task is to connect the backbone systems to the local systems and the local systems to end-

points. Although we know which types of objects are connected, not all objects are connected in the same
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way. We decided that the macros require two arguments to supply the x-coordinate for each of the two

objects.

define BtoL %

# $1 = x coord of backbone; $2 = x coord of

# local

line from BB$1-(0,.5) to LO$2

%

define LtoE %

# $1 = x coord of local; $2 = x coord of endpt

line from LO$1-(0,1) to EP$2

%

The BtoL and LtoE macros draw lines between the placenames set up by the backbone, local, and

endpt macros.

Here are the actual macro calls:

backbone(10,IBM/370)

backbone(18,DEC VAX)

local(8,68K-1)

local(13,68K-2)

local(17,68K-3)

endpt(7)

endpt(9)

endpt(12)

endpt(13)

endpt(14)

endpt(16)

endpt(18)

BtoL(10,8)

BtoL(10,13)

BtoL(18,17)

LtoE(8,7); LtoE(8,9)

LtoE(13,12); LtoE(13,13); LtoE(13,14)

LtoE(17,16); LtoE(17,18)

line from LO13 to LO17

"\s8Personal Computers\s0" at 13,1

"\s12\fBA Network of Computers\s0\fR" ljust at 10,top

Notice that arguments supplied to a macro are separated by commas and that an argument may contain a

space. Here’s what the description produces:

IBM/370 DEC VAX

68K-1 68K-2 68K-3

Personal Computers

A Network of Computers

Twelve objects are specified and eleven lines are drawn between the objects. One line is explicitly drawn

connecting the second triangle to the third triangle. It didn’t make sense to define a macro for this single

instance. But if you were setting this up for others to use, such a macro would be necessary.
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Shortly, we will be looking at several relatively new features that make pic ev en more powerful for

generating pictures. In particular, these features allow us to improve our effort to generate a diagram of a

computer network.

pic’s Copy Facility

The pic program provides an interesting copy facility that has two different uses: it allows you to read a

pic description from a remote file, and it allows you to read lines of data and pass them as individual argu-

ments to a macro.

If you are going to use pic regularly, you should think about maintaining a macro library. You

might define frequently used objects, such as triangles, and place them in their own file. You can include

the file in your description with the following line:

copy "/usr/lib/macros/pic/triangles"

Putting the filename in double quotation marks is required. Any .PS/.PE macros that are found in the

remote file are ignored.

You might also define a set of related macros for a particular type of drawing, such as an organiza-

tional chart or a flow diagram. After you have taken the time to create and test a description, you should

consider structuring it so that the forms can be easily used in other drawings.

This copy facility replaces an older construct that allowed you to redirect input from another file

through the .PS macro.

.PS < triangles

A second use of the copy facility is to read data through a macro. We’ll show how the endpt macro

from our last example can be designed to use this facility. In a file where we had already defined a macro

named endpt, we could invoke this macro with the following command:

copy thru endpt

7

9

12

13

14

16

18

The pic program reads each line of data up to the .PE and replaces each argument in the macro definition

with the corresponding field from each line. In this example, the macro is executed seven times, once for

each line of data.

We could put the data in a separate file, named endpt.d, for example. Then you enter this version

of the copy command:

copy "endpt.d" thru endpt

The double quotation marks are required. Now the endpt macro will be executed for each line in the file

endpt.d. (The filename suffix .d is optional and signifies that the file contains data for a macro call).

You can specify a string that pic will recognize in the remote file as a signal to stop reading input.

Used with copy thru, until is followed by the string. In the following example, the word STOP is

used as the string:

copy "endpt.d" thru endpt until STOP

You can also use until when you are taking input from the same file:

copy thru local until STOP

8 68K-1

13 68K-2

17 68K-3

STOP
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In both cases, pic will read lines of data until it comes across the string STOP.

Another way to use copy thru is to supply the macro definition. This is a compact, single-step

method:

copy "endpt.d" thru %

# $1 = x coordinate

ycoord = top-8

circle rad .125 with .n at $1,ycoord

EP$1: last circle.n

%

Although the percent sign is used as the delimiter, any character not found in the definition could be used.

The copy thru statement with the macro definition can be put on a single line, which is helpful for short

definitions.

copy thru % box at $1,$2 %

1 1

1 2

1 3

1 4

Because you can get a description down to this level, basically consisting of functions, you could have a

standard description file associated with independent data files. You could write a program to build the data

files from user input or from some other source.

Executing UNIX Commands

You can execute any UNIX command from pic, using the following syntax:

sh % command %

Again, the percent sign represents any valid delimiter character. The pic program submits this command

to the shell for execution and then returns to interpret the next line of the description. You could issue a

command to obtain data from another file:

sh % awk -F: {print$1} /etc/passwd %

pic Enhancements

Most of the enhancements found in new versions of pic are aimed at developing pic as a graphics pro-

gramming language. Additional capabilities include for loops and if conditional statements. A for

loop allows one or more pic commands to be executed as long as a condition is met

for i=1 to 3 by .05

do%

box ht i;move

%

Each time through the loop the value of the variable i is incremented by .05, producing five boxes of

increasing height. The by clause specifies the amount that the variable is incremented each time through

the loop. If the by clause is omitted, then the variable is incremented by 1. The % is used as the delimiter

marking the commands to be executed on each pass.

The if statement evaluates an expression to determine if it is true or false. If true, then specified

pic commands are executed. If false, the then clause is not acted upon; instead, an else clause, if spec-

ified, is read and commands specified inside it are executed.

if x > y then % x = y % else % x = x + 1%

This conditional statement evaluates the expression x > y. If true, x is set to y; if false, the value of x is

incremented by 1. The % is a delimiter marking the beginning and end of the commands specified for both

then and else clauses. The expression inside an if statement can use any of the relational operators
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that are shown in Table 10-4.

Table 10.4 pic Relational Operators

Operator Meaning

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

&& And

| Or

! Not

In addition to enhancements that add more graphics programming features to pic, progress has been

made in allowing input to be taken from bit-mapped graphic terminals and translated into pic output. A

separate program called cip, available on some systems, allows users to create drawings using a mouse (a

la MacDraw for the Macintosh). The cip program generates a pic description of a drawing that can be

included in any file to be processed by troff.





Chapter 11

A Miscellany of UNIX Commands

In this chapter, we present a miscellany of UNIX programs with text-processing applications. In addition,

we introduce several UNIX utilities for communications and for reading and writing to tapes and floppy

disks. These utilities are not specifically designed for text processing, but we have found them necessary

for working in the UNIX environment. Although you can find more detailed information on these utilities

in books aimed at a general audience, we’ve included brief discussions of them to encourage you to learn

them.

UNIX has many standard programs, as a run-down of the table of contents for the UNIX Reference

Manual will demonstrate. The challenge of UNIX is knowing which programs are appropriate for a spe-

cific situation. No one learns all the commands, but becoming familiar with a great number of them can be

helpful. It is rather like those of us who collect far more books on our shelves than are “needed,” knowing

the reward of finding the right book for the right occasion.

At times, you will be surprised when you discover a program with rather unusual or specialized capa-

bilities; at other times, you may be frustrated by a demanding program or confused by inconsistencies from

one program to the next. These qualities seem to originate from the open design of UNIX, and serve to dis-

tinguish this text processing environment from the closed systems of most word processors.

In some ways, what we are trying to do in this chapter is to address problems that arise in typical

documentation projects and show how one or more UNIX programs can be applied as solutions to these

problems. The emphasis is on the interactive use of these programs, although many of them can be used

effectively in shell scripts or as parts of other programs. (In the next chapter, we go into more detail about

shell scripts). The commands are presented in sections, grouped by function.

Managing Your Files

One of the realities of using a computer is that you begin to think of a document in terms of files, rather

than chapters or sections. You edit and print files; create and copy files; delete files accidentally and lose

your edits; and look through files to find the information that is contained in them. Increasingly, files con-

tain the goods that you trade. You exchange not only printed copies of documents, but using floppy disks,

tapes, or modems, you take files off one system and put them on another system. Learning to organize and

maintain files is essential to working on a computer.

Using the File System to Your Advantage

One obvious feature of UNIX that makes it easy to handle large numbers of files is the hierarchical file sys-

tem. With carefully named files and directories, the pathname, which specifies a file’s unique place in the

file system hierarchy, can tell a lot about not only how to get at the file, but its contents as well. For exam-

ple, on our system, we keep all source files for various books in progress on a file system called /work;

work for a given client is kept in a directory named for the client, with a subdirectory for each separate

manual. Within each manual’s subdirectory, individual chapters are named consistently, ch01, ch02, and

so on. As a result, it is easy both to locate a file (Chapter I of the FORTRAN manual for ABC Corp. can

predictably be found in /work/abc/fortran/ch01) and to guess its contents.

If you are using the C shell, you can create an alias that provides a shorthand way of entering a com-

mand. In the following example, the alias allows you to think in terms of manuals instead of directories.

% alias fortran "cd /work/abc/fortran; pwd"

239
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% pwd
/work/fred

% fortran
/work/abc/fortran

You can place an alias definition in your .cshrc file so that it becomes part of your environment.

In the Bourne shell, you achieve a similar result by using an environment variable called CDPATH to

define a search path for the cd command. For example:

$ CDPATH=/work/abc:/work/textp:/usr
$ cd fortran
/work/abc/fortran

$ cd jane
/usr/jane

$ cd ch03
/work/textp/ch03

When you issue a cd command, the shell searches for a subdirectory with that name under any of the direc-

tories in the path, changes to it, and prints the full directory name.

The search directories in CDPATH are specified between colons. Directories listed in CDPATH are

searched in order from left to right.

Shell Filename Metacharacters

Even with files organized into directories, you can still accumulate a lot of files. Developing some consis-

tent naming conventions that take advantage of shell metacharacters (wildcards) can save you a lot of trou-

ble. Most users are familiar with metacharacters but many don’t make full use of them.

In UNIX, you can match any part of a filename with a wildcard. Remember that * matches zero or

more characters. This gives you more power to select a specific group of files out of a directory. In the fol-

lowing example, assume that you want to delete the files lock, filelocks, and lock.release, but

ignore the files filelist, lecture, and stocks.c.

$ ls
filelist

filelocks

lecture

lock

lock.release

stocks.c

$ rm *lock*

Because * can match zero characters, *lock* will match lock as well as filelocks.

The shell interprets the pattern-matching character ? to match any single character, and the construct

[m-n] to match a range of consecutive characters.

If you name your files consistently, you can use these characters to select groups of files. For exam-

ple, in a directory containing a BASIC manual, you might have the following list of files:

$ ls
appa

appb

changes

ch01

ch01.old

ch02

ch03

ch03.examples

ch03.out

ch04

ch04.examples

ch05

letter.613
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As usual in any directory, there are a number of auxiliary files. Some of these files apply to the work

on this project, but they are not actually part of the book. If you’ve carefully chosen the names of related

files, you can use metacharacters to select only the files in a particular group. For example:

$ ls ch0?
ch01

ch02

ch03

ch04

ch05

You could select a range of files, using brackets:

$ ls ch0[3-5]
ch03

ch04

ch05

If you had entered ch0*, miscellaneous files such as ch01.old would have been included. (Note that

whenever you use numbers in filenames, as shown here, to consistently name a group of related files, you

should begin the numbering sequence with 01, 02 . . .  rather than 1, 2 . . .  This will cause ls to list the files

in proper alphabetical order. Otherwise, ls will list ch1, then ch11, ch12 ... ch2, ch20 ... and so

on.)

Metacharacters have broader applications than for simply listing files. Look at this example of run-

ning spell on an entire book:

$ spell ch0? app? > spell.out

(We’ll be looking at the spell command later in the section “Proofing Documents.”) This command is

run on the seven files that match one of the two patterns specified on the command line.

Metacharacters are also useful in moving and copying files from one directory to another:

$ cp basic/ch0? /work/backup

Locating Files

Although a hierarchical file system with consistent naming conventions helps a lot, it is still easy to lose

track of files, or just to have difficulty specifying the ones you want to manipulate. The number of files

contained on even a small hard disk can be enormous, and complex directory hierarchies can be difficult to

work with.

It is possible to lose a file on the file system when you have forgotten in which directory you put it.

To look through an entire file system or a large directory hierarchy, you need a utility called find. The

find utility looks at the external characteristics of a file—who created it, when it was last accessed, its

name, and so on.

The find utility probably wins top honors for having the most cumbersome command-line syntax in

UNIX. It’s not that find is a difficult command; its syntax is simply difficult to recall. You might expect

that all you have to enter is find and the name of the file that you want to look for. This is not the way it

works, however, which is a nuisance to new users. The find command requires repeated trips to the UNIX

Reference Manual before you grasp its atypical format.

To use find, specify the pathnames of the directories that you want to search; then place one or

more conditions upon the search. The name of a particular file that you want to search for is considered

one of these conditions. It is expressed as:

-name filename

To obtain a listing of the pathnames of files that are found, you have to specify the -print condition as

well (-name must precede -print).

If you wanted to find any file named notes on the /work file system, here’s the command to enter:

$ find /work -name notes -print
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/work/alcuin/notes

/work/textp/ch02/notes

The output is the pathname (starting with the specified file system or directory) of each file that is found.

More than one pathname can be supplied. A slash (/) represents the root directory and thus is used if you

want to search the entire file system. Note that the search can take some time, and that if you do not have

read permissions to a directory you will get a message saying that it cannot be opened.

In the next example, we add another condition, -user, and limit the search to files named memo that

are owned by the user fred. This is helpful when you are searching for a file that has a fairly common

name and might exist in several users’ accounts. Filename metacharacters can be used but they must be

protected from the shell using backslashes or single quotation marks. (If you don’t do this, the metacharac-

ters will be interpreted by the shell as referring to files in the current directory, and will not be passed to the

find command.)

$ find /work /usr -name ’memo*’ -user fred -print
/usr/fred/alcuin/memo

/work/alcuin/memo.523

/work/caslon/memo.214

Tw o directory hierarchies are searched, /work and /usr. If you did not specify the -name condition,

this command would locate all the files owned by fred in these two file systems.

Many find conditions have uses for other tasks besides locating files. For instance, it can be useful

to descend a directory hierarchy, using find to print the complete pathname of each file, as in the follow-

ing example:

$ find /work/alcuin -print
/work/alcuin

/work/alcuin/ch01

/work/alcuin/ch01.old

/work/alcuin/commands/open

/work/alcuin/commands/stop

...

This usage provides a kind of super ls that will list all files under a given directory, not just those at the

current directory level. As you’ll see, this becomes very useful when it comes time to back up your files.

The longer you work with a UNIX system, the more you will come to appreciate find. Don’t be

put off by its awkward syntax and many options. The time you spend studying this command will be well

repaid.

File Characteristics

Most of us are concerned only with the contents of a file. However, to look at files from UNIX’s point of

view, files are labeled containers that are retrieved from storage and soon put back in the same place. It

might be said that the operating system reads (and writes) the label but doesn’t really care to look inside the

container. The label describes a set of physical or external characteristics for each file. This information is

displayed when the ls command produces a long listing.

$ ls -l /work/textp/ch01
total 20

-rw-rw-r-- 1 fred doc 9496 Jun 10 15:18 ch01

To the operating system, the file (ch01) contains a certain number of bytes (9496), each representing a

character. The date and time (Jun 10 15:18) refer to the last time the file was modified. The file has an

owner (fred), who is usually the person who created the file. The owner belongs to a group of users

(doc) who can be given different permissions from all other users. The operating system keeps track of the

file permissions (-rw-rw-r--) for the owner, group, and other users—determining who can read, write,

or execute the file.

All of these characteristics can be modified either by use of the file or by commands such as chmod

(change permissions) and chown (change owner). You may need to become a super-user to change these
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characteristics.

There are some options for ls that allow you to make use of this information. For instance, if you

had recently made some changes to a set of files, but couldn’t remember which ones, you could use the -t

option to sort a list of files with the most recently modified files first. The -r option reverses that order, so

that ls -rt produces a list with the oldest files first.

In addition, find has a number of options that make use of external file characteristics. As we’ve

seen, you can look for files that belong to a particular user. You can also look for files that are larger than a

particular size, or have been modified more recently than a certain date.

Don’t get stuck thinking that the only handle you can pick a file up with is the file’s name.

Viewing the Contents of a File

You are probably familiar with a number of UNIX commands that let you view the contents of a file. The

cat command streams a file to the screen at a rate that is usually too swift. The pg and more commands

display a file one page at a time. They are frequently used as filters, for instance, to supply paging for

nroff output.

$ nroff -mm ch01 | pg

You can also use these commands to examine unformatted files, proofing formatting codes as well as text.

Although these are frequently used commands, not everyone is aware that they hav e interactive subcom-

mands, too. You can search for a pattern; execute a UNIX command; move to another file specified on the

command line; or go to the end of the file.

You can list these subcommands by entering h when the program pauses at the bottom of a page.

Here’s the help screen pg provides.

h help

q or Q  quit

<blank> or \n next page

l next line

d or ˆD display half a page more

. or ˆL redisplay current page

f skip the next page forward

n next file

p previous file

$ last page

w or z  set window size and display next page

s savefile save current file in savefile

/pattern/ search forward for pattern

?pattern? or

ˆpatternˆ search backward for pattern

!command execute command

Most commands can be preceded by a number, as in:

+1\n (next page); -1\n (previous page); 1\n (page 1).

See the manual page for more detail.

One advantage of pg is that you can move backward as well as forward when going through a file. A spe-

cial feature of more is the ability to invoke vi at the current point in the file. When you quit vi, more

resumes paging through the rest of the file.

Another command used for examining a file is pr. Its most common use is to perform minor page

formatting for a file on the way to a line printer. It breaks the input file into pages (66 lines to a page) and

supplies a header that contains the date, the name of the file, and the current page number. Top, bottom,

and side margins are also added.

The pr command also has many options that can be used to perform some oddball tasks. For exam-

ple, the -n option adds line numbers:
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$ pr -n test

The following is displayed:

Jul 4 14:27 1987 test Page 1

1 apples

2 oranges

3 walnuts

4 chestnuts

You can adjust the page length using the -l option. If you are printing to a terminal, the -p option speci-

fies a pause at the beginning of each page. You can also display an input file in -n columns.

The -m option simultaneously merges two or more files and prints each of them, one per column:

$ pr -m -t test*

In this example, we display four files side-by-side:

apples apples apples oranges

oranges oranges oranges walnuts

walnuts walnuts grapes chestnuts

chestnuts

The test* file specification is expanded to four filenames: test, test1, test2, and test3.

The -t option suppresses the heading and does not print linefeeds to fill a page, which is especially useful

when you are sending the output of pr to a file or the terminal.

We found a use for pr when working on this book. We wanted to include nroff-formatted exam-

ples in the text. We had difficulty because nroff inserts tabs, instead of spaces, to optimize horizontal

positioning on printers. To remove the tabs, we used pr with the -e option to expand the tabs to their

equivalent in blank spaces. The following shell script implements this process so that it can be invoked as a

single command.

$ nroff -mm -rO0 examples/$1 | -pr -e -t

The pr command works as a filter for nroff. The -r option is used with nroff to set register O (page

offset or left margin) to zero.

Sometimes it can be useful to examine just the beginning or the end of a file. Tw o commands, head

and tail, print the first or last ten lines of a file. The head command can be used to look at the initial

settings of number registers and strings that are often set at the top of a file.

$ head ch02
.nr W 65

.nr P 3

.nr L 60

.so /usr/lib/tmac/tmac.m

.nr Pt 2

.ds Ux \s-2UNIX\s0

.ds HP 3321

.H1 "Product Overview"

.ds HM 11A

.

This output could be redirected to a file as a way of starting a new chapter. The tail command has the

same syntax; it can save time when you want to check the end of a large file.

Searching for Information in a File

The many benefits provided by grep to the user who doesn’t remember what his or her files contain are

well known. Even users of non-UNIX systems who make fun of its obscure name wish they had a utility

with its power to search through a set of files for an arbitrary text pattern, known as a regular expression.

We hav e already discussed regular expressions and their use in search and replace commands in vi (see

Chapter 7). In this section, we show some of the ways to perform pattern-matching searches using grep
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and its siblings, egrep and fgrep.

The main function of grep is to look for strings matching a regular expression and print only those

lines that are found. Use grep when you want to look at how a particular word is used in one or more

files.

$ grep "run[- ]time" ch04
This procedure avoids run-time errors for not-assigned

and a run-time error message is produced.

run-time error message is produced.

program aborts and a run-time error message is produced.

DIMENSION statement in BASIC is executable at run time.

This means that arrays can be redimensioned at run time.

accessible or not open, the program aborts and a run-time

This example lists the lines in the file ch04 that contain either run-time or run time.

Another common use is to look for a specific macro in a file. In a file coded with mm macros, the fol-

lowing command will list top-level and second-level headings:

$ grep "ˆ\.H[12]" ch0[12]
ch01:.H1 "Introduction"

ch01:.H1 "Windows, Screens, and Images"

ch01:.H2 "The Standard Screen-stdscr"

ch01:.H2 "Adding Characters"

...

ch02:.H1 "Introduction"

ch02:.H1 "What Is Terminal Independence?"

ch02:.H2 "Termcap"

ch02:.H2 "Terminfo"

In effect, it produces a quick outline of the contents of these files. When more than one file is specified, the

name of the file appears with each line. Note that we use brackets as metacharacters both in the regular

expression and when specifying the filename. Because metacharacters (and spaces) have meaning to the

shell, they will be interpreted as such unless the regular expression is placed within quotation marks.

There are several options commonly used with grep. The -i option specifies that the search ignore

the distinction between uppercase and lowercase. The -c option tells grep to return only a count of the

number of lines matched. The -l option returns only the name of the file when grep finds a match. This

can be used to prepare a list of files for another command.

The shell construct command1 ‘command2‘ causes the output of command2 to be used as an argu-

ment to command1. For example, assume that you wanted to edit any file that has a reference to a function

call named getcursor. The command:

$ vi ‘grep -l getcursor *‘

would invoke vi on all of the files in the current directory containing the string getcursor. Because the

grep command is enclosed in single backquotes (‘ ‘), its output becomes the list of files to be edited.

The grep command can work on the results of a find command. You can use find to supply a

list of filenames and grep to search for a pattern in those files. For example, consider the following com-

mand, which uses find to look for all files in the specified directory hierarchy and passes the resulting

names to grep to scan for a particular pattern:

$ find /work/docbook -exec grep "[aA]lcuin" {} \;
Alcuin product. Yesterday, I received the product demo

Alcuin. Some people around here, looking over my shoulder,

with Alcuin. One person, a student of calligraphy,

presents different strategies for documenting the Alcuin

The development of Alcuin can be traced to our founder’s

the installation file "alcuin.install"> and the font

configuration file "alcuin.ftables."

The -exec condition allows you to specify a command that is executed upon each file that is found ({}

indicates the pathname of the file). The command must end with an escaped semicolon.

Although this is a good way to introduce the very useful -exec option to find, it is actually not the

best way to solve the problem. You’ll notice that even though grep is working on more than one file, the
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filenames are not printed because the data is actually passed to grep from a pipe. The reason is that grep

is being invoked many times (once for each file that is found), and is not really working on many files at

once. If you wanted to produce a list of the selected files, you could use the -l option with grep. But

more to the point, this is a very inefficient way to do the job.

In this case, it would be preferable to write:

$ grep "[aA]lcuin" ‘find /work/docbook -print‘

Because grep is invoked only once, this command will run much faster.

There is a potential danger in this approach. If the list of files is long, you may exceed the total

allowable length of a command line. The best approach uses a command we haven’t shown yet—xargs.

This command provides an extended version of the same function the shell provides with backquotes. It

converts its input into a form that can be used as an argument list by another command. The command to

which the argument list is passed is specified as the first argument to xargs. So, you would write:

$ find /work/docbook -print | xargs grep "[aA]lcuin"

Or you could generalize this useful tool and save it as the following shell script, which could be called

mfgrep (multifile grep). This script takes the pathname for find as the first argument and the pattern

for grep as the second. The list of files found is passed to grep by xargs:

find $1 | xargs grep "$2"

The fgrep (fast grep)* command performs the same function as grep, except it searches for a fixed

string rather than a regular expression. Because it doesn’t interpret metacharacters, it often does a search

faster than grep. For interactive use, you may not find enough difference to keep this command in your

active repertoire. However, it may be of more benefit inside shell scripts.

The egrep command is yet another version of grep, one that extends the syntax of regular expres-

sions. A + following a regular expression matches one or more occurrences of the regular expression; a ?

matches zero or one occurrences. In addition, regular expressions can be nested within parentheses.

$ egrep "Lab(oratorie)?s" name.list
AT&T Bell Laboratories

AT&T Bell Labs

Parentheses surround a second regular expression and ? modifies this expression. The nesting helps to

eliminate unwanted matches; for instance, the word Labors or oratories would not be matched.

Another special feature of egrep is the vertical bar (|), which serves as an or operator between two

expressions. Lines matching either expression are printed, as in the next example:

$ egrep "stdscr|curscr" ch03
into the stdscr, a character array.

When stdscr is refreshed, the

stdscr is refreshed.

curscr.

initscr() creates two windows: stdscr

and curscr.

Remember to put the expression inside quotation marks to protect the vertical bar from being interpreted by

the shell as a pipe symbol. Look at the next example:

$ egrep "Alcuin (User|Programmer)(’s)? Guide" docguide
Alcuin Programmer’s Guide is a thorough

refer to the Alcuin User Guide.

Alcuin User’s Guide introduces new users to

You can see the flexibility that egrep’s syntax can give you, matching either User or Programmer and

matching them if they had an ’s or not.

Both egrep and fgrep can read search patterns from a file using the -f option.

* Despite what the documentation says, egrep is usually the fastest of the three grep programs.
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Proofing Documents

There are no computer tools that completely replace the close examination of final printed copy by the

human eye. However, UNIX does include a number of proofing aids, ranging from a simple spelling

checker to programs for checking style and diction, and even sexist usage.

We’ll look at some of these programs in this section. Not all of the programs we’ll discuss are avail-

able on all UNIX systems. Keep in mind, though, that grep is also a very powerful proofing aid, which

you can use to check for consistent usage of words and phrases.

Looking For Spelling Errors

The spell command reads one or more files and prints a list of words that are possibly misspelled. You

can redirect the output to a file, then use grep to locate each of the words, and vi or ex to make the edits.

In the next chapter, though, we introduce a shell script named proof for running spell interactively and

correcting spelling errors in place in a file. You will probably prefer to use spell in that manner rather

than invoking it manually.

Even if you do build that script, you can use spell on its own if you are unsure about which of two

possible spellings is right. Type the name of the command, followed by a RETURN, then type the alterna-

tive spellings you are considering. Press ˆD (on a line by itself) to end the list. The spell command will

echo back the word(s) in the list that it considers to be in error.

$ spell
misspelling

mispelling

ˆD

mispelling

You can invoke spell in this way from within vi, by typing the ex colon prompt, an exclamation point,

and the name of the spell command.

When you run spell on a file, the list of words it produces usually includes a number of legitimate

words or terms that the program does not recognize. You must cull out the proper nouns and other words

spell doesn’t know about to arrive at a list of true misspellings. For instance, look at the results on this

sample sentence:

$ cat sample
Alcuin uses TranScript to convert ditroff into

PostScript output for the LaserWriter printerr.

$ spell sample
Alcuin

ditroff

printerr

LaserWriter

PostScript

TranScript

Only one word in this list is actually misspelled.

On many UNIX systems, you can supply a local dictionary file so that spell recognizes special words

and terms specific to your site or application. After you have run spell and looked through the word list,

you can create a file containing the words that were not actual misspellings. The spell command will

check this list after it has gone through its own dictionary.

If you added the special terms in a file named dict, you could specify that file on the command line

using the + option:

$ spell +dict sample
printerr

The output is reduced to the single misspelling.
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The spell command will also miss words specified as arguments to nroff or troff macros, and,

like any spelling checker, will make some errors based on incorrect derivation of spellings from the root

words contained in its dictionary. If you understand how spell works, you may be less surprised by some

of these errors.

The directory /usr/lib/spell contains the main program invoked by the spell command

along with auxiliary programs and data files.

$ ls -l /usr/lib/spell
total 604

-rwxr-xr-x 1 bin bin 20176 Mar 9 1985 hashcheck

-rwxr-xr-x 1 bin bin 14352 Mar 9 1985 hashmake

-rw-r--r-- 1 bin bin 53872 Mar 9 1985 hlista

-rw-r--r-- 1 bin bin 53840 Mar 9 1985 hlistb

-rw-r--r-- 1 bin bin 6328 Mar 9 1985 hstop

-rw-rw-rw- 1 root root 102892 Jul 12 16:10 spellhist

-rwxr-xr-x 1 bin bin 23498 Mar 9 1985 spellin

-rwxr-xr-x 1 bin bin 27064 Mar 9 1985 spellprog

The spell command pipes its input through deroff -w and sort -u to remove formatting codes and

prepare a sorted word list, one word per line. (The deroff and sort commands are discussed later in

this chapter.) Two separate spelling lists are maintained, one for American usage and one for British usage

(invoked with the -b option to spell). These lists, hlista and hlistb, cannot be read or updated

directly. They are compressed files, compiled from a list of words represented as nine-digit hash codes.

(Hash-coding is a special technique for quick search of information.)

The main program invoked by spell is spellprog. It loads the list of hash codes from either

hlista or hlistb into a table, and looks for the hash code corresponding to each word on the sorted

word list. This eliminates all words (or hash codes) actually found in the spelling list. For the remaining

words, spellprog tries to see if it can derive a recognizable word by performing various operations on

the word stem, based on suffix and prefix rules. A few of these manipulations follow:

-y+iness

+ness

-y+i+less

+less

-y+ies

-t+ce

-t+cy

The new words created as a result of these manipulations will be checked once more against the spell table.

However, before the stem-derivative rules are applied, the remaining words are checked against a table of

hash codes built from the file hstop. The stop list contains typical misspellings that stem-derivative

operations might allow to pass. For instance, the misspelled word thier would be converted into thy using

the suffix rule -y+ier. The hstop file accounts for as many cases of this type of error as possible.

The final output consists of words not found in the spell list, even after the program tried to search for

their stems, and words that were found in the stop list.

You can get a better sense of these rules in action by using the -v or -x option.

The -v option eliminates the last lookup in the table, and produces a list of words that are not actu-

ally in the spelling list along with possible derivatives. It allows you to see which words were found as a

result of stem-derivative operations, and prints the rule used.

$ spell -v sample
Alcuin

ditroff

LaserWriter

PostScript

printerr

TranScript

+out output

+s uses

The -x option makes spell begin at the stem-derivative stage, and prints the various attempts it makes to

find the word stem of each word.
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$ spell -x sample
...

=into

=LaserWriter

=LaserWrite

=LaserWrit

=laserWriter

=laserWrite

=laserWrit

=output

=put

...

LaserWriter

...

The stem is preceded by an equals sign. At the end of the output are the words whose stem does not appear

in the spell list.

One other file you should know about is spellhist. Each time you run spell, the output is

appended through a command called tee into spellhist, in effect creating a list of all the misspelled or

unrecognized words for your site. The spellhist file is something of a “garbage” file that keeps on

growing. You will want to reduce it or remove it periodically. To extract useful information from this

spellhist, you might use the sort and uniq -c commands shown later in this chapter to compile a

list of misspelled words or special terms that occur most frequently. It is possible to add these words back

into the basic spelling dictionary, but this is too complex a process to describe here.

Checking Hyphenation

The hyphen command is used on nroff-formatted files to print a list of words that have been hyphenated

at the end of a line. You can check that nroff has correctly hyphenated words.

$ hyphen ch03.out
ch03.out:

applica-tion

pro-gram

charac-ter

If you disagree with the hyphenation of a word, you can go back into your source file and use either the

.hw request to specify hyphenation points or the .nh request to inhibit hyphenation of the word. If you

don’t hav e the hyphen command on your system, you can print the lines ending in hyphens using grep:

$ grep ’-$’ ch03.out

This will not display the second half of the hyphenated word on the following line, but it should give you

enough of an idea. Alternatively, you could use awk or sed, described in the next chapter, to create a ver-

sion of this command that would print both lines.

Counting Words

In the past, writers were paid by the word. The wc command will count words for you.

$ wc ch01
180 1529 9496 ch01

The three numbers printed represent the number of lines, words, and characters, respectively. (The pres-

ence of formatting commands in the input file will make this measurement somewhat inaccurate).
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Writer’s Workbench

No book on UNIX text processing can avoid some discussion of Writer’s Workbench (WWB), a col-

lection of programs for the analysis of writing style.

Unfortunately, unlike most of the programs described in this book, the Writer’s Workbench is not

available on all UNIX systems. It was originally developed for internal use at Bell Labs, and was available

in early releases of UNIX to the academic community. But it was made into a separate product when

UNIX was commercially released.

The three original programs, style, diction, and explain, are available in Berkeley UNIX

systems and in Xenix, but not in System V.

AT&T has released a greatly improved and expanded version, including additional programs for

proofreading, that is controlled from a master program called wwb. Howev er, this version is only available

as a separately priced package for 3B2 and 3B5 computers. The unfortunate result is that one of UNIX’s

most unusual contributions to text processing is not officially part of UNIX and has never been ported to

many UNIX systems.

In this section, we’ll describe the original style and diction programs, with a brief discussion of

wwb.

The style program analyzes a document’s style and computes readability indexes based on several

algorithms widely accepted in the academic community. For example, when run on a draft of this section,

style gave the following report:

readability grades:

(Kincaid) 11.1 (auto) 11.6 (Coleman-Liau) 11.0

(Flesch) 11.5 (52.7)

sentence info:

no. sent 53 no. wds 1110

av sent leng 20.9 av word leng 4.79

no. questions 0 no. imperatives 0

no. nonfunc wds 624 56.2% av leng 6.25

short sent (<16 ) 34% (18) long sent (>31) 17% (9)

longest sent 46 wds at sent 4;

shortest sent 5 wds at sent 47

sentence types:

simple 32% (17) complex 47% (25)

compound 4% (2) compound-complex 17% (9)

word usage:

verb types as % of total verbs

tobe 29% (33) aux 28% (32) inf 15% (17)

passives as % of non-inf verbs 9% (9)

types as % of total

prep 12.0% (133) conj 3.6% (40) adv 5.0% (56)

noun 26.8% (298) adj 15.5% (172) pron 7.3% (81)

nominalizations 3% (30)

sentence beginnings:

subject opener: noun (22) pron (5) pos (1) adj (2)

art (4 ) tot 64%

prep 17% (9) adv 9% (5)

verb 0% (0) sub_conj 6% (3) conj 0% (0)

expletives 4% (2)

Even if you aren’t an English teacher and don’t know the Kincaid algorithm from the Flesch, this report can

be very useful.

First, regardless of the differences between the algorithms, they all give you a general idea of the

required reading level for what you have written. It is up to you to adjust your style according to the audi-

ence level you want to reach. This may not be a trivial task; however, it may be a vital one if you are writ-

ing a book for a specific audience. For example, if you were writing an instruction manual for heavy equip-

ment to be used by people reading at the sixth-grade level, a style report like the one shown would be a

dire warning that the manual would not be successful.
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In general, to lower the reading level of a document, use shorter sentences and simpler constructions.

(Incidentally, most writing in newspapers and general circulation magazines is at the sixth-grade level. But

you shouldn’t get the impression that text written for a lower reading level is better. Writing can be clear

and effective at any lev el of complexity. At the same time, each of us must recognize, and adjust for, the

skills of our intended reader.)

The analysis of reading level is only a small part of what style offers. The detailed analysis of sen-

tence length and type, word usage, and sentence beginnings can give you considerable insight into your

writing. If you take the time to read the report carefully at the same time as you reread your text, you will

begin to see patterns and can make intelligent decisions about editorial changes.

As an exercise, run style on a short passage you have written, read the report carefully, then re-

write your work based on the report. See what difference this makes to the style report. You will even-

tually get a feel for what the program provides.

In some cases, diction, the other major program in the Writer’s Workbench, can also help you find

areas to change.

The diction program relies on a library of frequently misused words and phrases. It relentlessly

searches out these words and flags them as inappropriate by enclosing them in brackets. For example,

when run on a previous draft of this section, diction made the following recommendations:

wwb

style performs stylistic analysis of a document and

computes readability indexes based on a[ number of ]

algorithms widely accepted in the academic community.

this may not be a trivial task however it may be a

[ vital ] one if you are writing a book with a specific

target audience.

for example if you were writing an instruction manual

for heavy equipment to be used by people reading at the

sixth grade level a style report like the one shown above

would be a dire warning that the manual would not be

[ very ]successful.

[ in some cases ] diction the other major program in the

writer’s workbench can help you to find possible areas to

change.

in the latest official release of wwb there are a

[ number of ] additional programs including .

morestyle which looks for abstract words as well as

listing the frequency with which each word is used

and the word diversity the[ number of ]different words

divided by the total[ number of ] words.

morestyle also gives a count of the[ number of ]negative

constructions contained in your writing.

spellwwb which lists possible spelling errors in a

slightly more usable format than the standard spell

program and spelladd which allows you to build a local

dictionary word of spelling exceptions words that spell

regards as errors but[ which ]you know to be correct.

you can run these programs individually or using one of

several [ overall ]control programs.

running wwb will run[ all of ]these programs.

number of sentences 37 number of hits 10

The diction program lists “problem” sentences from your source file, with words or phrases it has taken
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exception to enclosed in brackets. You can redirect this output to a file, or page through it on the screen.

Punctuation and macros are first stripped by the deroff program, which explains the odd appearance of

the text.

We find that we ignore diction’s advice much of the time—the exception list is applied across the

board, without regard for context. For example, you’ll notice that it flagged the phrase number of several

times, though that was exactly what we meant in all but one case. However, the twenty percent of its rec-

ommendations that we agree with are worth the effort of running the program.

If you don’t understand why diction complains about a phrase, you can use explain to ask for

help. For example:

$ explain
phrase?

which

use "that" when clause is restrictive for "which"

use "when" for "at which time"

phrase?

number of

use "many" for "a large number of"

use "several, many, some" for "a number of"

use "usually" for "except in a small number of cases"

use "some" for "in a number of cases"

use "enough" for "sufficient number of"

use "often" for "in a considerable number of cases"

phrase?

perform

use "do" for "perform"

use "measure" for "perform a measurement"

phrase?

ˆD

The official release of WWB for 3B computers contains improved versions of style and dic-

tion, as well as many additional programs. These programs include

• abst, which evaluates the abstractness of your writing.

• acro, which looks for acronyms (any word printed in all capital letters) so you can check that

they hav e been properly defined.

• dictadd, which allows you to add to the dictionaries used by diction, spell, and sex-

ist.

• double, which looks for double words.

• findbe, which looks for syntax that may be difficult to understand.

• morestyle, which looks for abstract words and lists the frequency with which each word is

used and the word diversity (the number of different words divided by the total number of

words). The morestyle program also gives a count of the number of negative constructions

contained in your writing.

• org, which prints the first and last sentence of each paragraph, so you can analyze paragraph

transitions and the flow of ideas within your writing.

• punct, which checks punctuation (e.g., the placement of commas and periods with quotation

marks).

• sexist, which checks your writing against a dictionary of sexist words and phrases.

• spellwwb, which lists possible spelling errors in a slightly more usable format than the stan-

dard spell program, and spelladd, which allows you to build a local dictionary of spelling

exceptions (words that spell regards as errors, but that you know to be correct).

• splitrules, which finds split infinitives.

• syl, which prints the average number of syllables in the words you use.
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You can run these programs individually or use one of several control programs. The wwb program will

run just about everything. The proofr program will run those programs that help you proofread (such as

spell, double, punct, and diction). The prose program will run those that analyze style (such as

style and sexist).

There is also an interactive version of proofr called proofvi, which stores its output in a tempo-

rary file and then allows you to edit your original, stepping through each flagged problem.

Comparing Versions of the Same Document

UNIX provides a number of useful programs for keeping track of different versions of documents contained

in two or more files:

• the diff family of programs, which print out lines that are different between two or more files

• the SCCS system, which lets you keep a compact history of differences between files, so that

you can go back and reconstruct any previous version

• the make program, which keeps track of a predefined list of dependencies between files

Checking Differences

The diff command displays different versions of lines that are found when comparing two files. It prints

a message that uses ed-like notation (a for append, c for change, and d for delete) to describe how a set of

lines has changed. This is followed by the lines themselves. The < character precedes lines from the first

file and > precedes lines from the second file.

Let’s create an example to explain the output produced by diff. Look at the contents of three sam-

ple files:

TESTl TEST2 TEST3

apples apples oranges

oranges oranges walnuts

walnuts grapes chestnuts

When you run diff on these files, the following output is produced:

$ diff test1 test2
3c3

< walnuts

---

> grapes

The diff command displays the only line that differs between the two files. To understand the report,

remember that diff is prescriptive, describing what changes need to made to the first file to make it the

same as the second file. This report specifies that only the third line is affected, exchanging walnuts for

grapes. This is more apparent if you use the -e option, which produces an editing script that can be sub-

mitted to ed, the UNIX line editor. (You must redirect standard output to capture this script in a file.)

$ diff -e test1 test2
3c

grapes

.

This script, if run on test1, will bring test1 into agreement with test2. (Later in this section, we’ll

look at how to get ed to execute this script.) If you compare the first and third files, you find more differ-

ences:

$ diff test1 test3
1d0
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< apples

3a3

> chestnuts

To make test1 the same as test3, you’d hav e to delete the first line (apples) and append the third line

from test3 after the third line in test1. Again, this can be seen more clearly in the editing script pro-

duced by the -e option. Notice that the script specifies editing lines in reverse order; otherwise, changing

the first line would alter all succeeding line numbers.

$ diff -e test1 test3
3a

chestnuts

.

1d

You can use the diff3 command to look at differences between three files. For each set of differ-

ences, it displays a row of equals signs (====) followed by l, 2, or 3, indicating which file is different; if no

number is specified, then all three files differ. Then, using ed-like notation, the differences are described

for each file.

$ diff3 test1 test2 test3
====3

1:1c

2:1c

apples

3:0a

====3

1:3c

2:3c

grapes

3:2,3c

walnuts

chestnuts

With the output of diff3, it is easy to keep track of which file is which; however, the prescription given is

a little harder to decipher. To bring these files into agreement, you would have to add apples at the begin-

ning of the third file; change line 3 of the second file to line 3 of the first file; and change lines 2 and 3 of

the third file, effectively dropping the last line.

The diff3 command also has a -e option for creating an editing script for ed. It doesn’t quite

work the way you might think. Basically, it creates a script for building the first file from the second and

third files.

$ diff3 -e test1 test2 test3
3c

walnuts

chestnuts

.

1c

.

w

q

If you reverse the second and third files, a different script is produced:

$ diff3 -e test1 test3 test2
3c

grapes

.

w

q

As you might guess, this is basically the same output as doing a diff on the first and third files. (The only

difference in the output is the result of a rather errant inconsistency between diff and diff3. The latter

produces an ed script that ends with the commands that save the edited version of the file; diff requires

that you supply them.) Another useful program is sdiff (side-by-side diff). Its most straightforward

use is to display two files in two columns on the screen. In a gutter between the two columns, the program
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displays a < if the line is unique to the first file, a > if the line is unique to the second file, and a | if the line

is different in both files. Because the default line length of this program (130 characters) is too wide for

most terminals, it is best to use the -w option to specify a smaller width. Here are the results of running

sdiff on two different pairs of files:

$ sdiff -w60 test1 test2
apples apples

oranges oranges

walnuts | grapes

$ sdiff -w60 test1 test3
apples <

oranges oranges

walnuts walnuts

> chestnuts

The -s option to the sdiff command only shows the differences between the two files. Identical lines

are suppressed. One of the most powerful uses of sdiff is interactive, building an output file by choosing

between different versions of two files. You have to specify the -o option and the name of an output file to

be created. The sdiff command then displays a % prompt after each set of differences. You can compare

the different versions and select the one that will be sent to the output file. Some of the possible responses

are l to choose the left column, r to choose the right column, and q to exit the program.

$ sdiff -w60 -o test test1 test3
apples <

% l

oranges oranges

walnuts walnuts

> chestnuts

% r

$ cat test
apples

oranges

walnuts

chestnuts

Having looked at these commands in simplified examples, let’s now consider some practical applications

for comparing documents.

When working on a document, it is not an uncommon practice to make a copy of a file and edit the

copy rather than the original. This might be done, for example, if someone other than the writer is inputting

edits from a written copy. The diff command can be used to compare the two versions of a document. A

writer could use it to proof an edited copy against the original.

$ diff brochure brochure.edits
49c43,44

< environment for program development and communications,

---

> environment for multiprocessing, program development

> and communications, programmers

56c51

< offering even more power and productivity for commericial

---

> offering even more power and productivity for commercial

76c69

< Languages such as FORTRAN, COBOL, Pascal, and C can be

---

> Additional languages such as FORTRAN, COBOL, Pascal, and

Using diff in this manner is a simple way for a writer to examine changes without reading the entire doc-

ument. By capturing diff output in a file, you can keep a record of changes made to any document.

As another example, suppose a company has a number of text files that comprise its help facility.

These files are shipped with the product and maintained online by the customer. When there is a documen-

tation update, these files also need to be updated. One way to accomplish this is to replace each text file in

its entirety, but that involves distributing a lot of material that remains unchanged. Another way is to use

diff and simply send a record of changes between the old and the new. The -e option creates an editing
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script for ed that can be used to recreate the second file from the first.

$ diff -e help.txt help.new > help.chgs
$ cat help.chgs
153,199d

65c

$INCLUDE {filename} program.name

.

56a

.Rh 0 "" "$CHAIN Statement"

.Rh "Syntax"

.in 5n

.nf

$CHAIN {filename} program.name

.fi

.in 0

.Rh "Description"

Use the $CHAIN statement to direct the compiler to read

source code from program.name and compile it along

....

The company could ship the file help.chgs with instructions on how to input this editing script to ed.

You’d want to create a shell script to automate this process, but that is really an extension of knowing how

it might be done from the command line. The following command pipes the editing script to ed:

$ (cat help.chgs; echo ’w’) | ed - help.txt

To sav e the changes, a w command is submitted through echo. (In fact, if you have any concern about spar-

ing the original file, you could change the w to 1,$p, which will cause the edited contents to be printed to

standard output, but not saved in the file. Redirect standard output to a new file to keep both copies.)

As a further example, let’s take the instance where two people have made copies of a file and made

changes to their own copies, and now you want to compare them both against the original. In this example,

ch01 is the original; ch01.tom contains edits made by Tom; and ch01.ann contains changes made by

Ann.

$ diff3 ch01 ch01.ann ch01.tom
====3

1:56a

2:56a

3:57,103c

.mc |

.Rh 0 "" "$CHAIN Statement"

.XX "BASIC statements, $CHAIN"

.XX "$CHAIN statement"

.Rh "Syntax"

.UN

.in 5n

.nf

$CHAIN {file} program.name

.fi

.in 0

.Rh "Description"

Use the $CHAIN statement to direct the compiler to read

source code from program.name and compile it along

....

====3

1:65c

2:65c

$INCLUDE {file}

3:112c

$INCLUDE {file} program.name

====2

1:136c

2:136c

Nesting of $INSERT statements is not permitted.

3:183c
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Nesting of $INSERT statements is permitted.

====

1:143,144c

program.name is converted to a valid UNIX filename.

.LP

2:143,152c

program.name is converted to a valid UNIX filename using

the following conversion rules:

.TS

center, tab(@);

c l c.

/@is converted to@?

?@is converted to@??

Null@is converted to@?0

An initial .@is converted to@?.

.TE

3:190,191c

program.name is converted to a valid UNIX filename using

a set of conversion rules.

You often find that one version has some things right and another version has other things right. What if

you wanted to compile a single version of this document that reflects the changes made to each copy? You

want to select which version is correct for each set of differences. One effective way to do this would be to

use sdiff.

We’ll use the -s option to suppress the printing of identical lines. To make the example fit on the

printed page, we specify a 45-character line length. (You would generally use an 80-character line length

for the screen.) Because the total line length is limited to 45 characters, sdiff will be able to display only

the first 15 or so characters of the line for each file; the rest of the line will be truncated.

$ sdiff -w45 -s -o ch01.new ch01.ann ch01.tom
56a57,103

> .Rh 0 "" "$CHAIN Statement"

> .XX "BASIC statements, $CHAIN"

> .XX "$CHAIN statement"

> .Rh "Syntax"

> .UN

> .in 5n

> .nf

> $CHAIN {\fIfile\fP} \fI

> .fi

> .in 0

> .Rh "Description"

> Use the $CHAIN statement to de

> code from \fIprogram.name\fP

.......

% r

65c112

$ INCLUDE {\fIfile\fP} | $INCLUDE {\fIfile\fP}

% r

% 143,152c190,191

\fIprogram.name\fP is | \fIprogram.name\fP is

following rules. | following rules.

.TS <

center, tab(@); <

c l c. <

/@is converted to@? <

?@is converted to@?? <

Null@is converted to@?0 <

An initial .@is converted<

.TE <

% l

The file ch01.new contains the portions of each file that were selected along with all the lines that both

files have in common.
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Another program worth mentioning is bdiff (big file diff). It is used on files too large for diff.

This program breaks up a large file into smaller segments and then passes each one through diff. It main-

tains line numbering as though diff were operating on one large file.

SCCS

We’v e shown an example using diff to produce a file that described the changes made to a text file for a

help facility. It allowed the distribution of a smaller file describing changes instead of a wholly new version

of the file. This indicates a potential application for diff, which is fully realized in the Source Code Con-

trol System or SCCS. SCCS is a facility for keeping track of the changes to files that take place at different

stages of a software development or documentation project.

Suppose you have a first draft of a manual. (This is referred to as a delta when it is saved in a special

SCCS format.) The second draft, of course, is based on changes to the first draft.

When you make the delta for the second draft, SCCS, instead of keeping a separate copy for each

draft, uses diff to record the changes to the first draft that resulted in the second draft. Only the changes,

and the instructions for having an editor make them, need to be maintained. SCCS allows you to regenerate

earlier drafts, which saves disk space.

SCCS is quite complex—too complex to describe here—but we seriously suggest that you investigate

it if you are working on a large, frequently-revised or multiple author writing project.

Using make

The make program is a UNIX facility for describing dependencies among a group of related files, usually

ones that are part of the same project. This facility has enjoyed widespread use in software development

projects. Programmers use make to describe how to “make” a program—what source files need to be com-

piled, what libraries must be included, and which object files need to be linked. By keeping track of these

relationships in a single place, individual members of a software development team can make changes to a

single module, run make, and be assured that the program reflects the latest changes made by others on the

team.

We group make with the other commands for keeping track of differences between files only by a

leap of the imagination. However, although it does not compare two versions of the same source file, it can

be used to compare versions such as a source file and the formatted output.

Part of what makes UNIX a productive environment for text processing is discovering other uses for

standard programs. The make utility has many possible applications for a documentation project. One

such use is to maintain up-to-date copies of formatted files that make up a single manual and provide users

with a way of obtaining a printed copy of the entire manual without having to know which preprocessors or

nroff/troff options need to be invoked.

The basic operation that make performs is to compare two sets of files, for example, formatted files

and unformatted files, and determine if any members of one set, the unformatted files, are more recent than

their counterpart in the other set, the formatted files. This is accomplished by simply comparing the date or

time stamp of pairs of files. If the unformatted source file has been modified since the formatted file was

made, make executes the specified command to “remake” the formatted file.

To use make, you have to write a description file, usually named makefile (or Makefile), that

resides in the working directory for the project. The makefile specifies a hierarchy of dependencies

among individual files, called components. At the top of this hierarchy is a target. For our purposes, you

can think of the target as a printed copy of a book; the components are formatted files generated by process-

ing an unformatted file with nroff.

Here’s the makefile that reflects these dependencies.

manual: ch01.fmt ch02.fmt ch03.fmt
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lp ch0[1-3].fmt

ch01.fmt: ch01

nroff -mm ch01 > ch01.fmt

ch02.fmt: ch02

tbl ch02 | nroff -mm > ch02.fmt

ch03.fmt: ch03a ch03b ch03c

nroff -mm ch03? > ch03.fmt

This hierarchy can be represented in a diagram:

Manual

ch01.fmt ch02.fmt ch03.fmt

nroff -mm tbl | nroff -mm nroff -mm

ch01 ch02 ch03a ch03b ch03c

The target is manual and it is made up of three formatted files whose names appear after the colon. Each

of these components has its own dependency line. For instance, ch01.fmt is dependent upon a coded file

named ch01. Underneath the dependency line is the command that generates ch01.fmt. Each com-

mand line must begin with a tab.

When you enter the command make, the end result is that the three formatted files are spooled to the

printer. Howev er, a sequence of operations is performed before this final action. The dependency line for

each component is evaluated, determining if the coded file has been modified since the last time the format-

ted file was made. The formatting command will be executed only if the coded file is more recent. After

all the components are made, the lp command is executed.

As an example of this process, we’ll assume that all the formatted files are up-to-date. Then by edit-

ing the source file ch03a, we change the modification time. When you execute the make command, any

output files dependent on ch03a are reformatted.

$ make
nroff -mm ch03? > ch03.fmt

lp ch0[1-3].fmt

Only ch03.fmt needs to be remade. As soon as that formatting command finishes, the command under-

neath the target manual is executed, spooling the files to the printer.

Although this example has actually made only limited use of make’s facilities, we hope it suggests

more ways to use make in a documentation project. You can keep your makefiles just this simple, or
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you can go on to learn additional notation, such as internal macros and suffixes, in an effort to generalize

the description file for increased usefulness. We’ll return to make in Chapter 18.

Manipulating Data

Removing Formatting Codes

The deroff command removes nroff/troff requests, macros, inline backslash sequences, and eqn

and tbl specifications.

$ cat temp
.CH 11 "A Miscellany of UNIX Commands"

In this chapter, we present a miscellany of \s-2UNIX\s0

programs with text-processing applications.

.P

In addition, we introduce several \s-2UNIX\s0 utilities

$ deroff temp
Miscellany UNIX Commands

In this chapter, we present a miscellany of UNIX programs

with text-processing applications.

In addition, we introduce several UNIX utilities

Special rules are applied to text specified as arguments to a macro so that they are not passed through

deroff. A word in a macro call must contain at least three letters. Thus, A and of are omitted.

The deroff -w command is used by spell to remove troff requests and place each word on a

separate line. You can use deroff in a similar manner to prepare a word list.

$ deroff -w temp
Miscellany

UNIX

Commands

In

this

chapter

we

present

miscellany

of

UNIX

programs

with

text

processing

applications

In

addition

Again, not all “words” are recognized as words. The deroff command requires that a word consist of at

least two characters, which may be letters, numerals, ampersands, or apostrophes. (As mentioned above, it

applies slightly different rules to text specified as an argument to a macro.)

We had hoped deroff might be useful for our clients who wanted online copies of a document but

used a word processor. Because deroff drops words, it was not practical for stripping out troff-spe-

cific constructs. Perhaps the best way to do this is to use nroff to process the file, and then use a combi-

nation of terminal filters to strip out tabs, backspaces (overstrikes), and reverse linefeeds.
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The sort and uniq Commands

The sort command puts lines of a file in alphabetic or numeric order. The uniq command eliminates

duplicate lines in a file.

The sort command works on each line of a text file. Normally, it is used to order the contents of

files containing data such as names, addresses, and phone numbers. In the following example, we use

grep to search for index entries, coded with the macro .XX or .XN, and sort the output in alphabetic

order.

$ grep ".X[XN]" ch04 | sort -df
.XX "ABORT statement"

.XX "ASSIGNMENT statement"

.XX "BASIC statements, ABORT"

.XX "BASIC statements, ASSIGNMENT"

.XX "BASIC statements, BEGIN CASE"

The -f option folds uppercase and lowercase words together (that is, it ignores case when performing the

sort). The -d option sorts in dictionary order, ignoring any special characters.

The uniq command works only on sorted files, comparing each adjacent line. The sort command

has a -u option for removing all but one identical set of lines. Usually this is sufficient, but uniq does

have sev eral options, which gives you additional flexibility. For example, here’s the sorted output of four

files:

$ sort test*
apples

apples

apples

chestnuts

chestnuts

grapes

oranges

oranges

oranges

oranges

walnuts

walnuts

walnuts

The -d option prints one line for each duplicate line, but does not print lines that are unique.

$ sort test* | uniq -d
apples

chestnuts

oranges

walnuts

In this example, grapes has been filtered out. The -u option prints only unique lines. If we used the -u

option, only grapes would appear.

You wouldn’t expect sort to be useful on a document containing long lines of text. However, if you

bothered to start sentences on a new line when creating the input file (as we recommended in Chapter 3),

scanning a sorted file can produce some interesting things. The following command sorts the contents of

ch03 and pipes the output through pg:

$ sort -u ch03 | pg

Looking at the results gives you a slightly turned about view of your document. For instance, you might

notice inconsistencies among arguments to formatter requests:

.sp

.sp .2i

.sp .3v

.sp .5

Or you could check the frequency with which sentences begin in the same manner:

It is dangerous to use mvcur()
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It is designed so that each piece of code

It is possible that some programs

In the next example, we use deroff to create a word list. Then we sort it and use uniq to remove

duplicates. The -c option with uniq provides a count of the occurrences of identical lines. (It overrides

-u and -d.)

$ deroff -w ch03 | sort -fd | uniq -c
1 abort

1 aborted

3 about

4 above

1 absolute

1 absorb

1 accepting

1 accomplishes

1 active

2 actual

5 actually

2 Add

7 add

...

68 you

3 Your

13 your

2 zero

In the next example, we repeat the previous command, this time adding another sort at the end to

order the words by frequency. The -r option is used to re verse the comparison, putting the greatest num-

ber first.

$ deroff -w ch03 | sort -fd | uniq -c | sort -rfd
666 the

234 to

219 is

158 window

156 of

148 and

114 in

111 screen

105 that

83 character

76 are

...

1 aborted

1 abort

You will find other examples of sort in the next section, where we look at sorting particular fields. Be

sure to read the UNIX command pages for sort and uniq and experiment using different options.

The join Command

The join command compares lines contained in separate files and joins lines that have the same key.

(When you use sort or join, each line is separated into fields by blanks or tabs. Normally, the first field

is the key field, on which the sort or join is performed. However, there are options that allow you to

change the key field.) The file must be sorted in ascending ASCII sequence before being processed by

join.

$ cat 85
jan 19

feb 05

mar 14

apr 15
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may 15

jun 18

jul 19

aug 20

sep 19

nov 18

dec 18

$ cat 86
jan 09

feb 15

mar 04

apr 06

may 14

jun 13

jul 13

aug 10

sep 14

nov 13

dec 12

$ sort 85 > 85.temp; sort 86 > 86.temp

First we sort both of these files, creating temporary files. Then we perform the join, followed by a sort

with the -M option, to reorder them by month.

$ join 85.temp 86.temp | sort -M > joiner
$ cat joiner
jan 19 09

feb 05 15

mar 14 04

apr 15 06

may 15 14

jun 18 13

jul 19 13

aug 20 10

sep 19 14

nov 18 13

dec 18 12

$

After the data is joined in this manner, it can be sorted by field. Fields are separated by blank spaces or

tabs. The sort can be performed on specific fields, using + to indicate the first sort field and - to indicate

the last sort field. The first field is +0. To sort on the second field, use +1.

$ sort +1 joiner
feb 05 15

mar 14 04

apr 15 06

may 15 14

dec 18 12

jun 18 13

nov 18 13

jan 19 09

jul 19 13

sep 19 14

aug 20 10

The comm Command

The comm command reads the contents of two sorted files and produces for output a three-column listing of

lines that are found

• only in the first file;

• only in the second file;
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• in both the first and second files.

For example, let’s suppose that we had generated a list of UNIX commands found in Berkeley 4.2 and

another list of commands found in AT&T System V.2. We can use comm to produce a compact listing of

commands found exclusively in one version and commands common to both. For obvious reasons, this

example uses only the beginning of the list.

$ cat bsd4.2
adb

addbib

apply

apropos

ar

as

at

awk

$ cat attV.2
adb

admin

ar

as

asa

at

awk

Note that both files have already been sorted.

$ comm bsd4.2 attV.2
adb

addbib

admin

apply

apropos

ar

as

asa

at

awk

Commands found only on systems running Berkeley 4.2 are in the left-hand column, and those found only

on AT&T System V.2 are in the center column. Commands found in both versions are listed in the right-

hand column.

You can also suppress the display of one or more columns. For instance, if you wanted to display

only the commands that were found on both systems, you’d enter.

$ comm -l2 bsd4.2 attV.2

Only the third column would be shown.

By specifying - instead of a filename, you can also use standard input. In the next example, we pro-

duce a listing of filenames from two directories on the system, sort them, and compare them against the

commands named in the bsd4.2 file. This allows us to compare commands found on our system with

those on the list of Berkeley commands.

$ (cd /bin ; ls ; cd /usr/bin ; ls ) | sort | comm - bsd4.2
acctcom

adb

addbib

admin

apnum

apply

apropos

ar

as

asa

at
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awk

Parentheses are used to group a series of commands, combining their output into a single stream; we want a

list of command names without pathnames from several directories. Because a new shell is created to

execute these commands, notice that we do not change our current working directory when the commands

in parentheses have finished executing.

The cut and paste Commands

The cut and paste commands modify a table or any other data in fields or columns. You can extract spe-

cific columns of data using cut, and join them horizontally using paste.

For our examples, we’ll make use of a portion of a table of ASCII characters that specifies their deci-

mal and hexadecimal values. (This example is probably unnecessarily complex; you can use cut and

paste for much simpler jobs than this!) Here’s what the table looks like to begin with:

$ cat appc
.TS

center, box;

cb cb cb

n n l.

Decimal Hexadecimal ASCII

=

000 00 NUL

001 01 SO

002 02 STX

003 03 ETX

004 04 EOT

005 05 ENQ

006 06 ACK

007 07 BEL

008 08 BS

009 09 HT

.TE

Each column is separated by a tab. A tab is the default field delimiter for cut; the -d option can be used

to change it. The -c option allows you to specify character positions or ranges. The command cut

-c6-80 would print characters beginning at position 6 through 80, truncating the first five characters. The

-f option is used to specify one or more fields that are passed to standard output. (Given the name of the

command, one might reasonably think you’d specify the fields or column position you wanted cut out, but

...)

In the next example we extract the third field, which contains the ASCII names.

$ cut -f3 -s appc
ASCII

NUL

SO

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

We use the -s option to remove all lines that do not have any delimiters, thus dropping the tbl constructs

from the output. Normally, cut passes lines without delimiters straight through, and that is what we really

want for our next feat. We are going to reorder the table so that it can be referenced by the ASCII name

rather than by decimal number. All of this can be done from the command line, with only a brief entry into

the editor at the end.
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We’ll look at this in stages. First, we extract the third column and send it along to paste:

$ cut -f3 appc | paste - appc
.TS .TS

center, box; center, box;

cb cb cb cb cb cb

n n l. n n l.

ASCII Decimal Hexadecimal ASCII

= =

NUL 000 00 NUL

SO 001 01 SO

STX 002 02 STX

ETX 003 03 ETX

EOT 004 04 EOT

ENQ 005 05 ENQ

ACK 006 06 ACK

BEL 007 07 BEL

BS 008 08 BS

HT 009 09 HT

.TE .TE

The paste command reads one or more files or standard input (the - option) and replaces the newline

with a tab in all but the last file. This gives us four columns. (Yes, it doubled the tbl specifications, but

we have an editor.) Now, all we have to do is extract the first three columns from the output. Only cut

-f1,2,3 has been added to the previous command, and the output is redirected to a file.

$ cut -f3 appc | paste - appc | cut -f1,2,3 > ascii.table
$ cat ascii.table
.TS .TS

center, box; center, box;

cb cb cb cb cb cb

n n l. n n l.

ASCII Decimal Hexadecimal

= =

NUL 000 00

SO 001 01

STX 002 02

ETX 003 03

EOT 004 04

ENQ 005 05

ACK 006 06

BEL 007 07

BS 008 08

HT 009 09

.TE .TE

This gives us three columns in the correct order. We can go into vi to rearrange the tbl constructs and

execute a sort command on just the data portion of the table to bring it all together.

$ cat ascii.table
.TS

center, box;

cb cb cb

n n l.

ASCII Decimal Hexadecimal

=

ACK 006 06

BEL 007 07

BS 008 08

ENQ 005 05

EOT 004 04

ETX 003 03

HT 009 09

NUL 000 00

SO 001 01

STX 002 02

.TE
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The paste command can be used in several interesting ways. Normally, in order to merge two files,

paste replaces the newline in the first file with a tab. The -d option allows you to specify a substitute for

the tab. This can be any single character or a list of characters. Special characters can be represented as

follows: newline (\n), tab (\t), backslash (\\), and empty string (\0). Each character in the list is

assigned in sequence to replace a newline, and the list is recycled as many times as necessary. We can use

paste to present our three-column table in six columns:

$ paste -s -d"\t\n" appci
.TS center, box;

cb cb cb n n l.

Decimal Hexadecimal ASCII =

000 00 NUL 001 01 SO

002 02 STX 003 03 ETX

004 04 EOT 005 05 ENQ

006 06 ACK 007 07 BEL

008 08 BS 009 09 HT

.TE

The -s option is used when only a single file is specified. It tells paste to merge subsequent lines in the

same file rather than to merge one line at a time from several files. In this example, the first line’s newline

is replaced by a tab while the second line retains the newline. To get nine columns out of three-column

input, you’d specify -d"\t\t\n".

A little work needs to be done to the tbl specifications. You could also execute the paste com-

mand from within vi so that it only affects the data portion.

You would probably want to go to this much trouble for a large table (or many small tables) rather

than the small examples shown here. A more practical example that uses paste alone would be to con-

struct a multi-column table from a single long list of words. Simply split the list into equal-sized chunks,

then paste them together side by side.

The tr Command

The tr command is a character translation filter, reading standard input and either deleting specific charac-

ters or substituting one character for another.

The most common use of tr is to change each character in one string to the corresponding character

in a second string. (A string of consecutive ASCII characters can be represented as a hyphen-separated

range.)

For example, the command:

$ tr "A-Z" "a-z" < file

will convert all uppercase characters in file to the equivalent lowercase characters. The result is printed on

standard output.

As described in Chapter 7, this translation (and the reverse) can be useful from within vi for chang-

ing the case of a string. You can also delete specific characters. The -d option deletes from the input each

occurrence of one or more characters specified in a string (special characters should be placed within quota-

tion marks to protect them from the shell). For instance, the following command passes to standard output

the contents of file with all punctuation deleted:

$ cat file | tr -d ",.!?;:"

The -s (squeeze) option of tr removes multiple consecutive occurrences of the same character. For exam-

ple, the command:

$ tr -s " " < file

will print on standard output a copy of file in which multiple spaces in sequence have been replaced with a

single space.

We’v e also found tr useful when converting documents created on other systems for use under

UNIX. For example, one of our writers created some files using an IBM PC word processor. When we
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uploaded the files to our system, and tried to edit them with vi, we got the message:

Not an ascii file

and a blank screen. The vi editor could not read the file. However, using a programming utility that lists

the actual binary values that make up the contents of a file (od, or octal dump), we were able to determine

that the word processor used nulls (octal 000) instead of newlines (octal 012) to terminate each line.

The tr command allows you to specify characters as octal values by preceding the value with a

backslash, so the command:

$ tr ’\000’ ’\012’

was what we needed to convert the file into a form that could be edited with vi.

Splitting Large Files

Splitting a single large file into smaller files can be done out of necessity—when you come across a pro-

gram that can’t handle a large file—or as a matter of preference—when you find it easier to work with

smaller files. UNIX offers two different programs for breaking up files, split and csplit.

The split command divides a file into chunks, consisting of the same number of lines. This is

1000 lines, unless specified differently. In the following example of split, we break up a 1700-line file into

500-line chunks. The wc command supplies a summary of the number of lines, words, and characters in a

text file.

$ wc ch03
1708 8962 59815 ch03

$ split -500 ch03
$ wc ch03*
500 2462 16918 ch03aa

500 2501 16731 ch03ab

500 2976 19350 ch03ac

208 1023 6816 ch03ad

1708 8962 59815 ch03

The split command created four files. It appended aa, ab, ac, etc. to the end of the original filename to

create a unique filename for each file. You can also specify, as a third argument, a different filename to be

used instead of the original filename.

Look at the end of one of these files:

$ tail ch03ac
.Bh "Miscellaneous Functions"

.in 5n

.TS

tab(@);

l l l.

Unfortunately, the file breaks in the middle of a table. The split command pays no attention to content,

making it inadequate for breaking a file into manageable, but complete, sections.

The csplit command offers an alternative, allowing you to break a file in context. There are two

ways to use it. The first is to supply one or more line numbers. You could enter the following command:

$ csplit ch03 100 145 200

Four files would be created (0-99, 100-144, 145-199, 200-end). The naming convention for files created by

csplit is different than split. Files are named xx00, xx01, xx02 and so on. If you want to specify

a prefix that is different than xx, you can do so with the -f option.

Because we do not know in advance which line numbers to specify, we can use grep to get this

information. The -n option to grep causes line numbers to be returned. In this example, we specify a

pattern to match the section header macros, Ah and Bh:

$ grep -n ".[AB]h" ch03

It produces the following listing:
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5:.Ah "Introduction"

30:.Ah "Using the Curses Library"

175:.Ah "The Curses Functions"

398:.Bh "Adding Characters to the Screen Image"

638:.Bh "Standout Mode"

702:.Bh "Getting Characters from the Terminal"

777:.Bh "Input Modes"

958:.Bh "Erasing and Clearing"

1133:.Bh "Creating and Removing Multiple Windows"

1255:.Bh "Window-Specific Functions"

1301:.Bh "Manipulating Multiple Windows"

1654:.Bh "Terminal Manipulation"

From this listing, we select the appropriate places at which to split the file and supply these numbers to

split. The -f option is used to supply a filename prefix.

$ csplit -f ch03. ch03 175 1133
6803 Number of bytes in each segment
32544

20468

$ ls ch03.*
ch03.00

ch03.01

ch03.02

The csplit command prints a character count for each of the three files it created. (This count can be

suppressed using the -s option.)

The second way to use csplit is to supply a list of patterns. For instance, if you had prepared an

outline that you wanted to break into files corresponding to sections I, II, and III, you could specify:

$ csplit -s -f sect. outline /I./ /II./ /III./
S ls sect.*

sect.01

sect.02

sect.03

You can also repeat a pattern. In one project we were working on, one large file contained a number

of commands in reference page format. We decided it would be easier if we put each command in its own

file. The beginning of a reference header was marked by the macro .Rh 0. First, we used grep to deter-

mine the number of times this macro occurred.

$ grep -c ".Rh 0" ch04
43

We reduce this number by 1 and surround it with braces:

$ csplit -s -f ch04. ch04 "/.Rh 0/" {42}

The pattern is enclosed within double quotation marks because it contains a space. (If you use the C shell,

you must protect the braces from being interpreted by placing them in double quotation marks as well.)

This command creates 43 files:

$ ls ch04*
ch04

ch04.00

ch04.01

ch04.02

ch04.03

...

ch04.39

ch04.40

ch04.41

ch04.42

ch04.43

The only task remaining is to rename the files, using the name of the command listed as the first argument

to the .Rh macro. (We’d hav e to write an awk or shell script to do this automatically.)
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After you have divided a large file into a number of smaller files, you might organize them in a subdi-

rectory. Let’s look at a small example of this.

$ mkdir ch04.files
$ mv ch04.?? ch04.files

Again, the usefulness of filename metacharacters is apparent, giving us the ability to move 43 files without

typing 43 filenames.

Encryption

The cloak-and-dagger set and the security conscious will find uses for the encryption facilities of UNIX.

(These facilities are not available on UNIX systems sold outside the United States.) The crypt command

reads a file from standard input, asks you to supply a key for encoding the file, and passes to standard out-

put an encrypted version of the file. You should redirect standard output to a new file because the encrypted

file is not readable text.

$ cat message | crypt > encrypted.msg

Enter key:alabaster

Just as when you enter a password, the key does not appear on the screen as you enter it. If you prefer, you

can enter the key as an argument to crypt. To decode an encrypted file, you simply cat the file to

crypt and supply the key.

The UNIX editors ed, ex, and vi, can be invoked with the -x option to read or edit an encrypted

file. (Some versions of these programs recognize this option but do not support the encryption feature.) Of

course, you have to supply the correct key.

Cleaning Up and Backing Up

In this section, we show some procedures for backing up active files to some other medium such as tape or

floppy disk. At many sites, backups are the responsibility of one person, who performs these tasks on a

regular basis to ensure that users can recover much of their data in case there is a serious system crash. At

other sites, individual users might be responsible for doing their own backups, especially if there are only a

few users on the system. Whoever does it must ensure that backups of important files are made periodi-

cally.

A second reason for learning a backup procedure is to enable you to store files on an off-line

medium. For users of PCs, this is the standard method of operation (and therefore much simpler to do), but

all UNIX systems have hard disks as the primary storage medium. No matter how large a disk drive is,

sooner or later, users will fill it to capacity. Frequently, there are useless files that can be deleted. Other

inactive files, such as an early draft of a document, might be removed from the system after you have made

a copy on floppy disk or tape. After a project is finished, you probably want to make sev eral copies of all

important files. At a later time, should you need files that have been stored off-line, you can easily restore

them to the system.

We are going to describe how to use the cpio command for backing up one or more working direc-

tories. There are other UNIX commands that might be used as well (tar and dd, for instance). At your

site, you may even hav e simpler shell scripts that prevent you from having to deal with cpio directly. Ask

an expert user at your site about backup procedures and go through it once or twice. Apart from learning

about cpio, you will need:

1. The UNIX filename of the device (/dev/xxxx) to which you are directing the output of the

cpio command.

2. Familiarity with operating the device, such as being able to load a tape in the tape drive and

knowing how to format a floppy disk prior to use.
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You can use cpio in two basic ways, either to back up or to restore files. You use cpio with the -o

option and > to redirect output to the device for backup, or with the -i option and < to redirect input from

the device to restore files.

Unlike many of the commands we’ve looked at, cpio depends exclusively on reading a list of file-

names from standard input. This list identifies the files that will be backed up. For practical purposes, this

involves doing an ls command on the directory you want backed up and piping the results to cpio.

You need to know the UNIX filename for the backup device. This name is site specific, so you need

to check with a knowledgeable user. At our site, we have a floppy disk drive named /dev/rfp021. A

tape drive might be named /dev/mt0.

After you have loaded the tape in the tape drive or placed the floppy disk in the disk drive, you can

perform the backup using your own version of this command:

$ ls /work/docbook/ch13 | cpio -ov > /dev/rfp021
sect3

dict

shellstuff

...

384 blocks

The -v (verbose) option prints a list of filenames on the screen.

The -i option to cpio reads or restores files from a tape or floppy disk device. Sometimes, before

you actually restore files, you want to list the contents of the tape or disk. The -t option prints a table of

contents but does not actually read these files onto the system.

$ cpio -it < /dev/rfp021
384 blocks

sect3

dict

shellstuff

...

Using the -v option along with the -t option produces a long (verbose) listing of files, as if you had

entered ls -l.

You don’t hav e to extract all the files from disk or tape. You can specify certain files, using filename

metacharacters to specify a pattern.

$ cpio -iv "sect?" < /dev/rfp021
No match.

Remember to refer to the full pathname if the files were saved using a complete pathname, and to put path-

names that include metacharacters within double quotation marks.

$ cpio -i "/work/docbook/ch13/sect?" < /dev/rfp021
384 blocks

sect3

sect2

sectl

Before restoring a file, cpio checks to see that it won’t overwrite an existing file of the same name that has

been modified more recently than the file being read.

You can also use the find command with the -cpio condition to do a back up. The advantage of

using find is that it descends all the way down a directory hierarchy.

$ find /work/docbook/ch13 -cpio /dev/rfp021

To restore a directory hierarchy, use the -d option to cpio. Administrators frequently use find to gener-

ate a list of files that have been modified within a certain time period. The conditions -mtime (modifica-

tion time) and -atime (access time) can be followed by a number indicating a number of days. This num-

ber can be preceded by a plus sign, indicating more than that number of days, or a minus sign, indicating

less than that many days. If there is no sign, the condition indicates exactly that number of days.

This example uses find to produce a list of files that have been modified within the last seven days.

These active files are good candidates for backups.



272 Unix Text Processing

$ find /work/docbook -mtime -7 -print
/work/docbook

/work/docbook/oshell

/work/docbook/ch01

...

Don’t forget you have to specify -print to see the results of a find command.

You could work up your own version of this command to look for your own files that have not been

accessed in the last 21 days. Add the option -atime with an argument of +21 to list the files and directo-

ries that have not been accessed in over 21 days. Add the -user option to look only for your own files,

the -cpio option to backup these files, and the -ok option to execute an rm command to delete them from

the system after they’ve been backed up.

$ find /work -atime +21 -user -cpio /dev/rfp021 -ok rm {} \;

The -ok option is the same as the -exec option; however, instead of executing the command specified

within parentheses on all files selected by find, it prompts you first to approve the command for each file.

Compressing Files

You can conserve the amount of disk space that text files take up by storing some of your files in a com-

pressed form. The pack command can be used to compress a file. It generally reduces a text file by 25 to

40 percent.

$ ls -l ch04/sect1
-rw-rw-rw- 1 fred doc 29350 Jun 10 15:22 ch04/sect1

$ pack ch04/sect1
pack: ch04/sect1: 39.9% Compression

The original file is replaced by a packed file with a .z appended to the original filename.

$ ls -l ch04/sect1.z
-rw-rw-rw- 1 fred doc 17648 Jun 10 15:29 ch04/sect1.z

The pack command reduced the size of this file from 29K to 17K bytes. If used system-wide, it could

save a significant amount of disk space, although the amount of compression will vary from file to file.

Obviously, there is less benefit in packing small files.

To expand a packed file, use the unpack command. You can specify the name of the file with or

without the .z suffix.

$ unpack ch04/sect1
unpack: ch04/sect1: unpacked

Another way to temporarily unpack a file is to use a special version of cat for packed files, called pcat.

Use this command to view a packed file (pipe it through more or pg) or send it as input to another com-

mand, as in the following example:

$ pcat ch04/sect1 | nroff -mm

Communications

More and more, we find that our projects require us to work on several different computer systems, some of

them UNIX systems, some not. Given this situation, the ability to work remotely on other systems and to

transfer files has been essential. Fortunately, a number of useful communications programs are part of the

standard UNIX shipment.

Tw o basic types of connections between computer systems are a dial-up line, using a modem to com-

municate across phone lines, and a direct line, when two computer systems are in close proximity and can

be connected by a single cable. The uucp and cu commands establish communication links using both

types of connections. The cu command (Berkeley’s version is called tip) is a UNIX program for
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conducting a login session on a remote computer system. UUCP (UNIX-to-UNIX copy) is a series of

related programs for transforming files between UNIX systems. Its main program is called uucp.

We cannot provide full descriptions of these facilities here. A good way to learn is to ask an expert

user to help you transfer files or begin a remote login session. Keep notes on the procedure and when fol-

lowing it, if things don’t work as expected, get more help.

The UUCP programs are quite straightforward and easy to use after you are accustomed to the con-

ventions. Each system on the UUCP network has a file that describes the other systems linked to it and

what types of links are available. This file is created by the system administrator of each system. You can

find out the names of these remote systems by entering the uuname command. If your system is properly

configured and you have a login on a remote system, such as boston, you can begin a remote session by

entering:

$ cu boston

After you are connected to the remote system, you should get a login message. To quit a remote session,

log out and then enter ˜. (tilde dot) to return to your own machine.

There are a number of commands you can enter while under the control of cu, permitting, for

instance, the execution of commands on the local system while you are still logged in to the remote system.

Check the reference page in your UNIX documentation.

You can also dial direct to a non-UNIX system by specifying a telephone number on the command

line (providing, of course, that the files accessed by these communications programs have been properly

configured by the system administrator).

You can send mail to users on these remote systems and transfer files. Generally, file transfers take

place between public directories on both systems, usually /usr/spool/uucppublic. File transfers

between other directories will contend with file and directory access permissions as well as uucp permis-

sions set by the system administrator. The character ˜ serves as a shorthand for the public directory.

For instance, when working on site for a client, we often create files that we want to send to our own

system. If we are logged in on their system, we can send the file outline to our system named ora by

entering:

$ uucp -m outline ora!˜/fred/

The UUCP facility is batch oriented, accepting requests and acting upon them in the order in which they are

received. Although it may execute your request immediately, if it is busy or encounters difficulty making

the connection, UUCP will carry out the request at a later time.

The -m option is used so that we are sent mail when the copy is actually completed. The system

name is followed by an exclamation mark (if you use the C shell, escape ! with a backslash). Then you

specify a tilde (˜) followed by the user’s name. Putting a slash after the user name (fred) ensures that the

user name will be interpreted as a directory (or a directory will be created if one does not exist).

Occasionally, you will need to transfer a large number of files or, perhaps, an entire directory hierar-

chy. There are some simple tricks you can use to combine multiple files into a single file, making it easier

to transmit to another system. They are especially helpful when you transfer between public directories.

You must first create a list of the files to be included. (You can do this either manually or with a com-

mand like ls or find.) Then use cpio to create what we can call a file archive on standard output rather

than on a backup device. Redirect standard output to a file, then use UUCP to send the archive. Use the

same backup program on the target system to restore the archive. For example, if you had a book made up

of files ch01, ch02, etc., you could “package” that book for transfer to another system using cpio.

boston$ cd /usr/proj/book
boston$ find . -name ’ch0?’ -print | cpio -oc > book.archive

or using a manually generated list of filenames:

boston$ ls ch0? > filelist
boston$ cpio -oc < filelist > book.archive

Then, after transferring book.archive (instead of numerous individual files) to the remote system with

UUCP, a user can restore the archive:
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calif$ mkdir /usr/proj/book
calif$ mv /usr/spool/uucppublic/book.archive /usr/proj/book
calif$ cd /usr/proj/book
calif$ cpio -icd < book.archive

(The -c option of cpio writes header information in ASCII for portability; -d tells cpio to create direc-

tories if needed when doing the restore.)

(On Berkeley UNIX systems, you can do something similar with tar. See your UNIX manual for

details.)

Scripts of UNIX Sessions

Throughout this chapter, we hav e provided examples of UNIX commands. These examples were made

using a command called script (which is not a standard System V command). The script command

allows you to make a file copy of a UNIX session. Without this facility, we’d hav e to simulate the exam-

ples by hand.

After you invoke script, your input and output is copied to a file. By default, the name of this file

is typescript, but you can supply a different name on the command line.

$ script
Script started on Thu Jul 10 12:49:57 1987

$ echo hello
hello

$

To quit, you enter CTRL-D.

$ cat typescript
Script started on Thu Jul 10 12:49:57 1987

$ echo hello

hello

$

script done on Thu Jul 10 12:50:11 1987

After we make a script, we simply read the file into our text using vi.

Keeping a script of a procedure is also a good start for building a shell script that performs a routine

task automatically.
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Let the Computer Do the Dirty Work

Computers are very good at doing the same thing repeatedly, or doing a series of very similar things one

after another. These are just the kinds of things that people hate to do, so it makes sense to learn how to let

the computer do the dirty work.

As we discussed in Chapter 7, you can save ex commands in a script, and execute the script from

within vi with the :so command. It is also possible to apply such a script to a file from the outside—

without opening the file with vi. As you can imagine, when you apply the same series of edits to many

different files, you can work very quickly using a script.

In addition, there is a special UNIX editor, called sed (stream editor), that only works with scripts.

Although sed can be used to edit files (and we will show many useful applications in this chapter), it has a

unique place in the UNIX editing pantheon not as a file editor, but as a filter that performs editing opera-

tions on the fly, while data is passed from one program to another through a pipe.

The sed editor uses an editing syntax that is similar to that used by ex, so it should not be difficult

to learn the basics.

The awk program, which is discussed in the next chapter, is yet another text-processing program. It

is similar to sed, in that it works from the outside and can be used as a filter, but there the resemblance

ends. It is really not an editor at all, but a database manipulation program that can be turned into an editor.

Its syntax goes beyond the global substitution/regular expression syntax we’ve already seen, and so awk

may be the last thing that many writers learn. Nonetheless, it has some important capabilities that you may

want to be familiar with.

Finally, to make best use of these tools, you need to know a bit about shell programming. In fact,

because the shell provides a framework that you can use to put all these other tools together, we need to dis-

cuss it first.

If you are a programmer, and have already worked with the shell, this discussion may be too elemen-

tary; however, we are assuming that many of our readers are writers with only minimal exposure to pro-

gramming. They, like us when we started working with UNIX, need encouragement to branch out into

these untried waters that have so little apparent connection to the task at hand.

This chapter is different from those in the first part of the book in that it not only teaches the basics of

some new programs, but also puts them to work building some useful text-processing tools. At times,

material is organized according to what is needed to build the tools, rather than as a comprehensive attempt

to teach the program itself. As a result, the material presented on sed, for example, is less complete than

our earlier treatment of vi. We cover the most important points, but in many ways this chapter is sugges-

tive. If you come away with a sense of possibility, it has done its job.

Shell Programming

A shell script, or shell program, can be no more than a sequence of stored commands, entered in a file just

as you would type them yourself to the shell.

There are two shells in common use in the UNIX system, the Bourne shell (sh), championed by

AT&T, and the C shell (csh), developed at the University of California at Berkeley. Although the C shell

has many features that make it preferable for interactive use, the Bourne shell is much faster, so it is the tool

of choice for writing shell scripts. (Even if you use the C shell, scripts written using Bourne shell syntax

will be executed in the Bourne shell).

275
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We discuss the Bourne shell exclusively in this chapter, although we make reference to differences

from the C shell on occasion. This should pose no problem to C shell users, however, because the basic

method of issuing commands is identical. The differences lie in more advanced programming constructs,

which we will not introduce in detail here.

Stored Commands

The .profile (or .login if you use the C shell) file in your home directory is a good example of a

shell program consisting only of stored commands. A simple .profile might look like this:

stty erase ’ˆH’ echoe kill ’ˆX’ intr ’ˆC’

PATH=/bin:/usr/bin:/usr/local/bin:.; export PATH

umask 2

date

mail

This file does some automatic housekeeping to set up your account environment every time you log in.

Even if you aren’t familiar with the commands it contains, you can get the basic idea. The commands are

executed one line at a time; it is a tremendous time saving to be able to type one command instead of five.

You can probably think of many other repetitive sequences of commands that you’d rather not type

one at a time. For example, let’s suppose you were accustomed to working on an MS-DOS system, and

wanted to create a dir command that would print out the current directory and the names and sizes of all

of your files, rather than just the names. You could save the following two commands in a file called dir:

pwd

ls -l

To execute the commands saved in a file, you can simply give its name as an argument to the sh command.

For example:

$ sh dir
/work/docbook/ch13

total 21

-rw-rw-r-- 3 fred doc 263 Apr 12 09:17 abbrevs

-rw-rw-r-- 1 fred doc 10 May 1 14:01 dir

-rw-rw-r-- 1 fred doc 6430 Apr 12 15:00 sect1

-rw-rw-r-- 1 fred doc 14509 Apr 15 16:29 sect2

-rw-rw-r-- 1 fred doc 1024 Apr 28 10:35 stuff

-rw-rw-r-- 1 fred doc 1758 Apr 28 10:00 tmp

Or you can make a file executable by changing its file permissions with the chmod command:

$ ls -l dir
-rw-rw-r-- 1 fred doc 10 May 1 14:01 dir

$ chmod +x dir
$ ls -l dir
-rwxrwxr-x 1 fred doc 10 May 1 14:01 dir

After a file has executable permission, all you need to do to execute the commands it contains is to type the

file’s name:

$ dir
/work/docbook/ch13

total 21

-rw-rw-r-- 3 fred doc 263 Apr 12 09:17 abbrevs

-rwxrwxr-x 1 fred doc 10 May 1 14:01 dir

-rw-rw-r-- 1 fred doc 6430 Apr 12 15:00 sect1

-rw-rw-r-- 1 fred doc 14509 Apr 15 16:29 sect2

-rw-rw-r-- 1 fred doc 1024 Apr 28 10:35 stuff

-rw-rw-r-- 1 fred doc 1758 Apr 28 10:00 tmp

The next step is to make the shell script accessible from whatever directory you happen to be working in.

The Bourne shell maintains a variable called PATH, which is set up during the login process, and contains a
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list of directories in which the shell should look for executable commands. This list is usually referred to as

your search path.

To use the value of a variable, simply precede its name with a dollar sign ($). This makes it easy to

check the value of a variable like PATH — simply use the echo command:

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:.

The Bourne shell expects the list of directory names contained in the PATH variable to be separated by

colons. If your search path is defined as shown, the following directories will be searched, in order, when-

ev er you type the name of a command:

/bin

/usr/bin

/usr/local/bin

. (shorthand for the current directory)

The allocation of system commands to the three bin directories is historical and somewhat arbitrary,

although /usr/local/bin tends to contain commands that are local to a specific implementation of

UNIX. It is sometimes called /usr/lbin or some other name.

To ensure that any shell scripts you create are automatically found whenever you type their names,

you can do one of two things:

1. You can add shell scripts to one of the directories already in your search path. However, in

most cases, these directories are only writable by the super-user, so this option is not available

to all users.

2. You can create a special “tools” directory of your own, and add the name of that directory to

your search path. This directory might be a subdirectory of your own home directory, or could

be a more globally available directory used by a group of people.

For example, you could put the following line in your .profile:

PATH=/usr/fred/tools:.:/bin:/usr/bin:/usr/local/bin:

The /usr/fred/tools directory would be searched before any of the standard search directories. (This

means that you can define an alternate command with the same name as an existing command. The version

found first in the search path is executed, and the search is stopped at that point. You should not put local

directories before the standard directories if you are concerned at all with system security, because doing so

creates a loophole that can be exploited by an intruder).

If you are using the C shell, the search path is stored in a variable called path, and has a different

format; see your UNIX documentation for details. In addition, you must use the rehash command when-

ev er you add a command to one of the search directories.

Passing Arguments to Shell Scripts

The previous example is very simple; the commands it used took no arguments. In contrast, consider a case

in which you want to save a single complex command line in a file. For example, if you use tbl and eqn

with nroff, your typical command line might look like this:

$ tbl file | eqn | nroff -ms | col | lp

How much easier it would be to save that whole line in a single file called format, and simply type:

$ format file

The question then becomes: how do you tell your format script where in the command line to insert the

file argument?

Because all of the programs in the script are designed to read standard input as well as take a file-

name argument, we could avoid the problem by writing the script thus:
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tbl | eqn | nroff -ms | col | lp

and using it like this:

$ cat file | format

or like this:

$ format < file

But this still begs the question of how to pass an argument to a shell script.

Up to nine arguments can be represented by positional notation. The first argument is represented in

the shell script by the symbol $1, the second by $2, and so on.

So, for example, we could write our script:

tbl $1 | eqn | nroff -ms | col | lp

When specified as an argument to the format command:

$ format ch01

the filename would be substituted in the script for the symbol $1.

But what if you want to specify several files at once? The symbol $* means “use all arguments,” so

the script:

tbl $* | eqn | nroff -ms | col | lp

will allow us to write:

$ format file1 file2 ...

Now consider the slightly more complex case in which you’d like to support either the ms or the mm

macros. You could write the script like this:

tbl $2 | eqn | nroff $1 | col | lp

The first argument will now follow the invocation of nroff, and the second will represent the filename:

$ format -ms file

However, at this point we have lost the ability to specify “all arguments,” because the first argument is used

differently than all the rest. There are several ways to handle this situation, but we need to learn a few

things first.

Conditional Execution

Commands in a shell script can be executed conditionally using either the if...then...else or case

command built into the shell. However, any conditional commands require the ability to test a value and

make a choice based on the result. As its name might suggest, the test command does the trick.

There are different kinds of things you can test, using various options to the command. The general

form of the command is:

$ test condition

Condition is constructed from one or more options; some of the most useful are listed in Table 12-1.



Let the Computer Do the Dirty Work 279

Table 12.1 Useful test Options

Option Meaning

-d file True if file exists and is a directory

-f file True if file exists and is a regular file

-n s1 True if the length of string s1 is nonzero

-r file True if file exists and is readable

-s file True if file exists and has a size greater than zero

-w file True if file exists and is writable

-x file True if file exists and is executable

-z s1 True if the length of string s1 is zero

str1 = str2 True if strings str1 and str2 are identical

str1 != str2 True if strings str1 and str2 are not identical

str1 True if string str1 is not the null string

n1 -eq n2 True if the integers n1 and n2 are algebraically

equal (any of the comparisons -ne, -gt, -ge,

-lt, and -le may be used in place of -eq)

The test command has a special form just for use in shell scripts. Instead of using the word test,

you can simply enclose condition in square brackets. The expression must be separated from the enclosing

brackets by spaces.

So, for example, to return to our format script, we could write:

if [ "$1" = "-mm" ]

then

tbl $2 | eqn | nroff -mm | col | lp

else

tbl $2 | eqn | nroff -ms | col | lp

fi

We’v e simply used the test command to compare the value of two strings—the first argument, and the

string "-mm"—and executed the appropriate command line as a result. If the strings are equal, the first

command line is executed; if they are not equal, the second line is executed instead. (Notice that there are

spaces surrounding the equals sign in the test).

The syntax of if...then...else clauses can get confusing. One trick is to think of each

keyword (if, then, and else) as a separate command that can take other commands as its argument.

The else clause is optional. (That is, you can say, “if the condition is met, do this,” and give no alterna-

tives. If the condition is not met, the script will simply go on to the next line, or exit if there is no next

line). The entire sequence is terminated with the fi keyword.

After you realize that each part of the sequence is really just a separate command, like other UNIX

commands, the abbreviated form, which uses semicolons rather than newlines to separate the commands,

will also make sense:

if condition; then command; fi

An if...then...else clause allows you to make a choice between at most two options. There

is also an elif statement that allows you to create a sequence of if clauses to deal with more conditions.

For example, suppose your system supports a third macro package—one you’ve written yourself, and called

mS because it’s a superset of ms. (More on this in Chapter 17!) You could write the script like this:

if [ "$1" = "-mm" ]

then tbl $2 | eqn | nroff -mm | col | lp

elif [ "$1" = "-ms" ]

then tbl $2 | eqn | nroff -ms | col | lp

elif [ "$1" = "-mS" ]

then tbl $2 | eqn | nroff -mS | col | lp

fi
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This syntax can get awkward for more than a few conditions. Fortunately, the shell provides a more com-

pact way to handle multiple conditions: the case statement. The syntax of this statement looks complex

(even in the slightly simplified form given here):

case value in

pattern) command;;
..

pattern) command;;
esac

In fact, the statement is quite easy to use, and is most easily shown by example. We could rewrite the pre-

vious script as follows:

case $1 in

-mm) tbl $2 | eqn | nroff -mm | col | lp;;

-ms) tbl $2 | eqn | nroff -ms | col | lp;;

-mS) tbl $2 | eqn | nroff -mS | col | lp;;

esac

This form is considerably more compact, especially as the number of conditions grows. (Be sure to note

the ;; at the end of each line. This is an important part of the syntax).

Here’s how the case statement works. Each value in turn is compared (using standard shell

metacharacters like * and ?, if present) against the pattern before the close parenthesis at the start of each

line. If the pattern matches, the line is executed. If not, the script tries again with the next line in the case

statement. After the value has been compared against each case, the process starts over with the next value

(if more than one has been specified).

Discarding Used Arguments

All of the conditions we’ve tested for so far are mutually exclusive. What if you want to include more than

one potentially true condition in your script? The trick to dealing with this situation requires two more shell

commands: while and shift.

Consider the following example. You realize that it is inefficient to pass your files through eqn ev ery

time you use format. In addition, you sometimes use pic. You want to add options to your format

shell script to handle these cases as well.

You could decree that the macro package will always be the first argument to your script, the name of

the preprocessor the second, and the file to be formatted the third. To delay execution of the command until

all of the options have been assembled, you can use the case statement to set shell variables, which are

evaluated later to make up the actual command line. Here’s a script that makes these assumptions:

case $1 in

-mm) macros="-mm";;

-ms) macros="-ms";;

-mS) macros="-mS";;

esac

case $2 in

-E) pre="| eqn"

-P) pre="| pic"

esac

tbl $3 $pre | nroff $macros | col | lp

But what if you don’t want either preprocessor, or want both eqn and pic? The whole system breaks

down. We need a more general approach.

There are several ways to deal with this. For example, there is a program called getopt that can be

used for interpreting command-line options. However, we will use another technique—discarding an argu-

ment after it is used, and shifting the remaining arguments. This is the function of the shift command.

This command finds its most elementary use when a command needs to take more than nine argu-

ments. There is no $10, so a script to echo ten arguments might be written:
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echo The first nine arguments: $1 $2 $3 $4 $5 $6 $7 $8 $9

shift

echo The tenth argument: $9

After the shift command, the old $1 has disappeared, as far as the shell is concerned, and the remaining

arguments are all shifted one position to the left. (The old $2 is the current $1, and so on). Take a moment

to experiment with this if you want.

Shifting works well with conditional statements, because it allows you to test for a condition, discard

the first argument, and go on to test the next argument, without requiring the arguments to be in a specific

order. Howev er, we still can’t quite get the job done, because we have to establish a loop, and repeat the

case statement until all of the arguments are used up.

Repetitive Execution

As we suggested at the start of this chapter, the real secret of programming is to get the computer to do all

the repetitive, boring tasks. The basic mechanism for doing this is the loop—an instruction or series of

instructions that cause a program to do the same thing over and over again as long as some condition is

true.

The while command is used like this:

while condition
do

commands
done

In the script we’re trying to write, we want to repeatedly test for command-line arguments as long as there

are arguments, build up a command line using shell variables, and then go ahead and issue the command.

Here’s how:

while [ $# -gt 0 ]

do

case $1 in

-E) eqn="| eqn";;

-P) pic="| pic";;

-*) options="$options $1";;

*) files="$files $1";;

esac

shift

done

tbl $files $eqn $pic | nroff $options | col | lp

The special shell variable $# always contains the number of arguments given to a command. What this

script is saying in English is: As long as there is at least one argument

• test the first argument against the following list of possibilities; if there is a match, set the vari-

able as instructed;

• throw away the argument now that you’ve used it, and shift the remaining arguments over one

place;

• decrement the shell variable $#, which contains the number of arguments;

• go back to the first line following the do statement, and start over.

The loop will continue as long as the condition specified in the while statement is met—that is, until all

the arguments have been used up and shifted out of existence.

As you’ve no doubt noticed, to make this work, we had to account for all of the arguments. We

couldn’t leave any to be interpreted in the command line because we had to use them all up to satisfy the

while statement. That meant we needed to think about what other kinds of arguments there might be and

include them in the case statement. We came up with two possibilities: additional nroff options and

files.
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In addition, because of the pattern-matching flexibility in the case statement, we don’t need to call

out each of the macro packages separately, but can just treat them as part of a more general case. Any argu-

ment beginning with a minus sign is simply assumed to be an nroff option.

You’ll notice that we used a somewhat different syntax for assigning these last two potential groups

of arguments to variables:

variable="$variable additional_value"

Or, as shown in the script:

options="$options $1"

files="$files $1"

This syntax is used to add a value to a variable. We know that we can expect at least one option to nroff,

so we simply add any other options to the same variable. Similarly, there may be more than one filename

argument. The *) case can be executed any number of times, each time adding one more filename to the

variable.

If you want to become more familiar with how this works, you can simulate it on the command line:

$ files=sect1
$ files="$files sect2"
$ echo $files
sect1 sect2

As you’ve seen, in the script we used the standard shell metacharacter *, which means “any number

of any characters,” right in the pattern-matching part of the case statement. You can use any of the shell

metacharacters that you can type on the command line equally well in a shell script. However, be sure you

realize that when you do this, you’re making assumptions—that any option not explicitly tested for in the

case statement is an nroff option, and that any argument not beginning with a minus sign is a filename.

This last assumption may not be a safe one—for example, one of the filenames may be mistyped, or

you may not be in the directory you expect, and the file will not be found. We may therefore want to do a

little defensive programming, using another of the capabilities provided by the test command:

*) if [ -f $1 ]

then

files="$files $1"

else echo "format: $1: file not found"; exit

fi;;

The [-f] test checks to see whether the argument is the name of an existing file. If it is not, the script

prints an informative message and exits. (The exit command is used to break out of a script. After this

error occurs, we don’t want to continue with the loop, or go on to execute any commands).

This example is also instructive in that it shows how each element in the case statement’s condition

list does not need to be on a single line. A line can contain a complex sequence of commands, separated by

semicolons or newlines or both, and is not terminated till the concluding ;; is encountered.

Setting Default Values

We’v e considered the case where multiple values are stored in the same variable. What about the other

extreme, where no value is stored?

If an option, such as -E for eqn, is not specified on the command line, the variable will not be

defined. That is, the variable will have no value, and the variable substitution $eqn on the final line of the

script will have no effect—it is as if it isn’t there at all.

On the other hand, it is possible to export a variable, so that it will be recognized not just in the

shell that created it, but in any subshell. This means that the commands:

$ eqn="| eqn"; export eqn
$ format -ms myfile
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will have the same effect as:

$ format -ms -E myfile

Although there are occasions where you might want to do this sort of thing, you don’t want it to happen

unexpectedly. For this reason, it is considered good programming practice to initialize your variables—that

is, to set them to a predefined value (or in many cases, a null value) to minimize random effects due to

interaction with other programs.

To set a shell variable to a null value, simply equate it to a pair of quotation marks with nothing in

between. For example, it would be a good idea to start off the format script with the line:

eqn="";pic="";options=""

In addition to setting arguments to null values, we can also set them to default values—that is, we can give

them values that will be used unless the user explicitly requests otherwise. Let’s suppose that we want the

script to invoke troff by default, but also provide an option to select nroff. We could rewrite the entire

script like this:

eqn=""; pic=""; roff="ditroff -Tps"; post="| devps"

lp="lp -dlaser"

while [ $# -gt 0 ]

do

case $1 in

-E) eqn="| eqn";;

-P) pic="| pic";;

-N) roff="nroff"; post="| col"; lp="lp -dline";;

-*) options="$options $1";;

*) if [ -f $1 ]; then

files="$files $1"

else echo "format: $1: file not found"; exit

fi;;

esac

shift

done

eval "tbl $files $eqn $pic | $roff $options $post | $lp"

The troff output needs to be passed through a postprocessor before it can be sent to a printer. (We use

devps, but there are almost as many different postprocessors as there are possible output devices). The

nroff output, for some printers, needs to be passed through col, which is a special filter used to remove

reverse linefeeds. Likewise, the lp command will need a “destination” option. We’re assuming that the

system has a printer called laser for troff output, and one called line for line printer output from

nroff. The default case (troff) for both the postprocessor and destination printer is set in the variables

at the start of the file. The -N option resets them to alternate values if nroff is being used. The eval

command is necessary in order for the pipes to be evaluated correctly inside a variable substitution.

What We’ve Accomplished

You might wonder if this script really saved you any time. After all, it took a while to write, and it seems

almost as complex to use as just typing the appropriate command line. After all, was it worth all that work,

just so that we can type:

$ format -ms -E -P -N myfile

instead of:

$ tbl myfile | eqn | pic | nroff -ms | lp

There are two answers to that question. First, many of the programs used to format a file may take options

of their own—options that are always the same, but always need to be specified—and, especially if you’re

using troff, a postprocessor may also be involved. So your actual command line might work out to be

something like this:
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$ tbl myfile | eqn | pic -T720 -D | ditroff -ms -Tps |
> devps | lp

That’s considerably more to type! You could just save your most frequently used combinations of com-

mands into individual shell scripts. But if you build a general tool, you’ll find that it gives you a base to

build from, and opens up additional possibilities as you go on. For example, later in this book we’ll show

how to incorporate some fairly complex indexing scripts into format—something that would be very dif-

ficult to do from the command line. That is the far more important second reason for taking the time to

build a solid shell script when the occasion warrants.

As this chapter goes on, we’ll show you many other useful tools you can build for yourself using

shell scripts. Many of them will use the features of the shell we introduced in this section, although a few

will rely on additional features we’ve yet to learn.

ex Scripts

We’v e discussed ex already in Chapter 7. As we pointed out, any command, or sequence of commands,

that you can type at ex’s colon prompt can also be saved in a file and executed with ex’s :so command.

This section discusses a further extension of this concept—how to execute ex scripts from outside a

file and on multiple files. There are certain ex commands that you might save in scripts for use from

within vi that will be of no use from the outside—maps, abbreviations, and so on. For the most part,

you’ll be using substitute commands in external scripts.

A very useful application of editing scripts for a writer is to ensure consistency of terminology—or

ev en of spelling—across a document set. For the sake of example, let’s assume that you’ve run spell,

and it has printed out the following list of misspellings:

$ spell sect1 sect2
chmod

ditroff

myfile

thier

writeable

As is often the case, spell has flagged a few technical terms and special cases it doesn’t recognize, but it

has also identified two genuine spelling errors.

Because we checked two files at once, we don’t know which files the errors occurred in, or where in

the files they are. Although there are ways to find this out, and the job wouldn’t be too hard for only two

errors in two files, you can easily imagine how the job could grow time consuming for a poor speller or typ-

ist proofing many files at once.

We can write an ex script containing the following commands:

g/thier/s//their/g

g/writeable/s//writable/g

wq

Then we can edit the files as follows:

$ ex - sect1 < exscript
$ ex - sect2 < exscript

(The minus sign following the invocation of ex tells it to accept its commands from standard input).

If the script were longer than the one in our simple example, we would already have sav ed a fair

amount of time. However, giv en our earlier remarks about letting the computer do the dirty work, you

might wonder if there isn’t some way to avoid repeating the process for each file to be edited. Sure enough,

we can write a shell script that includes the invocation of ex, but generalizes it, so that it can be used on

any number of files.
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Looping in a Shell Script

One piece of shell programming we haven’t discussed yet is the for loop. This command sequence allows

you to apply a sequence of commands for each argument given to the script. (And, even though we aren’t

introducing it until this late in the game, it is probably the single most useful piece of shell programming

for beginners. You will want to remember it even if you don’t write any other shell programs).

Here’s the syntax of a for loop:

for variable in list
do

commands
done

For example:

for file in $*

do

ex - $file < exscript

done

(The command doesn’t need to be indented; we indented for clarity). Now (assuming this shell script is

saved in a file called correct), we can simply type:

$ correct sect1 sect2

The for loop in correct will assign each argument (each file in $*) to the variable file and

execute the ex script on the contents of that variable.

It may be easier to grasp how the for loop works with an example whose output is more visible.

Let’s look at a script to rename files:

for file in $*

do

mv $file $file.x

done

Assuming this script is in an executable file called move, here’s what we can do:

$ ls
ch01 ch02 ch03 move

$ move ch??
$ ls
ch01.x ch02.x ch03.x move

With a little creativity, you could rewrite the script to rename the files more specifically:

for nn in $*

do

mv ch$nn sect$nn

done

With the script written this way, you’d specify numbers instead of filenames on the command line:

$ ls
ch01 ch02 ch03 move

$ move 01 02 03
$ ls
sect01 sect02 sect03 move

The for loop need not take $* (all arguments) as the list of values to be substituted. You can specify an

explicit list as well, or substitute the output of a command. For example:

for variable in a b c d

will assign variable to a, b, c, and d in turn. And:

for variable in ‘grep -l "Alcuin"‘
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will assign variable in turn to the name of each file in which grep finds the string Alcuin.

If no list is specified:

for variable

the variable will be assigned to each command-line argument in turn, much as it was in our initial example.

This is actually not equivalent to for variable in $* but to for variable in $@, which has a

slightly different meaning. The symbols $* expand to $1, $2, $3, etc., but $@ expands to "$1", "$2",

"$3", etc. Quotation marks prevent further interpretation of special characters.

Let’s return to our main point, and our original script:

for file in $*

do

ex - $file < exscript

done

It may seem a little inelegant to have to use two scripts—the shell script and the ex script. And in fact, the

shell does provide a way to include an editing script directly into a shell script.

Here Documents

The operator << means to take the following lines, up to a specified string, as input to a command. (This is

often called a here document). Using this syntax, we could include our editing commands in correct

like this:

for file in $*

do

ex - $file << end-of-script

g/thier/s//their/g

g/writeable/s//writable/g

wq

end-of-script

done

The string end-of-script is entirely arbitrary—it just needs to be a string that won’t otherwise appear

in the input and can be used by the shell to recognize when the here document is finished. By convention,

many users specify the end of a here document with the string EOF, or E-O-F, to indicate end of file.

There are advantages and disadvantages to each approach shown. If you want to make a one-time

series of edits and don’t mind rewriting the script each time, the here document provides an effective way to

do the job.

However, writing the editing commands in a separate file from the shell script is more general. For

example, you could establish the convention that you will always put editing commands in a file called

exscript. Then, you only need to write the correct script once. You can store it away in your per-

sonal “tools” directory (which you’ve added to your search path), and use it whenever you like.

ex Scripts Built by diff

A further example of the use of ex scripts is built into a program we’ve already looked at—diff. The -e

option to diff produces an editing script usable with either ed or ex, instead of the usual output. This

script consists of a sequence of a (add), c (change), and d (delete) commands necessary to recreate file1

from file2 (the first and second files specified on the diff command line).

Obviously, there is no need to completely recreate the first file from the second, because you could do

that easily with cp. Howev er, by editing the script produced by diff, you can come up with some desired

combination of the two versions.
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It might take you a moment to think of a case in which you might have use for this feature. Consider

this one: two people have unknowingly made edits to different copies of a file, and you need the two ver-

sions merged. (This can happen especially easily in a networked environment, in which people copy files

between machines. Poor coordination can easily result in this kind of problem).

To make this situation concrete, let’s take a look at two versions of the same paragraph, which we

want to combine:

Version 1:
The Book of Kells, now one of the treasures of the Trinity

College Library in Dublin, was found in the ancient

monastery at Ceannanus Mor, now called Kells. It is a

beautifully illustrated manuscript of the Latin Gospels,

and also contains notes on local history.

It was written in the eighth century.

The manuscript is generally regarded as the finest example

of Celtic illumination.

Version 2:
The Book of Kells was found in the ancient

monastery at Ceannanus Mor, now called Kells. It is a

beautifully illustrated manuscript of the Latin Gospels,

and also contains notes on local history.

It is believed to have been written in the eighth century.

The manuscript is generally regarded as the finest example

of Celtic illumination.

As you can see, there is one additional phrase in each of the two files. We would like to merge them into

one file that incorporates both edits.

Typing:

$ diff -e version1 version2 > exscript

will yield the following output in the file exscript:

6c

It is believed to have been written in the eighth century.

.

1, 2c

The Book of Kells was found in the ancient

.

You’ll notice that the script appears in reverse order, with the changes later in the file appearing first. This

is essential whenever you’re making changes based on line numbers; otherwise, changes made earlier in the

file may change the numbering, rendering the later parts of the script ineffective.

You’ll also notice that, as mentioned, this script will simply recreate version 1, which is not what we

want. We want the change to line 5, but not the change to lines 1 and 2. We want to edit the script so that it

looks like this:

6c

It is believed to have been written in the eighth century.

.

w

(Notice that we had to add the w command to write the results of the edit back into the file). Now we can

type:

$ ex - version1 < exscript

to get the resulting merged file:

The Book of Kells, now one of the treasures of the Trinity

College Library in Dublin, was found in the ancient

monastery at Ceannanus Mor, now called Kells. It is a

beautifully illustrated manuscript of the Latin Gospels,

and also contains notes on local history.

It is believed to have been written in the eighth century.
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The manuscript is generally regarded as the finest example

of Celtic illumination.

Using diff like this can get confusing, especially when there are many changes. It is very easy to get the

direction of changes confused, or to make the wrong edits. Just remember to do the following:

• Specify the file that is closest in content to your eventual target as the first file on the diff

command line. This will minimize the size of the editing script that is produced.

• After you have corrected the editing script so that it makes only the changes that you want,

apply it to that same file (the first file).

Nonetheless, because there is so much room for error, it is better not to have your script write the changes

back directly into one of your source files. Instead of adding a w command at the end of the script, add the

command 1,$p to write the results to standard output. This is almost always preferable when you are

using a complex editing script.

If we use this command in the editing script, the command line to actually make the edits would look

like this:

$ ex - version1 < exscript > version3

The diff manual page also points out another application of this feature of the program. Often, as a

writer, you find yourself making extensive changes, and then wishing you could go back and recover some

part of an earlier version. Obviously, frequent backups will help. However, if backup storage space is at a

premium, it is possible (though a little awkward) to save only some older version of a file, and then keep

incremental diff -e scripts to mark the differences between each successive version.

To apply multiple scripts to a single file, you can simply pipe them to ex rather than redirecting

input:

cat script1 script2 script3 | ex - oldfile

But wait! How do you get your w (or 1,$p) command into the pipeline? You could edit the last script to

include one of these commands. But, there’s another trick that we ought to look at because it illustrates

another useful feature of the shell that many people are unaware of.

If you enclose a semicolon-separated list of commands in parentheses, the standard output of all of

the commands are combined, and can be redirected together. The immediate application is that, if you

type:

cat script1 script2 script3; echo ’1,$p’ | ex - oldfile

the results of the cat command will be sent, as usual, to standard output, and only the results of echo will

be piped to ex. Howev er, if you type:

(cat script1 script2 script3; echo ’1,$p’) | ex - oldfile

the output of the entire sequence will make it into the pipeline, which is what we want.

Stream Editing

We hav en’t seen the sed program yet. Not only is it a line editor rather than a screen editor, but it takes the

process one step further: it is a “noninteractive” line editor. It can only be used with editing scripts. It was

developed in 1978 as an extension to ed for three specific cases (according to the original documentation):

• to edit files too large for comfortable interactive editing

• to edit any size file when the sequence of editing commands is too complicated to be comfort-

ably typed in interactive mode

• to perform multiple “global” editing functions efficiently in one pass through the input

All of these are still good reasons for using sed. But these cases can be solved by the scripting ability of

ex that we have already looked at. Why learn yet another editor?
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One answer lies in the third point. Because it was specifically designed to work with scripts, sed is

considerably faster than ex when used with a comparable script.

The other answer lies in sed’s unique capability to be used as an editing filter—a program that

makes edits on the fly as data is being passed through a pipe on its way to other programs.

The sed program uses a syntax that is very similar to that used by ex, so it is not very difficult to

learn. However, there are some critical differences, which make it inadvisable for an experienced ed or ex

user to just blindly jump in.

We’re going to take a close look at sed, not as a general-purpose editor, but as a tool to accomplish

specific tasks. As a result, we won’t cover every command, but only those that differ significantly from

their ex equivalents or offer specific benefits that we want to utilize.

First, a brief note on usage. The sed command has two forms:

sed -e command editfiles
sed -f scriptfile editfiles

The first form, using -e, allows you to specify an editing command right on the command line. Multiple

-e options can be specified on the same line.

The second form, using -f, takes the name of a script containing editing commands. We prefer this

form for using sed.

In addition, you can specify an entire multiline editing script as an argument to sed, like this:

sed ’

Editing script begins here
.

.

.

Editing script ends here’ editfiles

This last form is especially useful in shell scripts, as we shall see shortly. Howev er, it can also be used

interactively. The Bourne shell will prompt for continuation lines after it sees the first single quotation

mark.

You can also combine several commands on the same line, separating them with semicolons:

sed -e ’command1; command2; ...’ editfiles

One last point: when using sed -e, you should enclose the expression in quotation marks.

Although this is not absolutely essential, it can save you from serious trouble later.

Consider the following example:

$ sed -e s/thier/their own/g myfile

The expression s/thier/their own/g will work correctly in a sed script used with the -f option.

But from the command line it will result in the message “Command garbled,” because the shell interprets

the space as a separator between arguments, and will parse the command expression as s/thier/their

and treat the remainder of the line as two filenames, own/g and myfile. Lacking a closing / for the s

command, sed will complain and quit.

Differences between ex and sed

The first difference between sed and interactive line editors like ed and ex is the way lines are addressed.

In ex, the default is to affect only a specifically addressed line; therefore, commands like g exist to address

multiple lines. The sed program, on the other hand, works by default on all lines, so it needs commands

that allow it to bypass selected lines. The sed program is implicitly global. In ex, the default is to edit

the current line, and you must explicitly request global edits, or address particular lines that you want to

have edited. In sed, the default is to edit every line, and line addresses are used to restrict the operation of

the edit.
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For example, consider the difference between ex and sed in how they interpret a command of the

form:

/pattern/s/oldstring/newstring/

In ex, this means to locate the first line matching pattern and, on that line, perform the specified substitu-

tion. In sed, the same command matches every line containing pattern, and makes the specified edits. In

other words, this command in sed works the same as ex’s global flag:

g/pattern/s/oldstring/newstring/

In both sed and ex, a command of the form:

/pattern1/,/pattern2/command

means to make the specified edits on all lines between pattern1 and pattern2.

Although you can use absolute line number addresses in sed scripts, you have to remember that sed

has the capability to edit multiple files at once in a stream. And in such cases, line numbers are consecutive

throughout the entire stream, rather than restarted with each new file.

Besides its addressing peculiarities, you also need to get used to the fact that sed automatically

writes to standard output. You don’t need to issue any special commands to make it print the results of its

edits; in fact, you need to use a command-line option to make it stop.

To make this point clear, let’s consider the following admittedly artificial example. Your file contains

the following three lines:

The files were writeable by thier owner, not by all.

The files were writeable by thier owner, not by all.

The files were writeable by thier owner, not by all.

You use the following editing script (in a file called edscript):

/thier/s//their/

/writeable/s//writable/

1,$p

Here are the very different results with ex and sed:

$ ex - junk < edscript
The files were writeable by their owner, not by all.

The files were writable by thier owner, not by all.

The files were writeable by thier owner, not by all.

$ sed -f edscript junk
The files were writable by their owner, not by all.

The files were writable by their owner, not by all.

The files were writable by their owner, not by all.

The files were writable by their owner, not by all.

The files were writable by their owner, not by all.

The files were writable by their owner, not by all.

The ex command, lacking the g prefix to make the edits global, applies the first line in the script to the first

line in the file, and then goes to the second line, to which it applies the second line in the script. No edits

are performed on the third line. The contents of the buffer are printed to standard output by the final line in

the script. This is analogous to what would happen if you issued the same commands manually in ex.

The sed command, in contrast, applies each line in the script to every line in the file, and then sends

the results to standard output. A second copy of the input is printed to standard output by the final line in

the script.

Although the same script almost works for ex and sed, the sed script can be written more simply

as:

s/thier/their/

s/writeable/writable/

Because edits are applied by default to every line, we can skip the initial pattern address and simply give

the s command. And we want to omit the print command, which gav e us the annoying second copy of the
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input.

There are also some special added commands that support sed’s noninteractive operation. We will

get to these commands in due course. However, in some ways, the special commands are easier to learn

than the familiar ones. The cautionary example shown was intended to underline the fact that there is a

potential for confusion when commands that look identical produce very different results.

Some Shell Scripts Using sed

The sed command you are most likely to start with is s (or substitute) because you can put it to work with-

out knowing anything about sed’s advanced control structures. Even if you learn no other sed com-

mands, you should read this section, because this command is easy to learn and will greatly extend your

editing power.

Within the constraints just outlined, the s command works similarly to its ex equivalent. Let’s look

at several shell scripts that use sed.

First, because speed is definitely a factor when you’re making large edits to a lot of files, we might

want to rewrite the correct script shown previously with ex as follows:

for file in $*

do

sed -f sedscr $file > $file.tmp

mv $file.tmp $file

done

This script will always look for a local editing script called sedscr, and will apply its edits to each file in

the argument list given to correct. Because sed sends the result of its work to standard output, we cap-

ture that output in a temporary file, then move it back to the original file.

As it turns out, there is a real danger in this approach! If there is an error in the sed script, sed will

abort without producing any output. As a result, the temporary file will be empty and, when copied back

onto the original file, will effectively delete the original.

To avoid this problem, we need to include a test in the correct shell script:

for file in $*

do

sed -f sedscr $file > $file.tmp

if [ -s $file.tmp ]

then

mv $file.tmp $file

else

echo "Sed produced an empty file."

fi

done

The [-s] test checks to see whether or not a file is empty—a very useful thing indeed when you are using

editing scripts.

You might want to create another simple shell script that uses sed to correct simple errors. We’ll

call this one change:

sed -e "s/$1/$2/g" $3 > $3.tmp

if [ -s $3.tmp ]

then

mv $3.tmp $3

else

echo "Possible error using regular expression syntax."

This script will simply change the first argument to the second in the file specified by the third argument.

$ change mispeling misspelling myfile
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(Because we control the actual editing script, the most likely errors could come from faulty regular expres-

sion syntax in one of the first two arguments; thus, we changed the wording of the error message).

Integrating sed into format

Let’s consider a brief application that shows sed in its role as a true stream editor, making edits in a pipe-

line—edits that are never written back into a file.

To set the stage for this script, we need to turn back briefly to typesetting. On a typewriter-like

device (including a CRT), an em dash is typically typed as a pair of hyphens (--). In typesetting, it is

printed as a single, long dash (—). The troff program provides a special character name for the em dash,

but it is inconvenient to type \(em in your file whenever you want an em dash.

Suppose we create a sed script like this:

s/--/\\(em/g

and incorporate it directly into our format script? We would never need to worry about em dashes—sed

would automatically insert them for us. (Note that we need to double the backslash in the string \(em

because the backslash has meaning to sed as well as to troff, and will be stripped off by sed).

The format script might now look like this:

eqn=""; pic=""; macros="ms"; col=""; roff="ditroff -Tlj"

sed="| sed -e ’s/--/\\(em/g’"

while [ $# -gt 0 ]

do

case $1 in

-E) eqn="| eqn";;

-P) pic="| pic";;

-N) roff="nroff"; col="| col"; sed="";;

-*) options="$options $1";;

*) if [ -f $1 ]; then

files="$files $1"

else echo "format: $1: file not found"; exit

fi;;

esac

shift

done

eval "cat $files $sed | tbl $eqn $pic | $roff $options $col | lp"

(Notice that we’ve set up the -N option for nroff so that it sets the sed variable to null, because we only

want to make this change if we are using troff).

Excluding Lines from Editing

Before we go any further, let’s take a moment to be sure the script is complete.

What about the case in which someone is using hyphens to draw a horizontal line? We want to

exclude from the edit any lines containing three or more hyphens together. To do this, we use the !

(don’t!) command:

/---/!s/--/\(em/g

It may take a moment to understand this syntax. It says, simply, “If you find a line containing three

hyphens together, don’t make the edit.” The sed program will treat all other lines as fair game. (It’s

important to realize that the ! command applies to the pattern match, not to the s command itself.

Although, in this case, the effect might seem to be the same whether you read the command as “Don’t

match a line containing ---” or “Match a line containing ---, and don’t substitute it,” there are other

cases in which it will be very confusing if you don’t read the line the same way that sed does).
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We might also take the opportunity to improve the aesthetics even further, by putting in a very small

space between the ends of the dash and the preceding and following words, using the troff construct \ˆ,

which produces a 1/12-em space:

/---/!s/--/\\ˆ\\(em\\ˆ/g

As it turns out, changing hyphens to em dashes is not the only “prettying up” edit we might want to make

when typesetting. For example, some laser printers do not have a true typeset quotation mark (“ and ” as

opposed to " and "). If you are using an output device with this limitation, you could use sed to change

each double quotation mark character to a pair of single open or close quotation marks (depending on con-

text), which, when typeset, will produce the appearance of a proper double quotation mark.

This is a considerably more difficult edit to make because there are many separate cases that we need

to account for using regular expression syntax. Our script might need to look like this:

s/ˆ"/‘‘/

s/"$/’’/

s/"? /’’? /g

s/"?$/’’?/g

s/ "/ ‘‘/g

s/" /’’ /g

s/|——|"/|——|‘‘/g

s/"|——|/’’|——|/g

s/")/’’)/g

s/"]/’’]/g

s/("/(‘‘/g

s/\["/\[‘‘/g

s/";/’’;/g

s/":/’’:/g

s/,"/,’’/g

s/",/’’,/g

s/\."/.\\\&’’/g

s/"\./’’.\\\&/g

s/"\\ˆ\\(em/’’\\(em/g

s/\\(em\\ˆ"/\\(em‘‘/g

s/"\\(em/’’\\(em/g

s/\\(em"/\\(em‘‘/g

(This list could be shortened by judicious application of \([...]\) regular expression syntax, but it is

shown in its long form for effect. Note that the symbol |——| represents a tab).

Branching to Selective Parts of a Script

In technical books like this, it is usually desirable to show examples in a constant-width font that clearly

shows each character as it actually appears. A pair of single quotation marks in a constant-width font will

not appear at all similar to a proper typeset double quotation mark in a variable-width font. In short, it is

not always desirable to make the substitutions shown previously.

However, we can assume that examples will be set off by some sort of macro pair (in this book, we

used .ES and .EE, for example start and example end), and we can use those as the basis for exclusion.

There are two ways to do this:

• Use the ! command, as we did before.

• Use the b (branch) command to skip portions of the editing script.

Let’s look at how we’d use the ! command first.

We could apply the ! command to each individual line:

/ˆ\.ES/,/ˆ\.EE/!s/ˆ"/‘‘/

/ˆ\.ES/,/ˆ\.EE/!s/"$/’’/

/ˆ\.ES/,/ˆ\.EE/!s/"? /’’? /g

.
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.

.

But there has to be a better way, and there is. The sed program supports the flow control symbols { and }

for grouping commands. So we simply need to write:

/ˆ\.ES/,/ˆ\.EE/!{

s/ˆ"/‘‘/

s/"$/’’/

s/"? /’’? /g

.

.

.

s/\\(em\\ˆ"/\\(em‘‘/g

s/"\\(em/’’\\(em/g

s/\\(em"/\\(em‘‘/g

}

All commands enclosed in braces will be subject to the initial pattern address.

There is another way we can do the same thing. The sed program’s b (branch) command allows

you to transfer control to another line in the script that is marked with an optional label. Using this feature,

we could write the previous script like this:

/ˆ\.ES/,/ˆ\.EE/bend

s/ˆ"/‘‘/

s/"$/’’/

s/"? /’’? /g

.

.

.

s/\\(em\\ˆ"/\\(em‘‘/g

s/"\\(em/’’\\(em/g

s/\\(em"/\\(em‘‘/g

:end

A label consists of a colon, followed by up to eight characters. If the label is missing, the b command

branches to the end of the script. (Because we don’t hav e anything past this point at the moment, we don’t

actually need the label in this case. That is the form we will use from now on).

The b command is designed for flow control within the script. It allows you to create subscripts that

will only be applied to lines matching certain patterns and will not be applied elsewhere. However, as in

this case, it also gives you a powerful way to exempt part of the text from the action of a single-level script.

The advantage of b over ! for our application is that we can more easily specify multiple conditions

to avoid. The ! symbol can apply to a single command, or can apply to a set of commands enclosed in

braces that immediately follows. The b command, on the other hand, gives you almost unlimited control

over movement around the script.

For example, if we are using multiple macro packages, there may be other macro pairs besides .ES

and .EE that enclose text that we don’t want to apply the sed script to. So, for example, we can write:

/ˆ.ES/,/ˆ.EE/b

/ˆ.PS/,/ˆ.PE/b

/ˆ.G1/,/ˆ.G2/b

In addition, the quotation mark is used as part of troff’s own comment syntax (\" begins a comment), so

we don’t want to change quotation marks on lines beginning with either a . or a ’:

/ˆ[.’]/b

It may be a little difficult to grasp how these branches work unless you keep in mind how sed does its

work:

1. It reads each line in the file into its buffer one line at a time.

2. It then applies all commands in the script to that one line, then goes to the next line.
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When a branch dependent on a pattern match is encountered, it means that if a line that matches the pattern

is read into the buffer, the branch command will cause the relevant portion of the script to be skipped for

that line. If a label is used, the script will continue at the label; if no label is used, the script is effectively

finished for that line. The next line is read into the buffer, and the script starts over.

The previous example shows how to exempt a small, clearly delineated portion of a file from the

action of a sed script. To achieve the opposite effect—that is, to make a sed script affect only a small part

of a file and ignore the rest—we can simply anchor the desired edits to the enclosing pattern.

For example, if there were some edits we wanted to make only within the confines of our .ES and

.EE macros, and not elsewhere, we could do it like this:

/ˆ\.ES/,/ˆ\.EE/{

Editing commands here
}

If the script is sufficiently complex that you’d rather have a more global method of exclusion, you can

reverse the sense of a branch by combining it with !:

/ˆ\.ES/,/ˆ\.EE/!b

When the first line in the script is applied to each line in the input, it says: “Does the line match the pattern?

No? Branch to the end of the script. (That is, start over on the next line of the input). Yes? Go on to the

next line in the script, and make the edits.”

Back to format

The edits we’ve shown using sed are very useful, so we want to be sure to properly integrate them with

format. Because we are now making a large series of edits rather than just one, we need to use sed with

a script file rather than a single-line script using -e. As a result, we’ll change the variable assignment in

format to:

sed="| sed -f /usr/local/cleanup.sed"

where cleanup.sed is the name of the script containing the editing commands, and /usr/local

could be any generally accessible directory. We’ll add additional formatting cleanup commands to this file

later.

Inserting Lines of Text

The sed program, like ex and vi, has commands for inserting new lines of text. The i (insert) command

adds text before the current line; a (append) adds text after the current line. In ex, after you enter insert

mode, you can type as long as you like, breaking lines with carriage returns.* Insert mode is terminated by

typing a period at the start of a line, followed immediately by a carriage return. In sed, you must instead

type a backslash at the end of each inserted line. Insert mode is terminated by the first newline that is not

“escaped” with a backslash in this way. For example, the sed script:

1a\

The backslash is a ubiquitous escape character used by\

many UNIX programs. Perhaps its most confusing appearance\

is at the end of a line, when it is used to "hide a\

newline." It appears to stand alone, when in fact it is\

followed by a nonprinting character-a newline.

*The terms “carriage return” and “newline” are used somewhat loosely here. They are actually distinct charac-

ters in the ASCII character set—equivalent to ˆM (carriage return) and ˆJ (linefeed). The confusion arises

because UNIX changes the carriage return (ˆM) generated by the carriage return key to a linefeed (ˆJ) on input.

(That is, when you type a carriage return when editing a file, what is actually stored is a linefeed). On output,

the linefeed is mapped to both characters—that is, a ˆJ in a file actually is output to the terminal as a carriage

return/linefeed pair (ˆMˆJ).
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will append the five lines shown in the example following line 1 in the file to which the sed script is

applied. The insert ends on the fifth line, when sed encounters a newline that is not preceded by a back-

slash.

A sed Script For Extracting Information From a File

The -n option to sed suppresses normal output and causes sed to print only the output you explicitly ask

for using the p command.

There are two forms of the p command:

• As an absolute print command. For example:

/pattern/p

will always print the line(s) matched by pattern.

• In combination with a substitute command, in which case the line will only be printed if a sub-

stitution is actually made. For example:

/pattern/s/oldstring/newstring/gp

will not be printed if a line containing pattern is found but oldstring was not replaced with

newstring.

This becomes much clearer if you realize that a line of the form:

s/oldstring/newstring/p

is unrestricted—it matches every line in the file—but you only want to print the result of successful substi-

tutions.

Using sed -n with the p command gives you a grep-like facility with the ability to select not just

single lines but larger blocks of text.

For example, you could create a simple online quick-reference document, in which topics are delin-

eated by an initial heading and a distinct terminating string, as in the following abbreviated example:

$ cat alcuin_online
.

.

.

Output Devices

Alcuin requires the use of a graphics device with at least

300 dpi resolution, and the ability to store at least

one-half page of graphics at that resolution ...

%%%%

.

.

.

Type Styles

There are a number of ornamental type styles available on

many typesetters. For example, many have an Old English

font. But no typesetter currently on the market has the

capability of Alcuin to create unique characters in the

style of medieval illuminated manuscripts.

%%%%

.

.

.

$

A shell program like the following is all you need to display entries from this “full text database”:

pattern=$*
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sed -n "/$pattern/,/%%%%/p" alcuin_online

(The entire argument list supplied to the command ($*) is assigned to the variable pattern, so that the

user can type a string including spaces without having to type quotation marks).

We’ll giv e an example that is perhaps a bit more realistic. Consider that when you are developing

macros for use with an existing package, you may often need to consult macros in the package you are

either using or worried about affecting. Of course, you can simply read in the entire file with the editor.

However, to make things easier, you can use a simple shell script that uses sed to print out the definition of

the desired macro. We use a version of this script on our own system, where we call it getmac:

mac="$2"

case $1 in

-ms) file="/usr/lib/macros/tmac.s";;

-mm) file="/usr/lib/macros/mmt";;

-man) file="/usr/lib/macros/an";;

esac

sed -n -e "/ˆ\.de *$mac/,/ˆ\.\.$/p" $file

done

There are a couple of things about this script that bear mention. First, the name of a macro does not need to

be separated from the .de request by a space. The ms package uses a space, but mm and man do not. This

is the reason the search pattern includes a space followed by an asterisk (this pattern matches zero or more

spaces).

Second, we use the -n option of sed to keep it from printing out the entire file. It will now print out

only the lines that match: the lines from the start of the specified macro definition (.de *$mac) to the ..

that ends the definition.

(If you are new to regular expressions, it may be a little difficult to separate the regular expression

syntax from troff and shell special characters, but do make the effort, because this is a good application

of sed and you should add it to your repertoire).

The script prints the result on standard output, but it can easily be redirected into a file, where it can

become the basis for your own redefinition. We’ll find good use for this script in later chapters.

Yet another example of how we can use sed to extract (and manipulate) information from a file is

provided by the following script, which we use to check the structure of documents we are writing.

The script assumes that troff macros (in this case, the macros used to format this book) are used to

delineate sections, and prints out the headings. To make the structure more apparent, the script removes the

section macros themselves, and prints the headings in an indented outline format.

There are three things that sed must accomplish:

1. Find lines that begin with the macro for chapter (.CH) or section headings (.H1 or .H2).

2. Make substitutions on those lines, replacing macros with text.

3. Print only those lines.

The sed command, do.outline, operates on all files specified on the command line ($*). It prints the

result to standard output (without making any changes within the files themselves).

sed -n ’/ˆ\.[CH][H12]/ {

s/"//g

s/ˆ\.CH /\

CHAPTER /

s/ˆ\.H1/ A. /

s/ˆ\.H2/ B. /

p

}’ $*

The sed command is invoked with the -n option, which suppresses the automatic printing of lines. Then

we specify a pattern that selects the lines we want to operate on, followed by an opening brace ({). This

signifies that the group of commands up to the closing brace (}) are applied only to lines matching the pat-

tern. This construct isn’t as unfamiliar as it may look. The global regular expression of ex could work
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here if we only wanted to make one substitution (g/ˆ\.[CH][H12]/s/"//g). The sed command per-

forms several operations:

1. It removes double quotation marks.

2. It replaces the macro for chapter headings with a newline (to create a blank line) followed by

the word CHAPTER.

3. It replaces the section heading with an appropriate letter and tabbed indent.

4. It prints the line.

The result of do.outline is as follows:

$ do.outline ch13/sect1

CHAPTER 13 Let the Computer Do the Dirty Work

A. Shell Programming

B. Stored Commands

B. Passing Arguments to Shell Scripts

B. Conditional Execution

B. Discarding Used Arguments

B. Repetitive Execution

B. Setting Default Values

B. What We’ve Accomplished

Because the command can be run on a series of files or “chapters,” an outline for an entire book can be pro-

duced in a matter of seconds. We could easily adapt this script for ms or mm section heading macros, or to

include a C-level heading.

The Quit Command

The q command causes sed to stop reading new input lines (and to stop sending them to the output). So,

for example, if you only want some initial portion of your file to be edited, you can select a pattern that

uniquely matches the last line you want affected, and include the following command as the last line of

your script:

/pattern/q

After the line matching pattern is reached, the script will be terminated.*

This command is not really useful for protecting portions of a file. But, when used with a complex

sed script, it is useful for improving the performance of the script. Even though sed is quite fast, in an

application like getmac there is some inefficiency in continuing to scan through a large file after sed has

found what it is looking for.

So, for example, we could rewrite getmac as follows:

mac="$2"

case $1 in

-ms) file="/usr/lib/macros/tmac.s";;

-mm) file="/usr/lib/macros/mmt";;

-man) file="/usr/lib/macros/an";;

esac

shift

sed -n "

/ˆ\.de *$mac/,/ˆ\.\./{

p

/ˆ\.\./q

}" $file

*You need to be very careful not to use q in any program that writes its edits back to the original file (like our

correct shell script shown previously). After q is executed, no further output is produced. It should not be

used in any case where you want to edit the front of the file and pass the remainder through unchanged. Using

q in this case is a very dangerous beginner’s mistake.
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done

The grouping of commands keeps the line:

/ˆ\.\./q

from being executed until sed reaches the end of the macro we’re looking for. (This line by itself would

terminate the script at the conclusion of the first macro definition). The sed program quits on the spot, and

doesn’t continue through the rest of the file looking for other possible matches.

Because the macro definition files are not that long, and the script itself not that complex, the actual

time saved from this version of the script is negligible. However, with a very large file, or a complex, mul-

tiline script that needs to be applied to only a small part of the file, this script could be a significant time-

saver.

For example, the following simple shell program uses sed to print out the top ten lines of a file

(much like the standard UNIX head program):

for file

do

sed 10q $file

done

This example shows a dramatic performance gain over the same script written as follows:

for file

do

sed -n 1,10p $file

done

Matching Patterns across Two Lines

One of the great weaknesses of line-oriented editors is their helplessness in the face of global changes in

which the pattern to be affected crosses more than one line.

Let me give you an example from a recent manual one of our writers was working on. He was using

the ms .BX macro (incorrectly, it turns out) to box the first letter in a menu item, thus graphically highlight-

ing the sequence of menu selections a user would select to reach a given command. For example:

M ain menu

P ortfolio commands

E valuate portfolios

S hock factors

He had created a menu reference divided into numerous files, with hundreds of commands coded like

this:

.in 5n

.BX "\s-2M\s0"\c

ain menu

.in +5n

.BX "\s-2P\s0"\c

ortfolio commands

.in +5n

.BX "\s-2E\s0"\c

valuate portfolios

.in +5n

.BX "\s-2S\s0"\c

hock factors

.in 0

Suddenly, the writer realized that the M in Main Menu should not be boxed because the user did not need to

press this key. He needed a way to remove the box around the M if—and only if—the next line contained

the string ain menu.
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(A troff aside: The \c escape sequence brings text from the following line onto the current line.

You would use this, for example, when you don’t want the argument to a macro to be separated from the

first word on the next line by the space that would normally be introduced by the process of filling. The

fact that the .BX macro already makes provision for this case, and allows you to supply continued text in a

second optional argument, is somewhat irrelevant to this example. The files had been coded as shown here,

the mistake had been made, and there were hundreds, perhaps thousands, of instances to correct).

The N command allows you to deal with this kind of problem using sed. This command temporarily

“joins” the current line with the next for purposes of a pattern match. The position of the newline in the

combined line can be indicated by the escape sequence \n. In this case, then, we could solve the problem

with the following two-line sed script:

/.BX "\s-2M\s0"/N

s/.BX "\s-2M\s0"\c\nain Menu/Main Menu/

We search for a particular pattern and, after we find it, “add on” the next line using N. The next substitution

will now apply to the combined line.

Useful as this solution was, the number of cases in which you know exactly where in the input a new-

line will fall are limited. Fortunately, sed goes even further, providing commands that allow you to manip-

ulate multiline patterns in which the newline may occur at any point. Let’s take a look at these commands.

The Hold Space and the Pattern Space

The next set of commands— hold (h or H), get (g or G), and exchange (x)— can be difficult to understand,

especially if you have read the obscure documentation provided with most UNIX systems. It may help to

provide an analogy that reviews some of the points we’ve already made about how sed works.

The operations of sed can be explained, somewhat fancifully, in terms of an extremely deliberate

scrivener or amanuensis toiling to make a copy of a manuscript. His work is bound by several spacial

restrictions: the original manuscript is displayed in one room; the set of instructions for copying the manu-

script are stored in a middle room; and the quill, ink, and folio are set up in yet another room. The original

manuscript as well as the set of instructions are written in stone and cannot be moved about. The dutiful

scrivener, being sounder of body than mind, is able to make a copy by going from room to room, working

on only one line at a time. Entering the room where the original manuscript is, he removes from his robe a

scrap of paper to take down the first line of the manuscript. Then he moves to the room containing the list

of editing instructions. He reads each instruction to see if it applies to the single line he has scribbled

down.

Each instruction, written in special notation, consists of two parts: a pattern and a procedure. The

scrivener reads the first instruction and checks the pattern against his line. If there is no match, he doesn’t

have to worry about the procedure, so he goes to the next instruction. If he finds a match, then the scrivener

follows the action or actions specified in the procedure.

He makes the edit on his piece of paper before trying to match the pattern in the next instruction.

Remember, the scrivener has to read through a series of instructions, and he reads all of them, not just the

first instruction that matches the pattern. Because he makes his edits as he goes, he is always trying to

match the latest version against the next pattern; he doesn’t remember the original line.

When he gets to the bottom of the list of instructions, and has made any edits that were necessary on

his piece of paper, he goes into the next room to copy out the line. (He doesn’t need to be told to print out

the line). After that is done, he returns to the first room and takes down the next line on a new scrap of

paper. When he goes to the second room, once again he reads every instruction from first to last before

leaving.

This is what he normally does, that is, unless he is told otherwise. For instance, before he starts, he

can be told not to write out every line (the -n option). In this case, he must wait for an instruction that tells

him to print (p). If he does not get that instruction, he throws away his piece of paper and starts over. By

the way, reg ardless of whether or not he is told to write out the line, he always gets to the last instruction on
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the list.

Let’s look at other kinds of instructions the scrivener has to interpret. First of all, an instruction can

have zero, one, or two patterns specified:

• If no pattern is specified, then the same procedure is followed for each line.

• If there is only one pattern, he will follow the procedure for any line matching the pattern.

• If a pattern is followed by a !, then the procedure is followed for all lines that do not match the

pattern.

• If two patterns are specified, the actions described in the procedure are performed on the first

matching line and all succeeding lines until a line matches the second pattern.

The scrivener can work only one line at a time, so you might wonder how he handles a range of lines. Each

time he goes through the instructions, he only tries to match the first of two patterns. Now, after he has

found a line that matches the first pattern, each time through with a new line he tries to match the second

pattern. He interprets the second pattern as pattern!, so that the procedure is followed only if there is no

match. When the second pattern is matched, he starts looking again for the first pattern.

Each procedure contains one or more commands or actions. Remember, if a pattern is specified with

a procedure, the pattern must be matched before the procedure is executed. We hav e already shown many

of the usual commands that are similar to other editing commands. However, there are several highly

unusual commands.

For instance, the N command tells the scrivener to go, right now, and get another line, adding it to the

same piece of paper. The scrivener can be instructed to “hold” onto a single piece of scrap paper. The h

command tells him to make a copy of the line on another piece of paper and put it in his pocket. The x

command tells him to exchange the extra piece of paper in his pocket with the one in his hand. The g com-

mand tells him to throw out the paper in his hand and replace it with the one in his pocket. The G command

tells him to append the line he is holding to the paper in front of him. If he encounters a d command, he

throws out the scrap of paper and begins again at the top of the list of instructions. A D command has effect

when he has been instructed to append two lines on his piece of paper. The D command tells him to delete

the first of those lines.

If you want the analogy converted back to computers, the first and last rooms in this medieval manor

are standard input and standard output. Thus, the original file is never changed. The line on the scrivener’s

piece of scrap paper is in the pattern space; the line on the piece of paper that he holds in his pocket is in

the hold space. The hold space allows you to retain a duplicate of a line while you change the original in

the pattern space. Let’s look at a practical application, a sed program that searches for a particular phrase

that might be split across two lines.

As powerful as regular expressions are, there is a limitation: a phrase split across two lines will not be

matched. As we’ve shown, even though you can specify a newline, you have to know between which two

words the newline might be found. Using sed, we can write instructions for general-purpose pattern

matching across two lines.

N

h

s/ *\n/ /

/pattern-matching syntax/{

g

p

d

}

g

D

This sed script will recognize the phrase pattern-matching syntax ev en when it’s in the input file on two

lines. Let’s see how the pattern space and hold space allow this to be done.

At the start, there is one line in the pattern space. The first action (N) is to get another line and

append it to the first. This gives us two lines to examine, but there is an embedded newline that we have to

remove (otherwise we’d hav e to know where the newline would fall in the pattern). Before that, we copy
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(h) the contents of the pattern space into the hold space so that we can have a copy that retains the newline.

Then we replace the embedded newline (\n), and any blank spaces that might precede it, with a single

blank. (The sed command does not remove a newline when it terminates the line in the pattern space).

Now we try to match the phrase against the contents of the pattern space. If there is a match, the duplicate

copy that still contains the newline is retrieved from the hold space (g) and printed (p). The d command

sends control back to the top of the list of instructions so that another line is read into the pattern space,

because no further editing is attempted “on the corpse of a deleted line” (to use the phrasing of the original

sed documentation). If, on the other hand, there is no match, then the contents of the hold buffer are

replaced (g) with the contents of the pattern space. Now we hav e our original two lines in the pattern

space, separated by a newline. We want to discard the first of these lines, and retain the second in order to

pair it up with the next line. The D command deletes the pattern space up to the newline and sends us back

to the top to append the next line.

This script demonstrates the limits of flow control in sed. After the first line of input is read, the

action N is responsible for all input. And, using d and D to avoid ever reaching the bottom of the instruc-

tion list, sed does not print the line automatically or clear the pattern space (regardless of the -n option).

To return to our analogy, after the scrivener enters the second room, an instruction is always telling him

which room to go to next and whether to get another line or to write it out, for as long as there are lines to

be read from the manuscript.

As we have emphasized, you can always refine a script, perfecting the way it behaves or adding fea-

tures. There are three problems with the way this script works. First and most important, it is not general

enough because it has been set up to search for a specific string. Building a shell script around this sed

program will take care of that. Second, the program does not “go with the flow” of sed. We can rewrite

it, using the b (branch) command, to make use of sed’s default action when it reaches the bottom of its

instruction list. Last, this program always prints matching lines in pairs, even when the search string is

found in its entirety on a single line of input. We need to match the pattern before each new line of input is

paired with the previous line.

Here’s a generalized version of this sed script, called phrase, which allows you to specify the

search string as a quoted first argument. Additional command-line arguments represent filenames.

search=$1

shift

for file

do

sed ’

/’"$search"’/b

N

h

s/.*\n//

/’"$search"’/b

g

s/ *\n/ /

/’"$search"’/ {

g

b

}

g

D’ $file

done

A shell variable defines the search string as the first argument on the command line. Now the sed program

tries to match the search string at three different points. If the search string is found in a new line read from

standard input, that line is printed. We use the b command to drop to the bottom of the list; sed prints the

line and clears the pattern space. If the single line does not contain the pattern, the next input line is

appended to the pattern space. Now it is possible that this line, by itself, matches the search string. We test

this (after copying the pattern space to the hold space) by removing the previous line up to the embedded

newline. If we find a match, control drops to the bottom of the list and the line is printed. If no match is

made, then we get a copy of the duplicate that was put in the hold space. Now, just as in the earlier version,

we remove the embedded newline and test for the pattern. If the match is made, we want to print the pair of
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lines. So we get another copy of the duplicate because it has the newline, and control passes to the bottom

of the script. If no match is found, we also retrieve the duplicate and remove the first portion of it. The

delete action causes control to be passed back to the top, where the N command causes the next line to be

appended to the previous line.

Here’s the result when the program is run on this section:

$ phrase "the procedure is followed" sect3
If a pattern is followed by a \f(CW!\fP, then the procedure

is followed for all lines that do \fInot\fP match the

so that the procedure is followed only if there is

In Conclusion

The examples given here only begin to touch on the power of sed’s advanced commands. For example, a

variant of the hold command (H) appends matched lines to the hold space, rather than overwriting the initial

contents of the hold space. Likewise, the G variant of the get command appends the contents of the hold

space to the current line, instead of replacing it. The X command swaps the contents of the pattern space

with the contents of the hold space. As you can imagine, these commands give you a great deal of power to

make complex edits.

However, it’s important to remember that you don’t need to understand everything about sed to use

it. As we’ve shown, it is a versatile editor, fast enough to recommend to beginners for making simple

global edits to a large set of files, yet complex enough to tackle tasks that you’d nev er think to accomplish

with an editor.

Although the syntax is convoluted even for experienced computer users, sed does have flow control

mechanisms that, given some thought and experimentation, allow you to devise editing programs. It is easy

to imagine (though more difficult to execute) a sed script that contains editing “subroutines,” branched to

by label, that perform different actions on parts of a file and quit when some condition has been met.

Few of us will go that far, but it is important to understand the scope of the tool. You nev er know

when, faced with some thorny task that would take endless repetitive hours to accomplish, you’ll find your-

self saying: “Wait! I bet I could do that with sed.”*

A Proofreading Tool You Can Build

Now let’s look at a more complex script that makes minimal use of sed but extensive use of shell program-

ming. It is the first example of a full-fledged tool built with the shell that offers significantly greater func-

tionality than any of the individual tools that make it up.

We call this script proof. It uses spell to check for misspelled words in a file, shows the offend-

ing lines in context, and then uses sed to make the corrections. Because many documents contain techni-

cal terms, proper names, and so on that will be flagged as errors, the script also creates and maintains a

local dictionary file of exceptions that should not be flagged as spelling errors.

This script was originally published with the name spellproofer in Rebecca Thomas’s column

in the June 1985 issue of UNIX World, to which it was submitted by Mike Elola. The script as originally

published contained several errors, for which we submitted corrections. The following script, which incor-

porates those corrections, was published in the January 1986 issue, and is reprinted with permission of

UNIX World. (Actually, we’ve added a few further refinements since then, so the script is not exactly as

published).

Because the contents of the script will become clearer after you see it in action, let’s work backward

this time, and show you the results of the script before we look at what it contains. The following example

*The preceding sections have not covered all sed commands. See Appendix A for a complete list of sed com-

mands.
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shows a sample run on an early draft of Chapter 2. In this example, <CR> indicates that the user has typed

a carriage return in response to a prompt.

$ proof sect1
Do you want to use a local dictionary? If so, enter

the name or press RETURN for the default dictionary: <CR>

Using local dictionary file dict

working ...

The word Calisthentics appears to be misspelled.

Do you want to see it in context (y or n)?

n

Press RETURN for no change or replace "Calisthentics" with:

Calisthenics

.H1 "UNIX Calisthenics"

Save corrections in "sect1" file (y or n)?

y

The word metachacters appears to be misspelled.

Do you want to see it in context (y or n)?

n

Press RETURN for no change or replace "metachacters" with:

metacharacters

generation metacharacters. The asterisk matches any or all

Save corrections in "sect1" file (y or n)?

y

The word textp appears to be misspelled.

Do you want to see it in context (y or n)?

y
a directory "/work/textp" and under that directories for

each of the chapters in the book, "/work/textp/ch01",

$ cp notes /work/textp/ch01

name in the directory /work/textp/ch01.

$ ls /work/textp/ch*

$ ls /work/textp/ch01/sect?

cwd /work/textp/ch03

$ book="/work/textp"

/work/textp

Press RETURN for no change or replace ’textp’ with: <CR>

You left the following words unchanged

textp

Do you wish to have any of the above words entered

into a local dictionary file (y/n)?

y
Append to dict (y/n)?

y
Do you wish to be selective (y/n)?

y
Include textp (y/n)?

y

Done.

$

Now let’s look at the script. Because it is more complex than anything we have looked at so far, we hav e

printed line numbers in the margin. These numbers are not part of the script but are used as a reference in

the commentary that follows. You will find that the indentation of nested loops and so forth will make the
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program much easier to read.

1 echo "Do you want to use a local dictionary? If so, enter"

2 echo "the name or press RETURN for the default dictionary: "

3 read localfile

4 if [ -z "$localfile" ]; then

5 localfile=dict

6 echo Using local dictionary file $localfile

7 fi

8 echo "working ..."

9 touch $localfile

10 filelist="$*"; excused=""

11 if [ -z "$filelist" ]; then

12 echo ’Usage: proof file...’

13 exit 1

14 fi

15 for word in ‘spell $filelist‘

16 do

17 found=‘grep "ˆ$word$" $localfile

18 if [ -z "$found" ] ; then

19 echo

20 echo "The word $word appears to be misspelled."

21 echo "Do you want to see it in context (y or n)? "

22 read context

23 if [ "$context" = y ]; then

24 grep $word $filelist

25 fi

26 echo

27 echo "Press RETURN for no change or replace \"$word\" with:"

28 read correction

29 if [ -n "$correction" ]; then

30 hitlist="‘grep -l $word $filelist‘"

31 for file in $hitlist

32 do

33 echo

34 sed -n -e "s/$word/$correction/gp" <$file

35 echo "Save corrections in \"$file\" file (y or n)? "

36 read response

37 if [ "$response" = y ]; then

38 sed -e "s/$word/$correction/g" <$file>/usr/tmp/$file

39 if test -s /usr/tmp/$file; then

40 mv /usr/tmp/$file $file

41 fi

42 fi

43 done

44 else

45 excused="$excused $word"

46 fi

47 fi

48 done

49 echo;echo;echo

50 if [ -n "$excused" ]; then

51 echo "You left the following words unchanged"

52 echo $excused | tr "\ " "\012" | pr -5 -t

53 echo

54 echo "Do you wish to have any of the above words entered"

55 echo "into a local dictionary file (y/n)? "

56 read response

57 if [ "$response" = "y" ]; then

58 if [ -n "$localfile" ]; then

59 echo "Append to $localfile (y/n)? "

60 read response

61 if [ "$response" != y ]; then

62 echo "Enter new/alternate local dictionary file: "

63 read localfile

64 fi
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65 fi

66 echo

67 echo "Do you wish to be selective (y/n)? "

68 read select

69 for word in $excused

70 do

71 if [ "$select" = y ]; then

72 echo "Include $word (y/n)? "

73 read response

74 if test "$response" = y; then

75 echo $word >>$localfile

76 fi

77 else

78 echo $word >>$localfile

79 fi

80 done

81 fi

82 fi

83 echo

84 echo "Done."

1-8 The UNIX programming philosophy is to create small programs as general-purpose tools that can

be joined in pipelines. Because of this, programs generally don’t do prompting, or other “user-

friendly” things that will limit the program to interactive operation. However, there are times,

ev en in UNIX (!), when this is appropriate.

The shell has commands to handle prompting and reading the resulting responses into the file, as

demonstrated here. The echo command prints the prompt, and read assigns whatever is typed

in response (up to a carriage return) to a variable. This variable can then be used in the script.

The lines shown here prompt for the name of the local dictionary file, and, if none is supplied, use

a default dictionary in the current directory called dict. In the sample run, we simply typed a

carriage return, so the variable localfile is set to dict.

9 If this is the first time the script has been run, there is probably no local dictionary file, and one

must be created. The touch command is a good way to do this because if a file already exists, it

will merely update the access time that is associated with the file (as listed by ls -l). If the file

does not exist, however, the touch command will create one.

Although this line is included in the script as a sanity check, so that the script will work correctly

the first time, it is preferable to create the local dictionary manually, at least for large files. The

spell program tends to flag as errors many words that you want to use in your document. The

proof script handles the job of adding these words to a local dictionary, but doing this interac-

tively can be quite time-consuming. It is much quicker to create a base dictionary for a document

by redirecting the output of spell to the dictionary, then editing the dictionary to remove

authentic spelling errors and leave only the exception list. The errors can then be corrected with

proof without the tedium of endlessly repeating n for words that are really not errors.

If you use this script, you should run spell rather than proof on the first draft of a document,

and create the dictionary at that time. Subsequent runs of proof for later drafts will be short and

to the point.

10-14 In these lines, the script sets up some variables, in much the same way as we’ve seen before. The

lines:

filelist="$*"

if [ -z "$filelist" ]; then

echo "Usage: proof file ..."

exit 1

fi

have much the same effect as the test of the number of arguments greater than zero that we used

in earlier scripts. If filelist is a null string, no arguments have been specified, and so it is

time to display an error message and end the program, using the shell’s exit command.
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15 This line shows a feature of the shell we’ve seen before, but it is still worthy of note because it

may take a while to remember. The output of a command enclosed in backquotes (‘‘) can be

substituted for the argument list of another command. That is what is happening here; the output

of the spell command is used as the pattern list of a for loop.

17-18 You’ll notice that spell still flags all of the words it finds as errors. But the for loop then uses

grep to compare each word in the list generated by spell with the contents of the dictionary.

Only those words not found in the dictionary are submitted for correction.

The pattern given to grep is “anchored” by the special pattern-matching characters ˆ and $

(beginning and end of line, respectively), so that only whole words in the dictionary are matched.

Without these anchors, the presence of the word ditroff in the list would prevent the discovery

of misspellings like trof.

20-25 Sometimes it is difficult to tell beforehand whether an apparent misspelling is really an error, or if

it is correct in context. For example, in our sample run, the word textp appeared to be an error,

but was in fact part of a pathname, and so correct. Accordingly, proof (again using grep)

gives you the opportunity to look at each line containing the error before you decide to change it

or not.

As an aside, you’ll notice a limitation of the script. If, as is the case in our example, there are

multiple occurrences of a string, they must all be changed or left alone as a set. There is no pro-

vision for making individual edits.

26-48 After a word is offered as an error, you have the option to correct it or leave it alone. The script

needs to keep track of which words fall into each category, because words that are not corrected

may need to be added to the dictionary.

If you do want to make a correction, you type it in. The variable correction will now be

nonzero and can be used as the basis of a test (test -n). If you’ve typed in a correction,

proof first checks the files on the command line to see which ones (there can be more than one)

can be corrected. (grep -l just gives the names of files in which the string is found into the

variable hitlist, and the script stores the names). The edit is then applied to each one of these

files.

35 Just to be on the safe side, the script prints the correction first, rather than making any edits. (The

-n option causes sed not to print the entire file on standard output, but only to print lines that are

explicitly requested for printing with a p command). Used like this, sed performs much the

same function as grep, only we are making an edit at the same time.

37-42 If the user approves the correction, sed is used once again, this time to actually make the edit.

You should recognize this part of the script. Remember, it is essential in this application to

enclose the expression used by sed in quotation marks.

50-84 If you’ve understood the previous part of the shell script, you should be able to decipher this part,

which adds words to the local dictionary. The tr command converts the spaces separating each

word in the excused list into carriage returns. They can then be printed in five tab-separated

columns by pr. Study this section of the program until you do, because it is an excellent exam-

ple of how UNIX programs that appear to have a single, cut-and-dry function (or no clear func-

tion at all to the uninitiated) can be used in unexpected but effective ways.





Chapter 13

The awk Programming Language

A program is a solution to a problem, formulated in the syntax of a particular language. It is a small step

from writing complex editing scripts with sed to writing programs with awk, but it is a step that many

writers may fear to take. “Script” is less loaded a term than “program” for many people, but an editing

script is still a program.

Each programming language has its own “style” that lends itself to performing certain tasks better

than other languages. Anyone can scan a reference page and quickly learn a language’s syntax, but a close

examination of programs written in that language is usually required before you understand how to apply

this knowledge. In this sense, a programming language is simply another tool; you need to know not only

how to use it but also when and why it is used.

We recommend that you learn more than one programming language. We hav e already looked at a

number of different programs or scripts written for and executed by the shell, ex, and sed. As you learn

the awk programming language, you will notice similarities and differences. Not insignificantly, an awk

script looks different from a shell script. The awk language shares many of the same basic constructs as

the shell’s programming language, yet awk requires a slightly different syntax. The awk program’s basic

operations are not much different from sed’s: reading standard input one line at a time, executing instruc-

tions that consist of two parts, pattern and procedure, and writing to standard output.

More importantly, awk has capabilities that make it the tool of choice for certain tasks. A program-

ming language is itself a program that was written to solve certain kinds of problems for which adequate

tools did not exist. The awk program was designed for text-processing applications, particularly those in

which information is structured in records and fields. The major capabilities of awk that we will demon-

strate in upcoming pages are as follows:

• definable record and field structure

• conditional and looping constructs

• assignment, arithmetic, relational, and logical operators

• numeric and associative arrays

• formatted print statements

• built-in functions

A quick comparison of a single feature will show you how one programming language can differ from

another. You will find it much easier to perform arithmetic operations in awk than in the shell. To incre-

ment the value of x by 1 using the shell, you’d use the following line:

x=‘expr $x + 1‘

The expr command is a UNIX program that is executed as a separate process returning the value of its

arguments. In awk, you only have to write:

++x

This is the same as x = x + 1. (This form could also be used in awk).

309
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Invoking awk

The awk program itself is a program that, like sed, runs a specified program on lines of input. You can

enter awk from the command line, or from inside a shell script.

$ ]awk ’program’ files

Input is read a line at a time from one or more files. The program, enclosed in single quotation marks to

protect it from the shell, consists of pattern and procedure sections. If the pattern is missing, the procedure

is performed on all input lines:

$ awk ’{print}’ sample Prints all lines in sample file

The procedure is placed within braces. If the procedure is missing, lines matching the pattern are printed:

$ awk ’/programmer’s guide/’ sample Prints lines matching pattern
in sample file

The awk program allows you to specify zero, one, or two pattern addresses, just like sed. Regular

expressions are placed inside a pair of slashes (/). In awk, patterns can also be made up of expressions. An

expression (or a primary expression so as not to confuse it with a regular expression) can be a string or

numeric constant (for example, red or 1), a variable (whose value is a string or numeric), or a function

(which we’ll look at later).

You can associate a pattern with a specific procedure as follows:

/pattern1/ {

procedure1

}

/pattern2/ {

procedure2

}

{ procedure 3 }

Like sed, only the lines matching the particular pattern are the object of a procedure, and a line can match

more than one pattern. In this example, the third procedure is performed on all input lines. Usually, multi-

line awk scripts are placed in a separate file and invoked using the -f option:

$ awk -f awkscript sample

Records and Fields

Perhaps the most important feature of awk is that it divides each line of input into fields. In the simplest

case, each field contains a single word, delimited by a blank space. The awk program allows you to refer-

ence these fields by their position in the input line, either in patterns or procedures. The symbol $0 repre-

sents the entire input line. $1, $2, ... refer, by their position in the input line, to individual fields.

We’ll demonstrate some of these capabilities by building an awk program to search through a list of

acronyms in a file. Each acronym is listed along with its meaning. If we print the first field of each line,

we’ll get the name of the acronym:

$ awk ’{print $1}’ sample
BASIC

CICS

COBOL

DBMS

GIGO

GIRL

We can construct a useful program that would allow you to specify an acronym and get its description. We

could use awk just like grep:

$ awk ’/BASIC/’ sample
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BASIC Beginner’s All-Purpose Symbolic Instruction Code

However, there are three things we’d like to do to improve this program and make better use of awk’s capa-

bilities:

1. Limit the pattern-matching search.

2. Make the program more general and not dependent on the particular acronym that is the sub-

ject of the search.

3. Print only the description.

Testing Fields

The pattern as specified will match the word BASIC anywhere on the line. That is, it might match BASIC

used in a description. To see if the first field ($1) matches the pattern, we write:

$1 == "BASIC"

The symbol == is a relational operator meaning “equal to” and is used to compare the first field of each line

with the string BASIC. You could also construct this test using a given regular expression that looks for the

acronym at the beginning of the line.

$1 ˜ /ˆBASIC/

The pattern-matching operator ˜ evaluates as true if an expression ($1) matches a regular expression. Its

opposite, !˜, evaluates true if the expression does not match the regular expression.

Although these two examples look very similar, they achieve very different results. The relational

operator == evaluates true if the first field is BASIC but false if the first field is BASIC, (note the comma).

The pattern-matching operator ˜ locates both occurrences.

Pattern-matching operations must be performed on a regular expression (a string surrounded by

slashes). Variables cannot be used inside a regular expression with the exception of shell variables, as

shown in the next section. Constants cannot be evaluated using the pattern-matching operator.

Passing Parameters from a Shell Script

Our program is too specific and requires too much typing. We can put the awk script in a file and invoke it

with the -f option. Or we can put the command inside a shell script, named for the function it performs.

This shell script should be able to read the first argument from the command line (the name of the acronym)

and pass it as a parameter to awk. We’ll call the shell script awkronym and set it up to read a file named

acronyms. Here’s the simplest way to pass an argument into an awk procedure:

$ cat awkronym
awk ’$1 == search’ search=$1 acronyms

Parameters passed to an awk program are specified after the program. The search variable is set up to pass

the first argument on the command line to the awk program. Even this gets confusing, because $1 inside

the awk program represents the first field of each input line, while $1 in the shell represents the first argu-

ment supplied on the command line. Here’s how this version of the program works:

$ awkronym CICS
CICS Customer Information Control System

By replacing the search string BASIC with a variable (which could be set to the string CICS or BASIC),

we have a program that is fairly generalized.

Notice that we had to test the parameter as a string ($1 == search). This is because we can’t

pass the parameter inside a regular expression. Thus, the expressions ‘‘$1 ˜ /search/’’ or ‘‘$1 ˜
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search’’ will produce syntax errors.

As an aside, let’s look at another way to import a shell variable into an awk program that even works

inside a regular expression. However, it looks complicated:

search=$1

awk ’$1 ˜ /’"$search"’/’ acronyms

This program works the same as the prior version (with the exception that the argument is evaluated inside

a regular expression). Note that the first line of the script makes the variable assignment before awk is

invoked. In the awk program, the shell variable is enclosed within single, then double, quotation marks.

These quotes cause the shell to insert the value of $search inside the regular expression before it is inter-

preted by awk. Therefore, awk never sees the shell variable and evaluates it as a constant string.

You will come upon situations when you wish it were possible to place awk variables within regular

expressions. As mentioned in the previous section, pattern matching allows us to search for a variety of

occurrences. For instance, a field might also include incidental punctuation marks and would not match a

fixed string unless the string included the specific punctuation mark. Perhaps there is some undocumented

way of getting an awk variable interpreted inside a regular expression, or maybe there is a convoluted

work-around waiting to be figured out.

Changing the Field Separator

The awk program is oriented toward data arranged in fields and records. A record is normally a single line

of input, consisting of one or more fields. The field separator is a blank space or tab and the record separa-

tor is a newline. For example, here’s one record with five fields:

CICS Customer Information Control System

Field three or $3 is the string Information. In our program, we like to be able to print the description as a

field. It is obvious that we can’t just say print $2 and get the entire description. But that is what we’d

like to be able to do.

This will require that we change the input file using another character (other than a blank) to delimit

fields. A tab is frequently used as a field separator. We’ll have to insert a tab between the first and second

fields:

$ cat acronyms
awk Aho, Weinstein & Kernighan

BASIC Beginner’s All-Purpose Symbolic Instruction Code

CICS Customer Information Control System

COBOL Common Business Orientated Language

DBMS Data Base Management System

GIGO Garbage In, Garbage Out

GIRL Generalized Information Retrieval Language

You can change the field separator from the command line using the -F option:

$ awk -F"|——|" ’$1 == search {print $2}’ search=$1 acronyms

Note that |——| is entered by typing a double quotation mark, pressing the TAB key, and typing a double

quotation mark. This makes the tab character (represented in the example as |——|) the exclusive field sep-

arator; spaces no longer serve to separate fields. Now that we’ve implemented all three enhancements, let’s

see how the program works:

$ awkronym GIGO
Garbage In, Garbage Out
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System Variables

The awk program defines a number of special variables that can be referenced or reset inside a program.

See Table 13-1.

Table 13.1 awk System Variables

System Variable Meaning

FILENAME Current filename

FS Field separator (a blank)

NF Number of fields in the current record

NR Number of the current record

OFS Output field separator (a blank)

ORS Output record separator (a newline)

RS Record separator (a newline)

The system variable FS defines the field separator used by awk. You can set FS inside the program

as well as from the command line.

Typically, if you redefine the field or record separator, it is done as part of a BEGIN procedure. The

BEGIN procedure allows you to specify an action that is performed before the first input line is read.

BEGIN { FS = "|——|" }

You can also specify actions that are performed after all input is read by defining an END procedure.

The awk command sets the variable NF to the number of fields on the current line. Try running the

following awk command on any text file:

$ awk ’{print $NF}’ test

If there are five fields in the current record, NF will be set to five; $NF refers to the fifth and last field.

Shortly, we’ll look at a program, double, that makes good use of this variable.

Looping

The awkronym program can print field two because we restructured the input file and redefined the field

separator. Sometimes, this isn’t practical, and you need another method to read or print a number of fields

for each record. If the field separator is a blank or tab, the two records would have six and five fields,

respectively.

BASIC Beginner’s All-Purpose Symbolic Instruction Code

CICS Customer Information Control System

It is not unusual for records to have a variable number of fields. To print all but the first field, our program

would require a loop that would be repeated as many times as there are fields remaining. In many awk pro-

grams, a loop is a commonly used procedure.

The while statement can be employed to build a loop. For instance, if we want to perform a proce-

dure three times, we keep track of how many times we go through the loop by incrementing a variable at

the bottom of the loop, then we check at the top of the loop to see if that variable is greater than 3. Let’s

take an example in which we print the input line three times.

{ i = 1

while (i <= 3) {

print

++i

}
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}

Braces are required inside the loop to describe a procedure consisting of more than a single action. Three

operators are used in this program: = assigns the value 1 to the variable i; <= compares the value of i to

the constant 3; and ++ increments the variable by 1. The first time the while statement is encountered, i

is equal to 1. Because the expression i <= 3 is true, the procedure is performed. The last action of the

procedure is to increment the variable i. The while expression is true after the end of the second loop has

incremented i to 3. However, the end of the third loop increments i to 4 and the expression evaluates as

false.

A for loop serves the same purpose as a while loop, but its syntax is more compact and easier to

remember and use. Here’s how the previous while statement is restructured as a for loop:

for (i = 1; i <= 3; i++)

print

The for statement consists of three expressions within parentheses. The first expression, i = 1, sets the

initial value for the counter variable. The second expression states a condition that is tested at the top of the

loop. (The while statement tested the condition at the bottom of the loop). The third expression incre-

ments the counter.

Now, to loop through remaining fields on the line, we have to determine how many times we need to

execute the loop. The system variable NF contains the number of fields on the current input record. If we

compare our counter (i) against NF each time through the loop, we’ll be able to tell when all fields have

been read:

for (i = 1; i <= NF; i++)

We will print out each field ($i), one to a line. Just to show how awk works, we’ll print the record and

field number before each field.

awk ’{ for (i = 1; i <= NF; i++)

print NR":"i, $i } ’ $*

Notice that the print statement concatenates NR, a colon, and i. The comma produces an output field sepa-

rator, which is a blank by default.

This program produces the following results on a sample file:

1:1 awk

1:2 Aho,

1:3 Weinstein

1:4 &

1:5 Kernighan

2:1 BASIC

2:2 Beginner’s

2:3 All-Purpose

2:4 Symbolic

2:5 Instruction

2:6 Code

Symbolic is the fourth field of the second record. You might note that the sample file is acronyms, the

one in which we inserted a tab character between the first and second fields. Because we did not change the

default field separator, awk interpreted the tab or blank as a field separator. This allows you to write pro-

grams in which the special value of the tab is ignored.

Conditional Statements

Now let’s change our example so that when given an argument, the program returns the record and field

number where that argument appears.

Essentially, we want to test each field to see if it matches the argument; if it does, we want to print the

record and field number. We need to introduce another flow control construct, the if statement. The if
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statement evaluates an expression—if true, it performs the procedure; if false, it does not.

In the next example, we use the if statement to test whether the current field is equal to the argu-

ment. If it is, the current record and field number are printed.

awk ’{ for (i = 1; i <= NF; i++) {

if ($i == search) {

print NR":"i

}

}

} ’ search=$1 acronyms

This new procedure prints 2:1 or 3:4 and isn’t very useful by itself, but it demonstrates that you can retrieve

and test any single field from any record.

The next program, double, checks if the first word on a line is a duplicate of the last word on the

previous line. We use double in proofing documents and it catches a surprisingly common typing mis-

take.

awk ’

NF > 0 {

if ($1 == lastword) {

print NR ": double " $1

}

lastword = $NF

}’ $1

When the first line of input is read, if the number of fields is greater than 0, then the expression in the if

statement is evaluated. Because the variable lastword has not been set, it evaluates to false. The final

action assigns the value of $NF to the variable lastword. ($NF refers to the last field; the value of NF is

the number of the last field). When the next input line is read, the first word is compared against the value

of lastword. If they are the same, a message is printed.

double sect1

15: double the

32: double a

This version of double is based on the program presented by Kernighan and Pike in The UNIX Program-

ming Environment. (Writer’s Workbench now includes this program). Kernighan and Pike’s program also

checks for duplicate words, side-by-side, in the same line. You might try implementing this enhancement,

using a for loop and checking the current field against the previous field. Another feature of Kernighan

and Pike’s double is that you can run the program on more than one file. To allow for additional files,

you can change the shell variable from $1 to $* but the record or line number printed by NR will corre-

spond to consecutive input lines. Can you write a procedure to reset NR to 0 before reading input from a

new file?

Arrays

The double program shows us how we can retain data by assigning it to a variable. In awk, unlike sev-

eral other programming languages, variables do not have to be initialized before they are referenced in a

program. In the previous program, we evaluated lastword at the top, although it was not actually

assigned a value until the bottom of the program. The awk program initialized the variable, setting it to the

null string or 0, depending upon whether the variable is referenced as a string or numeric value.

An array is a variable that allows you to store a list of items or elements. An array is analogous to a

restaurant menu. Each item on this menu is numbered:
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#1 tuna noodle casserole

#2 roast beef and gravy

#3 pork and beans

One way of ordering roast beef is to say simply “Number 2.” Using ordinary variables, you would have

had to define a variable two and assign it the value roast beef and gravy. An array is a way of referencing a

group of related values. This might be written:

menu[choice]

where menu is the name of the array and choice is the subscript used to reference items in the array.

Thus, menu[1] is equal to tuna noodle casserole. In awk, you don’t hav e to declare the size of the array;

you only have to load the array (before referencing it). If we put our three menu choices on separate lines

in a file, we could load the array with the following statement:

menu[NR] = $0

The variable NR, or record number, is used as the subscript for the array. Each input line is read into the

next element in the array. We can print an individual element by referring to the value of the subscript (not

the variable that set this value).

print menu[3]

This statement prints the third element in the array, which is pork and beans. If we want to refer to all the

elements of this array, we can use a special version of the for loop. It has the following syntax:

for (element in array)

This statement can be used to descend the array to print all of the elements:

for (choice in menu)

print menu[choice]

Each time through the loop, the variable choice is set to the next element in the array. The menu array is

an example of an array that uses a numeric subscript as an index to the elements.

Now, let’s use arrays to increase the functionality of awkronym. Our new version will read

acronyms from a file and load them into an array; then we’ll read a second file and search for the acronyms.

Basically, we’re reading one input file and defining keywords that we want to search for in other files. A

similar program that reads a list of terms in a glossary might show where the words appear in a chapter.

Let’s see how it works first:

$ awkronym sect1
exposure to BASIC programming.

in COBOL and take advantage of a DBMS environment.

in COBOL and take advantage of a DBMS environment .

Of the high-level languages, BASIC is probably

Let’s look at the program carefully.

awk ’ {

if ( FILENAME == "acronyms" ) {

acro_desc[NR] = $1

next

}

for ( name in acro_desc )

for (i = 1; i <= NF; i++)

if ($i == acro_desc[name] ) {

print $0

}

}’ acronyms $*

The current filename is stored in the system variable FILENAME. The procedure within the first condi-

tional statement is only performed while input is taken from acronyms. The next statement ends this

procedure by reading the next line of input from the file. Thus, the program does not advance beyond this
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procedure until input is taken from a different file.

The purpose of the first procedure is to assign each acronym ($1) to an element of the array

acro_desc; the record number (NR) indexes the array.

In the second half of the program, we start comparing each element in the array to each field of every

record. This requires two for loops, one to cycle through the array for each input line, and one to read

each field on that line for as many times as there are elements in the array. An if statement compares the

current field to the current element of the array; if they are equal, then the line is printed.

The line is printed each time an acronym is found. In our test example, because there were two

acronyms on a single line, the one line is duplicated. To change this, we could add next after the print

statement.

What if we changed awkronym so that it not only scanned the file for the acronym, but printed the

acronym with the description as well? If a line refers to BASIC, we’d like to add the description (Begin-

ner’s All-Purpose Symbolic Instruction Code). We can design such a program for use as a filter that prints

all lines, regardless of whether or not a change has been made. To change the previous version, we simply

move the print statement outside the conditional statement. However, there are other changes we must

make as well. Here’s the first part of the new version.

awk ’ {

if ( FILENAME == "acronyms" ) {

split ( $0, fields, "|——|" )

acro_desc[fields[1]] = fields[2]

next

}

The records in acronyms use a tab as a field separator. Rather than change the field separator, we use the

split function (we’ll look at the syntax of this function later on) to give us an array named fields that

has two elements, the name of the acronym and its description. This numeric array is then used in creating

an associative array named acro_desc. An associative array lets us use a string as a subscript to the ele-

ments of an array. That is, given the name of the acronym, we can locate the element corresponding to the

description. Thus the expression acro_desc[GIGO] will access Garbage In, Garbage Out.

Now let’s look at the second half of the program:

for ( name in acro_desc )

for (i = 1 ; i <= NF; i++)

if ( $i == name) {

$i = $i " ("acro_desc[name]")"

}

print $0

Just like the previous version, we loop through the elements of the array and the fields for each

record. At the heart of this section is the conditional statement that tests if the current field ($i) is equal to

the subscript of the array (name). If the value of the field and the subscript are equal, we concatenate the

field and the array element. In addition, we place the description in parentheses.

It should be clear why we make the comparison between $i and name, and not

acro_desc[name]; the latter refers to an element, while the former refers to the subscript, the name of

the acronym.

If the current field ($i) equals BASIC and the index of the array (name) is the string BASIC, then

the value of the field is set to:

BASIC (Beginner’s All-Purpose Symbolic Instruction Code)

For this program to be practical, the description should be inserted for the first occurrence of an

acronym, not each time. (After we’ve inserted the description of the acronym, we don’t need the descrip-

tion any more). We could redefine that element in the array after we’ve used it.

acro_desc[name] = name

In this instance, we simply make the element equal to the subscript. Thus, acro_desc[BASIC] is equal

to Beginner’s All-Purpose Symbolic Instruction Code at the beginning of the procedure, and equal to BASIC
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if a match has been made. There are two places where we test the element against the subscript with the

expression ‘‘(acro_desc[name] != name).’’ The first place is after the for loop has read in a new

element from acro_desc; a conditional statement ensures that we don’t scan the next input record for an

acronym that has already been found. The second place is when we test $i to see if it matches name; this

test ensures that we don’t make another match for the same acronym on that line.

if ( $i == name && acro_desc[name] != name)

This conditional statement evaluates a compound expression. The && (and) boolean operator states a con-

dition that both expressions have to be true for the compound expression to be true.

Another problem that we can anticipate is that we might produce lines that exceed 80 characters.

After all, the descriptions are quite long. We can find out how many characters are in a string, using a built-

in awk function, length. For instance, to evaluate the length of the current input record, we specify:

length($0)

The value of a function can be assigned to a variable or put inside an expression and evaluated.

if ( length($0) > 70 ) {

if ( i > 2 )

$i = "\n" $i

if ( i+1 < NF )

$(i+1) = "\n" $(i+1)

}

The length of the current input record is evaluated after the description has been concatenated. If it is

greater than 70 characters, then two conditions test where to put the newline. The first procedure concate-

nates a newline and the current field; thus we only want to perform this action when we are not near the

beginning of a line (field greater than 2). The second procedure concatenates the newline and the next field

(i+1) so that we check that we are not near the end of the line. The newline precedes the field in each of

these operations. Putting it at the end of the field would result in a new line that begins with a space output

with the next field.

Another way to handle the line break, perhaps more efficiently, is to use the length function to

return a value for each field. By accumulating that value, we could specify a line break when a new field

causes the total to exceed a certain number. We’ll look at arithmetic operations in a later section.

Here’s the full version of awkronyms:

awk ’ {

if ( FILENAME == "acronyms" ) {

split ( $0, fields, "|——|" )

acro_desc[fields[1]]=fields[2]

next

}

for ( name in acro_desc )

if (acro_desc[name] != name)

for (i = 1; i <= NF; i++)

if ($i == name && acro_desc[name] != name) {

$i = $i " ("acro_desc[name]")"

acro_desc[name] = name

if (length ($0) > 70) {

if (i > 2)

$i = "\n" $i

if (i+1 < NF)

$(i+1) = "\n" $(i+1)

}

}

print $0

}’ acronyms $*

And here’s one proof that it works:

$ cat sect1
Most users of microcomputers have had some

exposure to BASIC programming.
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Many data-processing applications are written

in COBOL and take advantage of a DBMS environment.

C, the language of the UNIX environment,

is used by systems programmers.

Of the high-level languages, BASIC is probably

the easiest to learn, and C is the most difficult.

Nonetheless, you will find the fundamental programming

constructs common to most languages.

$ awkronym sect1
Most users of microcomputers have had some

exposure to

BASIC (Beginner’s All-Purpose Symbolic Instruction Code)

programming. Many data-processing applications are

written in COBOL (Common Business Orientated Language)

and take advantage of a

DBMS (Data Base Management System) environment.

C, the language of the UNIX environment,

is used by systems programmers.

Of the high-level languages, BASIC is probably

the easiest to learn, and C is the most difficult.

Nonetheless, you will find the fundamental programming

constructs common to most languages.

Notice that the second reference to BASIC has not been changed. There are other features we might add to

this program. For instance, we could use awk’s pattern-matching capabilities so that we don’t make the

change on lines containing macros, or on lines within pairs of certain macros, such as .DS/.DE.

Another version of this program could trademark certain terms or phrases in a document. For

instance, you’d want to locate the first occurrence of UNIX and place \(rg after it.

awk Applications

A shell program is an excellent way to gather data interactively and write it into a file in a format that can

be read by awk. We’re going to be looking at a series of programs for maintaining a project log. A shell

script collects the name of a project and the number of hours worked on the project. An awk program

totals the hours for each project and prints a report.

The file day is the shell script for collecting information and appending it to a file named daily in

the user’s home directory.

$ cat /usr/local/bin/day
case $# in

0) echo "Project: \c"; read proj; echo "Hours: \c"; read hrs;;

1) proj=$1; echo "Hours: \c"; read hrs;;

2) proj=$1; hrs=$2;;

esac

set ‘who am i‘; name=$1; month=$3; day=$4;

echo $name"\t"$month $day"\t"$hrs"\t"$proj>>$HOME/daily

The case statement checks how many arguments are entered on the command line. If an argument is

missing, the user is prompted to enter a value. Prompting is done through a pair of statements: echo and

read. The echo command displays the prompt on the user’s terminal; \c suppresses the carriage return

at the end of the prompt. The read command waits for user input, terminated by a carriage return, and

assigns it to a variable. Thus, the variables proj and hrs are defined by the end of the case statement.

The set command can be used to divide the output of a command into separate arguments ($1, $2,

$3...). By executing the command who am i from within set, we supply the user’s name and the

day’s date automatically. The echo command is used to write the information to the file. There are four

fields, separated by tabs. (In the Bourne shell, the escape sequence \t produces a tab; you must use quota-

tion marks to keep the backslash from being stripped off by the shell).
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Here’s what daily contains for one user at the end of a week:

$ cat /usr/fred/daily
fred Aug 4 7  Course Development

fred Aug 5 4  Training class

fred Aug 5 4  Programmer’s Guide

fred Aug 6 2  Administrative

fred Aug 6 6  Text-processing book

fred Aug 7 4  Course Development

fred Aug 7 4  Text-processing book

fred Aug 8 4  Training class

fred Aug 8 3  Programmer’s Guide

There are nine records in this file. Obviously, our input program does not enforce consistency in naming

projects by the user.

Given this input, we’d like an awk program that reports the total number of hours for the week and

gives us a breakdown of hours by project. At first pass, we need only be concerned with reading fields

three and four. We can total the number of hours by accumulating the value of the third field.

total += $3

The += operator performs two functions: it adds $3 to the current value of total and then assigns this

value to total. It is the same as the statement:

total = total + $3

We can use an associative array to accumulate hours ($3) by project ($4).

hours[$4] += $3

Each time a record is read, the value of the third field is added to the accumulated value of project[$4].

We don’t want to print anything until all input records have been read. An END procedure prints the

accumulated results. Here’s the first version of tot:

awk ’

BEGIN { FS="|——|" }

{

total += $3

hours[$4] += $3

}

END {

for (project in hours)

print project, hours[project]

print

print "Total Hours:" , total

} ’ $HOME/daily

Let’s test the program:

$ tot
Course Development 11

Administrative 2

Programmer’s Guide 7

Training class 8

Text-processing book 10

Total Hours: 38

The program performs the arithmetic tasks well, but the report lacks an orderly format. It would help to

change the output field separator (OFS) to a tab. But the variable lengths of the project names prevent the

project hours from being aligned in a single column. The awk program offers an alternative print state-

ment, printf, which is borrowed from the C programming language.
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Formatted Print Statements

The printf statement has two parts: the first is a quoted expression that describes the format specifica-

tions; the second is a sequence of arguments such as variable names. The two main format specifications

are %s for strings and %d for decimals. (There are additional specifications for octal, hexadecimal, and

non-integer numbers). Unlike the regular print statement, printf does not automatically supply a new-

line. This can be specified as \n. A tab is specified as \t.

A simple printf statement containing string and decimal specifications is:

printf "%s\t%d\n" , project, hours[project]

First project is output, then a tab (\t), the number of hours, and a newline (\n). For each format speci-

fication, you must supply a corresponding argument.

Unfortunately, such a simple statement does not solve our formatting problem. Here are sample lines

that it produces:

Course Development 11

Administrative 2

Programmer’s Guide 7

We need to specify a minimum field width so that the tab begins at the same position. The printf state-

ment allows you to place this specification between the % and the conversion specification. You would use

%-20s to specify a minimum field width of 20 characters in which the value is left justified. Without the

minus sign, the value would be right justified, which is what we want for a decimal value.

END {

for (project in hours)

printf "%-20s\t%2d\n", project, hours[project]

printf "\n\tTotal Hours:\t%2d\n", total

}

Notice that literals, such as the string Total Hours, are placed in the first part, with the format specifica-

tion.

Just as we use the END procedure to print the report, we can include a BEGIN procedure to print a

header for the report:

BEGIN { FS="|——|"

printf "%20s%s\n\n", "PROJECT ", " HOURS"

}

This shows an alternative way to handle strings. The following formatted report is displayed:

PROJECT HOURS

Course Development 11

Administrative 2

Programmer’s Guide 7

Training class 8

Text-processing book 10

Total Hours: 38

Defensive Techniques

After you have accomplished the basic task of a program—and the code at this point is fairly easy to under-

stand—it is often a good idea to surround this core with “defensive” procedures designed to trap inconsis-

tent input records and prevent the program from failing. For instance, in the tot program, we might want

to check that the number of hours is greater than 0 and that the project description is not null for each input

record. We can use a conditional expression, using the logical operator &&.
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$3 > 0 && $4 != "" {

procedure

}

Both conditions must be true for the procedure to be executed. The logical operator && signifies that if

both conditions are true, the expression is true.

Another aspect of incorporating defensive techniques is error handling. In other words, what do we

want to have happen after the program detects an error? The previous condition is set up so that if the pro-

cedure is not executed, the next line of input is read. In this example the program keeps going, but in other

cases you might want the program to print an error message and halt if such an error is encountered.

However, a distinction between “professional” and “amateur” programmers might be useful. We are

definitely in the latter camp, and we do not always feel compelled to write 100% user-proof programs. For

one thing, defensive programming is quite time consuming and frequently tedious. Second, an amateur is

at liberty to write programs that perform the way he or she expects them to; a professional has to write for

an audience and must account for their expectations. Consider the possible uses and users of any program

you write.

awk and nroff/troff

It is fairly easy to have an awk program generate the necessary codes for form reports. For instance, we

enhanced the tot program to produce a troff-formatted report:

awk ’ BEGIN { FS = "|——|"

print ".ce"

print ".B "

print "PROJECT ACTIVITY REPORT"

print ".R"

print ".sp 2"

}

NR == 1 {

begday = $2

}

$3 > 0 && $4 != "" {

hours[$4] += $3

total += $3

endday = $2

logname = $1

}

END {

printf "Writer: %s\n", logname

print ".sp"

printf "Period: %s to %s\n", begday, endday

print ".sp"

printf "%20s%s\n\n", "PROJECT ", " HOURS"

print ".sp"

print ".nf"

print ".na"

for (project in hours)

printf "%-20s\t%2d\n", project, hours[project]

print ".sp"

printf "Total Hours:\t %2d\n", total

print ".sp"

}’ $HOME/daily

We incorporated one additional procedure in this version to determine the weekly period. The start date of

the week is taken from the first record (NR == 1). The last record provides the final day of the week.

As you can see, awk doesn’t mind if you mix print and printf statements. The regular print

command is more convenient for specifying literals, such as formatting codes, because the newline is auto-

matically provided. Because this program writes to standard output, you could pipe the output directly to
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nroff/troff.

You can use awk to generate input to tbl and other troff preprocessors such as pic.

Multiline Records

In this section, we are going to take a look at a set of programs for order tracking. We dev eloped these pro-

grams to help operate a small, mail-order publishing business. These programs could be easily adapted to

track documents in a technical publications department.

Once again, we used a shell program, take.orders, for data entry. The program has two pur-

poses: The first is to enter the customer’s name and mailing address for later use in building a mailing list.

The second is to display seven titles and prompt the user to enter the title number, the number of copies,

and the price per copy. The data collected for the mailing list and the customer order are written to separate

files.

Tw o sample customer order records follow:

Charlotte Smith

P.O N61331 87 Y 045 Date: 03/14/87

#1 3 7.50

#2 3 7.50

#3 1 7.50

#4 1 7.50

#7 1 7.50

Martin S. Rossi

P.O NONE Date: 03/14/87

#1 2 7.50

#2 5 6.75

These are multiline records, that is, a newline is used as the field separator. A blank line separates individ-

ual records. For most programs, this will require that we redefine the default field separator and record sep-

arator. The field separator becomes a newline, and the record separator is null.

BEGIN { FS = "\n"; RS = "" }

Let’s write a simple program that multiplies the number of copies by the price. We want to ignore the first

two lines of each record, which supply the customer’s name, a purchase order number, and the date of the

order. We only want to read the lines that specify a title. There are a few ways to do this. With awk’s pat-

tern-matching capabilities, we could select lines beginning with a hash (#) and treat them as individual

records, with fields separated by spaces.

awk ’ /ˆ#/ {

amount = $2 * $3

printf "%s %6.2f\n", $0, amount

next

}

{print}’ $*

The main procedure only affects lines that match the pattern. It multiplies the second field by the third

field, assigning the value to the variable amount. The printf conversion %f prints a floating-point num-

ber; 6.2 specifies a minimum field width of 6 and a precision of 2. Precision is the number of digits to the

right of the decimal point; the default for %f is 6. We print the current record along with the value of the

variable amount. If a line is printed within this procedure, the next line is read from standard input. Lines

not matching the pattern are simply passed through. Let’s look at how addem works:

$ addem orders
Charlotte Smith

P.O N61331 87 Y 045 Date: 03/14/87

#1 3 7.50 22.50

#2 3 7.50 22.50

#3 1 7.50 7.50
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#4 1 7.50 7.50

#7 1 7.50 7.50

Martin S. Rossi

P.O NONE Date: 03/14/87

#1 2 7.50 15.00

#2 5 6.75 33.75

Now, let’s design a program that reads multiline records and accumulates order information for a report.

This report should display the total number of copies and the total amount for each title. We also want

totals reflecting all copies ordered and the sum of all orders.

We know that we will not be using the information in the first two fields of each record. However,

each record has a variable number of fields, depending upon how many titles have been ordered. First, we

check that the input record has at least three fields. Then a for loop reads all of the fields beginning with

the third field:

NF >= 3 {

for (i = 3; i <= NF; ++i)

In database terms, each field has a value and each value can be further broken up into subvalues. That is, if

the value of a field in a multiline record is a single line, subvalues are the words on that line. You hav e

already seen the split function used to break up an input record; now we’ll see it used to subdivide a

field. The split function loads any string into an array, using a specified character as the subvalue sepa-

rator.

split(string, array, separator)

The default subvalue separator is a blank. The split function returns the number of elements loaded into

the array. The string can be a literal (in quotation marks) or a variable. For instance, let’s digress a minute

and look at an isolated use of split. Here’s a person’s name and title with each part separated by a

comma:

title="George Travers, Research/Development, Alcuin Inc."

We can use split to divide this string and print it on three lines.

need = split (title, name, ",")

print ".ne ", need

for (part in name)

print name[part]

This procedure prints each part on a separate line. The number of elements in the array (3) is saved in the

variable need. This variable is passed as an argument to an .ne request, which tells troff to make sure

there are at least three lines available at the bottom of the page before outputting the first line.

The awk program has twelve built-in functions, as shown in Table 13-2. Four of these are special-

ized arithmetic functions for cosine, sine, logarithm, and square root. The rest of these functions manipu-

late strings. (You have already seen how the length function works). See Appendix A for the syntax of

these functions.

Going back to our report generator, we need to split each field into subvalues. The variable $i will

supply the value of the current field, subdivided as elements in the array order.

sv = split ($i, order)

if (sv == 3) {

procedure

}

else print "Incomplete Record"
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Table 13.2 awk Built-in Functions

Function Description

cos Cosine

exp Exponent

getline Read input line

index Return position of substring in string

int Integer

length Length of string

log Logarithm

sin Sine

split Subdivide string into array

sprintf Format string like printf

sqrt Square root

substr Substring extraction

The number of elements returned by the function is saved in the sv variable. This allows us to test that

there are three subvalues. If there are not, the else statement is executed, printing the error message to the

screen.

Next, we assign the individual elements of the array to a specific variable. This is mainly to make it

easier to remember what each element represents.

title = order[1]

copies = order[2]

price = order[3]

Then a group of arithmetic operations are performed on these values.

amount = copies * price

total_vol += copies

total_amt += amount

vol[title] += copies

amt[title] += amount

These values are accumulated until the last input record is read. The END procedure prints the report.

Here’s the complete program:

awk ’ BEGIN { FS = "\n"; RS = "" }

NF >= 3 {

for (i = 3; i <= NF; ++i ) {

sv = split ($i, order)

if (sv == 3) {

title = order[1]

copies = order[2]

price = order[3]

amount = copies * price

total_vol += copies

total_amt += amount

vol[title] += copies

amt[title] += amount

}

else print "Incomplete Record"

}

}

END {

printf "%5s\t%10s\t%6s\n\n", "TITLE", \

"COPIES SOLD", "TOTAL"

for (title in vol)

printf "%5s\t%10d\t$%7.2f\n", title, vol[title], \

amt[title]

"printf" " "%s\n", "-------------"
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printf "\t%s%4d\t$%7.2f\n", "Total " , total_vol, total_amt}’

$*

In awk, arrays are one dimensional; a two-dimensional array stores two elements indexed by the same sub-

script. You can get a pseudo two-dimensional array in awk by defining two arrays that have the same sub-

script. We only need one for loop to read both arrays.

The addemup file, an order report generator, produces the following output:

$ addemup orders.today
TITLE COPIES SOLD TOTAL

#1 5 $ 37.50

#2 8 $ 56.25

#3 1 $ 7.50

#4 1 $ 7.50

#7 1 $ 7.50

-------------

Total 16 $ 116.25

After you solve a programming problem, you will find that you can re-use that approach in other programs.

For instance, the method used in the awkronym program to load acronyms into an array could be applied

in the current example to read the book titles from a file and print them in the report. Similarly, you can use

variations of the same program to print different reports. The construction of the next program is similar to

the previous program. Yet the content of the report is quite different.

awk ’ BEGIN { FS = "\n" ; RS = ""

printf "%-15s\t%10s\t%6s\n\n", "CUSTOMER", "COPIES SOLD", \

"TOTAL"

}

NF >= 3 {

customer = $1

total_vol = 0

total_amt = 0

for (i = 3; i <= NF; ++i) {

split ($i, order)

title = order[1]

copies = order[2]

price = order[3]

amount = copies * price

total_vol += copies

total_amt += amount

}

printf "\t%s%4d\t$%7.2f\n", "Total ", total_vol, total_amt}’

}’ $*

In this program, named summary, we print totals for each customer order. Notice that the variables

total_vol and total_amt are reset to 0 whenever a new record is read. In the previous program,

these values accumulated from one record to the next.

The summary program, reading a multiline record, produces a report that 1ists each record on a sin-

gle line:

$ summary orders
CUSTOMER COPIES SOLD TOTAL

J. Andrews 7 $ 52.50

John Peterson 4 $ 30.00

Charlotte Miller 11 $ 82.50

Dan Aspromonte 105 $ 787.50

Valerie S. Rossi 4 $ 30.00

Timothy P. Justice 4 $ 30.00

Emma Fleming 25 $ 187.50

Antonio Pollan 5 $ 37.50

Hugh Blair 15 $ 112.50
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Testing Programs

Part of writing a program is designing one or more test cases. Usually this means creating a sample input

file. It is a good idea to test a program at various stages of development. Each time you add a function, test

it. For instance, if you implement a conditional procedure, test that the procedure is executed when the

expression is true; test what happens when it is false. Program testing involves making sure that the syntax

is correct and that the problem has been solved.

When awk encounters syntax errors it will tell you that it is “bailing out.” Usually it will print the

line number associated with the error. Syntax errors can be caused by a variety of mistakes, such as forget-

ting to quote strings or to close a procedure with a brace. Sometimes, it can be as minor as an extra blank

space. The awk program’s error messages are seldom helpful, and a persistent effort is often required to

uncover the fault.

You might even see a UNIX system error message, such as the dreadful declaration:

Segmentation fault-core dumped.

Not to worry. Although your program has failed badly, you have not caused an earthquake or a meltdown.

An image of “core” memory at the time of the error is saved or dumped in a file named core. Advanced

programmers can use a debugging program to examine this image and determine where in memory the fault

occurred. We just delete core and re-examine our code.

Again, check each construct as you add it to the program. If you wait until you have a large program,

and it fails, you will often have difficulty finding the error. Not only that, but you are likely to make unnec-

essary changes, fixing what’s not broken in an attempt to find out what is.

Checking that you have solved the problem you set out to tackle is a much larger issue. After you

begin testing your program on larger samples, you will undoubtedly uncover “exceptions”, otherwise

known as bugs. In testing the awkronym program, we discovered an exception where an acronym

appeared as the last word in the sentence. It was not “found” because of the period ending the sentence.

That is, awk found that BASIC and BASIC. were not equal. This would not be a problem if we could test

the search string as a regular expression but we have to test the array variable as a literal string.

Programming is chiefly pragmatic in its aims. You must judge whether or not specific problems

merit writing a program or if certain exceptions are important enough to adapt the general program to

account for them. Sometimes, in large public programs as well as small private ones, bugs just become part

of the program’s known behavior, which the user is left to cope with as best as he or she can. The bug

found in awkronym is a common enough problem, so it is necessary to implement a fix.

The fix for the awkronym bug does not involve awk at all. We run a sed script before the awkro-

nym program to separate punctuation marks from any word. It converts a punctuation mark to a field con-

taining garbage characters. Another script processes the awkronym output and strips out these garbage

characters. The example below shows how both scripts are used as bookends for the awkronym program.

sed ’s/\ (..*\)\([.,!;]\)/\1 @@@\2/g’ $* |

awk ’ {

program lines
}’ acronyms - |

sed ’s/ @@@\([.,!;]\)/\1/g’





Chapter 14

Writing nroff and troff Macros

The nroff and troff formatters include a powerful macro definition and substitution capability. As we

suggested when macros were first discussed in Chapter 4, they are a good way to combine frequently used

sequences of formatting requests into a single instruction. But after working with the ms and mm macro

packages, you must know that macros are more than that.

Macros are an essential part of nroff and troff—you cannot escape them if you want to make

serious use of the formatter. Precisely because macros are so essential, many users never learn to fully use

them. The most obviously useful macros are already included in the existing macro packages, whose com-

plex internal control structures make them difficult to understand and modify.

The purpose of this chapter is to introduce the fundamental nroff and troff requests that are used

for creating macros. You’ll learn the basics in this chapter. Then, in later chapters we can examine how to

write macros for specific purposes, without having to make continual asides to introduce a new request.

Chapter 15 describes additional requests for creating special effects (such as pictures) with your

macros, and Chapters 16 through 18 discuss how to go beyond writing individual macros and how to

develop or extend an entire macro package.

Comments

Before we start, we’ll introduce the syntax for inserting comments into your macro definitions. Macros can

get quite confusing, so we advise you to put in comments that explain what you are doing. This will help

immensely when you go back weeks or months later to modify a macro you have written.

A line beginning with the sequence

.\"

will not be interpreted or printed by the formatter. Any part of a line following the sequence: \" will be

treated the same way. For example:

.\" O’Reilly & Associates, Inc. custom macro set

.\" Last modified 4/25/87

.de IZ \" Initialization macro

.

.

.

Note that there is an important difference between:

.\" A full line comment

and:

\" A partial line comment

If you simply start the sequence \" at the margin, the formatter will insert a blank line into the output,

because this sequence by itself does not suppress newline generation.

(Note that comments can be used at any time, not just in macros. You can write notes to yourself in

your input file and they will never appear in the output. But if you accidentally type the sequence \" in

your file, the remainder of the line on which it appears will disappear from the output).

329
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Defining Macros

As we’ve already discussed, use the .de request to define a macro:

.de AB \" Define macro AB

Requests and/or text of macro here
..

There are also requests to remove or add to existing macros. The .rm request removes a macro:

.rm PQ \" Remove macro PQ

You may sometimes want to define a macro for local use, and remove it when you are done. In general,

though, this is an advanced request you will not use often.

The .am request appends to the end of an existing macro. It works just like .de but does not over-

write the existing contents:

.am DS \" Append to the existing definition of DS

.ft CW

..

At first, you may think that this request has only limited usefulness. However, as you work more with

macros, you will find unexpected uses for it. We’ll mention a few of these in later chapters.

Macro Names

A macro name can be one or two characters, and can consist of any character(s) not just alphanumeric char-

acters. For example:

.de ˆ( \" Macro used internally whose name, we hope,

\" never has to be remembered

You can even use control characters in macro names. Names can be uppercase or lowercase, or any combi-

nation of the two, and uppercase and lowercase are distinct. For example, the four names .gm, .GM,

.gM, and .Gm can all be used without conflict.

If you are starting from scratch, you can use whatever macro or number register names you like

except for the names of existing formatter requests. However, if you are adding macros to an existing pack-

age, you have to work around the existing names, because creating a new macro with the same name as an

old one will discard the previously read-in definition.

This is not as easy as it sounds, because macro packages include internal macro, string, and number

register definitions that are not visible to the casual user. You may be surprised when your new macro

makes some other part of the package go haywire. (In an attempt to forestall this problem, most macro

developers give odd, unmnemonic names to internally called macros. However, collisions still can and do

occur).

Finding the Names of Existing Macros

Before you start adding macros to an existing package, it’s a good idea to print the names of all existing

macros.

There are two ways to do this. The .pm request will print (in blocks of 128 characters) the names

and sizes of all macros defined in a given run of the formatter. So, for example, creating a file containing

the single request:

.pm

and formatting it like this:

$ nroff -ms pmfile
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will print on the screen a list of all the macros defined in the ms macro package. (The output could also be

redirected to a file or printer).

However, macro names are drawn from the same pool as string names (see the next example), so it

might be better to search for macro or string definitions using grep et al, like this:

$grep ’ˆ\.d[esia]’ macrofiles | cut -f1,2 -d’ ’ | sort | uniq

(grep will select all lines beginning with either .de, .ds, .di, or .da; cut will select only the first

two space-separated fields on each of those lines; sort and uniq together will produce a sorted list con-

sisting of only one copy of each line. Note that for -mm, which does not use a space before the macro

name, you would need to specify cut -f1 only. You will also need to substitute for macrofiles the actual

filenames containing the macros of interest).

You should do the same for number registers:

$ sed -n -e ’s/.*.nr *\(..\).*/\1/p’ macrofile | sort | uniq

here, because we can’t rely on number registers being set at the start of a line, as we can with macro defini-

tions. The one-line sed script included here saves the first two nonspace characters (..) following the

string .nr, and substitutes them for the rest of the line (i.e.,it throws away the rest of the line).

You could also just grep for an individual macro, string, or number register name before you use it!

Or you could take the easy way, and check Appendix B, where we’ve listed all the names in each of the

packages.

In addition to looking for conflicting names, you many also need to look for conflicting usage, or to

understand in detail the operation of a macro you are intending to call within a new macro you are writing.

To do this, you can simply read in the entire macro definition file with the editor and search for what

you want. However, to make things easier, we use the getmac shell script described in Chapter 12 to print

out the definition of the desired macro. The script prints the result on standard output, which can easily be

redirected into a file, where it can become the basis for your own redefinition.

Renaming a Macro

If you do find a conflict, you can rename macros that have already been defined. The .rn macro renames

an existing macro:

.rn ˆ( H1 \" Rename ˆ( to H1; easier to remember

The old name will no longer work. You must use the new name to invoke the macro.

A good trick that you can sometimes pull off with .rn is to temporarily redefine a macro (without

ev er modifying its contents). For example, the ms macros include a macro to draw a box around a para-

graph; however, these macros do not leave any space above or below the box. We can add some like this:

.rn B1 b1 \" Rename B1 to b1

.de B1 \" Now redefine B1

.sp .5 \" Add some space before the box is drawn

.b1 \" Execute the old definition

..

.rn B2 b2 \" Rename B2 to b2

.de B2 \" Now redefine B2

.b2 \" Execute the old definition

.sp .5 \" Add some space after the box is drawn

..

This only works for adding extra control lines before or after the current contents of the macro. Remember

it, though, because this trick may come in handy if you don’t want to (or can’t) directly modify a macro in

one of the existing packages, but do want a slightly different effect.
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Macro Arguments

The simplest kind of macro is a sequence of stored commands, starting with a .de request and ending with

the two dots (..) at the beginning of a line.

However, as you’ve seen when you’ve used mm and ms, macros can take arguments, and can act dif-

ferently depending on various conditions. It’s also possible for a macro to save information and pass it to

other macros to affect their operation. An understanding of how to do these things is essential if you plan

any serious macro design.

A macro can take up to nine arguments and can use them in any way. Arguments are described posi-

tionally by the character sequences \\$1 through \\$9*.

For example, we could define a very simple .B macro to boldface a single argument:

.de B \" Macro to boldface first argument

\fB\\$1\fP

..

Or, we could write a simple paragraph macro that, instead of having a fixed indent, might take a numeric

argument to specify the depth of the indent:

.de PI \" Simple paragraph macro

.sp

.ne 2 \" Prevent widows

.ti \\$1 \" Indent to the depth specified by first

.. \" argument

As you can see in the first example, you can print an argument in your text. Or, shown in the second exam-

ple, you can use it inside the macro as an argument to one or more of the requests that make up the macro.

Notice that there is nothing intrinsic about a macro that causes a break. The .B macro, for instance,

can be placed in the input file as in the following example:

There are a number of ways to

.B embolden

text.

As long as filling is in effect, it will produce exactly the same output as:

There are a number of ways to \fBembolden\fP text.

Macro arguments are separated by spaces. If you want to include an explicit space in an argument, you

should enclose the entire string in quotation marks, like this:

There are a number of ways to

.B "make text stand out."

If you didn’t enclose the phrase make text stand out in quotation marks, a single word, make, would have

been interpreted as the first argument, the next word, text, as the second argument, and so on. This

wouldn’t cause a program error—there is no requirement that arguments to a macro be used by that

macro—but the unused arguments would simply disappear from the output. As shown here, the entire

phrase is treated as a single argument.

To actually print a quotation mark inside a macro argument, double it. For example:

.B "The Quote ("") Character"

will produce:

The Quote (") Character

*Actually, the sequences are \$1 through \$9, with only a single backslash. But for reasons to be described

shortly, you always need at least two backslashes.
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You’ve probably recognized that the syntax for specifying arguments by position is very similar to that used

with shell scripts. You might wonder, though, about backslashes, which are used in the shell to prevent

interpretation of a special character. In fact, they serve the same function in troff.

The nroff and troff formatters always read a macro at least twice: once when they read the defi-

nition (and store it away for later use), and once when they encounter it in the text. At the time the macro is

defined, there are no arguments, so it is essential to prevent the formatter from doing any argument substi-

tution.

When the macro definition is read, the formatter operates in what is referred to (in the Nroff/Troff

User’s Manual) as copy mode. That is, none of the requests are executed; they are simply copied (in this

case, presumably into memory) without interpretation. The exception is that various escape sequences that

may have a different value at macro definition time than at macro execution time (most notably \n, for

interpolating number registers, \*, for interpolating strings, and \$, for interpolating arguments) are

executed, unless you suppress interpretation with a preceding backslash. (Other escape sequences are also

interpreted, but because they hav e fixed values, this makes no difference to the action of the macro).

A backslash prevents interpretation of the character that follows it by sacrificing itself. The back-

slash tells the formatter: “Take me but let the next guy go.” Each time the character sequence is read, the

backslash is stripped off—that is, \\ is actually stored as \. (You can think of \ as saying “I really mean

....” So in the shell, for example, if you want to use an asterisk literally, rather than as a filename expansion

metacharacter, you write \*—that is, “I really mean *.” In a similar way, \\ says “I really mean back-

slash.”)

When macro definitions are nested inside one another, you will need to add additional backslashes to

get what you want. The true argument interpolation escape sequence is \$n, rather than \\$n; the extra

backslash is needed because the first one is stripped when the macro is interpreted in copy mode. The same

rule applies when you want to interpolate the value of a number register or a string in a macro definition.

Think through the number of times the definition will be read before it is executed, and specify the appro-

priate number of backslashes, so that you get the actual value used at the point where you need it. A failure

to understand this will cause more frustration than almost any other error when you are writing macros.

In the example of the .B macro, the sequences \fB and \fP did not need to be escaped, because

troff could just as easily interpret them at the time the macro is defined. However, the macro would also

work if they were specified with double backslashes—it is just that the interpretation of the codes would

take place when the macro was used.

Nested Macro Definitions

We said previously that a macro definition begins with a .de request and ends with two dots (..). This is

a simplification. The .de request takes an alternate terminator as an optional second argument. This fea-

ture allows you to create nested macro definitions.

.de M1 \" Start first macro

.de M2 !! \" Start second macro

.!! \" End second macro

.. \" End first macro

You can also nest macros by delaying interpretation of the .. on the second macro:

.de M1 \" Start first macro

.de M2 \" Start second macro

\\.. \" End second macro

.. \" End first macro

For example, a group of related macros for producing a certain type of document might be nested

inside a “master” macro. A user would have to inv oke the master macro, indicating document type, to

make the other macros available for use. Nested macros could be used to provide alternate versions of the

same set of macros within a single macro package.
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Conditional Execution

One of the most powerful features of nroff and troff’s macro programming language is its facility for

conditional execution. There are three conditional execution requests: .if, .ie (if else), and .el (else).

The .if request is used for a single condition. (“If the condition is met, do this; otherwise, simply go to

the next line.”) The .ie and .el requests are used as a pair, testing a condition and then performing either

one action or the other. (“If the condition is met, do this; otherwise, do that.”)

Predefined Conditions

There are a number of different conditions that can be tested with .if and .ie. The simplest looks to see

if a predefined condition is true or false. There are four predefined conditions, as listed in Table 14-1.

Table 14.1 Built-in Conditions

Condition True if

o Current page number is odd

e Current page number is even

n The file is being formatted by nroff

t The file is being formatted by troff

For example, in a page bottom macro, to print the page number in the outside corner, you might

write:

.if o .tl ’’’%’ \" If odd, put page number in right corner

.if e .tl ’%’’’ \" If even, put page number in left corner

(The .tl request prints three-part titles, at the left, center, and right of the page. And, within this request,

the % character always prints the current page number. We’ll explain these two items in detail later, when

we look at how to write a complete page transition macro. For right now, we just want to understand how

the conditions themselves work).

Because the two conditions, odd and even, are mutually exclusive, you could also write:

.ie o .tl ’’’%’ \" If odd, put page number in right corner

.el .tl ’%’’’ \" Otherwise, put it in left corner

Notice that you do not specify a condition to be tested in the .el request.

Arithmetic and Logical Expressions

A closely related condition simply tests for a nonzero number or a true arithmetic expression. This is gen-

erally used with number registers, but it could also be used to test the value of numeric arguments to a

macro. For example, we could write a paragraph macro that was either indented or flush left, depending on

the value of its argument:

.de P

.sp

.ne 2

.if \\$1 .ti \\$1 \" If there is an arg, use it for indent

..

That is, if there is a nonzero numeric argument, do a temporary indent to the distance specified by the value

of the argument.

Rather than using the simple presence of a numeric argument to satisfy the condition, you could also

use an arithmetic expression to test for a value. Used in this way, the argument can simply be a flag telling
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the macro what to do.

.de P

.sp

.ne 2

.if \\$1=1 .ti 5n \" If first arg = 1, indent 5 ens

..

The operators shown in Table 14-2 can be used in constructing an expression.

Table 14.2 Expression Operators

Operator Description

+,-,/,* Standard arithmetic operators

% Modulo

>,< Greater than, less than

>=,<= Greater than or equal, less than or equal

=,== Equal

& AND

: OR

Expressions are evaluated from left to right, except where indicated otherwise by the presence of parenthe-

ses. There is no precedence of operators.

Frequently, you will see numeric conditions involving number registers. Here are a few simple

examples:

.if \\nb

.if \\nb>1

.if \\nb<\\nc

.if \\nb+\\nc>1

(Be sure to note the double backslash before each number register invocation: we are assuming that these

requests are made within a macro definition. If they were made outside a macro, you would use only a sin-

gle backslash). The first of these conditions is commonly used in the existing macro packages. It takes a

little getting used to—it is not always obvious to new users what is being tested in an expression like:

.if \\nb

A condition of this form simply tests that the specified expression (the number register b in this case) has a

value greater than 0. A more complex expression that does the same thing might be:

.if \\nb-1

Comparing Strings

Another frequent test that you can use as the basis of a condition is whether or not two strings are equal—

for example, whether an argument contains a particular string. The syntax is simply:

.if "string1"string2"

(Note that there are a total of three quotation marks—either single or double will do—and no equals sign.

A frequent error among beginners is to use an equals sign to compare string arguments, which will not

work).

For example, suppose you are writing a macro to center the output if the second argument is the letter

C. You could write:

.if "\\$2"C" .ce \" If 2nd arg is C, center the next line

You can also test for a null argument in this way:

.if "\\$1"" do something

Use of this condition or its inverse, the test for a non-null argument (described in the next section), allows
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the user to skip over an argument by supplying a null string ("").

Executing Multiple Requests as a Result of a Condition

All of the examples we’ve shown so far consist of a single request executed on the basis of a condition. But

often you’ll want to execute more than one command when a condition is met. To do so, you enclose the

sequence to be executed in backslashes and braces, as in this example:

.if o \{\

.po +.25i

.tl ’’’%’\}

The initial sequence is terminated with an additional backslash to “hide the newline.” You could also type:

.if o \{ .po +.25i

.tl ’’’%’\}

However, the syntax shown in the first example is almost always used, because it is easier to read. There is

one caveat! You can’t put any other characters, even a comment, following the slash. For example, if you

type:

.if o \{\ \" If odd...

you won’t be escaping the newline, you’ll be escaping the spaces that precede the comment. If you want to

include a comment on a condition like this, use the alternate syntax, and follow the brace with a dot, just

like you would if the comment started on a line of its own:

.if o \{. \" If odd...

The concluding \} can appear on the same line as most requests. However, we hav e found a prob-

lem when it immediately follows a string definition or a .tm request. For some reason:

.ds string \}

appends a ˆQ character to the end of the string, at least in our version of troff. The concluding \}

should be put on the next line, after an initial . to suppress newline generation in the output:

.\}

Another convention followed in multiple-line execution is to separate the initial request control char-

acter (. or ’) from the body of the request with a tab. This greatly enhances readability, and can be used

to show nesting of conditions:

.if o \{\

. po +.25i

. tl ’’’\\n%’\}

Conditions can be nested within each other using this syntax. However, you might wonder if a nested con-

dition could instead be expressed using one of the logical operators & or : in an expression. Suppose, as

described previously, you want to put page numbers on the outside corners of each page, except on the first

page, where you want it in the center. You might put the following requests in the page bottom macro:

.ie \\n%>1 \{\ \"If pageno > 1

. if o .tl ’’’%’

. if e .tl ’%’’’\}

.el .tl ’’%’’

You might think to achieve the same result with the following requests:

.if \\n%>1&o .tl ’’’%’ \"If pageno > 1 and odd

.if \\n%>1&e .tl ’%’’’ \"If pageno > 1 and even

.if \\n%=1 .tl ’’%’’ \"If pageno = 1

Unfortunately, howev er, this example will not work. The & and : operators can only be used to construct

arithmetic expressions. For example, in the case of:

.if \\nX&\\nY do something

something will be done only if both register X and register Y are non-zero. (Notice that there are no spaces

surrounding the & operator).
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You can construct an else if clause by following an .el with another .if, and then the request to be

executed if the condition is met.

.ie condition do something

.el .if condition do something else if

Inverse Conditions

The meaning of any of the condition types described can be reversed by proceeding them with an exclama-

tion point (!). For example:

.if !e \" If the page number is not even

.if !\\nc=1 \" If the number register c is not equal to 1

.if !"\\$1"" \" If the first argument is non-null

It may not be immediately obvious what this adds to your repertoire. However, we will encounter many

cases in which it is easier to detect when a condition is not met than when it is. In particular, neg ative con-

ditions can be more comprehensive than equivalent positive conditions. For example, the condition:

.if !\\nc=1

tests not only for the cases in which number register c has been set to some number larger than 0, or explic-

itly to 0, but the case in which it has never been set at all.

The test for a non-null argument is also useful. For example, in the sequence:

.if !"\\$3"" \{\ \" If there is a third argument

.ce \" center it

\\$3\}

you only want the .ce request to be executed if there is an argument to be centered. Otherwise, the request

will cause unexpected results, perhaps centering the line of text following the macro. Saying “If the third

argument is non-null, then it exists” may be the inverse of the way you think, and will take some getting

used to.

If you are reading through the definitions for the ms or mm macros, you may also encounter a con-

struct like this:

.if \\n(.$-2

The .$ is a special predefined number register (more on this topic in a moment) that contains the number

of arguments that have been given to a macro. If there are two or fewer arguments, the value of the condi-

tional expression shown will be 0. However, it will evaluate true if there are more than two arguments. It is

used in mm’s .SM macro because a different action is taken on the second argument if there are three argu-

ments instead of two.

.if \\n(.$-3 \\$1\s-2\\$2\s+2\\$3

.if \\n(.$-2 \s-2\\$1\s+2\\$2

Interrupted Lines

Occasionly, when writing a complex macro—especially one with multiple conditions—you may find your-

self writing a request that is too long to fit on a single 80-character line.

You could simply let the line wrap on you screen — UNIX recognizes lines much longer than the 80

columns usually available on a terminal screen. However, you need not do this. Simply putting a backslash

at the end of a line will “hide the newline” and cause the next line to be interpreted as a continuation of the

first.
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Number Registers

To set a number register, you use the .nr request. Like macros, number registers can have either one- or

two-character names consisting of any character(s), not just alphanumeric characters. For example:

.nr ˆ( 1

sets a number register called ˆ( to 1. Number register names are stored separately from macro names, so

there is no conflict in having a number register with the same name as a macro. Thus, you can create

mnemonic number register names, which helps to make macros that use those number registers more read-

able.

(If you are writing your own macro package, you can name registers from scratch. If you are adding

to an existing package, check the number registers used by that package).

To use the value stored in a number register, use the escape sequence \nx for a one-character number

register name, and \n(xx for a two-character name. (In the standard nroff and troff documentation,

this is referred to as “interpolating” the value of the number register). The point made previously, about

using backslashes to delay the interpretation of an argument, applies equally to number registers. In

macros, you will usually see the invocation of number registers preceded by a double backslash, because

you don’t want to interpolate the value until the macro is executed.

The values stored in number registers can be literal numeric values (with or without scaling indica-

tors), values from other number registers (whose value can be interpolated at a later time), or expressions.

You can also increment or decrement the value placed in a number register by preceding the value with a

plus or a minus sign. For example:

.nr PN 1 \" Set number register PN to 1

.nr PN +1 \" Add 1 to the contents of number register PN

When you add scaling indicators to the value supplied to a number register, be aware that values are con-

verted to basic units before they are stored, and that when you increment the value of a number register, it is

incremented in basic units. So, in the previous example, in which no units were specified, the value of PN

after incrementing is 2, but in the following case:

.nr LL 6.5i

.nr LL +1

the value initially stored into LL is converted into units (i.e., for a 300 dpi output device, it contains the

value 1950); after incrementing, it contains the value 1951 (again, assuming a 300 dpi device). If you want

to increment LL by 1 inch, append the proper scaling indicator. Likewise, when interpolating the value of a

number register, specify that the value is in units. For example, the construct:

.nr IN 1i

.in \\n(IN

will produce unexpected results. What you are really writing is:

.in 300m

(assuming a 300 dpi device) because the default scaling for an indent request is ems. The proper usage is:

.in \\n(INu

Number Registers as Global Variables

Number registers can be used in different ways. First, and probably most important, they can generalize a

macro package. For example, in ms, the default line length is stored in a number register called LL.

Periodically, macros in the package may muck with the line length, and then reset it to its default

state. Requests to reset the line length to its default value thus have the form:

.ll \n(LLu \" Single backslash within the body of text

or
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.ll \\n(LLu \" Double backslash within a macro definition

Because the line length is not “hard coded” in the document, users can change the line length throughout

simply by changing the default value stored in the number register.

You might wonder why this is necessary. After all, you can simply set an initial line length, and then

increment it or decrement it as necessary. And many macros take this approach. But there are other cases

where the line length is a factor in another calculation.

For example, the output text can be centered horizontally on the physical page regardless of the line

length if the page offset is set not absolutely, but in terms of the line length:

.po (8.5i-\n(LLu)/2u

In general, it is good programming practice to place values that are used at many different places in a pro-

gram into globally accessible variables. To change the action of the program, it is only necessary to change

the value of the variable. It is the same in nroff and troff. When we look at the overall design of a

macro package in Chapter 16, we’ll return to this subject in more detail.

Number Registers as Flags

In the chapters on the existing macro packages, you’ve also seen number registers used as flags—signals to

a macro to act in a certain way. For example, in mm, paragraphs are flush left by default, but if the user sets

the Pt number register to 1, all paragraphs will be indented.

Within the paragraph macro, there is a line that tests the Pt register, and acts accordingly:

.if \\n(Pt=1 .ti +\\n(Pin

This line actually uses number registers in both ways. If the number register Pt is set to 1, the macro

indents by the value stored in another register, Pi.

One-character number register names can also be set from the command line, with nroff or

troff’s -r option. This gives you the ability to construct macros that will act differently depending on

command-line options. We’ll show some examples of this in Chapter 16, when we discuss how to print a

document on either an 8½-by-11 inch or a 6-by-9 inch page, simply by specifying a single command-line

switch.

Predefined Number Register Names

In addition to number registers set by the various macro packages, or set by macros you write, there are

quite a few number registers whose usage is predefined by the formatter. You’ve already seen one of

these—%, which always contains the current page number. Table 14-3 (and Table 14-4) list some of the

most important preset registers, and Appendix B includes a complete listing. Not all of these registers will

be meaningful at this point, but we’ll tell you more about them as we go on.

The registers in Table 14-3 can be reset. For example, if you want to arbitrarily reset the page num-

ber to 1, you can type:

.nr % 1

The formatter will keep incrementing the register on each new page, but will count from the new baseline.

(You might want to do this, for example, if you are following the convention used in many technical manu-

als, which number pages on a chapter-by-chapter basis, with a number made up of both the chapter number

and the page number. In this case, the page number is reset to 1 at the start of each new chapter).

Note that % is a true number register name, and don’t let the special use of the % character in the .tl

request confuse you. In .tl, % alone will interpolate the current page number; however, in any other

place, you must specify the full number register interpolation \n%.

The set of registers in Table 14-4 cannot be modified. In reading their names, be sure to note that

they are two-character names beginning with . (dot). If you are reading through one of the existing macro
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packages, it is easy either to confuse them with macros or requests, because they begin with a period, or to

miss the period and read them as one-character names.

Table 14.3 Predefined Number Registers

Register Contents

% Current page number

dl Width (maximum) of the last completed diversion

dn Height (vertical size) of the last completed diversion

dw Current day of the week (1 to 7)

dy Current day of the month (1 to 31)

hp Current horizontal place on the input line

ln Output line number

mo Current month (1 to 12)

nl Vertical position of the last printed text baseline

yr Last two digits of the current year

Table 14.4 Read-Only Number Registers

Register Contents

.$ Number of arguments available in the current macro

.c Number of lines read from the current input file

.d Current vertical place in current diversion; equal to nl

if no diversion

.f Current font position (1 to 4 in otroff)

.H Av ailable horizontal resolution in machine units

.i Current indent

.j Current adjustment mode (0 = .ad l or .na;

1 = .ad b; 3 = .ad c; 5 = .ad r)

.L Line spacing set with .ls

.l Current line length

.n Length of text on previous line

.o Current page offset

.p Current page length

.s Current point size

.t Distance to the next trap (usually the page bottom)

.u Equal to 1 in fill mode and 0 in no-fill mode

.V Av ailable vertical resolution in machine units

.v Current vertical line spacing

.w Width of previous character

.z Name of current diversion

The registers in Table 14-4 are particularly useful when you want to temporarily change some value

(for example, the font) and then restore it, without having to know what was there before.

For example, if you print an italicized footer on each page, you might include the following requests

in your page bottom macro:

.nr FT \\n(.f

.ft I

.

.

.

.ft \\n(FT
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This is safer than simply using the .ft request without an argument to restore the previous font, which can

create havoc if a user makes a font change within a definition of the footer string.

Be aware that registers with scaled values (e.g. .l for the line lengths or .v for the current vertical

spacing) contain those values as basic machine units (as do all number registers containing scaled values).

As described previously, this means you should append a u whenever you want to use the contents of one

of these registers as an argument to a request.

Autoincrementing Registers

We’v e described how to increment the value stored in a register by prefixing the value you supply to the

.nr request with a plus sign (+), and how to decrement it by specifying a minus sign (-).

You can also autoincrement or autodecrement a register whenever you interpolate its value. To make

this work, you must supply two values to an initial .nr request: the starting value and the increment value.

For example:

.nr TE 1 1

.nr ST 10 3

Then, when you interpolate the contents of the register, instead of using the standard \nx or \nxx, specify a

plus or a minus after the \n and before the register name. The value that is interpolated will be the original

contents of the number register plus (or minus) the increment (or decrement) value. At the same time, the

value in the register will be updated by the increment value. For example, assuming the initial definitions

in the previous example:

\n+(TE \" Increment TE by 1, and interpolate the new value

\n-(ST \" Decrement ST by 3, and interpolate the new value

Number register interpolations of the normal sort can still be used and will, as always, simply give you the

value currently stored in the register.

Altering the Output Format

As we’ve seen, sometimes number registers are simply used to supply values to requests, or to pass infor-

mation between macros. But there are many cases in which the value of a number register is actually inter-

polated into the formatter output and printed. The page number register % is a good example. Although it

might be used as the basis to test conditions in macros, it is usually printed as well.

The .af (alter format) request allows you to specify the format in which to express the value of a

number register. This request takes two arguments, the name of the register to be affected and the format:

.af register format

The format codes are given in Table 14-5.

Table 14.5 Format Codes

Format Description Numbering Sequence

1 Arabic 0,1,2,3,4,5,...

i Lowercase roman 0,i,ii,iii,iv,v,...

I Uppercase roman 0,I,II,III,IV,V,...

a Lowercase alphabetic 0,a,b,c,...z,aa,ab,...zz,aaa,...

A Uppercase alphabetic 0,A,B,C,...Z,AA,AB,...ZZ,AAA,...

In addition to the numbering sequences in Table 14-5, an arabic format having additional digits (e.g.,

001) will result in a numbering sequence with at least that many digits (e.g., 001,002,003,...).
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For example, to change to lowercase roman page numbering in the front matter of a book, you could

write:

.af % i

(Note that, depending on exactly how a macro package implements page numbering, this may or may not

work exactly as shown. Some macro packages interpolate % into another register and print the contents of

that register. For example, ms stores the page number in the register PN and the request would be .af PN

i).

Alphabetic formats are generally used in macros for automatically numbered (or lettered) lists. We’ll

take a close look at some of these macros in Chapter 17.

Removing Registers

With the very large number of possible register names (nearly 10,000 names are possible, given all one- and

two-character combinations of the printing character set), it is unlikely that you will run out of number reg-

ister names.

However, if your macros create a very large number of registers, the formatter can run out of internal

storage space. For this reason, it may occasionally be necessary (or at least wise) to remove temporary reg-

isters that you no longer need, using the .rr request. For example:

.rr TE \" Remove register TE

Defining Strings

In addition to macros and number registers, nroff and troff allow you to define character strings that

will be stored and can be re-invoked at will. This is not intended as a general-purpose abbreviation func-

tion, although in certain cases it can be used that way. Rather, it is designed to allow you to store global

string variables for use throughout a package, in much the same way that number registers provide numeric

variables.

For example, in both ms and mm, you can define headers, footers, or both that will be printed on every

page. To do this, the header or footer macro contains a reference to a predefined string. All the user has to

do is give the string a value. The user doesn’t hav e to modify the macro itself.

As we’ve already seen, to define a string, use the .ds (define string) request. For example:

.ds RH Tools for Building Macros \" Define right header

String names, like macro and number register names, can have either one or two characters. However,

unlike number registers, string names are drawn from the same pool as macro and request names, so you

have to be careful not to conflict with existing names.

To interpolate the value of a string, use the escape sequence \*x for a one-character name, or \*(xx

for a two-character name. For example, our page top macro might include the lines:

.if o .tl ’\\*(RH’’%’ \" Print header string then page #

.if e .tl ’%’’\\(*RH’ \" Print page # then header string

Another good example of how to use this request (as well as how to use predefined number registers) is

given by the technique used in ms and mm to build a date string.

The troff program reads in the date from the system clock into the predefined number registers mo

(month), dy (day), and yr (year). To set a complete date string that users can easily reference, we might

write the following requests in our macro package:

.if \n(mo=1 .ds MO January

.if \n(mo=2 .ds MO February

.if \n(mo=3 .ds MO March

.if \n(mo=4 .ds MO April
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.if \n(mo=5 .ds MO May

.if \n(mo=6 .ds MO June

.if \n(mo=7 .ds MO July

.if \n(mo=8 .ds MO August

.if \n(mo=9 .ds MO September

.if \n(mo=10 .ds MO October

.if \n(mo=11 .ds MO November

.if \n(mo=12 .ds MO December

.ds DY \*(MO \n(dy, 19\n(yr

(Note that these requests do not need to be executed from within a macro. The register values can be inter-

polated when the macro package is first read in. For this reason, the string and number register interpola-

tions shown here are not escaped with an additional backslash).

Another request, .as (append [to] string), also allows you to add to the contents of an existing

string. The last line of the previous sequence could also have been written:

.as MO \n(dy, 19\n(yr

to append the day and year to whatever value had been stored into MO. Here, this is a little contrived—it is

better to maintain the month and the date as a whole in separate strings. However, the technique of append-

ing to a string is used appropriately in the definition of a macro to produce numbered section headers, as

we’ll see in Chapter 17.

Diversions

So far, we hav e discussed macros that you define in advance as a sequence of stored requests. There is also

another class of macros that are created by a process called diversion.

A div ersion consists of temporary storage of text into a macro, which can be saved and output at a

later time. In reading the chapters on ms or mm, you might have wondered how troff manages to move

footnotes embedded anywhere in the text to the bottom of the page, or how it “floats” a figure, table, or

block of text to the top of a succeeding page, after filling the current page with text that comes later in the

input file.

The answer is simple: the formatter stores the text (or other output) in a macro created by diversion.

(Such a macro is often called simply a diversion). The size of the diversion is stored into number registers

that you (your macros, that is) can test to see if the diversion will fit on the current page, and how much

space you need to allocate for it. The macro package can then make decisions about how and where to

place the contents of the diversion.

To create a diversion, use the .di (divert) request. This request takes as an argument the name of a

macro. All subsequent text, requests, etc., will be processed normally, but instead of being output, they will

be stored into the named macro. A .di request without an argument ends the diversion.

The output that has been stored in the diversion can now be output wherever you like, simply by

invoking the macro named in the initial .di request. For many purposes, this invocation will be performed

automatically by a page transition macro. We will look at this in more detail in succeeding chapters, but

just to get the idea, let’s look at a simple definition for a pair of keep macros.

(In general, diversions are handled by pairs of macros—one to start the diversion, the other to end it.

However, there are other cases in which we will see that this is not necessary).

Both ms and mm use diversions in their display macros. In ms, the display macros handle text posi-

tioning, and call lower-level macros called keep macros to make sure the text in the display stays on the

same page.

The purpose of the keep macros, in case you are not familiar with this concept from earlier chapters,

is to make sure that a block of text is not split across two pages. A typical example of a block that should

not be split is a figure—whether it is reserved space for a figure, or an actual picture created with pic or

some other graphics tool.



344 Unix Text Processing

A simple macro to start a keep might look like this:

.de KS \" Keep Start

.br

.di KK

..

A simple macro to end a keep might look like this:

.de KE \" Keep End

.br

.di

.ne \\n(dnu

.nr fI \\n(.u

.nf

.KK

.if \\n(fI .fi

..

In both macros, the .br requests are extremely important; they flush any partial lines that have not yet been

output. In the .KS macro, the break makes sure that the keep begins with the text following the macro; in

.KE, it makes sure that the last partial line is included in the diversion.

It is also important to output the diversion in no-fill mode. If you don’t, the text contained in the

diversion will be filled and adjusted a second time, with unpredictable results. (Consider, for example,

when the diversion includes an already formatted table. The table would be scrambled by a second pass).

You can’t just switch back to fill mode after you output the diversion, though. What if the body of

the text was meant to be in no-fill mode? To get around this problem, you should save the value of

troff’s read-only register .u, and test the saved value to see whether or not filling should be restored.

There are a few times when you might not want to follow this rule. For example, what should you do

if there is a chance that the diversion will be output on a page where the line length is different? You still

want to avoid processing the text twice. You can put the text into the diversion in no-fill mode, and can

embed any formatting requests into the diversion by preceding them with a backslash (e.g., \.in 5n).

Any requests treated in this way will be acted on when the diversion is output.

As always, it is important to specify the correct units. In the previous example, the value in dn is

stored using basic device units (as is the case with all scaled values stored in a number register), so you

must add a u on the end of the interpolation. For example, on a 300 dpi device, after a diversion 2 inches

high, dn will contain the value 600. The request:

.ne \\n(dn

will always result in a page break because (in this example) what you are really writing is:

.ne 600

What you want to write is:

.ne \\n(dnu

Any text and requests that are issued between the initial .KS and the terminating .KE will be stored

in the macro called .KK. The height of the last-completed diversion is always stored in the number register

dn. We can simply say that we need (.ne) at least that much space. If the size of the diversion is greater

than the distance to the bottom of the page, we simply start a new page. Otherwise, we output the text and

continue as if the diversion had never happened.

The case of a floating keep, in which text that follows the keep in the source file floats ahead of it in

the output, and fills up the current page, is more difficult to handle than the simple example just shown.

However, this example should give you an idea of how to use diversions.

There is also a .da (divert append) request that adds output to an existing diversion. (A second .di

given the same macro name as the first will overwrite the diversion’s previous contents, but .da will add

the new material to the end).

The .da request has numerous applications. For example, consider footnotes. To calculate where to

place the first footnote, you need to calculate the size of all the footnotes you want to put on the page.

That’s easy—just append them to the same diversion.



Writing nroff and troff Macros 345

However, there are other far less obvious applications for appended diversions. For example, you can

divert and append section headings or index entries to macros that will be processed at the end of the file to

produce a table of contents or an index.

Environment Switching

The nroff and troff formatters allow you to issue many requests that globally affect the format of a

document. The formatter is generally quite thorough in providing ways to change and restore the value of

various parameters. This makes it relatively easy to change values such as the line length or fill/no-fill

mode in order to treat certain blocks of text differently and then restore the original values.

Nonetheless, if you want to make major changes to a number of values, it can be awkward to save

and restore them all individually. For this reason, nroff and troff provide a mechanism called environ-

ment switching. By default, text processing takes place in what is considered to be environment 0. The

.ev request allows you to switch to either of two additional environments, referred to as environment 1 and

environment 2.

For example, to change to environment 2, you would enter:

.ev 2

To restore a previous environment, you simply issue an .ev request without an argument. Environments

are stored in a “push down stack.” So if you are using multiple environment switches, a sequence of .ev

requests without arguments won’t toggle you between two environments, but will actually backtrack the

specified number of environment switches. That is:

.ev 1

do something
.ev 2

do something
.ev \" Go back to ev 1

.ev \" Go back to ev 0

If you use .ev with an argument, you will not pop the stack. For example, the requests:

.ev 2

.ev 0

will leave both environments on the stack. You might get away with this on one occasion, but if you do this

in a macro that is used with any frequency, your stack will keep getting deeper until it overflows and the

formatter fails with the message “Cannot do ev.”

Within each environment, settings made with the following requests are remembered separately:

.c2 .cc .ce .cu .fi .ft .hc .hy .in .it .lc .ll .ls .lt

.mc .nf .nh .nm .nn .ps .sp .ss .ta .tc .ti .ul .vs

Number registers, macros, and strings are common to all environments. However, any partially collected

lines are part of a given environment. If you switch environments without causing a break, these partial

lines will be held till the environment that contains them is restored.

What this means is best shown by example:

. \" Set parameters for environment 0

.ll 4.5i

.ad b

.ev 1 \" Switch to environment 1

.ll -10n \" Set parameters for environment 1

.in +10n

.ad l

.ev \" Restore previous environment (ev 0)

This text will be formatted using the parameters for

environment 0. Notice that part of the last input

line appears to be lost when we switch environments.

It reappears when the environment is restored.
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.ev 1

.sp \" The break caused by this request is in ev 1

Now we’ve switched to environment 1. Notice how the text

is now formatted using the parameters for environment 1.

Also notice that this time, we’re going to issue an .sp

request after this sentence to cause a break and make sure

the last partial line is output before we leave this

environment.

.sp

.ev \" Back once more to environment 0

This sentence will be preceded by the remainder of input

left over from the last time we were in this environment.

Here’s the resulting output (from nroff):

This text will be formatted using the

parameters for environment 0. You’ll notice

that part of the last input line appears to

be lost when we switch environments. It

Now we’ve switched to environment 1. Notice

how the text is now formatted using the

parameters for environment 1. Also notice

that this time, we’re going to issue an .sp

request after this sentence to cause a break

and make sure the last partial line is output

before we leave this environment.

reappears when the environment is restored.

This sentence will be preceded by the

remainder of the input left over from the

last time we were in this environment.

Environments are very powerful and versatile. The example given previously could have been han-

dled more appropriately with a macro. However, as you will find, there are tasks that are best handled by

an environment switch.

Printing footnotes is a primary example. Footnotes are usually collected in a diversion, which must

be output at the bottom of the page without causing a break or other interference with the text.

Unfortunately, you must use environment switching with caution if you are working within one of the

existing macro packages, because they may use different environments internally, and changing parameters

in an environment may affect the operation of the package. For example, it was necessary to process the

preceding example independently with nroff, and then read the resulting output into the source file,

because the use of environments by the macro package that produced this book was incompatible with what

we were trying to show.

Redefining Control and Escape Characters

There are special requests to reset the control characters that begin requests (. and ’) and the escape char-

acter:

.eo \" Turn escape character off except for comments

.ec ! !" Set escape character to !

.ec \ \" Set escape character back to \

.cc # \" Change control character from . to #
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.c2 ˆ \" Change no-break control character from ’ to ˆ

As far as we can tell by experiment, turning the escape character off entirely with .eo does not affect the

comment sequence \"; howev er, if you change the escape character with .ec, comments must be intro-

duced by the new escape character.

We hav e not found a significant use for these requests in our own work, or in macros we’ve studied,

although there are no doubt cases where they are precisely what is needed.

One application that immediately suggests itself is the representation of control and escape characters

in the examples shown in this book. However, in practice there are many problems.

For example, if you use these requests in a pair of macros to frame examples, the closing macro must

be invoked with the appropriate control character, creating inconsistencies for the user. Even more seri-

ously, if control character translations are in effect during a page transition (something that is difficult to

control) or other macro invoked by a trap, they will render that macro inoperable, unless it has been

designed with the same control and escape characters.

Our preferred solution to this problem is to use the .tr request, which is discussed in the next chap-

ter.

Debugging Your Macros

When using a markup language as complex as that provided by nroff and troff, it is easy to make mis-

takes, particularly when you are designing complex macros.

To limit the number of mistakes you make, you can take lessons from programmers in more general-

purpose languages:

• Start by writing and testing small pieces of a complex macro. Then, after you know the pieces

work, put them together. It is much easier to find a problem in a simple macro than in one that

is already very complex.

• Be aware of interactions between the macro you are writing and other macros in the package.

Initialize variables (number registers and strings) that might also be used by other macros.

• Include extensive comments, so you can reconstruct what you were trying to do when you go

back to the macro later. (Errors often arise unexpectedly after the macro has been in use for a

while, and you have a chance to exercise it fully. Be sure you can follow what you originally

wrote).

• Test each macro thoroughly before you put it into general use.

However, even with the best of intentions, you are likely to make mistakes. This short section is intended

to give you a few pointers on how to track them down.

The term debugging is familiar even to nonprogrammers. In general, it refers to the process of find-

ing errors in programs. I would like to suggest an alternate definition that may give you better insight into

how to go about this process: Debugging is the process of finding out what your macro really does, instead

of what you though it should do.*

When you write a program or a macro, you have an idea in your mind of what you want to accom-

plish. When it doesn’t do what you expect, you consider it an error.

But as we all know, computers are very literal. They generally do just what they are told. (The

exception being when there is an error in some underlying layer of software that causes problems on a

higher layer). Therefore, the essence of debugging is to compare, on a step-by-step basis, exactly what the

program or macro is actually doing with what you expect it to do.

*I am indebted to Andrew Singer of Think Technologies for this definition. Andrew used similar words in

describing to me the debugging philosophy of his company’s innovative Pascal compiler for the Macintosh,

Lightspeed Pascal.
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There are several tools that you can use in debugging macros. First, and most obviously, you can

look carefully at the output. Try to reconstruct the sequence of instructions and text that have been

executed to produce the (presumably) undesirable result. Often, this will be all you need to do—think like

a text formatter, and go through the requests that have been executed, in the order that they are executed.

You will often find that problems are due to an incorrect understanding of the action of one of the

requests or escape sequences, so it may be advisable to consult the bible of macro programming, Joseph

Osanna’s extraordinarily dense but thorough Nroff/Troff User’s Guide.

Secondly, you can use nroff or troff interactively. If you simply type:

$ nroff

or:

$ troff -a

the program will take standard input from the keyboard and send its results to standard output (the screen).

The troff -a command creates an ASCII approximation of what the troff output would be; if you are

using ditroff, you can also save the normal output in a file and look directly at the output. However,

this output is in an obscure format and takes considerable time to learn.

With troff -a, special characters (such as underlines) are represented by their special character

names. For example, underlining will show up as a sequence of \(uls. Because proportional type is con-

siderably more compact than the characters that appear on a terminal screen, lines will appear too long, and

will wrap around on the screen. However, what you see does represent how troff will break the lines.

Now, by typing in you macros (or reading them in from existing files with the .so request), you can

reproduce the environment of the formatter, and watch the results as you type in text. As each line is com-

pleted in the input buffer, the formatted result will be output. You can force output of a partially completed

line with the .fl (flush) request, which was designed for this purpose.

This method has definite limits, but has just as definite a place in pinning down what the commands

you type are doing.

Another debugging tool that you may find useful is the .ig (ignore) request. It tells the formatter to

ignore subsequent input, up to a specified terminator (.. by default). The .ig request acts like .de, only

the input is discarded. (The only exception to this is that autoincremented registers whose values are inter-

polated within the ignored block will still be incremented or decremented).

This request is useful when you are trying to pin down exactly where in an input file (or a long macro

definition) a fatal error (one that causes the formatter to stop processing) occurs. By successively isolating

parts of the file with .ig, you can locate the problem more closely.

This request is also useful for “commenting out” extensive blocks of macro definition or input text

that you don’t want in your output. It is much easier to bracket a large block of input in this way than it is

to insert comment characters at the beginning of each line.

Because you may want to “ignore” more than one macro definition, you may want to get in the habit

of specifying a special delimiter for the .ig request, so that the “ignore” is not accidentally terminated by

the end of the first macro definition. This will also make it much easier to find the end of the ignored sec-

tion. For example, if you insert the line:

.ig ++

anywhere in your input, the formatter will ignore the input until it sees the request:

.++

The final tool provided for debugging is the .tm (terminal message) request, which prints a message on

standard error. This is particularly useful for tracking down errors involving number registers. For exam-

ple, if you have set a condition based on the value of a number register, and the condition never seems to be

satisfied, you might want to insert .tm messages to print out the value of the number register at certain

points in your file. For example:

.tm Before calling B1, the value of BC is \n(BC

.B1

.tm After calling B1, the value of BC is \n(BC
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(Note that there are no double backslashes before the number register interpolations, because these requests

are not made while you’re inside a macro definition. From inside a macro, be sure to double the back-

slashes, or you will get the value of the number register at the time the macro was defined).

A read-only number register that is useful in this regard is .c, which contains the number of lines

read from the current input file. This allows you to create messages that will help you (or the user of your

macros) find out where in the input file an error (or other event) occurs:

.tm On input line \\n(.c, the value of BC was \\n(BC

(Here, there are double backslashes, because this example is intended to be inside a macro definition).

Sometimes it is helpful to follow just how far the formatter has gotten in a file. The most difficult errors to

track are those that cause the formatter to quit without producing a block of output. A series of messages of

the form:

.tm At top of page \\n%, I’ve processed \\n(.c input lines

inserted into the page top macro will help you determine how far the formatter has gotten, and can thus help

locate an error. If the formatter is processing standard input rather than an individual file, the .c register

will be empty.

Another register that you may find useful in printing error messages is .F, which contains the name

of the current file. (Yes, the filename is a string, even though it’s stored in a number register).

The .R register is also useful. It contains the number of free number registers. You can print its

value to see if you are running out of number registers or coming close to the limit. (tbl and eqn use

many dynamic number registers, and it is possible to run out if you use a lot in your macros as well).

Although we use the tools described here to debug our macros, we know that they don’t always help

you deal with the complexity of a macro package. The relationships among different macros are not always

apparent. For instance, you can usually tell from looking at your output what macro is causing a problem;

however, when you look at the macro definition, you might find that this macro is calling several other

macros or testing registers that have been set elsewhere in the macro package. It soon leads to the wish for

a debugging tool that traced the interpretation and execution of macro definitions.

At least one version of troff does support a trace facility. Users of SoftQuad’s SQtroff can

enable a trace mode to show the invocation of each request, diversion, trap, and macro call. For instance,

suppose that a macro tests the value of a number register to determine whether a request should be

executed. In trace mode, you can see at what point the .if request was invoked, whether it was evaluated

as true or false, and determine the actual value of the number register at that point. SoftQuad has also taken

another step to make debugging easier by improving troff’s obscure error messages. In general, Soft-

Quad has enhanced standard troff in other ways that aid the process of macro writing and debugging,

such as allowing longer names (up to 14 characters) for macros, requests, strings, registers, and fonts.

Error Handling

There are many different ways that users can get into trouble while coding documents, and your macros can

help them identify and recover from problems. The three most common classes we have encountered are:

• A user fails to properly understand the action of the formatter itself. For example, he or she

begins a text line with a single quote or period, or defines a special character (such as %) as an

eqn delimiter. This problem becomes more pronounced as users try out more advanced capa-

bilities without really understanding them.

• A user fails to properly understand the macro package. For example, he or she gives the wrong

argument to a macro or specifies the wrong units.

• A user temporarily resets some condition, either directly or by failing to close a set of paired

macros. This causes undesirable effects to propagate through the document.

The mm macros attempt to solve the first problem by creating so comprehensive a macro package that users

never need use many low-level formatter requests. However, in doing so, its developers have created an
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environment that is in may ways more complex than the raw formatter environment itself. And in our opin-

ion, no macro package is comprehensive enough to meet all user needs. Over time, users come up with for-

matting problems that they need to know how to solve on their own. There is no solution to this problem

except better user education.

To some extent, you can compensate for the second problem by testing for arguments and printing

error messages if a macro is misused. For example, if a macro requires an argument, consider printing a

message if the user fails to supply it:

.if "\\$1"" .tm Line \\n(.c: .Se requires section \

number as first argument

Of course, by the time the user sees the error message, he or she has already formatted the document, and it

is too late to do anything else but repair the damage and reprint. However, messages can sometimes make

it easier for users to find errors and can give them warning to look more closely at their printout.

The .ab request takes things one step further—it lets you terminate processing if the formatter

encounters a condition you don’t like. For example, you could write a macro that aborts if it is called with-

out a necessary argument:

.if !\\n(.$ .ab You forgot the argument!

The .ab request prints its argument as an error message, just like .tm. It just takes the further, definite

step of quitting on the spot.

Probably more suitable, though, is a separate tool for checking macro syntax. Such a tool exists for

mm in the mmcheck program. A program like this checks the syntax of macros and requests used in a doc-

ument and reports possible errors.

This kind of approach is especially suitable for the third kind of error—the failure to close a set of

paired macros.

Macro Style

As you develop more of your own macros, you might begin thinking about overall macro style. Developing

macros that behave in a consistent, reliable way becomes all the more important as the number of new

macros you have increases along with the number of people using them. Recognizing different styles of

macro writing helps to suggest alternatives and improvements in the way a macro works.

If you have read the chapters on ms and mm in detail, or if you are already familiar with both of these

packages, you have probably noticed that they embody somewhat different text-processing philosophies.

For example, ms generally attempts to recover and continue when it encounters a serious error, but

mm aborts the formatting run. And although ms allows a certain amount of user customization (generally

by providing a few number registers and strings that the user is expected to modify), it has nowhere near the

complexity of mm in this regard. An mm user is expected to set up various number registers that affect the

operation of many different macros.

In writing your own macros (especially ones that will be integrated with one of the existing pack-

ages), you should take some time to think about style, and how you want users to interact with your macros.

This is most easily shown by comparing several different paragraph macros:

.de P \" A very simple paragraph macro

.br

.ne 2v

.ti 2P

..



Writing nroff and troff Macros 351

.de LP \" An ms style flush left paragraph

.RT

.ne 1.1

.sp \\n(PDu

.ti \\n(.iu

..

.de PP \" An ms style indented paragraph

.RT

.ne 1.1

.sp \\n(PDu

.ti +\\n(PIu

..

.deP \" An mm style variable paragraph

.br \" Note that this is much

.sp (\\n(Ps*.5)u \" simplified from true mm code

.ne 1.5v

.if\\n(.$>0&(0\\$1) .ti+\\n(Pin

.if\\n(.$=0 .if\\n(Pt=1 .ti+\\n(Pin

..

The first example shows a very simple paragraph macro using a fixed indent value.

The second and third examples are adapted from ms. They show the use of an embedded reset macro

(discussed in Chapter 16) and the specification of values such as indents and interparagraph spacing by

means of number registers so that users can change them without rewriting the macro. The different types

of paragraphs (flush left or indented) are handled by defining two different macros.

The fourth example is adapted from mm. It shows how a macro can be controlled in a number of dif-

ferent ways. First of all, the size of the paragraph indent can be controlled by the user, as in ms. Second,

though, users can specify whether they want an indent for a particular paragraph by specifying an argument

to the macro. Finally, they can specify whether all paragraphs are to be indented or flush left by setting the

Pt (paragraph type) register.

Although you many not want to go as far as mm in giving different ways to affect the action of a

macro, it is good to realize that all of these options are available and to draw on them as necessary.

However, it does make sense to be consistent in the mechanisms you use. For example, suppose you

create macros to put captions on figures, tables, and examples. If you allow the user to control the amount

of space before the caption with an optional argument, you ought to do so in all three analogous macros.

As much as possible, a user should be able to infer the action of a macro from its name, and should

be able to guess at its arguments by analogy to other, similar macros in the same package. If you are capri-

cious in your design, other users will have a much greater burden to shoulder when it comes time for them

to learn your macros. Even if you are the only user of macros you develop, consistency will help you keep

out of trouble as you gradually extend your package.

The issue of macro style really comes up as you begin to develop your own custom macro package,

as you will see when we examine the elements of a macro package in Chapters 16 and 17.





Chapter 15

Figures and Special Effects

This chapter discusses a variety of formatter requests that you can use to draw figures and achieve special

effects like overstriking and vertically stacked text. It also dissects some of the most complex macros

we’ve seen so far, so it should advance your knowledge of how to write macros as well as your knowledge

of its explicit subject matter.

Formatter Escape Sequences

Preprocessors like tbl and pic draw boxes, lines, and simple figures using an underlying library of for-

matter escape sequences that you can also use directly. The eqn preprocessor also uses many of these

escape sequences, as well as others that are more appropriate for creating special effects with text charac-

ters.

The escape sequences are listed in Table 15-1. As you can see, there are quite a few! Fortunately,

many of these need not be learned by the average user. The various preprocessors often allow a user to

achieve the same effect more easily. Although tbl or eqn might seem difficult to learn, they are far sim-

pler than the formatter commands they replace. For example, an eqn construct like %10 sup 5% is eas-

ier to learn and type than an equivalent troff construct like:

10\s-3\v’-3p’5\v’3p’\s0

When it comes to drawing lines and figures, things get even more complex.

For this reason, many of the escape sequences we are about to discuss are not often used by the aver-

age person trying to achieve special effects. However, they are extremely useful to a developer of macros.

In this chapter, we’ll cover the sequences for local vertical and horizontal motions and line drawing,

because these requests are most commonly used in macros. In addition, we will show sev eral large macros

that do line drawing in order to demonstrate both the use of escape sequences and techniques for writing

complex macros.

Many of the escape sequences in Table 15-1 take arguments that must be delimited from any follow-

ing text. The delimiter character is most often ’ or ˆG (CTRL-G), but it can be any character. The first

character following the escape sequence will be taken as the delimiter, and the argument list will be termi-

nated when that same character is encountered a second time.

Local Vertical Motions

There are a number of escape sequences for local vertical motions. They are so called because they take

place within a line, without causing a break or otherwise interrupting the filling and justification process.

However, this is not to say that the motions they cause are limited. For example, you can use \v, the

vertical motion escape sequence to move anywhere on the page, just as you can with the .sp request.

However, the remainder of the line that has been collected in the formatter’s internal buffers will be output

in the new location just as if the motion had never taken place.

To make this point clearer, let’s look at three examples of input text that use different types of vertical

motion.

353
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Table 15.1 Formatter Escape Sequences

Escape Description

\v’distance’ Move distance vertically down the page. Precede distance

with a minus sign to move back up the page.

\h’distance’ Move distance horizontally to the right. Precede distance with

a minus sign to move back to the left.

\u Move 1/2 em up (1/2 line in nroff).

\d Move 1/2 em down (1/2 line in nroff).

\r Move 1 em up (1 line in nroff).

\c Join next line to current output line, even across a break.

\p Cause a break, and adjust current partial output line.

\x’distance’ Add extra line space for oversize characters.

\(space) Move right one space (distance determined by .ss).

\0 Move right the width of a digit in the current font and size.

\| Move right 1/6 em (ignored in nroff).

\ˆ Move right 1/12 em (ignored in nroff).

\w’string’ Interpolate width of string.

\kx Mark current horizontal place in register x.

\o’xy’ Overstrike characters x and y.

\zc Output character c without spacing over it.

\b’string’ Pile up characters vertically (used to construct large brackets,

hence its name).

\l’Nc’ Draw a horizontal line consisting of repeated character c for

distance N. If c isn’t specified, use _.

\L’Nc’ Draw a vertical line consisting of repeated character c for dis-

tance N. If c isn’t specified, use |.

\D’l x,y’ Draw a line from the current position to coordinates x,y

(ditroff only).

\D’c d’ Draw a circle of diameter d with left edge at current position

(ditroff only).

\D’e d1 d2’ Draw an ellipse with horizontal diameter d1 and vertical diam-

eter d2, with the left edge at the current position (ditroff

only).

\D’a x1 y1 x2 y2’ Draw an arc counterclockwise from current position, with cen-

ter at x1,y1 and endpoint at x1+x2,y1+y2 (ditroff only).

\D’∼ x1 y1 x2 y2...’ Draw a spline from current position through the specified

coordinates (ditroff only).

\H’n’ Set character height to n points, without changing the width

(ditroff only).

\S’n’ Slant output n degrees to the right. Negative values slant to

the left. A value of zero turns off slanting (ditroff only).
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What happens with .sp:

Input lines:

Especially in troff, it is sometimes uncanny the way that

vertical motions can occur

.sp 12p

independently from the output of the text.

Output lines:

Especially in troff, it is sometimes uncanny the way that vertical motions

can occur

independently from the output of the text.

What happens with ’sp:

Input lines:

Especially in troff, it is sometimes uncanny the way that

vertical motions can occur

’sp 12p

independently from the output of the text.

Output lines:

Especially in troff, it is sometimes uncanny the way that vertical motions

can occur independently from the output of the text.

What happens with \v’12p’:

Input lines:

Especially in troff, it is sometimes uncanny the way that

vertical motions can occur \v’12p’

independently from the output of the text.

Output lines:

Especially in troff, it is sometimes uncanny the way that vertical motions

can occur

independently from the output of the text.

As you can see, .sp causes a break as well as a downward movement on the page. The partially collected

line is output before the movement takes place. With ’sp, the line currently being collected is completely

filled and output before the spacing takes place. With \v, the motion is completely independent of the

process of filling and justification.

It is also independent of traps, as we discovered once when trying to put a pointing finger (+) at the

bottom of a page to indicate that the subject was continued on the overleaf. We used a macro invoked by

the page bottom trap to print the finger. At first, we made the mistake of using .sp -1 to move back up

the page to place the finger. Unfortunately, this put troff into an endless loop around the trap position.

The \v escape sequence, on the other hand, did the trick nicely. Since it does not change the current base-

line spacing, it will not trigger a trap.

Long-winded examples aside, that is why \v is considered a local motion. In general, \v escape

sequences are used in pairs to go away from, and then back to, the current vertical position.

A superscript is a good example of vertical motion using \v. For example, you could create a simple
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superscript macro like this:

.de SU

\\$1\s-2\v’-3p’\\$2\v’3p’\s0\\$3

..

This macro

• prints its first argument;

• reduces the point size;

• makes a 3-point reverse vertical motion;

• prints the second argument;

• makes a 3-point vertical motion to return to the original baseline;

• restores the original size;

• prints an optional third argument immediately following. (This allows punctuation to be intro-

duced immediately following the superscript, rather than on the next line. If no third argument

is supplied, this argument interpolation will be ignored).

This macro could also be implemented using the \u (up) and \d (down) escape sequences, which use a

fixed 1/2-em distance. If you did this—or if you specified the distance for the \v escape sequence in a rela-

tive unit like ems, instead of a fixed unit like points—it would be essential to have both of the vertical

motions either inside or outside the font size change. For example, assuming that the current font size was

10 points:

.de SU

\\$1\u\s-2\\$2\d\s0\\$3

..

would produce an unbalanced effect, because the upward motion would be 5 points (1/2 em at 10 points),

while the downward motion would be only 4 points (1/2 em at 8 points). This caution holds true whenever

you mix font and size changes with local motions.

Local Horizontal Motions

Much of what has been said about local vertical motions is true for local horizontal motions. They take

place independently of the process of filling and justification and so, if improperly used, can result in hor-

rors like:

Look what happens whenyou make a mistake with \h!

which was produced by the line:

Look what happens when \h’-3m’you make a mistake with \h!

Horizontal motions are not as likely to take place in pairs as vertical motions. For example, there are cases

where you want to close up the space between two special characters, or open up additional space on a line.

For example, >> produced by >\h’-1p’> looks better than >>.

In addition to \h, there are a number of escape sequences that affect horizontal motion in specific

ways.

For example, “\ ” (it’s quoted so you can see the blank space following the backslash) will space

over to the right by exactly one space. That sounds trivial, but it isn’t. When it justifies a line, troff feels

free to expand the spaces between words. (The default space size is normally 12/36 of an em, but can be

reset with the .ss request using units of 36ths of an em). The “\ ” escape sequence makes sure that you

get exactly one space. This is generally thought of as the unpaddable space character and is used when you

want to keep two words together. Howev er, it can also be used simply as a horizontal motion sequence.
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Another useful sequence is \0. It provides exactly the width of a digit in the current font and size.

(Unlike alphabetic characters, all digits are always the same width on the standard fonts, to allow them to

line up properly in numeric displays). The \0 sequence is most useful when you want to line up spaces

and digits manually.

The two escape sequences \| and \ˆ, which give, respectively, a 1/6 em and 1/12 em space, are useful

when you want to create just a little bit of fixed space between two characters. (The normal space size cre-

ated by an actual space character is 1/3 em, so these two characters give you, respectively, one-half and one-

quarter of the normal interword spacing). You may remember that we used \ˆ in Chapter 12 to create a lit-

tle bit of space before and after the em dashes we were introducing into our files with sed.

Absolute Motions

As you’ve probably gathered from the preceding discussion, you can specify the distance for a horizontal or

vertical motion using any of the units discussed in Chapter 4. The values can be given explicitly, or by

interpolating the value of a number register. In addition, as discussed in Chapter 4, you can use a vertical

bar (|) to indicate absolute motion relative to the top of the page or the left margin.

This is not as simple as it first appears. For vertical motions, you pretty much get what you expect.

For example, .sp |2i, \v’|2i’ will move you to a position 2 inches from the top of the page.

Depending on where you are on the page before you issue the command, the generated motion will be

either positive or neg ative.

For horizontal motions, things are a little more ambiguous. The absolute position indicator doesn’t

move you to an absolute position based on the output line, but on the input line. For example:

This is a test of absolute horizontal motion\h’|1i’_

produces:

This is a test of absolute horizontal motion_

But:

This is a test of

absolute horizontal motion\h’|1i’_

produces:

This is a test of absolute horizontal motion_

What is really supplied as an argument to \h when you use the absolute position indicator is the dis-

tance from the current position on the input line to the specified position. Even though it looks the same,

the argument will have a different value, depending on the length of the input line. And again, as with ver-

tical motions, the actual movement may be positive (to the right) or negative (to the left), depending on the

relationship between the current position and the absolute position specified.

It may appear odd to have these motions relative to the input line. However, as we will see (espe-

cially in line drawing), there is a method to the madness.
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Line Drawing

Now we come to the fun part. Moving around on the page is of little use unless you plan to write some-

thing at the point you’ve moved to. Superscripts, subscripts, and overprinting provide some application of

local motion, but local motions are most useful with the escape sequences for drawing lines and curves.

Applications range from underlining words in troff, to boxing single words (if you are writing

computer manuals, this is very useful for showing the names of keys to be pressed), to drawing boxes

around whole blocks of text, just like tbl does.

The \l sequence draws a horizontal line; \L draws a vertical line. Both escape sequences take two

arguments, the second of which is optional. Both arguments should be enclosed together in a single pair of

delimiters.

The first argument is the distance to draw the line. A positive value means to draw a horizontal line

to the right, or a vertical line downward (depending on whether \l or \L is used). A neg ative value means

to draw a line back to the left, or back up the page.

When you draw a line back to the left, either by explicitly specifying a negative value, or by specify-

ing an absolute value (such as |0) that results in a negative movement, troff first moves back to the

specified position, then draws the line from left to right. It is as if the line is drawn from the specified dis-

tance to the current position.

For example:

\l’3i’ draws a line 3 inches to the right

\l’-3i’ draws a line from a position 3 inches to the left

\L’3i’ draws a line 3 inches down

\L’-3i’ draws a line 3 inches up

\L’|3i’ draws a line to a position 3 inches from the top of the page

The optional second argument is the character with which to draw the line. By default, a horizontal line is

drawn with the baseline rule—a horizontal line that is aligned with the bottom of the other characters on a

line. However, if you want to underline text, be sure to use the underscore, which is printed in the space

allotted for characters that descend below the line:

These words are separated by baseline rules.

These words are separated by underscores.

The underscore is usually generated by the underscore character that appears above the hyphen on most

keyboards. However, to be on the safe side, you should refer to it by its special character name in

troff—\(ul. (The baseline rule can be specified with the sequence \(ru).

Vertical lines are drawn by default with a character called the box rule (which can be generated by

the \(br escape sequence or the vertical bar character on most keyboards). The box rule is a zero-width

character—that is, when troff draws the box rule, it does not space over as it does with other characters.

This allows troff to form exact corners with horizontal lines drawn with underrules. However, as you

will see, it may therefore require you to manually specify additional space to keep it from crowding previ-

ous or succeeding characters.

Except in the case where you draw a line to the left, as described previously, the current position at

which text output will continue is changed to the endpoint of the line. In drawing a box, you will naturally

find yourself returning to the starting point. However, if you are drawing a single line, you may need to use

\v or \h to adjust the position either before or after the line is drawn.

Let’s look at a couple of examples. A simple macro to underline a word in troff might look like

this:

.de UL

\\$1\l’|0\(ul’\\$2

..

This example prints its argument, backs up a distance equal to the length of the argument on the input line,

then draws a line from that point to the current position. The optional second argument allows you to
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specify punctuation without separating it with the space that is required if it were entered on the next input

line. (This reverse motion is implicit in the negative value generated by the absolute position request |0

—that is, the distance from the end of the word to the beginning of the line. Lines drawn with \l and a

negative distance generate a negative horizontal motion for the specified distance. The line is then drawn in

a positive direction back to the current position).

That is:

.UL Hello ,

produces:

Hello,

and:

.UL Hello

,

produces:

Hello ,

(In nroff, you can underline simply by using an italic font switch, or the .ul request, because italics are

represented in nroff by underlines).

A macro to enclose a word (like the name of a key) in a box might look like this:

.de BX

\(br\|\\$1\|\(br\l’|0\(rn’\l’|0\(ul’\ˆ\\$2

..

For example, the input text:

Press the

.BX RETURN

key.

will produce the line:

Press the RETURN key.

This macro prints a single box rule (\(br), spaces over 1/6 em (\|), prints the argument, spaces over

another 1/6 em space, and prints a concluding box rule. Then it draws two lines back to 0 (the beginning of

the input line—that is, the width of the argument plus the two requested 1/6-em spaces).

The first horizontal line is drawn not with \(ul but with another special character, the root en

(\rn). This character is used when drawing equations to produce the top bar in a square root symbol, but it

is just as useful when you want to draw a line over the top of some text without moving back up the page.

The second horizontal line is drawn, as usual, with \(ul.

Both lines can be drawn back to zero without compensating horizontal motions because, as we have

already noted, horizontal lines drawn backwards actually generate a reverse horizontal motion followed by

a line drawn back to the current position.

The macro concludes with an additional 1/12 -em space (\ˆ) and an optional second argument,

designed to allow you to specify punctuation following the box.

A macro to box multiple lines of text (like this paragraph) is more complex. It requires the use of a

diversion to capture the text to be boxed. The diversion can then be measured, and the lines drawn to fit.

And when you are using diversions, you need two macros, one to start the diversion, and one to finish it, as

in the following macros:

.de BS \" Box Start

.br \" Space down one line; cause break

.di bX \" Start diverting input to macro bX

..

.de BE \" Box End

.br \" Ensure partial line is in bX

.nr bI 1n \" Set "box indent"--space between

. \" box and text
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.di \" End diversion

.nr bW \\n(dlu \" Set "box width" to diversion width

.nr bH \\n(dnu \" Set "box height" to diversion height

.ne \\n(bHu+\\n(.Vu \" Make sure bH plus one line is

. \" left on page

.nr fI \\n(.u \" Set fI to 1 if text is filled

.nf \" Specify no-fill before printing bX

.ti 0

.in +\\n(bIu \" Add "box indent" to any other indent

.bX \" Output the text stored in macro bX

.in -\\n(bIu \" Subtract bI to restore prev indent

.nr bW +2*\\n(bI \" Add 2x "box indent" to "box width"

.sp -1 \" Compensate for baseline spacing

\l’\\n(bWu\(ul’\L’-\\n(bHu’\l’|0\(ul’\h’|0’\L’\\n(bHu’

. \" Draw box

.if \\n(fI .fi \" Restore fill if prev text was filled

.sp \" Space down 1 line after box is drawn

..

There are a number of interesting things about these macros. First, they provide a good illustration of

the use of diversions. Note that the macro causes a break (with either .br or .sp) before the diversion is

started and before it is terminated. Note also how the predefined read-only registers dn and dl are used to

measure the height and width of the diversion and therefore set the dimensions of the box. (The contents of

these registers are not used directly when the lines are drawn because the registers are read-only, and the

width needs to be adjusted to account for a small amount of spacing between the box rule and the text con-

tained in the box).

Second, because these macros are complex, they use quite a few number registers. We want to use

register names that are mnemonic, but not use up names that might be useful for user-level macros. We get

around this problem by using names that combine lowercase and uppercase letters. This is entirely a matter

of convention, but one that we find preferable to mm’s use of completely obscure internal register names like

;p.

Third, there is the actual line drawing—the point of this presentation. Let’s look at this aspect of

these macros in detail.

As we’ve discussed, bH and bW have been set to the height and width, respectively, of the diversion.

Because the box rule is a zero-width character, howev er, the macro needs to allow a small amount of space

between the sides of the box and the text it encloses. It does this by specifying a 1-en indent (which is

added to any existing indent, in case the box occurs in a block of text that is already indented). When the

diversion is output, it will thus be indented 1 en.

After the diversion is output, the indent is reset to its previous value. However, twice the value of the

indent is added to the box width. The box will thus be drawn 2 ens wider than the text it encloses. The text

will start in 1 en; the right side of the box will be drawn 1 en beyond the right margin.

The actual line to draw the box:

\l’\\n(bWu\(ul’\L’-\\n(bHu’\l’|0\(ul’\h|0’\L’\\n(bHu’

draws a horizontal line using \(ul from the left margin to the distance specified by bW (box width), which,

as we have seen, now includes a small extra margin. It then draws a line back up the page to the height

specified by bH, and back across the page to the left margin again.

At this point, even though we have drawn the bottom, right, and top sides of the box, we are still at

the top right corner of the box. The macro needs to move horizontally back to the left margin, because hor-

izontal lines to the left are actually drawn from the left, and leave the current position the same as it was

before the line was drawn. In this case we actually want to move to the left as well. Therefore, we must do

so explicitly, by following the \l’|0\(ul’ request with a \h’|0’. Finally, the box is closed by draw-

ing a vertical line back down the left side.

The current position is now at the start of the last line of the contents of the box, so the macro issues

an .sp request to move down one line. Alternatively, you could write this macro in such a way that it

leaves no additional space above and below the box, but lets the user leave space by issuing some kind of
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spacing or paragraph request.

By default, the box is drawn just long enough to surround the text it contains. (The number register

dl, which is used to set the box width, contains the width of the text in the diversion). For short lines in

no-fill mode, the box will also be shorter:

Here are some short lines of text in no-fill mode.

Let’s see how they come out.

This raises the idea that it might be nice to center a box that is shorter. A more complete set of box macros

will do this, as well as let the user change the default box indent (the distance between the text and the edge

of the box):

.de BS \" Box Start

.sp

.di bX

.nr bC 0 \" Clear centering flag

.nr bI 0 \" Clear box indent

.if "\\$1"C" .nr bC 1 \" Set flag if user wants centered

.if !"\\$2"" .nr bI \\$2n \" Set box indent if specified

..

.de BE \" Box End

.br

.if !\\n(bI .nr bI 1n \" Set bI if not already set

.di

.nr bW \\n(dlu

.nr bH \\n(dnu

.ne \\n(bHu+\\n(.Vu

.nr fI \\n(.u

.nf

.ti 0

.nr iN \\n(.iu \" Save current indent

.if \\n(bC .in +(\\n(.lu-\\n(bWu)/2u

. \" If centering, adjust indent

.in +\\n(bIu

.bX

.in -\\n(bIu

.nr bW +2*\\n(bIu

.sp -1

\l’\\n(bWu\(ul’\L’-\\n(bHu’\l’|0\(ul’\h|0’\L’\\n(bHu’

.if \\n(fI .fi

.in \\n(iNu \" Restore original indent

.sp

..

Using the full macro, and specifying .BS C 5n, the box now looks like this:

Here are some short lines of text in no-fill mode.

Let’s see how they come out with .BS C 5n.

These macros also provide insight into how to use number registers. For example, BS takes C as a possible

argument to indicate that the box should be centered. Because the BE macro controls the output, there must

be some way to communicate the user request for centering between BS and BE. The BS macro sets num-

ber register bC to 1 as a signal, or flag, to BE to do the centering. (Note that bC is first zeroed, to make sure

that centering is not propagated into the current environment from a previous invocation of the box

macros).

Likewise, fI is set as a flag to indicate whether justification is enabled. The box is drawn in no-fill

mode, but the macro must reset filling if it was previously enabled. The read-only number register .u is

nonzero if filling is in effect, so the lines:
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.nr fI \\n(.u

.

.

.

.if \\n(fI .fi

will execute the .fi request only if justification was previously in effect.

Changing Line Weight

You may occasionally want to change the weight of a line you are drawing. The way to do this is simple:

change the point size with either the .ps request or the \s escape sequence before drawing the line. For

example:

\l’3i’

will produce:

and:

\s20\l’3i’\s0

will produce:

(This trick only works with \l and \L. It will not change the weight of lines drawn with any of the \D

escape sequences). You might also want to consider the text size when you are drawing boxes around text.

For example, if you are using a macro like .BX (shown previously) to draw boxes around the names of

keys, you might want to set the text 2 points smaller, either by specifying the font-switch codes as part of

the argument:

.BX "\s-2RETURN\s0"

or by modifying the macro so that they are built right in:

.de BX

\(br\|\s-2\\$1\s0\|(br\l’|0\(rn’\l’|0(ul’\ˆ\\$2

..

If either of these things were done, our earlier example would look like this, which is even better:

Press the RETURN key.

Drawing Curves

The previous line drawing escape sequences work in nroff and otroff as well as ditroff. There are

also additional drawing sequences that only work in ditroff. These escape sequences allow you to draw

circles, arcs, ellipses, splines (curved lines between a series of coordinates), and straight lines.

Table 15-2 summarizes these sequences. The syntax of the escape sequences is familiar—an initial

escape code is followed by a series of arguments enclosed in single quotation marks or some other user-

supplied delimiter. In this case, though, all of the escape sequences begin with the same code— \D —with

the type of item to be drawn (circle, arc, ellipse, spline, or straight line) given by the first argument.
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Table 15.2 ditroff Escape Sequences for Drawing

Escape Description

\D’l x,y’ Draw a line from the current position to coordinates x,y.

\D’c d’ Draw a circle of diameter d with left edge at current position.

\D’e d1 d2’ Draw an ellipse with horizontal diameter d1 and vertical diameter d2,

with the left edge at the current position.

\D’a x1 y1 x2 y2’ Draw an arc counterclockwise from current position, with center at

x1,y1 and endpoint at x1+x2,y1+y2.

\D’∼ x1 y1 x2 y2...’ Draw a spline from current position through the specified coordinates.

Learning the geometry used by these escape sequences is best accomplished by example. Although

we have shown the arguments to the line, arc, and spline sequences as if they were x,y coordinates, they are

in fact troff’s usual vertical and horizontal distances. Read x as horizontal distance, and y as vertical dis-

tance. You can get very confused if you treat them as a true coordinate system.

Let’s start simple, with individual fixed-size figures. The following will produce the output shown in

Figure 15-1:

.sp 1i

.in .5i

The circle starts here\D’c 1i’and ends here.

.sp 1i

The line starts here\D’l 1i -1i’and ends here.

.sp 1i

The ellipse starts here\D’e 2i 1i’and ends here.

.sp 1i

The arc starts here\D’a .5i 0 0 .5i’and ends here.

.sp 1i

The spline starts here

\D’˜ .5i -.5i .5i .5i .5i .5i .5i -.5i’and ends here.

.sp .5i

.in 0

As you can see, arcs and splines are the most difficult figures to construct. Instinct cries out for the

ability to draw an arc between two endpoints with the current position as the center of the arc. Instead, for

consistency with the other figures, drawing begins at the current position, and the first set of values specify

the center of the arc. This takes a little getting used to.

With splines, the problem is that distances are additive, and relative to the previous position, rather

than to the initial position. Our familiarity with x,y coordinate systems leads us to think that the spline

should be produced by a request like this:

\D’˜ .5i -.5i 1i 0 1.5i .5i 2i 0’

(in which the x value increases relative to the origin rather than to the previous point) instead of by the

request shown previously.

You may also have noticed something rather odd. Text continues right after the endpoint of the figure,

yet the .sp 1i requests seem to give us 1 inch of space from the original baseline, regardless of the end-

point of the figure. This is most obvious with the line, which clearly moves back up the page. Yet the next

figure is also spaced down 1 inch. This fact becomes even more obvious if we do this:

.sp 1i

The line starts here\D’1i -.5i’and ends here.

What happens to text that wraps and continues in fill mode?
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The circle starts here and ends here.

The line starts here

and ends here.

The ellipse starts here and ends here.

The arc starts here

and ends here.

The spline starts here and ends here.

Figure 15.1 Some Simple Figures

Here’s the result:

The line starts here

and ends here. What happens to text that wraps and continues in fill

mode?

The current baseline has not been changed. This is a major contrast to lines drawn with \L or \l.

As you play with lines, you’ll also find that lines drawn to the left with \D really do move the current posi-

tion to the left, and you don’t need to add a compensating horizontal motion if you are drawing a complex

figure.

You’ll have to experiment to get accustomed to drawing figures. One other problem is to get figures

to start where you want. For example, to get the endpoints of arcs with various orientations in the right
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place, you may need to combine arc drawing requests with vertical and horizontal motions.

You could use these requests to create a box with curved corners similar to the one done with pic in

Chapter 10. The box is drawn starting with the lower left corner (so it can be drawn after the text it

encloses is output) and will look like this:

The box was drawn using the following drawing commands. These commands are shown on separate lines

for ease of reading. To make them draw continuously, we need to add the \c escape sequence to the end of

each line. This escape sequence joins succeeding lines as if the line feed were not there. Warning: using

fill mode will not achieve the same result, because the formatter will introduce spaces between each draw-

ing command as if it were a separate word.

\v’-.25i’\c Go back up the page 1/4 inch

\D’a .25i 0 0 .25i’\c Draw bottom left arc 1/4 inch down and to the right

\D’l 3i 0’\c Draw horizontal line 3 inches to the right

\D’a 0 -.25i .25i 0’\c Draw bottom right arc 1/4 inch up and to the right

\D’l 0 -2i’\c Draw vertical line 2 inches back up the page

\D’a -.25i 0 0 -.25i’\c Draw top right arc 1/4 inch up and to the left

\D’l -3i 0’\c Draw horizontal line 3 inches to the left

\D’a 0 .25i -.25i 0’\c Draw top left arc 1/4 inch down and to the left

\D’l 0 2i’\c Draw vertical line 2 inches down the page

\v’.25i’ Restore original baseline position

To build a complete macro to enclose examples in a simulated computer screen, we can adapt the

.BS and .BE macros shown previously:

.de SS \" Start Screen with

. \" Curved Corners

.sp .5v

.ie !"\\$1"" .nr BW \\$1 \" Get width from first arg

.el .nr BW 4i \" or set default if not specified

.ie !"\\$2"" .nr BH \\$2 \" Get height from second arg

.el .nr BH 2.5i \" or set default if not specified

.br

.di BB

..

.de SE \" Screen End

.br

.nr BI 1n

.if \\n(.$>0 .nr BI \\$1n

.di

.ne \\n(BHu+\\n(.Vu

.nr BQ \\n(.u
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.nf

.ti 0

.in +\\n(BIu

.in +(\\n(.lu-\\n(BWu)/2u

.sp .5

.BB

.sp +(\\n(BHu-\\n(dnu)

.in -\\n(BIu

.nr BH -.5i

.nr BW +2*\\n(BIu

.nr BW -.5i

\v’-.25i’\c

\D’a .25i 0 0 .25i’\c

\D’l \\n(BWu 0’\c

\D’a 0 -.25i .25i 0’\c

\D’l 0 -\\n(BHu’\c

\D’a -.25i 0 0 -.25i’\c

\D’l -\\n(BWu 0’\c

\D’a 0 .25i -.25i 0’\c

\D’l 0 \\n(BHu’\c

\v’.25i’

.sp -1.5i

.if \n(BQ .fi

.br

.sp .5v

..

Because a screen has a fixed aspect ratio, we don’t want the box to be proportional to the text it encloses.

Hence, we give the user of the macro the ability to set the box width and height. If no arguments are speci-

fied, we provide default values.

Because the box size is fixed, there are some additional steps necessary in the closing macro. First,

we must decrement the specified box width and height by the distance used in drawing the curves, so that

the user gets the expected size. Second, because the box is drawn from the lower left corner back up the

page, we must make sure that the lower left corner is correctly positioned before we start drawing.

To do this, we again need to use a diversion. We measure the height of the diversion, then add

enough additional space (.sp + (\\n(BHu-\\n(dnu)) to bring the starting point for drawing low

enough so that the box is not drawn back over the text that precedes the invocation of .SS. (If you don’t

understand why this was done, delete this line from the macro, and watch the results).

We’v e also centered the screen by default, and added a half-line vertical spacing above and below the

box. (As an exercise, modify the .BX macro to produce a key-cap with curved corners).

Talking Directly to the Printer

Depending on the output device and postprocessor you are using, you may be able to send specialized con-

trol commands directly to your printer. For example, you may be able to embed raster graphics images

(such as a file created on an Apple Macintosh with MacPaint) directly in your output. Or, if you are using a

PostScript-driven printer, you can integrate figures done with MacDraw, or issue PostScript commands to

print grey screens over your text.

These capabilities are provided by the two requests \! and .cf, copy filename [to standard output]

(ditroffonly).

The \! request is the transparent output indicator. Any text following this escape sequence on a

line is placed directly into the output stream, without any processing by troff. This makes is possible to

insert control lines that will be interpreted by a postprocessor or an output device. (As mentioned in the last

chapter, transparent output is also useful for embedding control lines in a diversion, to be executed when

the text in the diversion is output).
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Likewise, the contents of the file specified as an argument to .cf are placed directly on standard out-

put, without processing by ditroff.

Unfortunately, there is a catch! PostScript is a page description language that resides in the printer.

Before you can talk directly to the printer, you must get through the postprocessor that translates ditroff

output into PostScript. If the postprocessor mucks with the data you send out, all bets are off.

As of this writing, TranScript, Adobe Systems’ own troff -Postscript converter, does not allow you

to use \!. Howev er, with Pipeline Associates’ devps, any lines beginning with ! are ignored by the

postprocessor, and go directly to the printer. This allows you to use transparent output by entering the

sequence \!! followed by the appropriate PostScript commands. Or, if you are sending a PostScript file

created on the Mac, use an editor to insert an exclamation point at the beginning of each line.

In any event, this is not a job for the novice, since you must learn PostScript as well as troff.

Experiment with your printer and postprocessor, or ask around to see if other users have solutions you can

adapt to your situation.

Marking a Vertical Position

There are many cases, both in macros and in the body of your text, where you may want to mark a spot and

then return to it to lay down additional characters or draw lines.

The .mk request marks the current vertical position on the page; .rt returns to that position. This is

useful for two-column processing. To giv e a simple example:

Two columns are useful when you have a linear list

of information that you want to put side-by-side, but don’t

want to bother rearranging with the cut-and-paste programs.

.sp .5

.ll 2.5i

.nf

.mk

Item 1

Item 2

Item 3

.ll 5i

.in 2.75i

.rt

Item 4

Item 5

.in 0

.sp

This example produces the following output:

Two columns are useful when you have a linear list of

information that you want to put side-by-side, but

don’t want to bother rearranging with the cut-and-paste

programs.

Item 1

Item 2

Item 3

Item 4

Item 5

Notice that it is entirely your responsibility to make sure that the second column doesn’t overprint the first.

In this example, we did this by manually adjusting the indent and the line length. In addition, because the

second column is shorter than the first, a concluding .sp is necessary to return to the original position on

the page. If this had not been done, subsequent text would overprint the last line of the first column.

Proper two-column processing for an entire document requires a much more complex setup, which

must be in part handled by the page bottom macro. We’ll look at that in detail in Chapter 16, but this exam-

ple should be enough to give you the idea.
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The .mk request can take as an argument the name of a number register in which to store the vertical

position. This allows you to mark multiple positions on a page, and return to them by name. The .rt

request always returns to the last position marked, but you can go to a position marked in a register using

the .sp request:

.mk Q

.sp |\nQu

or (more to the point of the current discussion) with \v:

\v’|\nQu’

In addition, .rt can take as an argument a distance from the top of the page. That is:

.rt 3i

will return to a point 3 inches from the top of the page. The .mk request need not be used in this case.

Overstriking Words or Characters

There are a number of escape sequences that allow you to overstrike words or characters to create special

effects. These include

• boldfacing an entire font by overstriking;

• marking and returning to a specific horizontal position;

• calculating the width of a word and backing up over it;

• centering two characters on top of each other;

• stacking characters vertically.

Boldfacing a Font by Overstriking

The .bd request specifies that a font should be artificially boldfaced by overstriking. The request has two

forms, one for ordinary fonts and one for the special font.

A request of the form:

.bd font offset

will overstrike all characters printed in font by overprinting them, with the second strike offset from the first

by offset -1 basic units. The following:

.bs S font offset

will overstrike characters printed in the special font, while font is in effect. And:

.bd font

.bd S font

will restore the normal treatment of the font.

This request is particularly useful when you are boldfacing headings and want to account for special

characters or italics in arguments supplied by the user. (This assumes that you don’t hav e an explicit bold

italic font). Especially at sizes larger than 10 points, the stroke weights of bold and italic fonts can be quite

different.

For example, assume that you had a macro that produced a boldface heading for a table:

.de Th \" Table Heading

.ft B

.ce

Table \\$1: \\$2

.ft P

..
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If the user supplied italics or special characters in the arguments to the macro, the contrast between the dif-

ferent character weights might not be as pleasing as it could be. For example:

.Th "3-1" "Special Uses for \(sr in \fItroff\fP "

would produce:

Table 3-1: Special Uses for √ in troff

If the macro had .bd requests added like this:

.de Th \" Table Heading

.ft B

.bd I 3

.bd S B 3

.ce

Table \\$1: \\$2

.ft R

.bd I

.bd S

..

the output would look like this:

Table 3-1: Special Uses for √√ in ttrr ooffff

Another example is provide by the constant-width (CW) font used in this book. Because the font is opti-

mized for the LaserWriter, where the ink bleeds slightly into the paper, the font is very light on the typeset-

ter. Throughout this book, we have emboldened this font slightly, with the requests:

.bd CW 4

.bd S CW 4

This sentence shows how the constant width font looks without these requests.

Marking and Returning to a Horizontal Position

Just as you can mark a vertical position, you can also mark and move to a specific horizontal position. This

is chiefly useful for overstriking characters.

Just as you use a value stored into a register with the .mk request to indicate a fixed vertical location

on the page, you mark a horizontal location with \k. Then, you can use the absolute position indicator | to

specify the distance for \h.

To borrow an example from Kernighan’s Tr off Tutorial:

\kxword\h’|\nxu+2u’word

will artificially embolden word by backing up almost to its beginning, and then overprinting it. (At the start

of word, \k stores the current horizontal position in register x. The \h’|\nxu+2u’ sequence returns to

that absolute position, plus 2 units—a very small offset. When word is printed a second time, an overstrik-

ing effect is created).

This sequence might be useful if you were using a font that had no bold equivalent, and in circum-

stances where the .bd request could not be used because the special effect was not desired for all instances

of that font on the same line. And, to be really useful, the sequence should probably be saved into a macro.
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The Width Function

The \w escape sequence returns the length of a string in units. For example:

\w’Hi there’

will tell you the length of the string Hi there.

This sequence returned by \w can be used as an argument with \h or with any horizontally oriented

request (such as .in). This has many uses, which we’ll introduce as we need them.

To giv e you an idea of how to use \w, though, we can rewrite the example used with \k as follows,

to produce the same effect:

.de BD \"Artificially embolden word

\\$1\h’-\w’\\$1’-2u’\\$1

..

This macro prints its first argument, then backs up the width of that argument, less two units. Then it prints

the argument a second time—at a two-unit offset from the first. Hint: to avoid awkward constructions

involving nested \w sequences, first read the width into a number register. For example, the previous

macro could be rewritten like this:

.de BD \" Artificially embolden word

.nr WI (\w’\\$1’-2u)

\\$1\h’-\\n(WIu’\\$1

..

In this case, the difference isn’t so great; however, at other times the sequence can become too confusing to

read easily.

Overstriking Single Characters

Although \k provides a good method for overstriking an entire word, there are also more specialized func-

tions for overstriking a single character.

The \o sequence takes up to nine characters and prints one on top of the other. This is most useful

for producing accents, and so forth. For example, \o’eˆ’ produces ê.

You can also produce other interesting character combinations, although you may need to tinker with

the output to get it to look right. For example, we once tried to simulate a checkmark in a box with the

sequence: \o’\(sq\(sr’. (Note that the special character escape sequences are treated as single charac-

ters for the purpose of overstriking). This example produced the following output:

√
The square root symbol is too low in the box, so we tried to introduce some local motions to improve the

effect, like this:

\o’\(sq\v’-4p’\(sr\v’4p’’

Unfortunately, this didn’t work. Although you can nest most escape sequences inside each other (as long as

you use the correct number and order of delimiting quotation marks), local motions do not work with \o.

However, there was a solution.

The \z sequence also allows overstriking, but in a different way. The \o sequence knows the width

of each character, and centers them on top of each other. The \z sequence simply outputs the following

character, but does not space over it. That means the current position after printing the character is the

same as it was before the character was printed. A subsequent character will have its left edge at the same

point as the character immediately following the escape sequence. Because \z does allow you to mix ver-

tical motions with overstriking, it solved our problem.

Because all these escape sequences can be a bit much to type, we defined the checkmark in a box as a

string:

.ds CK \z\(sq\\v’-4p’\(sr\\v’4p’
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After we did that, simply typing \*(CK will produce √.

Stacking up Characters

The \b sequence also does a kind of overstriking—it stacks the characters in the following string. It was

designed for use with eqn. There are special bracket-building characters that are meant to stack up on top

of each other. See Table 15-3.

Table 15.3 Bracket-Building Characters

Character Name Description

 \(lt Left top of big curly bracket

 \(lb Left bottom

 \(rt Right top

 \(rb Right bottom

 \(lk Left center of big curly bracket

 \(rk Right center of big curly bracket

 \(bv Bold vertical

 \(lf Left floor (left bottom of big square bracket)

 \(rf Right floor (right bottom)

 \(lc Left ceiling (left top)

 \(rc Right ceiling (right top)

A typical invocation looks like this:

\b’\(lt\(lk\(lb’

which produces:





When you’re creating a tall construct like this, you need to allow space so that it doesn’t overprint preced-

ing lines. You can create space above or below the line with .sp requests. However, this will cause

breaks. Although ’sp might do the trick, it is sometimes hard to predict just where the break will fall.

The troff program has a special construct designed to solve just this problem of a tall construct in

the middle of filled text. The \x request allows you to associate extra interline spacing with a word. A

positive value specifies space above the line; a negative value specifies space below the line. So, when

illustrating the previous bracket-building function, we could have shown the results inline, like this



, rather

than in an example broken out by blank lines. Typing the sequence:

\b’\(lt\(lk\(lb’\x’9p’\x’-9p’

gives us the result we want.

The \x sequence is also useful when you want to allow extra space for an oversized letter at the start

of a paragraph. (You’ve probably seen this technique used in some books on the first paragraph of a new

chapter. It was commonly used in illuminated manuscripts).

An application of \b that you might find useful is to create vertically stacked labels. For example,

consider the following macro, which will put such a label in the outside margin of a book:

.de SL

.mk \" Mark current vertical position

.ft B \" Change to bold font

.cs B 24 \" We’ll explain this later
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.po -.25i \" Shorten the page offset by 1/4 inch

.lt +.5i \" Extend the title length used by .tl

. \" This request will be explained later

.if e .tl ’\b:\\$1:’’’ \" Use .tl to put stacked label

.if o .tl ’’’\b:\\$1:’ \" in the margins

.lt -.5i \" Restore original title length

.po +.25i \" Restore original page offset

.cs B \" We’ll explain this later

.ft \" Restore original font

.rt \" Return to original vertical position

..

So, for example:

.SL "Clever Trick!"

will produce the effect shown in the margin.

!
k
c
i
r
T

r
e
v
e
l
C

Tabs, Leaders, and Fields

We discussed tabs in Chapter 4. However, there are a couple of additional points that need to be covered.

When you enter a tab on a typewriter, the typing position shifts over to a predefined position, or tab stop. In

nroff and troff, what is actually generated is the distance from the current position on the input line to

the next tab stop.

What this means is best illustrated by an example that will not work. Suppose you want to create a

table of contents in which one entry (the page number) is all the way over to the right margin, and the other

(the heading) is indented from the left, like this:

Getting Started 1-1

Turning On the Power1-2

Inserting Diskettes 1-3

You might be tempted to code the example as follows (where a tab is shown by the symbol |———|):

.ta 6.5iR

Getting Started|———|1-1

.in .5i

Turning On the Power|———|1-2

Inserting Diskettes|———|1-3

This will not work. Indents cannot be combined with tabs. A tab character generates the distance from the

current position of the input line to the tab stop. Therefore, the page number will be indented an additional

half-inch—extending out into the right margin—instead of staying where you put it.

The way to achieve this effect (in no-fill mode) is to use either spaces or tabs to manually indent the

first text string.

When you use right or center-adjusted tabs, the text to be aligned on the tab is the entire string

(including spaces) from one tab to the next, or from the tab to the end of the line. Te xt is aligned on a right-

adjusted tab stop by subtracting the length of the text from the distance to the next tab stop; text is aligned

on a center-adjusted tab stop by subtracting half the length of the text from the distance.
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Using Leaders

A leader works like a tab; however, it produces a character string instead of horizontal motion. A single

character is repeated until a specific horizontal position is reached. There is actually a leader character, just

as there is a tab character. But there is no key for it on most keyboards, so it is not obvious how to generate

it. The magic character is ˆA (CTRL-A), and you can insert it into a file with vi by typing ˆVˆA (CTRL-V,

CTRL-A).

If you insert a ˆA into your file where you would normally insert a tab (incidentally, the tab itself is

equivalent to ˆI, and will show up as such if you display a line with ex’s :1 command), you will gener-

ate a string of dots. For example:

.nf

.ta 1i 2.5i 3.5i

|———|FirstˆASecondˆAThird

.fi

will produce:

First ...................................Second.................Third

You can change the leader character from a period to any other single character with the .lc request. For

example, you could create a fill-in-the-blanks form like this:

.nf

.ta 1i 3iR

.lc _

Signature:|———|ˆA

Date:|———|ˆA

.fi

This example would produce the following in troff:

Signature: ____________________________

Date: ____________________________

As you can see from the example, tabs and leaders can be combined effectively to line up both ends of the

underlines.

A second way to create leaders is to redefine the output of the tab character with .tc. This request

works just like .lc, only it redefines what will be output in response to a tab character. For example, if

you issue the request:

.tc .

a tab character (ˆI) generates a string of repeated dots, just like a leader (ˆA). However, you will then lose

the ability to intermix tabs and leaders on the same line, as in the previous example.

Issuing a .tc request without an argument will restore the default value, which generates motion

only. (Incidentally, the same is true of .lc —that is, .lc without an argument will cause leaders to gener-

ate motion only, just like tabs. To reset the leader character to its default value, you need to request .lc .).
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Using Fields

In addition to tabs and leaders, nroff and troff support fields, which are blocks of text centered

between the current position on the input line and the next, or between two tab stops.

The .fc request allows you to specify a delimiter that indicates the boundaries of the field, and a

second character (called the pad character) that divides the contents of the field into subfields. A blank

space is the default pad character. The .fc request without any argument turns off the field mechanism.

This request is a little difficult to explain, but easy to illustrate. The requests:

.nf

.ta 1i 3i

.fc #

|———|#Hi there#

|———|#Hi how are you#

.fc

.fi

will produce the following output:

Hi there

Hi how are you

Within the field, the pad character (a space by default) is expanded so that the text evenly fills the

field. The first line contains only a single space, so the two words are adjusted at either end of the field.

The second line contains three spaces, so the words are evenly spaced across the field.

By specifying a pad character other than a space, you can achieve fine control over spacing within the

field. For example, if we modify the input like this:

.fc #ˆ

|———|#Hiˆhow areˆyou#

.fc

we’ll get this result:

Hi how are you

What’s this good for? To return to our fill-in-the-blanks example, the construction:

.nf

.ta .5i 2i 2.5i 4i

.fc #ˆ

.lc _

|———|ˆA|———|ˆA

.sp .5

|———|#ˆSignatureˆ#|———|#ˆDateˆ#

.fc

.lc .

.fi

would produce the following output:

_____________________ _____________________

Signature Date

You should also know that .fc, like many other advanced formatter requests, is used by the tbl pre-

processor to create complex tables. It is wise to avoid using it inside a table.
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Using Tabs and Leaders in Macros

Within a macro definition, tabs and leader characters are not interpreted. They will take effect when the

macro is used, not when it is defined. Within a macro definition, you can also specify tabs and leaders with

the escape sequences \t and \a. These sequences are also not interpreted until the macro is used, and can

be substituted for the actual tab or leader characters whenever interpretation is to be delayed.

Constant Spacing

One font that you may frequently encounter, especially in the ditroff environment, is called CW (con-

stant width). It is the font used in this book for examples. It has become something of a convention in

computer books to print all “computer voice” examples—input from the keyboard, the contents of a file, or

the output on the screen—in a constant-width font. (This convention is based on the fact that in many com-

puter languages, precise indentation is syntactically or at least semantically significant, and the variable-

width typesetting fonts cannot preserve the alignment of the original text). When you use a constant-width

font, you are essentially asking troff to act like nroff—to work in a realm where all characters, and all

spaces, are of identical width.

To use the constant-width font in ditroff, request it like any other font, using either the request

.ft CW or the escape sequence \f(CW. In otroff, depending on the output device, you could use con-

stant width by using a preprocessor called cw, which got around the four font troff limit by handling the

constant-width font in a separate pass. See the description of cw in your UNIX Reference Manual if you

are interested in the details. (There are other ways to do this as well, depending on the output device and

the postprocessor you are using to drive it. For example, we used otroff with TextWare International’s

tplus postprocessor and the HP LaserJet. To get around the font limit, we set a convention in the post-

processor that 11-point type was actually constant width, and then used the .cs and .ss requests to give

troff the correct spacing).

There is also a request that allows you to simulate the effect of a constant-width font even when you

are using a variable-width font. The .cs request tells troff: “Use the spacing I give you, even if it

doesn’t match what you’ve got in your width tables.” The request takes up to three arguments. The first

two arguments are the most commonly used. They are the font to be so treated and the width to be used, in

36ths of an em. By default, the em is relative to the current type size. By using the optional third argu-

ment, you can use the em width of a different type size. So, for example:

.cs B 21

Space the bold font at 21/36 of an em.

.cs B 21 12

Space the bold font at 21/36 of a 12-point em.

Let’s see what we get with these requests:

Space the bold font at 21/26 of an em.

Space the bold font at 21/36 of a 12-point em.

To return to normal spacing for the font, use the .cs without a width argument. For example:

.cs B

will return control of spacing for the bold font to troff’s width tables.

Although the results are not always aesthetically pleasing, it may be necessary to use this request if

you have a real need to represent constant-width text. It is also useful for special effects. For example, you

may have noticed that in the headings of each chapter of this book, the word Chapter is broadly and evenly

spaced, and the boxes underneath align with the letters. This was done with the .cs request.

The .cs request is also useful when you are creating vertically stacked labels, as shown earlier in

this chapter. Normally, characters are positioned with their left edge at the current position on the output
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line. When constant spacing with .cs is in effect, the left corner of the character box is placed at that

position, and the character itself is centered in the box. You can see the difference between this graphically

in the following example:

.sp .7i

.ft B

.in 1i

.mk

\b’Variable’

.in 3i

.rt

.cs B 24

\b’Constant’

.br

.cs B

.ft

.in 0

.sp .7i

which produces:

e
l
b
a
i
r
a
V

t
n
a
t
s
n
o
C

The .ss request is a closely related request that sets the space size. The default size of an interword

space in troff is 12/36 of an em; for true constant-width effects, you should set it to the same size as the

font spacing you have set with .cs.

Pseudo-Fonts

Using the .bd request to create a bold italic in not the only way to simulate a nonstandard font, at least in

ditroff. In ditroff, there are two new escape sequences, \S and \H. The \S sequence slants char-

acters by a specified number of degrees. (Positive values slant characters to the right; negative values slant

characters back to the left). For example:

\S’15’

will slant characters 15 degrees to the right. This can be used to create a pseudo-italic font. The \S

sequence without an argument turns off slanting.

The \H sequence sets the character height to a specified point size without changing the width. For

example, if type is currently being set at 10 point, the construct:

\H’12’

will create characters that are 12 points high, but only 10 points wide (assuming you are at the default

10-point size). A height value of 0 turns off the function.

These escape sequences will only work on certain output devices. You’ll have to experiment to find

whether or not they’ll work in the setup you’re using.
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Character Output Translations

“Garbage in, garbage out” is a truism of computer science. You get out of a computer what you put in.

However, there are cases in nroff and troff in which what you put in is not the same as what you get

out.

The first of these cases is only true for troff. It inv olves a special class of characters called liga-

tures. As we’ve previously discussed, typeset characters have different widths. Even so, when two narrow

characters are printed together, such as a pair of f ’s or an f and an i, there is excess space between the char-

acters.

To get around this problem, there are special characters called ligatures, which are really single char-

acters designed so that they appear the same as a pair of narrow characters. (These are truly single charac-

ters, defined as such in troff’s character set).

The ligature characters and the equivalent individual characters are:

Input Ligature Equivalent Characters

\(fi fi fi

\(fl fl fl

\(ff ff f f

\(Fi ffi ff i

\(Fl ffl ff l

The troff formatter automatically converts any of these groups of characters to the equivalent ligature,

although all ligatures are not supported by every output device. (For example, fi and fl are the only ones in

the standard PostScript fonts). You can turn this conversion off with the request:

.lg 0

and restore it with:

.lg

Normally, you won’t need to do this, but there are special cases in which it may hang you up, and you’ll

need to know what to do. We’ll get to one of them in a moment.

The .tr (translate) request provides a more general facility for controlling output character conver-

sions. It takes one or more pairs of characters as an argument. After such a translation list has been

defined, troff will always substitute the second character in each pair for the first, whenever it appears in

the input.

Let’s look at some examples. First, consider the case encountered throughout this book, in which we

illustrate the syntax of various requests without actually executing them. For example, we want to show a

period at the start of a line or the backslash that starts an escape sequence, without actually having them

executed.

We could simply insulate the special characters from execution. For example, we can put the zero-

width character \& in front of a period that begins a request, and we can double all backslashes ( \\ will

appear as \ in the output) or use the \e escape sequence, to print \.

However, this grows tedious and hard to read in the input file. Another approach is to do a character

translation:

.tr #.%\\ \" Translate # to ., % to \

(As usual, we have to double the backslash). Now, whenever # appears in the input, . appears in the out-

put, and whenever % appears in the input, \ appears in the output. So, in our examples, we can actually

type:

#sp 1i %" Space down one inch

But what appears on the page of this book is:

.sp 1i \" Space down one inch

The translations are built into the example start and end macros. (The end macro resets the characters to
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their normal values).

If you translate characters with .tr, be sure to restore their original values correctly when you are

done. To reset the previous translation to the normal character values, the request is:

.tr ##%% \" Translate # to #, % to %

In addition, the translation must be in effect at the time the line is output. If you translate characters with-

out first causing a break, any partially filled line will be affected by the translation.

It is also possible (and recommended in some of the troff documentation) to use .tr to substitute

some other character (usually ∼) for a space. This creates an equivalent to the unpaddable space.

.tr ∼

This will allow you to type single characters for unpaddable spaces; your input text will be more readable

and will line up properly on the screen.

Yet another application of .tr, and one that you will find useful in designing macros for chapter

headings and so on, is to translate lowercase input into uppercase, and then back again:

.de UC \" Translate input to uppercase

.tr aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

\\$1

.br

.tr aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz

..

(The break is important. These character translations must be in effect at the time the line is output, not

when it is read into the buffer).

It is in this last case that you may have trouble with ligatures. If the .UC macro were defined as

shown in the previous example, the line:

.UC troff

might produce the following output:

TROff

To hav e the macro work correctly, we would need to turn ligatures off (.lg 0) for the duration of the

translation.

Output Line Numbering

Do you remember the treatment of the proof shell script in Chapter 12? It was such

a long example that it required line numbers that could be referred to later in the text.

The nroff and troff programs provide requests that allow you to automatically

number output lines as was done in that example.

The .nm (number) request turns numbering on or off. The request:

.nm [±]N

will turn numbering on, with the next line numbered N. For example, the next para-

graph is numbered with .nm 1.

1 A 3-digit arabic number followed by a space is placed at the start of each line.

2 (Blank lines and lines containing formatter requests do not count). The line length is

3 not changed, so this results in a protruding right column, as in this paragraph. You may

4 need to decrease the line length (by \w’000 ’u ) if you are numbering filled text

5 rather than an example in no-fill mode. (Be sure to notice the space following the three

6 zeros). We’ll do that from now on, so only the current paragraph will protrude.
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There are several optional arguments as well: a step value, the separation

2 between the number and the beginning of the line, and an indent that will be added

to the line. By default, the step value is 1, the separation is 1, and the indent is 0.

4 For example, if you specified:

.nm 1 2

6 every second line would be numbered, as was done at the start of this paragraph.

The .nn (not numbered) request allows you to temporarily suspend number-

ing for a specified number of lines, as was done for this paragraph using the

request .nn 4 . The specified number of lines is not counted. This could be use-

ful if you were interspersing numbered lines of code with a textual discussion.

To turn numbering off entirely, use .nm without any arguments. We’ll do

8 that now.

The last line number used by .nm is saved in the register ln , and it is possible

to restart numbering relative to that number by preceding the initial line number you

give to .nm with a + or a -. For example, to restart numbering at exactly the point it

was turned off, you can use this request:

.nm +0

Let’s do that now. As you can see, numbering resumes just where it left off, with

10 the same step value and indent, as if no intervening lines had been present. After

this line, we’ll turn numbering off entirely.

When using .nm in fill mode, you have to watch for breaks. Because .nm itself

does not cause a break, it may take effect on the output line above where you expect it.

You may need to force an explicit break before .nm to make sure numbering starts on

the next line.

Change Bars

The .mc (margin character) request allows you to print “change bars” or other marks |

in the margin, as was done with this paragraph. This is especially useful if you are |

revising a document, and want to indicate to reviewers which sections have changed.

You can specify any single character as the margin character—so don’t restrict

yourself to change bars when thinking up uses for this request. For example, you could

use an arrow, or the left-hand character (\(lh) to draw attention to a particular point

in the text, like this. (These characters are oddly named. The right-hand character +

(\(rh) is a left-hand that points to the right (+); the left-hand character (\(lh) is a

right hand that points to the left ( +). These characters are mapped onto arrows on

some output devices).

You can control the distance the mark character appears from the margin with an

optional second argument. If no argument is given, the previous value is used: if there

is no previous value, the default distance is 0.2i in nroff and 1m in troff.

Incidentally, on many UNIX systems, there is a version of diff, called

diffmk, that will compare two versions of a file, and produce a third file containing

.mc requests to mark the differences. Additions and changes are marked with a bar in

the margin, as shown previously. Deletions are marked with an asterisk.

In our business, we find this very useful for producing interim drafts of technical

manuals. We archive the first draft of the manual, as it was turned in to our client.

Then, after review changes have been incorporated, we use diffmk to produce an

annotated version for second draft review:

$ diffmk draft1 draft2 marked_draft
$ ditroff ... marked_draft
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This could also be done by manually inserting .mc requests as the edits were made.

But, as stated in Chapter 12, why not let the computer do the dirty work?

Form Letters

No formatter would be complete without the ability to create form letters that merge existing text with

externally supplied data. The nroff and troff programs are no exception in providing requests to han-

dle this type of problem.

The .rd (read) request allows you to read from standard input. This request prints a prompt on the

standard error (the user’s terminal) and reads input up to a pair of newlines. For example, you could have a

form letter constructed like this:

.nf

.rd Enter_the_person’s_name

.rd Enter_the_company

.rd Enter_the_street

.rd Enter_the_city,_state,_and_zip

.sp

.fi

Dear

.rd Enter_the_salutation

.sp

.

.

.

Unfortunately, .rd terminates the prompt at the first space, and does not recognize quotation marks to

delimit an entire string as the prompt. As a result, for a wordy prompt, you must tie the string together

using an unobtrusive character like an underscore, as was done here.

Here’s what would happen when this letter is formatted:

$ nroff letter | lp
Enter_the_person’s_name: Tim O’Reilly
Enter_the_company: O’Reilly & Associates, Inc.
Enter_the_street: 981 Chestnut Street
Enter_the_city,_state,_and_zip: Newton, MA 02164
Enter_the_salutation: Tim:

Note that a colon is appended to the prompt, and that the RETURN key must be pressed twice after each

response. If no prompt is specified, .rd will ring the terminal bell when it expects input.

In addition, the input need not come from the keyboard. It can come from a pipe or from a file.

There are two other requests that come in handy to create a true form letter generation capability.

The .nx (next) request causes the formatter to switch to the specified file to continue processing.

Unlike the .so request discussed in Chapter 4, it doesn’t return to the current file. The .ex request tells

the formatter to quit.

You can put the requests together with .rd. First, create a list of variable data (like names and

addresses) either in a file or as the output of a database program. Then pipe this file to the formatter while

it is processing a letter constructed like this:

.nf

.rd

.rd

.rd

.sp

.fi

Dear

.rd

Body of letter here
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Sincerely,

Jane Doe

.bp

.nx letter

The .nx request at the end of the form letter causes the file to reinvoke itself when formatting is complete.

Assuming that the standard input contains a sequence of name, street, city (et al), and salutation lines, one

line for each .rd request, and address block, in the data file, that are each separated by pairs of newlines,

you can generate an endless sequence of letters.

However, be warned that formatting will continue in an endless loop, even when the standard input

has run out of data, unless you terminate processing. This is where .ex comes in. By putting it at the end

of the list of names coming from standard input, you tell the formatter to quit when all the data has been

used.

The command line to produce this marvel (assuming a form letter in a file called letter and a list

of names followed by an .ex request in a file called names would be:

$ cat names | nroff letter | lp

or:

$ nroff < names | lp

It is possible to imagine a more extensive data entry facility, in which a variety of blank forms are con-

structed using troff, and filled in with the help of a data entry front end.* To generalize the facility, you

could associate the various fields on the form with number register or string names, and then interpolate the

number or string registers to actually fill in the form.

This approach would allow you to reuse repeated data items without having to query for them again.

Even more to the point, it would allow you to construct the data entry facility with a program other than

troff (which would allow features such as data entry validation and editing, as well as increased speed).

The data entry front end would simply need to create as output a data file containing string and number reg-

ister definitions.

Reading in Other Files or Program Output

In addition to .nx don’t forget the .so (source) request, which allows you to read in the contents of

another file, and then return to the current file.

We’v e mentioned this request briefly in the context of reading in macro definitions. However, you

can also use it to read in additional text. In our business, we’ve found it very useful in certain types of man-

uals to break the document into many separate files read in by .so. For example, we often need to write

alphabetically-ordered reference sections in programming manuals. Unfortunately, the developers often

haven’t finalized their procedure names. If the section consists of a list of .so requests:

.so BEGIN_MODULE

.so BUFFER

.so CONFIGURE

.

.

.

the job of reorganization is trivial—all you need to do is change the filenames and realphabetize the list.

The only caution, which was mentioned previously in Chapter 8, is that you can’t include data that

must be handled by a preprocessor, such as tables and equations. A quick look at the command line:

$ tbl file | nroff

*For this idea, I am indebted to a posting on Usenet, the UNIX bulletin board network, by Mark Wallen of the

Institute for Cognitive Science at UC San Diego (Usenet Message-ID: <203@sdics.UUCP>, dated June 13,

1986)
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will show you that the preprocessor is done with the file before the formatter ever has a chance to read in

the files called for by the .so request. Some systems have a command called soelim that reads in the

files called for by .so. If you use soelim to start the file into the pipeline, there is no problem.

One useful tip: if you are using soelim, but for some reason you don’t want soelim to read in a

file because you would rather it were read in by troff, use ’so rather than .so to read in the file. The

soelim command will ignore the ’so request.

Another interesting request is .sy. This request executes a specified system command. If the com-

mand has output, it is not interpolated into the troff output stream, nor is it saved. However, you can re-

direct it into a file, and read that file into troff with .cf (or with .so, if you want it processed by

troff instead of sent directly to the output stream).
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What’s in a Macro Package?

In Chapters 4, 14, and 15, you’ve seen almost all of the individual formatting requests that nroff and

troff provide, and many examples of groups of requests working together in macros. However, writing

individual macros is still a far cry from putting together a complete package.

In Chapters 5 and 6, you’ve seen the features built into the ms and mm macro packages, so you can

imagine the amount and complexity of macro definitions. Perhaps you have even looked at a macro pack-

age and determined that it was impossible to decipher. Nonetheless, it is possible even as a beginner to

write your own macro package or to make extensions to one of the existing packages.

In this chapter, we’ll look at the structure of a macro package—the essentials that allow you to handle

basic page formatting. Then, in the next chapter, we’ll look at a macro package with extensions for format-

ting large technical manuals or books. Even if you have no plans to write a new macro package, this chap-

ter will help you understand and work with existing packages.

Just What Is a Macro Package, Revisited

When considering what a macro package is, you might think only of the visible features provided by

macros in existing macro packages. But a macro package is more than a collection of user macros that

implement various features. Failing to understand this fact might cause someone to import an mm macro

into an ms—based macro package, and never understand why this macro fails to work.

Individual macros are dependent upon other elements of the macro package, which sometimes makes

it hard to isolate a particular macro, even for purposes of understanding what it does. These interdependen-

cies also make it difficult to understand what a macro package is doing. That is why we want to look at the

underlying structure of a macro package, and not just the obvious features it provides. We want to look first

at what a macro package must do before we look at what it can do.

A macro package is a structure for producing paged documents. The nroff and troff formatters

do the actual collecting and formatting of lines of text, as steadily as a bricklayer placing bricks in a row.

But they do not define the structure that is so obvious by the end result. Fundamentally, it is the macro

package that defines the placement of lines on a page. At a minimum, a macro package must set traps and

create macros to handle page transitions. It usually also defines the layout of the physical page.

A macro package may also provide a way to arrange the parts of documents and affect their appear-

ance. Remember the distinction we made earlier between formatting and formats. A format reflects the

type of document being produced, just as a floor plan reflects the functions of rooms in a building. For

instance, a technical manual might consist of chapters and sections that require headings. Other elements

might be bulleted lists and numbered lists, a table of contents, and an index. These elements help readers to

identify and to locate important parts of the document. But these features—so obviously important to

users—are really not the essential elements in a macro package.

Page formatting is the foundation of a macro package, and this foundation must be solid before you

can build a variety of custom document formats.

383
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New or Extended?

The first question to ask when you contemplate writing a whole new package is whether you need to do it

all yourself or can simply build on an existing package.

There are benefits to either approach. The existing macro packages are quite complex (especially

mm). It can be easier to start over, writing only the macros you need, than to learn the intricate internals of

ms or mm. A custom macro package can be quite small, including only macros for page transition (which

can be minimal, as we shall see) and whatever other macros you want. This is the best approach if you

have something specific in mind.

As with all programming projects, though, you may find your package growing larger than intended,

as your needs and understanding grow and you start to add features. A macro package begun haphazardly

can also end that way, without any consistent structure.

If you do find yourself wanting to create an entire macro package, rather than just a few macros, you

should think about modular programming techniques. Modular programming suggests that you break the

tasks to be performed by a program into the smallest possible functional units, then build up larger tasks

with each of these smaller units. This not only helps with debugging and testing of new macros, but also

makes it much easier to write macros, because you end up with a library of low-level general-purpose

macros that perform important functions. You don’t hav e to reinvent the wheel for each new macro.

There are numerous advantages to building on the existing packages, especially if you want to have a

general-purpose package:

• They already contain a wide range of useful macros that you not only can use directly, but can

call on within new macros.

• They are tested and proven. Unless you are very experienced at text processing, it is difficult to

foresee all of the kinds of problems that can arise. When you write your own package, you

may be surprised by the kinds of errors that are filtered out by the design of ms or mm.

• If you are familiar with ms or mm, adding a few extended macros to your repertoire is easier

than learning an entire new package.

• It can be easier than you expect to modify or add to them.

In our own work, we have chosen to extend the ms macro package rather than to build an entirely new

package. In this chapter, though, we’re going to take a hybrid approach. We’ll build a minimal ms-like

package that illustrates the essentials of a macro package and allows users who don’t hav e access to the full

ms package to make use of some of the extensions described in this and later chapters.

In this “mini-ms” package, we have sometimes pared down complex macros so it is easier to under-

stand what they are doing. We try to uncover the basic mechanism of a macro (what it must do). As a

caveat to this approach, we realize that simplifying a macro package can reduce its functionality. Howev er,

we see it as part of the learning process, to recognize that a macro in a certain situation fails to work and

understand the additional code needed to make it work.

Implementing a Macro Package

As discussed in Chapter 4, the actual option to nroff and troff to invoke a macro package is -mx,

which tells the program to look in the directory /usr/lib/tmac for a file with a name of the form

tmac.x. This means you can invoke your own macro package from the command line simply by storing

the macro definitions in a file with the appropriate pathname. This file will be added to any other files in

the formatting run.

If you don’t hav e write privileges for /usr/lib/tmac, you can’t create the tmac.x file (although

your system administrator might be willing to do it for you). But you can still create a macro package. You

will simply have to read it into the formatter some other way. You can either
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• include it at the start of each file with the .so request:

.so /usr/fred/newmacros

• or list it on the command line as the first file to be formatted:

$ nroff /usr/fred/newmacros myfile

Nor do the macros need to be stored in a single file. Especially if you are using a package as you develop

it, you may want to build it as a series of small files that are called in by a single master file. You may also

want to have different versions of some macros for nroff and troff. So, for example, the mh (Hayden)

macros used to format this book are contained in many different files, which are all read in by .so requests

in /usr/lib/tmac/tmac.h:

.so /work/macros/hayden/startup

.so /work/macros/hayden/hidden

.so /work/macros/hayden/ch.heads.par

.so /work/macros/hayden/display

.so /work/macros/hayden/ex.figs

.so /work/macros/hayden/vimacs

.so /work/macros/hayden/lists

.so /work/macros/hayden/stuff

.so /work/macros/hayden/index

.so /work/macros/hayden/cols

Or, like mm, you might have two large files, one for nroff and one for troff. In

/usr/lib/tmac/tmac.m, you find:

.if n .so /usr/lib/macros/mmn

.if t .so /usr/lib/macros/mmt

In extending an existing macro package, you are not restricted to creating a few local macro definitions that

must be read into each file. You can make a complete copy of one of the existing packages, which you can

then edit and add to. Or even better, you can read the existing package into your own package with .so,

and then make additions, deletions, and changes. For example, you might create a superset of ms as fol-

lows:

.\" /usr/lib/tmac/tmac.S - superset of ms - invoke as -mS

.so /usr/lib/tmac/tmac.s \" Read in existing package

.so /usr/macros/S.headings

.so /usr/macros/S.examples

.so /usr/macros/S.toc

.

.

.

Building a Consistent Framework

One of the chief factors that distinguishes a macro package from a random collection of macros is that the

package builds a consistent framework in which the user can work.

This consistent framework includes:

• Setting traps to define the top and bottom of each page. This is the one essential element of a

macro package, because it is the one thing nroff and troff do not do.

• Setting default values for other aspects of page layout, such as the page offset (left margin) and

line length. (The default page offset in nroff is 0, which is not likely to be a useful value,

and troff’s default line length of 6.5 inches is really too long for a typeset line).

• Setting default values for typographical elements in troff such as which fonts are mounted,

the point size and vertical spacing of body copy and footnotes, adjustment type, and hyphen-

ation.

• Giving the user a method to globally modify the default values set in the macro package, or



386 Unix Text Processing

temporarily modify them and then return to the defaults.

In a very simple macro package, we might set up default values for troff like this:

.po 1i \" Set page offset to one inch

.ll 6i \" Set line length to six inches

.ad l \" Adjust left margin only

.hy 14 \" Hyphenate, using all hyphenation rules

.wh 0 NP \" Set new page trap at the top of the page

. \" (see below for details)

.wh -1i FO \" Set footer trap

(We are assuming here that troff’s default values for point size and vertical spacing are acceptable. In

otroff, we also need to mount the default fonts with .fp, as described in Chapter 4; in ditroff, a

default set of fonts is already mounted).

Simply setting up explicit default values like this will do the trick, but for a more effective and flexi-

ble macro package, you should take the further step of storing default values into number registers. This

has numerous advantages, as we’ll see in a moment.

Using Number Registers to Increase Flexibility

Writing troff macros is essentially a kind of programming. If you pay heed to the principles learned by

programmers, you will find that your macros are more effective, if at first somewhat more complex to write

and read.

One important lesson from programming is not to use explicit (so called “hard-coded” ) values. For

example, if you supply the indent in a paragraph macro with an explicit value, such as:

.in 5n

you make it difficult for users to change this value at a later time. But if you write:

.in \\n(INu

the user can change the indent of all paragraphs simply by changing the value stored in number register IN.

Of course, for this to work, you must give a default value to the IN register.

In programming, the process of setting variables to a predefined starting value is called initialization.

To giv e you an idea of the kinds of variables you might want to initialize, Table 16-1 lists the values stored

into number registers by the ms macros.

Table 16.1 Number Registers Used in ms

Description Name Value

troff nroff

Top (header) margin HM 1i 1i

Bottom (footer) margin FM 1i 1i

Point size PS 10p 1P

Vertical spacing VS 12p 1P

Page offset PO 26/27i 0

Line length LL 6i 6i

Title length LT 6i 6i

Footnote line length FL \\n(LLu*11/12 \\n(LLu*11/12

Paragraph indent PI 5n 5n

Quoted paragraph indent QI 5n 5n

Interparagraph spacing PD 0.3v 1v

The mm package uses many more number registers—in particular, it uses number registers as flags to

globally control the operation of macros. For example, in addition to registers similar to those shown for

ms in Table 16-1, there are registers for paragraph type, numbering style in headings, hyphenation, spacing
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between footnotes, as well as counters for automatic numbering of figures, examples, equations, tables, and

section headings. (See Appendix B for a complete listing). However, the registers used in ms should give

you a sufficient idea of the kinds of values that can and should be stored in registers.

An Initialization Sequence

In the ms macro package, a major part of the initialization sequence is performed by the .IZ macro.* This

macro is executed at the start of a formatting run; then it is removed. Let’s take a look at a much simplified

version of the initialization sequence for an ms-like package:

.de IZ \" Initialization macro

. \" Initialize Number Registers

.nr HM 1i \" Heading Margin

.nr FM 1i \" Footing Margin

.nr PS 10 \" Point Size

.nr VS 12 \" Vertical Spacing

.nr PO 1i \" Page Offset

.nr LL 6i \" Line Length

.nr LT 6i \" Length of Titles for .tl

.nr FL \\n(LLu*11/12 \" Footnote Length

.nr PI 5n \" Paragraph Indent

.nr QI 5n \" Quoted Paragraph Indent

.nr PD 0.3v \" Interparagraph Spacing

. \" Set Page Dimensions through requests

.ps \\n(PS

.vs \\n(VS

.po \\n(POu

.ll \\n(LLu

.lt \\n(LTu

.hy 14 \" Specify hyphenation rules

. \" Set Page Transition Traps

.wh 0 NP

.wh -\\n(FMu FO

.wh -\\n(FMu/2u BT

..

.IZ \" Execute IZ

.rm IZ \" Remove IZ

As you can see, the initialization sequence stores default values into registers, then actually puts them into

effect with individual formatting requests.

A number of the points shown in this initialization sequence will be a bit obscure, particularly those

relating to trap positions for top and bottom margins. We’ll return to the topic of page transitions shortly.

A Reset Macro

After you have initialized number registers, the next question is how to make use of the default values in

coding. Some registers, like a paragraph indent, will be used in a paragraph macro. But where, for exam-

ple, might you use the LL register?

First of all, as suggested, putting default values into number registers allows users to change values

without modifying the macro package itself. For instance, a user can globally change the interparagraph

spacing just by putting a new value into the PD register.

However, the package itself can use these registers to periodically reset the default state of various

formatting characteristics.

*There’s no real reason why this sequence needs to be put in a macro at all, other than the consistency of putting

two backslashes before number registers when they are read in.
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The ms package defines a macro called .RT (reset), which is invoked from within every paragraph

macro. The .RT macro

• turns off centering—.ce 0;

• turns off underlining—.ul 0;

• restores the original line length—.ll \\n(LLu;

• restores the original point size and vertical spacing—.ps \\n(PS and .vs \\n(VS;

• restores the indent that was in effect before any .IP,.RS, or .RE macros were called (too

complex to show here);

• changes back to the font in position 1—.ft 1;

• turns off emboldening for font 1—.bd 1;

• sets tab stops every 5n—.ta 5n 10n 15n 20n ...;

• turns on fill mode—.fi.

This is part of the ms error recovery scheme. Rather than aborting when it encounters an error, ms fre-

quently invokes the .RT macro to restore reasonable values for many common parameters.

If you have used ms for a while, and then switch to another package, you may find all kinds of errors

cropping up, because you’ve come to rely on this mechanism to keep unwanted changes from propagating

throughout a document. For example, suppose you create a macro that decrements the line length:

.ll -5n

but you forget to increment it again. You may never notice the fact, because ms will restore the line length

at the next paragraph macro. Other packages are far less forgiving.

Unless you plan to explicitly test for and terminate on error conditions, it is wise to implement a reset

facility like that used by ms.

A simple ms-like reset macro follows:

.de RT \" Reset

.ce 0 \" Turn off centering, if in effect

.ul 0 \" Turn off underlining, if in effect

.ll \\n(LLu \" Restore default line length

.ps \\n(PS \" Restore default point size

.vs \\n(VS \" Restore default vertical spacing

.ft 1 \" Return to font in position 1

.ta 5n 10n 15n 20n 25n 30n 35n 40n 45n 50n 55n 60n 65n 70n

.fi \" Restore fill mode

..

The ms version of .RT also ends any div ersion invoked outside of the standard ms macros that create diver-

sions. Thus, a reset may occur within a keep (.KS, .KE), footnotes (.FS, .FE), boxed material (.B1,

.B2), and tables (.TS, .TE) without ending the diversion.

If you look at the actual ms reset macro, you will see that it calls another macro, named .BG, the

very first time it is itself called. The .BG macro removes the macros associated with the unused Bell Labs

technical memorandum formats (because the format has already been determined at that point). Like .IZ,

the .BG macro is only called once during a formatting run. In our emulation, we don’t make use of the

Technical Memorandum macros so we have not implemented the .BG macro. However, one could easily

apply the idea behind the .BG macro: to execute a macro before we begin processing the body of a docu-

ment. This can be useful if a format requires a number of preliminary or header macros that supply infor-

mation about the document.
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Page Transitions

A single page transition macro is the only macro that must be implemented for nroff and troff to pro-

duce paged output. An example of this simplest of all possible macro packages follows.*

.de NP \" New Page

’bp

’sp 1i

’ns

..

.wh -1.25i NP

.br

.rs

.sp |1i

The page transition is triggered by a trap set 1.25 inches from the bottom of the page. When output text

reaches the trap, the .NP macro is executed, which breaks the page (but not the line), spaces down 1 inch,

and enters no-space mode. The three lines following the macro and trap definition take care of the special

case of the first page, for which the .NP macro is not invoked.

The .wh request, which sets the location of the traps used for page transition, interprets the value 0

as the top of the page. Negative values are interpreted relative to the bottom of the page. So, for example,

assuming that the page length is 11 inches, the requests:

.wh 10i BT \" Bottom Title Macro

and:

.wh -1i BT \" Bottom Title Macro

are equivalent. The second form is the most common.

This simple “package” provides only one macro for page transition. The bottom margin of the text

portion of the page is determined by the trap location; the top margin by a spacing request in the macro

executed at the trap. However, it is far more common to work with at least two page transition macros: one

for the page top and one for the bottom.

An example of a two-trap, two-macro macro package is given below:

.wh 0 NP

.wh -1i FO

.de NP \" New Page

’sp 1i

.tl ’Top of Page \\n%’’’ \".tl does not cause break

’sp |2i

’ns

..

.de FO \" Page Footer

’sp .25i

.tl ’’Page Bottom’’

’bp

..

A trap is set at the top of the page (.wh 0) to execute the .NP macro. This macro provides a top margin

and outputs a title in that space. The formatter begins processing lines of text until the bottom of the page

trap is encountered. It invokes the .FO macro, which supplies a footer margin and outputs a centered title.

The .FO macro then causes a page break, which in turn invokes .NP at the top of the new page. It is

important that both of these macros avoid causing a break, so that text in fill mode will continue smoothly

onto the next page.

By setting traps for both the top and bottom of a page you have more control over the size of the bot-

tom and top margins, the placement of headers and footers, and advanced features like footnotes and multi-

ple-column processing.

*This “package” was contributed by Will Hopkins of VenturCom, Inc.
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Take some time to experiment with this bare bones macro package. If you place it in a file, such as

pagemacs, you can use it to format text files, as in the following example:

$ nroff pagemacs text

No-Space Mode in Page Transitions

No-space mode is often used in a page transition macro to keep space from being output at the top of a

page. It is standard page makeup for the top line of each page to begin at the same point. Without no-space

mode, a spacing request (such as prespacing in a paragraph macro) that falls just before the page transition

would result in space being output at the top of the page, causing uneven positioning of the top line of the

page.

Any output text lines restore space mode, so you don’t hav e to explicitly turn it back on. However, if

you explicitly want to put space at the top of the page (to paste in a figure, for example), use .rs (restore

spacing) before the spacing request. The following sequence can be used to start a new page and space

down 2 inches below the top margin:

’bp

.rs

’sp 2i

This works in all cases, except on the first page. You must force a break on the first page before you

can restore spacing. An .fl request will do the trick:

.fl

.rs

.sp 3i

.ce

A Title on a Title Page

.bp

The .fl request is useful when you want to flush the line buffer and cause a break.

The First Page

As you might expect from the previous example, the first page is unlike others that follow it. That is

because there is no automatic transition to the first page. To get around this, the formatter causes a

“pseudo-page transition” when it first encounters a break or begins processing text outside a diversion.

For the top of page trap to be executed on the first page, you must set the trap and define the top of

page macro before specifying any request that causes a break or initiates processing. You can test this with

the sample macros by putting an explicit .br request before the .NP macro definition. After that test, try

replacing .br with a .tl request. Even though this request does not cause a break, it does initiate pro-

cessing of text, and so the .NP macro is not executed.

Page Transitions in ms

Let’s take a closer look now at the trap positions we set in the initialization sequence for our ms-like pack-

age, together with the definitions of the macros placed at those positions:

.de IZ

.

.

.

. \" Set Page Transition Traps

.wh 0 NP
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.wh -\\n(FMu FO

.wh -\\n(FMu/2u BT

. \" Define Page Transition Macros

..

.de NP \" New Page Macro

’sp \\n(HMu/2u

.PT

’sp |\\n(HMu

’ns

..

.de FO \" Footer Macro

’bp

..

.de PT \" Page Top Title Macro

.tl ’\\*(LH’\\*(CH’\\*(RH’

..

.de BT \" Bottom Title Macro

.tl ’\\*(LF’\\*(CF’\\*(RF’

’sp .5i

..

You’ll notice a couple of differences from our earlier example. Instead of specifying “hard-coded” values

for trap locations, we have set up a top margin value in the register HM (header margin) and a bottom mar-

gin value in FM (footer margin).

Now we hav e three trap locations and four page transition macros. In the simplified form shown

here, you may wonder why so many macros are used for this simple task. We’ll look at that later, as we

show some of the additional things that are done in these macros. But for the moment, let’s focus on what

these macros are. Their trap locations are shown in Figure 16-1.

• .NP (new page) is inv oked by a trap at the top of each page (.wh 0 NP). It spaces down ½

the distance specified in the HM register, calls the PT macro, and then spaces down the full dis-

tance specified by the header margin.

• .PT (page title) prints out a three-part title consisting of user-definable strings LH, CH, and RH

(left header, center header, and right header).

• .FO (footer) is inv oked by a trap at the distance from the bottom of the page specified by the

FM register (.wh -\\n(FMu FO). This macro causes a break to a new page. Note the use

of ’bp rather than .bp so that any partially filled line is not output, but is held till the next

page.

• .BT (bottom title) is inv oked by a trap at ½ the distance from the bottom of the page specified

by the FM register (.wh -\\n(FMu/2u BT).

Although this sequence is different than our earlier example, it is about as easy to understand. The main

difference, however, is that there are two traps at the bottom of the page. The first (FO) causes a page

break, and the second (BT) places the footer. Even though the first trap caused a page break, the formatter

keeps going till it reaches the true bottom of the page specified by the page length. On its way, it passes the

second trap that invokes .BT.

The use of the four page transition macros is slightly inconsistent in ms; .PT is invoked from .NP,

but .BT, which could just as well be invoked by .FO, is instead invoked by a trap.

Headers and Footers

Most books, and many shorter documents, include headers and footers. In books, headers often include the

title of the book on the left-hand page, and the title of the chapter on the right. The footer typically includes

the page number, either centered or in the lower outside corner, alternating from left to right. (Although all

three elements are usually present, they can be in different positions depending on the book design).

As previously mentioned, the .tl request was designed specifically for producing the three-part

titles used in headers and footers. The ms package uses this request in both the PT and BT macros, filling
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NP

PT

text starts

FO

BT

Figure 16.1 Top and Bottom Margins

the three fields with symmetrically named string invocations. If the string is undefined, the field is blank.

The macro package itself may define one or more of the fields. The .IZ macro from ms contains

this piece of code:

.if "\\*(CH"" .ds CH "- \\\\n(PN -

.if n .ds CF "\\*(DY

The ms macros define the center header as the page number set off by hyphens. For nroff only, the cen-

ter footer is set to the current date. (An nroff-formatted document is assumed to be a draft, but a troff-

formatted document is assumed to be final camera-ready copy).

The ms macros transfer the page number from the % register to one called PN. Note the number of

backslashes required to get the page number output at the proper time—not in the string definition, nor in

the macro definition, but at the time the title is output.

If you don’t like this arrangement, you can simply redefine the strings (including redefining them to

nothing if you want nothing to be printed). As a developer of macros built on top of ms, you could, for

example, have a chapter heading macro automatically set the chapter title into one of these strings. (More

on this later).

Headers and footers are often set in a different type and size than the body of the book. If you are

using a standard macro package, font and size changes can simply be embedded in the header or footer

strings:

.ds LH "\fIAn Introduction to Text Processing\fP
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Or, if you are writing your own macros or redefining an underlying package like ms, you can embed the

changes directly into the .tl request:

.tl ’\s-2\\*(LF’\\*(CF’\\*(RF\s0’

Another point: it is often desirable to alternate headers and footers on odd and even pages. For example, if

you want to put a book title at the outside upper corner of a left-hand (even) page, and the chapter title at

the outside upper corner of a right-hand (odd) page, you can’t really work within the structure ms provides.

To do this properly, you could use a construct like the following within your .PT macro:

.if e .tl ’\\*(TI’’’

.if o .if \\n%-1 .tl ’’’\\*(CH’

where the string TI holds the title of the book, and CH holds the title of the chapter. If it’s an odd page, we

also test that it’s not the first page. By invoking specific strings, you do lose the generality of the mecha-

nism provided by ms.

Page Numbers in Three-Part Titles

Inasmuch as the chief application of three-part titles is in producing header and footer lines from within

page transition macros, there is a special syntax for including page numbers. A % character anywhere in a

title will be replaced with the current page number. This saves the trouble of having to do a proper number

register interpolation and makes it easier for unsophisticated users of ms or mm to include page numbers in

header and footer strings.

Whenever nroff or troff makes use of a character in a special way, you can be sure there is a

back door that allows you to change that character. The .pc (page character) request allows you to spec-

ify that some other character than % should perform this function:

.pc ˆ \" Use ˆ instead of % to print page # in .tl

This does not change the name of the % number register, which also contains the page number.

Title Length

The other thing you can adjust is the length of the three-part title produced by .tl. Usually it is set to the

same length as a text line, but this need not be so. Title length is specified independently of line length with

the .lt (length [of] title) request. For example:

.lt 6.5i

The title length is not independent of the page offset, so if you want a title that is longer than the line

length, yet centered on the page, you will need to muck with the page offset as well. (Note that this is most

likely to occur within a page transition macro).

.po 1i \" Page Layout Defaults

.ll 6.5i

.

.

.

.lt 7i

.tl ’Alcuin User’s Guide’’%’ \" Title will extend 1/2 inch

. \" past right margin

.

.

.po -.25i

.lt 7i

.tl ’Alcuin User’s Guide’’%’ \" Title will extend 1/4 inch

.po +.25i \" on either side

An .lt request without an argument will restore the previous title length.
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Some Extensions to the Basic Package

Thus far, we’ve looked at what it will take to implement a small ms-like macro package. Now let’s look at

some extensions to the basic structure of the package that will make it more flexible. These extensions

could be added to the minimal package shown earlier in this chapter, or they could be added to a full ms

package, as we have done at our own site.

Changing Page Size

As mentioned earlier, the initialization sequence usually sets up default values for line length, page offset,

and the placement of the top and bottom traps. In the standard ms package, all of these values are set up to

produce an 8½-by-11 inch page.

This is fine for nroff, but with troff, one might well want to produce a different page size. For

example, many books are typeset for a 5½-by-8½ inch page.

The most obvious move is to change the page length:

.pl 8.5i

and then reset the line length, title length, and page offset using the standard registers ms provides.

This may not work if your output device uses continuous-roll paper, such as a typesetter. Howev er,

in nroff, or when using troff with a sheet-fed laser printer, this may split your formatted output pages

across physical sheets of paper. (Some devices translate a .bp into a page eject code or formfeed; others

simply add blank lines to push text onto the next physical page. For this reason, it is perhaps preferable to

think of .pl as the paper length rather than the page length).

In addition, when you are printing a small page, it is nice to print cut marks to show the location of

the page boundaries. If you change the page length, any cut marks you place will be off the page that

troff knows about, and will not be printed.

For both of these reasons, we took a different approach. We modified the ms .IZ macro so that

changing the header and footer margins would effectively change the page size, instead of just the margins.

(In standard ms, you can change the size of the top and bottom margins, but this doesn’t change the page

size, because the placement of the footers is fixed after the initialization macro has been called. The trap

position for FO is reset at the top of every page, thus taking into account changes in the value of the FM reg-

ister. But the trap position for BT is never touched after .IZ has been executed).

In our package, we decided to set up some standard page sizes as part of .IZ. In our business, writ-

ing and producing technical manuals, we often print books in both sizes. Early drafts are printed on the

laser printer in 8½ by 11 format; later drafts and final camera-ready copy are produced in 5½ by 8½ format.

We also produce quick-reference documents in a narrow 6-panel card or pamphlet. The user selects the

size by specifying a command-line switch. This approach has the advantage of letting the user change all

of the parameters associated with a given size with one easy command.

The .IZ macro in our mini-ms package now looks like this:

.de IZ \" Initialization macro

. \" Initialize Number Registers

. \" Quick Reference Card size

.if \\nS=2 \{\

. nr pW 3.5i \" Page Width

. nr tH 1.25i \" Trim Height adjustment

. nr LL 2.8i \" Line Length

. nr LT 2.8i\} \" Title Length

. \" 5 1/2 by 8 1/2 size

.ie \\nS=1 \{\

. nr pW 5.5i \" Page Width

. nr tH 1.25i \" Trim Height adjustment

. nr LL 4.25i \" Line Length
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. nr LT 4.25i\} \" Title Length

. \" 8 1/2 by 11 size

.el \{\

. nr pW 0  \" Page Width

. nr tH 0  \" Trim Height adjustment

. nr LL 6i \" Line Length

. nr LT 6i\} \" Title Length

. \" Values independent of page size

.nr FM 1i \" Footer Margin

.nr HM 1i \" Header Margin

.nr PO 1i \" Page Offset

.nr PS 10 \" Point Size

.nr VS 12 \" Vertical Spacing

.nr FL \\n(LLu*11/12 \" Footnote Length

.nr PI 5n \" Paragraph Indent

.nr QI 5n \" Quoted Paragraph Indent

.nr PD 0.3v \" Interparagraph Spacing

. \" Set Page Dimensions through requests

.ps \\n(PS

.vs \\n(VS

.po \\n(POu

.ll \\n(LLu

.lt \\n(LTu

.ft 1

.hy 14 \" Specify hyphenation rules

. \" Set Page Transition Traps

.wh 0 NP \" Top of page

.wh -(\\n(FMu+\\n(tHu) FO \" Footer

.wh -((\\n(FMu/2u)+\\n(tHu) BT \" Bottom titles

.if \\nS .wh -\\n(tHu CM \" Position of bottom mark

..

The .NP macro has been modified as follows:

.de NP \" New Page Macro

’sp \\n(tHu \" Space down by trim height

.ie \\nS \{\

. CM \" If small format, print cut mark

’ sp \\n(HMu/2u-1v\} \" Correct baseline spacing

.el ’sp \\n(HMu/2u \" Space down by half HM

.PT

’sp |\\n(HMu+\\n(tHu \" Space to HM plus adjustment

’ns

..

By simply setting the S (size) register from the command line, the user can choose from one of three differ-

ent sizes. For example:

$ ditroff -Tps -rS1 textfile | devps | lp

will choose the 5½-by-8½ page size.

What we’ve done here is to assume that the paper size is still 8½ by 11. We’v e defined a fudge fac-

tor, which we’ve called the trim height adjustment, and stored it in a register called tH. If the user has set

the size register from the command line, we use this adjustment factor to:

• shift the location of the footer trap:

.wh -(\\n(FMu+\\n(tHu) FO

• shift the location of the bottom title trap:

.wh -((\\n(FMu/2u)+\\n(tHu) BT

• place a new trap to print cut marks at the true bottom of the page:

.if \\nS .wh -\\n(tHu CM

• space down at the start of the .NP macro:

’sp \\n(tHu
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.ie \\nS \{\

. CM

’ sp \\n(HMu/2u-1v\}

.el ’sp \\n(HMu/2u

.PT

’sp |\\n(HMu+\\n(tHu

Note that in .NP we need to adjust for the extra line spacing that occurs as a result of printing the cut

marks. Otherwise, the .PT macro would be invoked one line lower on a page with cut marks than on one

without.

Cut Marks

We’v e mentioned that if you are producing typeset or laser-printed copy on less than an 8½ by 11 page, it is

usually desirable to place marks showing the actual page boundary. The paper is then cut on these marks in

preparation for pasteup on camera-ready boards.

As you’ve seen in the preceding discussion, we print the cut mark at the top of the page from the .NP

macro, after spacing down by the desired trim height. The cut marks at the bottom of the page are printed

by calling the cut mark macro with a trap placed at the trim height from the bottom of the page.

As you’ll notice, the execution of the cut mark macro is conditioned on the presence of the S register,

which indicates that the user has requested a small page.

Here’s a simple version of the actual cut mark macro:

.de CM \" Cut Mark macro

’po -(\\n(pWu-\\n(LLu/2u) \" Center cut mark around text

.lt \\n(pWu \" Set title length for cut mark

’tl ’+’’+’ \" Print cut mark

.lt \\n(LTu \" Reset title length

’po +(\\n(pWu-\\n(LLu/2u) \" Reset page offset

..

As with all activity that takes place during the page transition, it is very important that nothing in the

cut mark macro causes a break. For this reason, all break causing requests are started with the no-break

control character (’), and the cut marks themselves are printed with .tl, which doesn’t cause a break.

(The other way to avoid breaks is to do all of your page transition work in a different environment, but

doing this uses up one of the environments, which might be better used for another purpose).

We’v e specified the width of the page in the pW register. To center the cut marks around the text, we

adjust the page offset by the difference between the page width and half the line length. Then we set the

title length to the page width, and actually print the cut marks with .tl. Then, of course, we reset the orig-

inal page offset and title length.

In the implementation shown, we use simple plus signs to create the cut marks. This creates a slight

inaccuracy, because the page width will be from end to end of the plus signs, and the height from baseline

to baseline, rather from the center of the plus as we’d like.

There are two ways that we could deal with this. One is to fudge the height and the width to account

for the character widths. The other is to use a specially drawn mark that will put the actual cut lines at the

edge rather than the center of the figure.

A very simple way to do this is to use the box rule, the root-en, and the underrule. Because the cut

marks are no longer symmetrical, though, we’ll need to give the cut mark macro an argument to specify

whether we’re at the top or the bottom of the page:

.de CM \" Cut Mark macro

’po -(\\n(pWu-\\n(LLu/2u) \" Center cut mark around text

’lt \\n(pWu \" Set title length for cut mark

.ie "\\$1"T" ’tl ’\(br\(rn’’\(rn\(br’ \" Print cut mark

.el ’tl ’\(br\(ul’’\(ul\(br’

’lt \\n(LTu \" Reset title length
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’po +(\\n(pWu-\\n(LLu/2u) \" Reset page offset

..

When we invoke .CM from within .NP, we’ll just have to add the argument T to specify we’re at the top.

The cut marks will look like this:

Other Exercises in Page Transition

We’v e looked at the basic mechanism for page transition, and shown one way to extend that mechanism to

allow the user to select different page sizes. We hav e not exhausted the topic of page transition, however.

Before we begin to discuss the development of macros that prescribe document formats, rather than basic

page formatting, we will briefly consider these topics:

• Footnotes

• Multicolumn processing

• Page top resets

• Handling widows and orphans

Footnotes

Footnotes make page transition an even more complex exercise. Anyone who has typed footnotes on a

typewriter knows the problem. Because the presence of a footnote shortens the space available on the page

for regular text, you need to know the size of the footnote before you know if its reference will fit on the

bottom of the current page, or will be pushed to the top of the next. There is always the possibility of a

classic Catch-22: a footnote whose reference falls at the bottom of the page only if the footnote itself isn’t

printed there.

Let’s look first at a very simple footnote mechanism—one that has a reasonable chance of failure in

the face of heavy demand, but nonetheless illustrates the basic mechanism at work.

The first thing we need to know is the position of the page bottom trap for a normal page—one with-

out any footnotes. For example, in ms, we know that its location is -\\n(FMu. (Now ms has a perfectly

good footnote mechanism, but for purposes of argument, we’re going to pretend we need to add one).

All we really need to do, on the simplest level, is to save footnotes in a diversion, measure them, then

move the footer trap back up the page by a distance equal to the size of the diversion.

In the new page macro, we initialize (reset to 0) a counter (fC) that will tell us if there are any foot-

notes on the page and how many. (We want to handle the first footnote differently than others on that

page). We also initialize a bottom position for printing footnotes (Fb) and initialize it with the value of the

standard footer margin. (This will be the starting point that will be decremented as footnotes are encoun-

tered). Last, we provide a reset that restores the page footer trap at the standard footer margin if it has been

changed because of footnotes on a previous page.

. \" Add to .NP

.nr fC 0 1 \" Initialize footnote counter

.nr Fb 0-\\n(FMu \" Initialize footnote position

.ch FO -\\n(FMu \" Reset normal footer location

Now, a pair of footnote macros are required to open and close a diversion:

.de FS \" Footnote Start
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.nr fC 1 \" Set flag that there are footnotes

.ev 1 \" Use environment 1

.da FN \" Divert text of footnote

.if \\n(fC=1 \{\ \" If first footnote

\l’1i’ \" Print 1 inch line before it

.br\}

..

.de FE \" Footnote End

.br

.di \" End diversion

.ev \" Restore environment

.nr Fb -\\n(dn \" Decrement footnote position by

. \" size of diversion;

. \" note that Fb is already negative.

. \" Reset footer trap

.ie (\\n(nl+1v)>(\\n(.p+\\n(Fb) .ch FO \\n(nlu+1vu

.el .ch FO -\\n(Fb

..

The footnotes are processed in a separate environment. This environment needs to be initialized, perhaps as

part of the .IZ macro, or as part of the .FS macro the very first time it is called. The latter method makes

it easier for users to change settings for this environment. It is recommended that you preserve a separate

environment (either 1 or 2) for footnote processing. Here is a sample initialization sequence:

.ev 1 \" Initialize first environment for footnotes

.ps 8

.vs 10

.ll \\n(FLu \" FL was initialized to 11/12 of LL

.ev

The .FS macro opens a diversion (.da FN) into which we append the text of the footnote. Before the

first footnote on a page, the .FS macro adds a one-inch reference line to mark the beginning of footnotes.

After we have closed the diversion in the .FE macro, we obtain the size of it from the read-write register

.dn. This amount is used to increase Fb (two neg ative amounts are added together) and change the loca-

tion of the footer trap further up the page.

Before changing that trap, the footnote end macro has to find out if the new footer trap will be placed

above or below the current location. If the new trap location is below where we are, all is well; the page

trap is moved up to that location. However, if the current footnote places the location above the current

position, there’s going to be trouble. In this case, we need to execute the footer macro immediately.

The troff formatter keeps the current page position in the nl register, and the page length in the

register .p. As a result, we can set the trap position based on a conditional:

.ie (\\n(nl+1v)>(\\n(.p+\\n(Fb) .ch FO \\n(nlu+1vu

.el .ch FO -\\n(Fb

If the footnote won’t fit, this code puts the trap one line below the current position; otherwise, the footer

trap location is moved up the page.

Now we’ll have to redefine the footer macro to print the diverted footnotes, if there are any:

.de FO \" Redefine FO

.if \\n(fC\{\

.ev1 \" Invoke first environment

.nf \" Good practice when outputting diversions

.FN \" Print diversion

.rm FN \" Remove printed diversion

.ev\}

’bp \" Now break page

..

Because the footnote macros are complicated, it might be a useful aside to look at the process of

debugging these macros. We used several .tm requests to report (to standard error) on the sequence of

ev ents during a formatting run of a file that included footnotes. What we wanted to know was the location

of the footer trap and when it was sprung. Inside the .FE macro, we inserted .tm requests to show which

of the conditional .ch requests were executed.
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.ie (\\n(nl+1v)>(\\n(.p+\\n(Fb) \{\

.tm !!!!!! FE: Change trap to current location (\\n(nl+1v)

.ch FO \\n(nlu+1vu \}

.el \{\

.tm !!!!!! FE: Move trap up the page (\\n(Fbu)

.ch FO -\\n(Fb \}

Then, inside the .FO macro, we inserted messages to locate two positions on the page: where the footer

macro is invoked by the trap and where the footnotes have been output.

.de FO

.tm !!!! FO: position is \\n(nl (\\n(.p+\\n(Fb) BEFORE

.

.

.

.tm !!!! FO: position is \\n(nl AFTER footnotes

´bp

..

To see these terminal messages without the formatted text, we invoke nroff and redirect output to

/dev/null. (tmacpack is a small macro package used for testing these macros).

$ nroff tmacpack textfile > /dev/null
!!!!!! FE: Move trap up the page (-360u)

!!!!!! FE: Move trap up the page (-440u)

!!!!!! FE: Move trap up the page (-520u)

!!!!!! FE: Move trap up the page (-680u)

!!!! FO: position is 1980 (2640+-680) BEFORE

!!!! FO: position is 2420 AFTER footnotes

!!!!!! FE: Move trap up the page (-360u)

!!!!!! FE: Move trap up the page (-440u)

!!!!!! FE: Move trap up the page (-520u)

!!!!!! FE: Change trap to current location (2100+1v)

!!!! FO: position is 2140 (2640+-640) BEFORE

!!!! FO: position is 2580 AFTER footnotes

!!!!!! FE: Move trap up the page (-320u)

!!!! FO: position is 2320 (2640+-320) BEFORE

!!!! FO: position is 2400 AFTER footnotes

Part of the reason for making this aside is the difficulty of writing effective footnote macros. It requires a

fair amount of testing to make sure they work in all cases. When we spring the footer trap for the second

time, the messages alert us to a problem—the Catch-22 we mentioned earlier. The formatter encountered a

footnote on the last input line. The only way to fit both the footnote reference and the footnote on the same

page was to ignore the footer margin and let the footnote run into it.

Standard ms provides a better way of handling this overflow. In addition, the Nroff/Troff User’s Man-

ual describes a similar mechanism. Our simplified version, adequate only for demonstration of this mecha-

nism, will borrow from both of these sources. (It might be said that a “working” version requires several

empirically discovered fudge factors or, as Joseph Ossanna called them, “uncertainty corrections”).

The problem is how to split the footnote overflow if it extends beyond where we want the bottom of

the page to be. The solution is to put two trap-invoked macros at the original (standard) page bottom loca-

tion. The trap mechanism in troff allows only one macro to be executed by a trap at a given location. If

you write:

.wh -\\n(FMu M1 \" Place first macro

.wh -\\n(FMu M2 \" Overwrite first macro at this location

all you will succeed in doing is wiping out the first placement with the second.

However, you can move a trap location to an occupied position. The second trap “hides” the first and

renders it ineffective, but the first is still in place and is restored if the second subsequently moves off the

spot.

So here’s what we do in our trap initialization:

.wh 16i FO \" Put regular footer out of the way

. \" (way off the page)
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.wh -\\n(FMu FX \" Place footnote overflow macro

.ch FO -\\n(FMu \" Hide footnote overflow macro

The .FX (footnote overflow) macro will be invoked only if the FO trap is moved (as it will be whenever

there are footnotes on the page). In .FX, all we do is start another diversion, so that excess footnote text

that would overflow at the bottom of the page is saved for the next:

.de FX \" Footnote overflow

.if \\n(fC .di eF \" Divert extra footnote

..

(We’ll explain the reason for the test in a moment).

Odd as it may seem, this diversion can be terminated from the footer macro .FO, even though that

macro is invoked before the footnote overflow macro! Because the .FN diversion inside the .FO macros

springs the footnote overflow trap and starts the overflow div ersion, we can close that diversion by a request

in .FO following the diversion.

The code in .FO now looks like this:

.nr dn 0 \" Reset diversion size register

.if \\n(fC \{\ \" If there are footnotes

.ev 1

.nf

.FN

.rm FN

.if’\\n(.z’eF’.di \" End diversion opened by FX

.ev

.nr fC 0 \} \" Done with footnotes

’bp

There are several things here that need further explanation. The number register .z always contains the

name of the last completed diversion. (Don’t ask us how they manage to put a string into a number regis-

ter!) If our overflow div ersion was this last completed diversion, we terminate it:

.if ’\\n(.z’eF’ .di

Then, we must take care of another eventuality. If we get this far without triggering the overflow

trap—that is, if .FN did fit on the page—we want to disable the overflow macro, which we can do by zero-

ing our count register fC.

Now on the next page we have to handle any footnote overflow. We write a new macro that invokes

.FS and .FE to output the overflow div ersion (.eF) into the normal footnote diversion (.FN).

.de Fx \" Process extra footnote

.FS

.nf \" No-fill mode

.eF \" Overflow diversion

.fi

.FE

.rm eF

..

In the new page macro, we add a test to check if the last diversion amounted to anything, and if it did, we

invoke the .Fx macro.

. \" added to .NP

.if \\n(dn .Fx

.

To test this new feature, we might add messages inside .FX, the macro invoked by a hidden trap to open a

diversion that collects any footnote overflow, and inside .Fx, the macro that redirects the overflow back

into the normal footnote diversion. You should be able to accomplish this part on your own, as well as to

venture into areas that we did not cover (such as automatic numbering or marking of footnotes). Before

implementing a footnote mechanism, we urge you to study the mechanisms in one of the existing macro

packages. However, following the chain of events from when a footnote is encountered to when it is output

in the footer macro—on the current page or on the next—may seem like a troff exercise equivalent to

what Alfred Hitchcock called a MacGuffin: a hopelessly complicated plot not meant to be figured out but
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that supplies a reason for many entertaining scenes.

Multicolumn Processing

While we’re still on the subject of page transition, we should look briefly at how multicolumn processing

works.

Multiple columns are generally produced by using the mark and return mechanism—.mk and .rt—

and by manipulating the line length and page offset for each successive column. The basic trick is to have

the page bottom macro check if multiple columns are in effect, and if so, whether or not the current column

is the last one.

A simple macro to initiate two-column processing might look like this*:

.de 2C

.mk \" Mark top position

.nr CL 0 1 \" Initialize column count flag

.ie \\$1 .nr CW \\$1 \" Test arg 1 for Column Width

.el .nr CW 2.75i \" or set default CW

.ie \\$2 .nr GW \\$2 \" Test arg 2 for Gutter Width

.el .nr GW .5i \" or set default GW

. \" Save current one-column settings

.nr pO \\n(.o \" Save current page offset

.nr lL \\n(LLu \" Save original line length

.nr LL \\n(CWu \" Set line length to Column Width

.ll \\n(LLu \" Set line length to Column Width

..

(We must save the default line length in a new register and redefine LL, or else a paragraph macro, or any

other macro that calls .RT, will interfere with two-column processing).

The page footer needs to include the following requests:

.de FO \" New footer macro

.ie \\n+(CL<2\{\ \" If incremental column count < 2

’po+(\\n(CWu+\\n(GWu) \" then increase page offset

’rt \" Return to mark

’ns \} \" Enter no-space mode

.el \{\ \" Otherwise

’po \\n(pOu \" Restore original page offset

’bp \} \" Start a new page

..

Because two-column processing is likely to continue beyond a single page, we need to modify the page top

macro to mark the top of the page and initialize (set to zero) the column count register. The two requests at

the bottom of the definition have been added:

.de NP \" New Page Macro

’sp \\n(HMu/2u

.PT

’sp |\\n(HMu

’ns

’mk \" Mark top of page

.if \\n(CL .nr CL 0 1 \" Reset autoincrementing column count

..

After the CL register has been created by .2C, it can also be used as a flag that two-column processing is in

effect. The page top resets it to 0 to start the first column on a new page.

The macro to return to single-column processing looks like this:

.de 1C

.rr CL \" Remove column count register

.po \\n(POu \" Reset original page offset

*Despite similar macro and number register names, this is not the two-column macro used in ms. The ms pack-

age provides a more general multiple column macro, .MC, of which .2C is a specialized call.
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.nr LL \\n(lLu

.ll \\n(LLu \" and line length

.bp \" Start a new page

..

The column count register is removed, and the original page offset and line length are restored. Unfortu-

nately, using this mechanism, you cannot return to single-column mode on the same page, without resorting

to extensive use of diversions. If the first column has already gone to the bottom of the page, there is no

way for a prematurely terminated second column to “go back” and fit the text into two even-sized columns

on the same page.

Page Top Resets

We’v e already discussed the use of a reset macro from within paragraphs to deal with common errors. Page

transitions are also a convenient place to put some different kinds of resets. Like paragraphs, you can rely

on their regular occurrence and can therefore trap certain conditions.

In particular, you can use them when you want an effect to take place for only one page and then

stop. For example, in our business, we are often required to produce not just complete manuals, but

replacement pages to be inserted into an existing manual. Sometimes the update page will be exactly the

same size as the original, but often it is longer, and requires additional space.

To avoid changing the numbering on subsequent pages, additional full or partial pages are inserted

with a special numbering scheme. For example, if a page is numbered 3-4 (section 3, page 4), and changes

to that page run on to an additional page, the new page will be numbered 3-4a.

In this situation, we need to temporarily change the way page numbers are handled, then change back

when the page is done. We’v e defined a macro called .UN, which looks like this:

.de UN \" Update page numbering macro

.nr Un 1 \" Set flag to test on page break

.nr % -1

.ie !"\\$1"" .as NN \\$1

.el .as NN a

..

Our extended ms macro package normally puts the section number (sE) and the page number (PN), sepa-

rated by a hyphen, into the string NN. In this macro, we simply append a letter to that string. By default we

add the letter a, but we give the user the option to specify another letter as an argument to the macro, so

pages can be numbered 3-4,3-4a,3-4b, and so on. To use the macro, the user simply enters it anywhere on

the update page. Voilá! The page number now has an a on the end.

Notice that the original page number register (%) was first decremented, so that this new page will

have the same number as the previous one. More to the point of this discussion, notice that the macro sets

the Un number register to 1 as a flag that update numbering is in effect.

This flag is tested in the page top macro for the next page, and if it is set, the original page numbering

scheme is restored as follows:

.if \\n(Un=1 \{\

. ds NN \\\\n(sE-\\\\n(PN

. nr Un 0\}

(Note that four backslashes are required in the number register interpolations used in defining NN because

the string definition will be interpreted twice, once when the macro is defined, and once when it is

executed).

Keep this trick in mind because there are many cases in which you can use the page bottom or page

top macro to reset conditions that you don’t want to carry across more than one page. We’ll see another in

just a moment.
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Handling Widows and Orphans

Widows and orphans are the bane of any markup language—the one real advantage of current wysiwyg sys-

tems. A widow is a single or partial line from the end of a paragraph left over at the start of the next page.

An orphan is a single line from the start of a paragraph left alone at the bottom of a page. Both of these are

considered poor page layout.

As we’ve discussed, a macro package can take care of orphans simply by including an .ne request in

the paragraph macro. Widows are much harder to take care of, because you don’t know where the end of

the paragraph will fall until you reach it.

In nroff and troff, the only way you can handle this problem is to process each paragraph in a

diversion, find out how long it was, then go back and break it up if necessary. This greatly increases pro-

cessing time, and is probably not worth the effort.

You could limit the extra work by testing the position on the page and only diverting paragraphs that

occur within range of the page bottom. However, even so, this is a difficult problem you may not want to

attempt.

It may be satisfactory to give users an increased capability for dealing with widows when they do

occur. Normally, the solution is to print out the document, find any offending widow lines, then go back

and manually break the pages a line earlier. Howev er, sometimes it is inconvenient to break the paragraph

earlier—it would be better to add the line to the bottom of the current page.

In standard ms, the location of the footer trap is reset to -\n(FMu in the .NP macro at the top of

ev ery page. The user can get extra length on a page just by changing the value of FM on the preceding

page.

We could also write a macro that would let the user make the change on the offending page. For

example, in ms:

.de EL \" Extra Line macro

.nr eL 1 \" Set flag

.ch FO -(\\n(FMu-1v)u \" Put trap one line lower

..

All the user has to do is to introduce this macro anywhere on the page to be affected. It is your job as

macro developer to reset the normal page length—and the most likely place is in the page top macro for the

next page:

.if \\n(eL=1 \{\

.ch FO -\\n(FMu \" Reset to normal location for ms

.nr eL 0\} \" Clear flag





Chapter 17

An Extended ms Macro Package

In the previous chapter, we’ve looked at some of the essential elements of a macro package—the innards

that make it tick. However, few people will write a macro package just because they think they can do a

better job at the basics than ms or mm. More often, users who need specific formatting effects will build a

macro set to achieve those effects.

The macros used to produce this book are a good example of a custom macro package. They were

developed to create a distinctive and consistent style for a series of books on UNIX by different authors.

Although this macro package must of course do all of the basics we’ve talked about, many of its macros

provide solutions to more specific problems. For example, there are macros for showing side-by-side

before and after screens for vi and macros for inserting italicized commentary in examples.

To illustrate more concretely the issues that force you to create or significantly extend a macro pack-

age, this chapter will look at a set of extended ms macros for typesetting technical manuals. Extensions

built into this package fall into two major categories:

• Extensions that make it easier to control the appearance of a document, particularly the page

size (described in the last chapter) and the style of section headings, tables, and figures.

• Extensions that address needs of books, manuals, and other documents larger than the technical

papers that ms and mm were originally designed for. These extensions include improved meth-

ods for handling tables of contents and indexes.

One of the chief weaknesses of the ms and mm packages is that they were designed for smaller docu-

ments. For example, ms does not provide table of contents generation, and the approach used by mm is suit-

able only for short documents. Neither package supports automatic index generation. In this chapter and

the next, we will also look at ways to redress these problems.

Creating a Custom Macro Package

In this chapter, we will present an extended macro package designed for technical documentation. Based

on the ms macro package, these extensions were originally developed by Steve Talbott of Masscomp; they

have been extended and altered during several years of use in our technical writing and consulting business.

Because we needed to produce technical manuals for a number of different clients, we needed a macro

package that allowed us the flexibility to achieve a variety of document formats.

An important step in implementing this package was to establish the relation of new and redefined

macros to the original ms package. We wanted to read in the standard tmac.s package, and then simply

overwrite or remove unwanted macros. Then we organized our extensions into three groups: redefinitions

of standard ms macros, common macros we added to provide specific features or capabilities for all docu-

ments, and format macros that were most often used to control the appearance or structure of a document.

The format macros can be modified for the specifications of a unique document format. Each format

design has its own file, and the user only needs to specify which of these formats are to be read in during

the formatting run.

Following is a summary of the steps we followed to implement our mS macro package. While

describing this implementation, we don’t pretend that it is unique or right for all uses; we do hope that it

suggests ways to set up your own custom package.

1. Create a new directory to store the macro files.

2. Make a working copy of tmac.s and any subordinate files it reads in, moving them to a new

405
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directory.

3. Create the tmac.Sredefs file to contain definitions of standard ms macros that we’ve rede-

fined, such as .VIZ.

4. Create the tmac.Scommon file to contain utility and feature macros available in all formats.

The list macros described in this chapter are kept here.

5. Create separate files containing definitions for unique document formats.

6. Set up tmac.S to control which files are read in and to handle certain parameters that might

be set from the command line.

7. Put tmac.S in /usr/lib/tmac, either by placing the file in that directory or by creating a

tmac.S file that sources the tmac.S file in the macro directory.

The master file of this package is tmac.S, although it does not contain any macro definitions. It allows

users to set some parameters from the command line, and then it reads in the standard ms macro package

and the two files that contain redefinitions and common macros. Last, it checks the value of a number reg-

ister (v) to determine which group of format macros are to be read in. Here’s what our tmac.S file looks

like:

.\" tmac.S — the main format macro package

.

.so /work/macros/tmac.s \" Read in standard ms

.so /work/macros/tmac.Sredefs\" Redefinitions of macros

.so /work/macros/tmac.Scommon\" Common utility macros

. \" Check register v for version

. \" and read in special format macros

.ie \nv \{\

.if \nv=9 .so /work/macros/tmac.Stest

.if \nv=8 .so /work/macros/tmac.Squickref

.if \nv=7 .so /work/macros/tmac.Slarge

.if \nv=6 .so /work/macros/overheads

.if \nv=5 .so /work/macros/tmac.Straining

.if \nv=4 .so /work/macros/tmac.Sprime

.if \nv=3 .so /work/macros/tmac.Scogx

.if \nv=2 .so /work/macros/tmac.Smanuals

.if \nv=1 .so /work/macros/tmac.Snutshell\}

.el .so /work/macros/tmac.Sstandard

The -r option to nroff and troff is used to select a particular version of the format macros. For

instance, the first set of format macros is designed for producing our Nutshell Handbooks. To format a doc-

ument using the macros defined in tmac.Snutshell, a user would enter:

$ ditroff -Tps -mS -rv1 ch01 | devps | lp

One of the files, tmac.Stest, is available for use during the development and testing of new versions of

the macros. We’ll look at some of the different formats later in this chapter.

A few other details about this implementation may help you customize a package. Both ms and mm

include a number of Bell-specific macros that are not very useful for users outside of AT&T. For example,

it is unlikely that you will require the various styles of technical memoranda used internally at Bell Labs.

Unused macro definitions need not get in your way, but they do use up possible names and number registers

that may conflict with what you want to do. The .rn macro allows you to rename a macro; .rm will

remove the definition of a macro.

You may want to remove selected macros. For example, you might want to start the modifications to

a macro package built on ms with the following request:

.rm TM IM MF MR EG OK RP TR S2 S3 SG IE [] ][ [. .] [o \

[c [5 [4 [3 [2 [1 [0 [< ]< [> ]> [- ]-

(Note the use of the backslash to make this apparent two-line request into a single long line).

There is a slight performance loss in reading in a large macro package, and then removing a number

of the macros. For efficiency, you’d be better off removing the undesirable macros from your copy of the

ms source file.
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Reading in tmac.Sredefs after tmac.s overwrites some of the standard ms macros with our

own definitions. The standard versions are thus not available. If you want to retain a standard macro defi-

nition, you can make it available under a different name. Use the .rn request to rename the standard

macro before overwriting its definition.

As discussed in the previous chapter, we redefined the .IZ macro to allow the setting of various page

sizes. Because the standard .IZ macro is invoked from tmac.s at the start of the formatting run, we

can’t simply overwrite its definition. We must either delete the standard .IZ macro definition or comment

out its invocation. Then the new .IZ macro in tmac.Sredefs will be executed.

As you develop your own set of extensions, you will undoubtedly consider additional modifications.

Appendix F lists the set of extended macros that we use. You may not need many of the specialized macros

provided in this package. But it will show you how to build on an existing package and how easy it is to

modify the appearance of a document.

Structured Technical Documents

The ms and mm packages provide a number of macros to produce title pages, abstracts, and so on for techni-

cal memoranda. Subsections can be numbered or unnumbered.

Anyone who has used the UNIX Programmers’ Manual is familiar with the output of these packages.

The technical papers collected in that volume bear superficial resemblance to the chapters of a book. How-

ev er, they lack continuity—section, figure, and table numbers, where present, are relative only to the current

section, not to the entire volume.

A macro package designed for producing technical books or manuals may need at least some modifi-

cation to produce section headings. Chapter and section headings should make the structure of a document

visible. In a nontechnical book, chapters are often the only major structural element. They divide the book

into major topics, and give readers stopping points to digest what they hav e read.

Chapters are usually distinguished from a formatting point of view by a page break and some kind of

nonstandard typesetting. For example, a chapter number and title may be set in large type, and the text may

begin lower on the page.

In technical books and manuals, which are often not read straight through as much as they are used

for reference, frequent section headings within a chapter give the reader guideposts. There are often several

levels of heading—more or less depending on whether the book is intended primarily for reading or for ref-

erence. This book uses three levels of heading within a chapter, one for major changes in topic, the others

for less significant changes.

Section headings can be distinguished merely by type font and size changes, as in this book, or by

section numbering as well. Properly used, section numbers can be very helpful in a technical manual.

They allow detailed cross references to different parts of the book without using page numbers. Referenc-

ing by page numbers can result in error because page numbers are not fixed until the book is done.

Detailed breakdown of a chapter into subsections can also help the writer of a technical manual.

Because a manual (unlike an essay or other free-form work of non-fiction) has definite material that must

be covered, it can be written successfully from an outline. It is often possible to write technical material by

entering the outline in the form of section and subsection headings and then filling in the details.

In this approach, numbered sections also have a place because they make the outline structure of the

document more visible. In reviewing technical manuals, we can often identify many weaknesses simply by

looking at the table of contents. Sections in a technical manual should be hierarchical, and the table of con-

tents should look effective as an outline. For example, a chapter in our hypothetical Alcuin User’s Guide

might look like this:

Chapter Two: Getting Started with Alcuin

2.1 Objectives of this Session
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2.2 Starting Up the System

2.2.1 Power-up Procedure

2.2.2 Software Initialization

2.3 Creating Simple Glyphs

2.3.1 Opening Font Files

2.3.2 Using the Bit Pad

2.3.2.1 The Cell Coordinate System

2.3.2.2 Pointing and Clicking

.

.

.

How much easier it is to see the structure than in a case where the proper hierarchical arrangement of topics

has not been observed. How often have you seen a “flat” table of contents like this:

Chapter Two: Using Alcuin

2.0 Starting Up the System

2.1 Power-up Procedure

2.2 Software Initialization

2.3 Creating Simple Glyphs

2.4 Opening Font Files

2.5 Using the Bit Pad

2.6 The Cell Coordinate System

2.7 Pointing and Clicking

.

.

.

Even when numbered section headings are not appropriate, they can be a useful tool for a writer during the

draft stage, because they indicate where the organization has not been properly thought through. For exam-

ple, we often see manuals that start with a general topic and then describe details, without a transitional

overview.

A macro package should allow the writer to switch between numbered and unnumbered headings

easily. Both mm and ms do provide this capability, and we want to include it in our macros. However, we

also want to include more flexibility than either of these packages to define the format of headings.

Because headings are the signposts to the book’s structure, changing their appearance can make a big

difference in how the book is read. Different levels of headings need to stand out from the text to a greater

or lesser degree, so that readers can easily scan the text and find the topic that they want.

The mechanisms for emphasis (in troff) are font and size changes, and the amount of space before

and after a heading. Underlining and capitalization can also be used (especially in nroff but also in

troff) for alternate or additional emphasis.

In our package, we include five lev els of heading: a chapter-level heading and four levels of num-

bered or unnumbered subsection headings.

As described in the previous section, our custom macro package incorporates several different ver-

sions of the basic macros required to produce technical documents. In each version, the name of the head-

ing macro is the same, but its definition is modified slightly to produce a different appearance. These dif-

ferent versions help us conform to the document styles used by our clients. Whenever we hav e a client who

needs a new format, we customize the macro definitions, rather than add new macros.

The beauty of this approach is that the input macros the user needs to enter in a document are identi-

cal, or nearly so. Thus, we don’t increase the number of new macros that our users must learn, and it elimi-

nates the recoding of existing documents to achieve a new format.

This approach is also useful when you support different types of output devices. Originally, our

designs were developed for the HP LaserJet printer, which supports a limited set of fonts and sizes. When

we purchased an Apple LaserWriter and Linotronic L100 typesetter, our formatting options increased, mak-

ing available multiple fonts and variable point sizes. In an environment supporting multiple types of print-

ers, you might want to adapt formats for specific printers.
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The Chapter Heading

The chapter heading is in a class by itself, because it requires more emphasis than subsection headings, and

because the macro that produces it may need to initialize or reset certain registers used within the chapter

(such as section, figure, or table numbers).

In an arbitrary reversal of terminology, we call our chapter macro .Se (section). It could just as well

be called .CH for chapter, but we use .Ch for a subsection heading (as we’ll see in a moment) and want to

avoid confusion. In addition, this macro can be used for appendices as well as chapters, so the more gen-

eral name seems appropriate.

The chapter heading has three major parts:

• chapter-specific register initialization, including registers for section numbering, table and fig-

ure numbering, and page numbering

• appearance of the actual chapter break

• table of contents processing

Because this is a long macro definition, let’s look at it in sections.

.de Se \" section; $1 = number; $2 = name;

. \" $3 = type (Chapter, Appendix, etc)

. \"

. \" 1. Number Register Initialization

. \"

.ie !"\\$1"" \{. \" Test for sect number

. nr sE \\$1 \" Assign to register sE

. if !\\n(sE \{. \" Test if not a numeric

. .af sE A \" Handle appendices

. if "\\$1"A" .nr sE 1

. if "\\$1"B" .nr sE 2

. if "\\$1"C" .nr sE 3

. if "\\$1"D" .nr sE 4

. if "\\$1"E" .nr sE 5

. if "\\$1"F" .nr sE 6

. if "\\$1"G" .nr sE 7

. if "\\$1"H" .nr sE 8

. if "\\$1"I" .nr sE 9

. if "\\$1"J" .nr sE 10\}\}

. \" Only go as far as J

.el \{\

. nr sE 0

. tm Preface or if Appendix past letter J:

. tm Set number register sE to position

. tm of that letter in the alphabet

. tm and alter register format:

. tm For Appendix K, enter:

. tm .Se K "Title"

. tm .nr sE 11

. tm .af sE A

.\}

.if \\n%>1 .bp \" Check if consecutive sections

. \" in same file and break page

.nr % 1 \" Now reset page number

.nr PN 1

.af PN 1

.ie !"\\$1"" \{. \" Test for sect number

. \" to set page number type

. ds NN \\\\n(sE-\\\\n(PN

. ds H1 \\n(sE \" Set for subsection numbering

. \}

.el \{

. ds NN \\\\n(PN

. nr sE 0\}
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.ds RF \\\\*(NN \" Assign page number to footer

.nr fG 0 \" Initialize figure counter

.nr tB 0 \" Initialize table counter

The macro first initializes a number of registers. Chapters are usually numbered on the first page, along

with the title. If subsections are to be numbered, the chapter number is the root number for all headings.

We need to take this number as an argument, and store it into a register for later use.

Because appendices are usually lettered rather than numbered, we also need to consider the special

case of appendices. (This could be done with a separate macro; however, this package uses a single multi-

purpose macro). The code for this is quite cumbersome, but works nonetheless: if the first argument to the

macro is non-numeric, it is tested to see if it is one of the first ten letters in the alphabet. If so, a number is

stored into the register, but the output format is changed to alphabetic.

If the argument is not a letter between A and J, a message is printed. This message is more verbose

than you would generally want to use, but it is included to make the point that you can include detailed

messages.

The macro next sets up the special page numbering scheme used in many computer manuals—the

chapter number is followed by a hyphen and the page number (e.g., 1-1). This numbering scheme makes it

easier to make last minute changes without renumbering and reprinting the entire book.

Finally, the macro initializes counters for automatically numbering figures and tables. We’ll see how

these are used in a few pages.

The next portion of the macro is the part that is most variable—it controls the actual appearance of

the chapter heading. This is the part of the macro that has led us to develop several different versions.

In designing chapter headings, let your imagination be your guide. Look at books whose design you

like, and work from there. Three different designs we used on the HP LaserJet are shown in Figure 17-1.

(These designs are a compromise between aesthetics and the capabilities of the output device). This book

is another model.

The macro for the first heading in Figure 17-1 is used as follows:

.Se 2 "Getting Started with Alcuin"

or:

.Se A "Summary of Alcuin Drawing Primitives" "Appendix"

The heading starts on a new page. If a third argument is not present, it is assumed that the section type is

Chapter, and the section is labeled accordingly. An alternate section type can be specified in the optional

third argument. This argument is usually Appendix but can be any string the user wants printed before the

section number.

The portion of the macro definition that creates the first heading in Figure 17-1 follows:

.\" Part 2 of Se Macro: Output chapter heading

.RT

.in 0

.lg 0 \" Disable ligature before .tr

. \" Translate title to uppercase

.tr aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

.sp

.na

. \" Test for section type argument

.ie !"\\$3"" .ds cH \\$3

.el .ds cH Chapter \" Default is chapter

. \" If section number supplied

. \" output section number and type

. \" in 14 pt. bold.

.if !"\\$1"" \{\

\s14\f3\\*(cH \\$1\f1\s0

\}

. \" If no section number but

. \" there is a type (i.e., Preface)

. \" then output section type
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CHAPTER 2
GETTING STARTED WITH ALCUIN

2
Getting Started with Alcuin

Chapter 2

Getting Started with Alcuin

Figure 17.1 Some Different Styles of Chapter Heading

.if "\\$1"" .if !"\\$3"" \{\

\s14\f3\\*(cH\f1\s0

\}

.sp 5p

. \" Test for section title

. \" Print it in 14 pt. bold

.if !"\\$2"" \{\

\s14\f3\\$2\f1\s0

\}

.sp 6p

.ad b

.Hl \" Draw line

. \" Retranslate arguments

.tr aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz

.sp 3

.ns \" Enable no-space mode

There are a couple of points you may want to note about this code:

• The actual section title, as specified in the second argument, is forced to all uppercase using the

.tr request.

• The horizontal line under the title is drawn using a utility macro called .Hl (horizontal line),

which simply draws a line the width of the page, less any indent that is in effect:
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.de Hl \" Horizontal line. $1 = underline char

.br

\l’\\n(.lu-\\n(.iu\&\\$1’

.br

..

• No-space mode is turned on at the end of the macro, to inhibit inconsistent spacing caused by

users placing spacing requests or paragraph macros after the .Se macro. All of the heading

macros use this technique because inconsistent spacing around heading will give the page an

uneven look.

An alternate definition for this section of the macro follows. This code produces the heading in Fig-

ure 17-1.

.\" Part 2 of Se Macro (Alternate):

.ad r \" Right justified

.fl

.rs

.sp .75i \" Move down from top

. \" Section number in 24 pt. bold

.if !"\\$1"" \{\

\s24\f3\\$1\f1\s0\}

.sp 12p

. \" Section title in 20 pt. bold

.if !"\\$2"" \s20\f3\\$2\fP\s10

.sp 12p

. \" Optional 2nd line of title

.if !"\\$3"" \s20\f3\\$3\fP\s10

.sp 3

.ad b

.ns

This version is much simpler; it doesn’t print the section type at all, just the number or letter. Howev er,

because it prints a right-justified title, we have giv en the user the option of splitting a long title into two

parts.

The final part of the macro (in either version) adds the section title to the table of contents. As was

the case with .Hl, this is done by an internal utility routine that is defined elsewhere. We’ll discuss how

this works later.

. \" Last Part of Se Macro

. \" Now to toc

.tC \\$1 \\$2 \\$3

..

A Mechanism for Numbered Headings

Before we describe the lower-level headings used within a chapter, we need to explore how to generate

automatically numbered sections. We hav e defined a version of the ms .NH macro that is called internally

by our own heading macros. It has the same name and uses the same internal registers as the ms macro, but

the font and spacing requests specified in the ms .NH macro are removed. All that this macro now does is

generate the section number string.

.de NH \" redefine from -MS

.nr NS \\$1 \" Set NS to arg 1

.if !\\n(.$ .nr NS 1 \" Set NS to 1 if no arg

.if !\\n(NS .nr NS 1 \" or NS is null or negative

.nr H\\n(NS +1 \" Increment Heading level register

. \" Test which level is in effect

.if !\\n(NS-4 .nr H5 0 \" then reset lower levels to 0

.if !\\n(NS-3 .nr H4 0

.if !\\n(NS-2 .nr H3 0
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.if !\\n(NS-1 .nr H2 0

. \" Put together section number

.if !\\$1 .if \\n(.$ .nr H1 1\" Set first level

.ds SN \\n(H1 \" Begin building SN

.ie \\n(NS-1 .as SN .\\n(H2 \" == 1.1 2nd level

.el .as SN . \" or == 1.

.if \\n(NS-2 .as SN .\\n(H3 \" == 1.1.1 3rd

.if \\n(NS-3 .as SN .\\n(H4 \" == 1.1.1.1 4th

.if \\n(NS-4 .as SN .\\n(H5 \" == 1.1.1.1.1 5th

’ti \\n(.iu

\\*(SN \" Output SN string

..

This macro repays study, because it shows several clever ways to use number registers. First, the argument

to the macro is placed into a number register. This register is then used to select which of a series of further

registers will be incremented:

.nr NS \\$1

.

.

.

.nr H\\n(NS +1

If the macro is called as .NH 1, register H1 will be incremented; if the call is .NH 2, register H2 will be

incremented, and so on. Then, depending on the value of that same NS register, the appropriate register

value will be appended to the section number string SN.

Subsection Headings

In our package, we allow four levels of subsection headings, created by macros called .Ah (A head)

through .Dh (D head). The macros for all four levels have the same essential structure; they differ only in

the appearance of the printed text. Again, we have different styles for different clients.

The distinction between levels of headings in one of those styles is as follows:

• The A head prints the heading in 14-point bold type, all uppercase, with 26 points of space

above the heading and 18 points below.

• The B head prints the heading in 14-point bold type, mixed case, with 23 points of space above

the heading and 15.5 points below.

• The C head prints the heading in 12-point bold type, mixed case, with 18 points of space above

the heading and 12 points below.

• The D head prints the heading in 10-point bold type, mixed case, with 18 points of space above

the heading and none below. The heading actually runs into the text and is separated from it

only by a period.

All levels of headings can be either numbered or unnumbered, depending on the state of a number register

called nH. If nH is 0, heading are unnumbered; if it is 1, they are numbered.

Here is one version of the .Ah macro. From this example, you should be able to build the lower-

level headings as well

.de Ah \" A-heading; $1 = title

.sp 26p

.RT

.ne 8 \" Need room on page

.ps 14 \" 14 pt. on 16 pt. heading

.vs 16

.lg 0

.tr aAbBcCdDeEfFgGhHjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

.bd I 4 \" Embolden italic font (optional)

\f3\c \" Bold font; concatenate next input

.if \\n(nH \{. \" if producing numbered heads
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. ie \\n(sE .NH 2 \" If chapter (Se macro) is

. \" numbered, then 2nd level

. el .NH 1\} \" If not, 1st level head

\&\\$1\f1 \" Output title

.LP 0 \" Paragraph reset; (0 = no space)

. \" RT resets default point size

.bd I \" Turn off emboldening

.tr aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz

.lg

.sp 18p

.ns

.tC \\*(SN \\$1 Ah \" Output TOC info

..

Some pointers: First, whenever you force capitalization with .tr, be sure to turn off ligatures, because they

do not capitalize. Second, when you boldface a user-supplied string, it is wise to artificially embolden ital-

ics as well, in case the user embeds an italic font switch in the heading. Third, don’t forget to enter no-

space mode to ensure consistent spacing following the heading.

As you can see, the .NH macro is called to generate a section heading only if the nH register has

been set. In addition, the macro checks to make sure that a major section number has been specified by the

.Se macro. As you may recall, .Se sets the first number in the numbered heading string (H1). If .Se has

been called, the subsection headings start at level 2, otherwise they start from the top.

To make it very easy for even novice users to specify whether they want numbered or unnumbered

headings, the package includes a macro called .Nh (numbered headings) that turns numbering on or off:

.de Nh \" Numbered headings; $1 = turn on (1) or off (0)

. \" $1 = 2 will cause only A heads to be numbered

.nr nH \\$1

..

This is a matter of macro package style, as mentioned earlier. Steve Talbott’s style, when he initially devel-

oped this package was to code everything as macros, even where the macro simply sets a number register or

defines a string. This makes the package very easy to learn, because you can give a new user a concise,

unambiguous list of macros to enter into a file.

Other examples of this style include the .Ti and .St (title and subtitle) macros, described in Ap-

pendix F, which simply define the ms RF and LF string for running footers. Because of the mnemonically

named macros, new users don’t hav e to remember whether the title goes in the right footer or the left, and

so on. They simply enter the title of the book and chapter as arguments to the respective macros. The dis-

advantage is that users are insulated from an understanding of what is really going on, which may be an

obstacle to learning more advanced skills.

An Alternate Definition

To giv e you an idea of how easy it is to change the look of a document by redefining a few macros, let’s

look at how we could redefine the heading for this section. One popular layout style in technical manuals

uses a very wide left margin in which only the headings are printed, as follows.

An Alternate Definition To giv e you an idea of how
easy it is to change the
look of a document...

Here’s the modified macro to produce this heading:

.de Ah \" A-heading; alternate version

. \" Requires resetting default page

. \" (PO) to allow for extra offset.
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. \" .nr PO 2.5i for 1.5 extra offset

.nr Po 1.5i \" Set amount of extra offset

.nr Gw .2i \" Set width of gutter

.mk \" Mark vertical position

.po -1.5i \" Set new page offset

.ll \\n(Pou-\\n(Gwu

.ps 12 \" Set 12 pt. on 14 pt.

.vs 14

\&\f3\\$1\f1 \" Output header in bold

.rt \" Return to vertical position

.po \\n(POu \" Reset default page offset

.LP 0 \" Reset point size and line length

.ns

.tC \\*(SN \\$1 Ah \" Output TOC info

..

Figure and Table Headings

In technical manuals, it is common to number and title all figures and tables, both for easy reference from

within the text, and for collection into lists of figures and tables that will appear in the table of contents.

These macros are easy to construct and, apart from whatever appearance you decide to give them,

nearly identical in content. There is a “start” macro and an “end” macro:

.de Fs \" Start figure; $1 = reserved space;

. \" $2 = F, floating figure

.RT

.if "\\$2"F" \{. \" Figure can float

. nr kF 1

. KF\}

.if \\$1 \{. \" Specify amount of space

. ne \\$1 \" required for paste-up

. fl

. rs

. sp \\$1\}

..

.de Fe \" Figure end; $1 = title

.sp

.bd I 3

.nr fG +1 \" Increment Figure counter

. \" then determine format

.ie \\n(Se .ds fG \\*(H1-\\n(fG

.el .ds fG \\n(fG

.ce \" Output centered figure

\f3Figure \\*(fG. \\$1\f1

.tC "\\*(fG" "\\$1" "Figure"

.bd I

.sp

.if \\n(kF=1 .KE \" End keep if in effect

.tC "\\*(fG" "\\$1" "Figure" \" Output TOC info

..

As you can see, the .Fs (figure start) macro allows the user to reserve space for a figured to be pasted in,

and for it to float to a new page, using the ms “floating keep” mechanism.

Neither of the options are necessary. The macro can simply bracket a figure created with pic, for

example, in which case all that the macro provides is a consistent amount of space before the figure starts.

The .Fe (figure end) macro does most of the work. If a keep is in effect, .Fe terminates it. In addi-

tion, it prints the figure caption below the figure and adds a consistent amount of space below the caption.

The figure is automatically numbered with the section number, and a figure number that is incremented

each time the macro is called. As you may remember, this figure number register, fG, was initialized to 0

in .Se.
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To giv e the user some options with figure numbering, a second argument allows the user to turn it off

entirely. In addition, if the section is unnumbered, the section number and hyphen will be omitted. To

accomplish this involves a little juggling of strings and number registers (which is something you should

plan to get used to when you write macros). Notice that we use the string H1 for the section number rather

than the section number register itself (sE), because we went to some trouble in the .Se macro to handle

lettered appendices as well as numbered chapters.

You could easily add optional appearance features to this macro. For example, in one implementa-

tion, we draw a horizontal line above and below the figure, and print the caption left justified and in italics

below the bottom line.

The figure end macro also calls the table of contents macro, which will be described later.

The macros for labeling tables are very simple, because the standard .TS and .TE macros do every-

thing necessary except providing consistent pre- and post-spacing and printing the caption. In this case, the

caption is at the top:

.de Ts \" Table start; $1 = title

.nr tB +1 \" Increment Table counter

. \" Determine format

.ie \\n(Se .ds tB \\*(H1-\\n(tB \" Section Table

.el .ds tB \\n(tB

.sp

.ce 2 \" Output label and

\f3Table \\*(tB. \" title on 2 lines

\&\\$1\f1

.tC "\\*(tB" "\\$1" "Table" \" Output TOC info

.bd I

.LP \" Paragraph reset

..

.de Te \" Table end -- no arguments

.RT \" Reset

.sp

..

Lists, Lists, and More Lists

One of the significant features lacking in the ms macros is the ability to generate automatically numbered

or lettered lists. You can use the .IP macro and number or letter a list yourself—but what good is a com-

puter if it can’t handle a task like this?

One of the nicest features of Steve Talbott’s extended ms package is its set of comprehensive, gen-

eral-purpose list generation macros. There are three macros: .Ls (list start), .Li (list item), and .Le (list

end). Unlike mm, in which different types of lists must be specified using different macros, here you request

a different type of list by giving an argument to the .Ls macro. You can request any of the types of lists in

Table 17-1.

Table 17.1 List Types

Argument List Type

A Alphabetic with uppercase letters

a Alphabetic with lowercase letters

B Bulleted with • by default

N Numbered with arabic numerals

R Numbered with uppercase roman numerals

r Numbered with lowercase roman numerals
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The bulleted list uses the bullet character (•)) by default. However, as you will see, the macro allows

you to specify an alternate bullet using an optional third argument. This “bullet” could be a dash, a box

(\(sq), a checkmark (\(sr), or any other character.

Lists can be nested, and there is a default list type for each level of nesting, so the type argument does

not really need to be specified.

Here’s the list start macro:

.nr l0 0 1 \" Initialize nested list level counter

.de Ls

.\" list start; $1 =A(lpha), a(alpha), B(ullet), N(umeric),

.\" R(oman), r(oman); $2 = indent

.\" $3 = alternate bullet character

.br

.if !"\\$1"A" .if !"\\$1"B" .if !"\\$1"N" .if !"\\$1"R" \

. if !"\\$1"r" .if !"\\$1"a" .if !"\\$1"" \

. tm Ls: Need A a B N R r or null as list type

.nr l\\n+(l0 0 1

.ie "\\$1"" \{\ \" Set defaults

. if "\\n(l0"1" .af l\\n(l0 1 \" Numeric at 1st level

. if "\\n(l0"2" .af l\\n(l0 a \" lc alpha at 2nd level

. if "\\n(l0"3" .af l\\n(l0 i \" lc roman at 3rd level

. if "\\n(l0"4" .ds l\\n(l0 \(bu \" Bullet at 4th level

. if "\\n(l0"5" .ds l\\n(l0 \f3\-\f1 \" Dash at 5th level

. if \\n(l0-5 .ds l\\n(l0\(bu \" Bullet above 5th level

. if \\n(l0-3 .nr l\\n(l0 0-1 \}

.el \{\

. if "\\$1"A" .af l\\n(l0 A

. if "\\$1"a" .af l\\n(l0 a

. if "\\$1"B"\{\

. if "\\$3"" .ds l\\n(l0 \(bu

. if !"\\$3"" .ds l\\n(l0 \\$3

. nr l\\n(l0 0-1\}

. if "\\$1"R" .af l\\n(l0 I

. if "\\$1"r" .af l\\n(l0 i \}

.ie !"\\$2"" .nr i\\n(l0 \\$2 \" List indent

.el .nr i\\n(l0 5 \" Default indent

.RS

..

When you first look at this macro, you may be a little overwhelmed by the complex number register names.

In fact, there is not much to it.

One number register, l0, is used as a counter for nested lists. As you can see, this register is initial-

ized to 0 outside of the list macro definition itself. Then, when the .Ls macro is called, this register is

autoincremented at the same time as it is used to define the name of another number register:

.nr l\n+(l0 0 1

It is this second number register interpolation— l\n+(l0—that is actually used to number the list. This

is a technique we promised to show you back when we were first describing number registers. We create a

series of related number register names by interpolating the value of another register as one character in the

name.

Think this through for a moment. The first time .Ls is called, the request:

.nr l\\n(l0 0 1

defines a number register that is actually called l1 (the letter l followed by the value of number register

l0—which is 1). A second call to .Ls without closing the first list (which, as we shall see, bumps the

counter back one) will define number register l2, and so on.

In a similar way, another series of number registers (i\\n(l0) allows a different indent to be speci-

fied for each nested level, if the user so desires.

With the exception of the bulleted list, all of the different list types are numbered using the same

number register (ln, where n is the nesting depth). The different types of lists are created simply by
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changing the output format of this register using the .af request.

Here’s the .Li macro:

.de Li \" List item; $1 = 0 no blank line before item

.br

.if "\\$1"0" .ns

.ie "\\n(l\\n(l0"-1" .IP "\\*(l\\n(l0" "\\n(i\\n(l0"

.el \{\

.nr l\\n(l0 +1

.IP "\\n(l\\n(l0." "\\n(i\\n(l0" \}

..

The actual list counter itself (as opposed to the nesting counter) is incremented, and the appropriate value

printed.

The number and the associated text is positioned with the standard ms .IP macro. If you don’t hav e

access to the ms macros, you could simulate the action of the .IP macro as follows:

.de IP

.nr Ip 1

.sp \\n(PDu

.in \\$2u

.ti -\\$2u

.ta \\$2u

\\$1\t\c

..

However, there is one drawback to using an .IP -style macro as the basis of the list.

• The .IP macro puts its argument at the left margin, as was done with this

sentence.

• Instead, we’d like something that puts the mark in the middle of the indent,

as was done with this sentence.

Here’s the macro that produced the second example:

.de IP

.nr Ip 1

.sp \\n(PDu

.in \\$2u

.nr i1 \\$2/2u+\w’\\$1’ \" Amount to move left

.nr i2 \\$2-\w’\\$1’ \" Amount to move back

.ta \\n(i2u

.ti -\\n(i1u

\\$1\t\c

..

This version of the macro places the mark not just at a position half the depth of the indent, but exactly in

the middle of the indent by adjusting the indent by the width of the mark argument. Number registers are

used for clarity, to avoid nesting the various constructs too deeply.

(Note that this simplified .IP macro lacks some of the functionality of the ms .IP macro, which

saves the current indent and therefore allows you to nest indents by using the .RS and .RE macros).

If you are using ms, and you want to create a macro that puts the mark in the center of the indent, be

sure to name this macro something other than .IP, so that you don’t conflict with the existing macro of

that name.

Here’s the list end:

.de Le \" List end; $1 = no blank line following last item

.br

.rr l\\n(l0

.rr i\\n(l0

.rm l\\n(l0
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.nr l0 -1

.RE

.ie !\\n(l0 \{\

. ie "\\$1"0" .LP 0

. el .LP\}

.el .if !"\\$1"0" .sp \\n(PDu

..

This macro removes the list numbering registers and strings, decrements the nested list counter, and calls

the ms .RE macro to “retreat” back to the left (if necessary because of a nested loop). Finally, it leaves a

blank line following the end of the list. (As you might remember, PD is the ms register containing the

paragraph distance—0.3v by default).

Source Code and Other Examples

In a technical manual, there are often further issues brought out by the need to show program source code

or other material that loses essential formatting if it is set with proportional rather than monospaced type.

As previously discussed, the basic trick in ditroff is to use the CW font. If you are using otroff,

you will need to use the cw preprocessor (see your UNIX manual for details) or some other type of work-

around. (When we were using otroff, our print driver allowed font substitutions based on size. We told

the driver to use the printer’s constant-width font whenever troff used a point size of 11. Then, we wrote

a macro that changed the point size to 11, but used .cs to set the character spacing to the actual size for the

printer’s constant-width font. This was not a very elegant solution, but it worked—so if you are stuck with

otroff don’t despair. Put your ingenuity to work and you should come up with something).

Besides the change to the CW font, though, there are several other things we’d like to see in a macro

to handle printouts of examples. We’d like examples to be consistently indented, set off by a consistent

amount or pre- and post-line spacing, and set in no-fill mode.

Here’s an example of a pair of macros to handle this situation:

.de Ps \" Printout start; $1 = indent (default is 5 spaces)

.br

.sp \\n(PDu

.ns

.nr pS \\n(.s \" Save current point size

.nr vS \\n(.v \" Save current vertical spacing

.nr pF \\n(.f \" Save current font

.nr pI \\n(.i \" Save current indent

.ps 8

.vs 10

.ft CW

.ie !"\\$1"" .in +\\$1n

.el .in +5n

.nf

..

.de Pe \" Printout end; $1 non-null, no concluding

.br

.if "\\$1"" .sp \\n(PDu

.ps \\n(pSu

.vs \\n(vSu

.ft \\n(pF

.in \\n(pIu

.rr pS

.rr vS

.rr pF

.rr pI

.fi

..

The trick of saving the current environment in temporary registers is a useful one. The alternative is to use

a separate environment for the printouts, but this assumes that the available environments are not already in
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use for some other purpose. You could also call a reset macro to restore the default state—but this may not

actually be the state that was in effect at the time.

In addition, you shouldn’t rely on troff’s ability to return to the previous setting by making a

request like .ll without any argument. If you do so, an error might result if the user has himself made an

.ll request in the interim.

In short, you should either save registers or use a different environment whenever you change format-

ting parameters in the opening macro of a macro pair. Then restore them in the closing macro of the pair.

Notes, Cautions, and Warnings

Another important macro for technical manuals is one that gives a consistent way of handling notes, cau-

tions, and warnings. (Traditionally, a note gives users important information that they should not miss, but

will not cause harm if they do. A caution is used for information that, if missed or disregarded, could lead

to loss of data or damage to equipment. A warning is used for information that is critical to the user’s life

or limb).

Obviously, this is a simple macro—all that is required is some way of making the note, caution, or

warning stand out from the body of the text. You could redefine the macro shown here in any number of

ways depending on the style of your publications.

.de Ns \" note/caution/warning $1 = type "N", "C", "W"

.sp 2

.ne 5

.ce

.if !"\\$1"N" .if !"\\$1"C" .if !"\\$1"W" \{\

. tm "Need N, C, or W as argument for Ns macro-using N"

\f3NOTE\f1\}

.if "\\$1"N" \f3NOTE\f1

.if "\\$1"C" \f3CAUTION\f1

.if "\\$1"W" \f3WARNING\f1

.sp

.ns

.nr nI \\n(.iu \" Save current indent, if any

.nr nL \\n(.lu \" Save current line length

.ie \\nS>0 .nr IN 5n \" Make indent less if in small format

.el .nr IN 10n \" Larger indent for full-size page

.in +\\n(INu \" Indent specified amount

.ll -\\n(INu \" Decrement line length same amount

..

.de Ne \" "note end"; no args

.in \\n(nIu \" Restore previous indent

.ll \\n(nLu \" Restore previous line length

.rr nI \" Remove temporary registers

.rr nL

.sp 2

..

A warning looks like this:

WARNING

You should be careful when reading books on troff, because they can be damag-

ing to your health. Although escape sequences are allowed, they are not exactly

high adventure.
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A different version of a caution macro is shown below. It uses a graphic symbol to mark a caution

statement.

CAUTION

One client had a convention of marking a

caution statement with a large diamond in a

square. These diamonds will appear in a

second color in the printed book.

To produce the escape sequences to draw the symbol, we used pic, processing the description and captur-

ing it in a file. Then we read it into our macro definition. (We could also have produced the escape

sequences to draw the symbol without pic’s help; this would result in much more compact code). The

drawing of the symbol does take up most of the .Gc macro definition. Before we actually output the sym-

bol, the current vertical position is marked. After it is output, we mark its bottom position. Then we return

to the top before placing the warning label and processing the text. After the caution statement is output,

the closing macro, .GE, checks the current vertical position against the bottom position of the symbol.

.de Gc \" Graphic Caution Macro

.ne 10

.mk a \" Mark current top position

.br \" pic output belongs here

\v’720u’\D’l0u -720u’

.sp -1

\D’l720u 0u’

.sp -1

\h’720u’\D’l0u 720u’

.sp -1

\h’720u’\v’720u’\D’l-720u 0u’

.sp -1

\h’360u’\D’l360u 360u’

.sp -1

\h’720u’\v’360u’\D’l-360u 360u’

.sp -1

\h’360u’\v’720u’\D’l-360u -360u’

.sp -1

\v’360u’\D’l360u -360u’

.sp -1

.sp 1+720u \" End of pic output

.sp

.mk q \" Mark bottom of symbol

.sp |\\nau \" Move back to top (.mk a)

.in +1.5i \" Indent to right of symbol

.ll -.5i \" Reduce line length

.sp .5v

.ce

\f3CAUTION\f1 \" Output Caution label

.sp .3v

..

.de GE \" Graphic Caution end

.br

.sp

.in \" Reset previous settings

.ll

. \" If bottom of symbol (.mk q)

. \" is below current vertical position

. \" then move to that position

.if \\nqu>\\n(nlu+\\n(.vu .sp |\\nqu

.sp .3v

..
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Table of Contents, Index, and Other End Lists

Here’s the part you’ve all been waiting for. One of the nicest things a formatter can do for a writer is auto-

matically generate lists such as a table of contents and an index. These are very time consuming to produce

manually, and subject to error. There are basically two ways to do the trick, and both apply to an index as

well as a table of contents, endnotes, and other collected lists.

The technique used by mm, which generates an automatic table of contents at the end of each format-

ting run, is to collect headings into a diversion using the .da request. This diversion is then output from

within a special macro called the “end macro,” which we have yet to discuss.

The second technique is to use the .tm request to write the desired information to standard error out-

put. Then that output is redirected to capture the messages in a file, where they can be edited manually or

automatically processed by other programs.

The advantage of the first approach is that it is clean and simple, and entirely internal to the formatter.

However, it is really suitable only for short documents. A long document such as a book is not normally

formatted in a single pass, but chapter by chapter. It is not desirable to format it all at once just to get the

table of contents at the end. In addition, a large document generally will end up creating a large diver-

sion—often one that is too large for troff to handle.

The second approach, on the other hand, opens up all kinds of possibilities for integration with other

tools in the UNIX environment. The output can be saved, edited, and processed in a variety of ways. As

you can imagine from our philosophy of letting the computer do the dirty work, this is the approach we pre-

fer.

However, there is still a place for diversions, so we’ll take a close look at both approaches in the sec-

tions that follow.

Diverting to the End

Although we prefer to create our major end lists—the table of contents and index—by writing to stderr,

we find it very useful to use diversions for another type of list.

We’v e added a couple of special macros that allow a writer to insert remarks intended specifically for

the reviewers of a draft document or for personal use. Because technical reviewers frequently miss ques-

tions embedded in the text, we designed the .Rn macro to highlight notes. This macro makes these

remarks stand out in the text and then collects them for output again at the end of the document.

.de Rn \" Note to reviewers : $1 = Note

. \" Print note in text and at end

. \" Output note first

.sp

\f3Note to reviewers:\fP \\$1

.sp

.ev 2

.da rN \" Then append into diversion

.sp 0.2v

.in 0

.ie "\\*(NN"" \(sq Page \\n(PN: \\$1

.el \(sq Page \\*(NN: \\$1

.br

.da

.nr RN 1 \" Flag it for EM

.ev

..

Another macro, .Pn, is used to collect a list of personal notes or reminders and output them on a page at

the end. These notes do not appear in the body of the text.

.de Pn \" Personal Note; $1 = note
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. \" Note listed at end, but not in text

.ev 2

.if \\n(Pn<1 .nr Pn 0 1 \" Set up autoincrement counter

.da pN

.br

.IP "\\n+(Pn." 5n

\\$1

.ie "\\*(NN"" (Page \\n(PN)

.el (Page \\*(NN)

.br

.da

.nr pN 1 \" Flag it for EM

.ev

..

Only the .Rn macro produces output in the body of the document, but both macros append the notes into a

diversion that we can process at the end of the document. The divert and append (.da) macro creates a list

of notes that can be output by invoking the macro created by the diversion.

For each macro, we format the lists slightly differently. In the .Rn macro, we print a box character

( ) (to give the feeling of a checklist), then the page number on which the review note occurred. This

allows the reviewer or the writer to easily go back and find the note in context. In the .Pn macro, we use

an autoincrementing counter to number personal notes; this number is output through .IP. It is followed

by the note and the page reference in parentheses.

The formatting of text inside a diversion can be tricky. The text could be formatted twice: when it is

read into the diversion, and when the diversion is output. The one thing to keep in mind is that you don’t

want line filling to be in effect both times. If line filling is in effect when the text is read into the diversion,

you should turn it off when the diversion is output. You can also use transparent output (\!) to hide

macros or requests so that they will be executed only at the time the diversion is output. We hav e also taken

the precaution of processing the diversion in a separate environment.

Now what about printing the list at the end? Well, as it turns out, nroff and troff include a spe-

cial request called .em that allows you to supply the name of a macro that will be executed at the very end

of the processing run, after everything else is finished.

The .em request allows you to define the name of a macro that will be executed when all other input

has been processed. For example, the line:

.em EM

placed anywhere in a file or macro package, will request that the macro .EM be executed after everything

else has been done. The definition of .EM is up to you.

The ms macros already have specified the name of this macro as .EM, the end macro. In its usual

obscure way, mm calls its end macro .)q. If you are writing your own package, you can call it anything

you like. You can either edit the existing end macro, or simply add to it using the .am (append to macro)

request.

All that ms does with this macro is to process and output any div ersions that have not been properly

closed. (This might happen, for example, if you requested a floating keep, but its contents had not yet been

printed out).

The end macro is a good place to output our own special diversions that we’ve sav ed for the end.

What we need to do now is to add some code for processing our list of review notes:

.de EM

.br

.if \\n(RN=1 \{\

\&\c

’bp

.

.

.ce

\f3NOTES TO REVIEWERS\f1

.sp 2
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Reviewers, please address the following questions:

.sp

.ev 2

.nf

.rN

.ev

.\}

.if \\n(pN=1 \{\

.br

\&\c

’bp

.

.ce

\f3Notes To Myself:\f1

.sp 2

.ev 2

.nf

.pN

.ev

.\}

..

(Note: we have found that to print anything from the .EM macro in the standard ms package, it is necessary

to invoke .NP explicitly following a page break. However, when using our simplified version of this pack-

age as shown in the last chapter, our .EM does not need a .NP). The list collected by the .Rn macro is

printed on a new page, looking something like this:

NOTES TO REVIEWERS

Reviewers, please address the following questions:

Page 3-1: Why can’t I activate the bit pad before opening a font file?

Page 3-7: Is there a size restriction on illuminated letters?

A Diverted Table of Contents

Given the preceding discussion, it should be easy for you to design a diverted table of contents. The magic

.tC macro we kept invoking from our heading might look something like this:

.de tC \" table of contents; $1=sec number;

. $2=title; $3=type

.if "\\$3"\\*(cH"\{\

.da sL \" Divert and append to section list

.sp 3

\\*(cH \\$1: \\$2

.sp 1.5

.da

.\}

.if "\\$3"Ah"\{\

.da sL \" Divert and append to section list

.br

\\$1 \\$2\\a\\t\\*(NN

.br

.da

.\}

.if "\\$3"Bh"\{\

.da sL \" Divert and append to section list

.br

\\$1 \\$2\\a\\t\\*(NN
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.br

.da

.\}

.if "\\$3"Figure" \{\

.da fL \" Divert and append to figure list

\\$1 \\$2\\a\\t\\*(NN

.da

.\}

.if "\\$3"Table" \{\

.da tL \" Divert and append to table list

\\$1 \\$2\\a\\t\\*(NN

.da

.\}

..

The diversion sL is set up to handle the main heading (chapter, appendix, unit, or section) and two lev els of

subheadings (A-heads or B-heads). The diversions fL and tL are set up to compile lists of figures and

tables, respectively.

In the end macro, to print the table of contents, you have to cause a break to a new page, print: intro-

ductory captions, and so on, and then follow by outputting the collected diversion of each type. The fol-

lowing example shows the code to print:

.br \" Automatically invoke diverted toc

\&\c \" by including these lines in EM macro

’bp \" Or place in own macro

.ta \\n(LLu-5n \\n(LLuR

.ce

\f3Table of Contents\fR

.sp 2

.nf \" Process in no-fill mode

\\t\f3Page\fP

.sL

.rm sL \" Clear diversion

. \" Add code here to output figure

. \" and table list diversions

We set two tab stops based on the default line length (\n(LLu). The second tab stop is used to set a right-

adjusted page number in the right margin. The first tab stop is used to run a leader from the entry to the

page number. The escape sequences that output the leader and tab (\a and \t) were specified in the .tC

macros. (And to protect the escape sequence inside a diversion an extra backslash was required).

Now we can obtain a table of contents each time we format the document. The format of the table of

contents shows the hierarchical structure of the document:

Table of Contents

Page

Chapter Two: Getting Started with Alcuin

2.1 Objectives of this Session ............................................................................ 2-1

2.2 Starting Up the System................................................................................ 2-2

2.2.1 Power-up Procedure................................................................................ 2-2

2.2.2 Software Initialization ............................................................................ 2-3

2.3 Creating Simple Glyphs............................................................................... 2-4
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When Diversions Get Too Big

One of the major problems with collecting a table of contents in a diversion is that, with a large document,

the diversions quickly grow too large for the formatter to handle. It will abort with a message like “Out of

temp file space.”

The solution is to break up your diversions based on the number of entries they contain. One way to

do this is to base the name of the diversion on a number register, and do some arithmetic to increment the

name when the diversion has been added to a certain number of times.

For example, instead of just diverting to a macro called .sL, we would divert to one called xn, where

n is a number register interpolation generated as follows:

.de tC

.

.

.

.nr xX +1

.nr x0 \\n(xX/100+1

.da x\\n(x0

.

.

.

Each time .tC is called, register xX is incremented by 1, and its value, divided by 100, is placed into

another register, x0. Until the value of register xX exceeds 100—that is, until .tC has been called 99

times—x0 will be equal to 1. From 100 to 199, x0 will be equal to 2, and so on.

Accordingly, the actual macro into which output is diverted—represented as x\\n(x0— will first

be x1, then x2, and so on.

When it comes time to output the collected entries, instead of calling a single diversion, we call the

entire series:

.x1

.x2

.x3

.x4

Here, we are assuming that we will have no more than 400 entries. If there are fewer entries, one or more

of these diverted macros may be empty, but there’s no harm in that. If there are more than 400, the contents

of .x5 (et al) would still have been collected, but we would have failed to print them out. We hav e the

option of adding another in the series of calls in the end macro, or rebuking the user for having such a large

table of contents!

Writing to Standard Error

Although we’ve answered one of the objections to a diverted table of contents by the register arithmetic just

shown, there is another, more compelling reason for not using this approach for large documents: there is

no way to save or edit the table of contents. It is produced on the fly as part of the processing run and must

be recreated each time you print the document.

For a very large document, such as a book, this means you must format the entire book, just to get the

table of contents. It would be far preferable to produce the table of contents in some form that could be

saved, so the tables from each chapter could be assembled into a single large table of contents for the entire

book.

(Incidentally, producing a table of contents for a large document introduces some other issues as

well. For example, you may want to have an overall table of contents that shows only top-level headings,

and individual chapter table of contents that give more detail. Working out the macros for this approach is

left as an exercise for the reader).
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The best way to produce a table of contents for a large book is simply to write the entries to standard

error using .tm, and rely on an external program to capture and process the entries.

In ditroff, you can instead use the .sy request to execute the echo command and redirect the

entries to a file. An example of this method might be:

.sy echo \\$1 \\$2\a\t\\*(NN >> toc$$

However, this approach causes additional system overhead because it spawns echo subprocesses. Also,

because it does not work with otroff, we hav e used the more general approach provided by .tm.

Our .tC macro might look like this:

.de tC \" Standard error; table of contents;

. \" $1=sect number; $2=title; $3=type

.if "\\$3"\\*(cH"\{\

.tm ><CONTENTS:.sp 3

.tm ><CONTENTS:\\*(cH \\$1\\$2

.tm ><CONTENTS:.sp 1.5

.\}

.if "\\$3"Ah" .tm ><CONTENTS:\\$1 \\$2\a\t\\*(NN

.if "\\$3"Bh" .tm ><CONTENTS:\\$1 \\$2\a\t\\*(NN

.if "\\$3"Figure" .tm ><FIGURE:\\$1 \\$2\a\t\\*(NN

.if "\\$3"Table" .tm ><Table:\\$1 \\$2\a\t\\*(NN

..

Instead of diverting the section lists to separate macros from the lists of figures and tables, we send all

entries out to standard error.

To capture this output in a file, we simply need to redirect the error output:

$ ditroff -Tps ... 2> toc

To do this, we will use our format shell script, which was introduced in Chapter 12, and will be revisited

in the next (and final) chapter.

Because actual error messages might be present in the output, we prefix a label indicating the type of

entry, for example:

><CONTENTS:
><FIGURE:
><TABLE:

It will be up to some outside program to separate the different groups of entries and subject them to further

processing. We’ll use a sed script to separate the entries in the table of contents from the figure lists, table

lists, and index entries. (In the next chapter, we’ll look at the post-processing of these entries). Now, let’s

look at a macro to generate index entries that will also be written to standard error.

Indexes

A simple index can be handled in much the same way as a table of contents. A macro for a simple index

might look like this:

.de XX

. \" Section-page number set up

. \" by Se macro in string NN

.tm INDEX:\\$1\t\\*(NN

..

You might also want to have a macro that doesn’t print the page number, but is just used for a cross-

reference:

.XN \" Cross-reference Index entry, no page number

.tm INDEX:\\$1

..

You might also want a macro pair that will index over sev eral different pages:

.de IS \" Index macro
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. \" Interpolate % for page number

.ie \\n(.$=1 .tm INDEX:\\$1, \\n%

.el \{\

.nr X\\$2 \\n%

.ds Y\\$2 \\$1 \}

.if \\n(.t<=1P .tm *\\$1* near end of page

.if \\(nl<1.2i .tm *\\$1* near top of page

..

.de IE \" Index end macro

.ie !\\n(.$=1 .tm IE needs an argument!

.el .tm INDEX:\\*(Y\\$1, \\n(X\\$1-\\n%

.if \\n(.t<=1P .tm *\\*(Y\\$1* near end of page

.if \\n(nl<1.2i .tm *\\*(Y\\$1* near top of page

..

The .IS macro prints out an entry, just like .XX. Howev er, in addition, it saves the argument into a string,

and takes a letter or digit as an optional second argument. This second argument is used to define a number

register and string that will be saved, and not printed until the index and macro is called with the same argu-

ment. The index and macro print the starting number, followed by a hyphen and the current page number.

All of this discussion still avoids one major issue. The real trick of indexing is what you do with the

raw output after you have it, because a great deal of sorting, concatenation, and reorganization is required to

rearrange the entries into a meaningful order. Fortunately or unfortunately, this topic will have to wait until

the next chapter.



Chapter 18

Putting It All Together

Before returning to the topic of table of contents and index processing, using shell tools that we will build,

let’s review what we’ve covered so far.

We started with a promise to show you how the UNIX environment could support and enhance the

writing process. To do that, we’ve had to delve into many details and may have lost the big picture.

Let’s return to that big picture here. First, UNIX provides what any computer with even rudimentary

word-processing capabilities provides: the ability to save and edit text. Few of us write it perfectly the first

time, so the ability to rewrite the parts of a document we don’t like without retyping the parts we want to

keep is a major step forward.

However, no one will argue that UNIX offers better tools at this simple level than those available in

other environments. The vi editor is a good editor, but it is not the easiest to learn and lacks many stan-

dard word-processing capabilities.

Where UNIX’s editing tools excel is in performing complex or repetitive edits. A beginner may have

little use for pattern matching, but an advanced user cannot do without it. Few, if any, microcomputer-

based or standalone word processors can boast the sophisticated capabilities for global changes that UNIX

provides in even its most primitive editors.

When you go beyond vi, and begin to use programs such as ex, sed, and awk, you have

unmatched text-editing capabilities—power, if you will, at the expense of user friendliness.

Second, UNIX’s hierarchical file system, multiuser capabilities, and ample disk storage capacity

make it easy to organize large and complex writing jobs—especially ones involving the efforts of more than

one person. This can be a major advantage of UNIX over microcomputer-based or dedicated word proces-

sors.

Anyone who has tried to write a multiauthor work on a floppy-based system knows how easy it is to

lose track of the latest version of a file, and to get lost among a multitude of disks. UNIX makes it easy to

share files, and to set up a consistent framework for managing them.

In addition to storing multiple versions of documents on line, you can use the file system to set up

specific environments for writing. For example, a separate .exrc file in each directory can define abbre-

viations and command maps specific to a book or section.

Third, UNIX provides a wide range of formatting tools. Using troff, pic, tbl, and eqn, you can

easily typeset books. This is not as unique and powerful a capability as it was even two or three years ago.

The advent of low-cost laser printers and wysiwyg “desktop publishing” tools like Microsoft WORD,

MacWrite, and Aldus Pagemaker allow PC users to do typesetting as well.

However, despite the glamour of desktop publishing, and the easy-to-use appeal of products for the

Macintosh, the UNIX typesetting facilities offer many advantages. Chief among these advantages is the

very feature in which troff at first seems much weaker than its low-end competitors, namely, the use of

embedded codes to control formatting.

Wysiwyg systems are easy for beginners to use, and they are very satisfying because you can immedi-

ately see what you are going to get on the printed page. But have you ever tried to make a global font

change in MacWrite? Or had to make a change to a document after it was “pasted up” with Pagemaker?

Or had to wait endlessly while Microsoft WORD reformats an entire document after you change the mar-

gins?

Because troff codes can be edited, just like any other text in a file, it is very easy to change your

mind about formatting and make global changes. And after you have mastered the art of writing macros, it

is even easier to change formats simply by changing macro definitions. And because the editing and for-

matting functions are separate, you don’t hav e to wait for the computer while you are making those
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changes—that happens while you print.

This is not to say that troff is superior to the best possible wysiwyg system. High-end systems

from companies like Interleaf, Xyvision, and Texet offer power, speed, and ease of use all at once. Unfor-

tunately, the software is costly, and requires the use of high-cost bit-mapped workstations. This can lead to

a bottleneck in document production unless you have enough money to spend on hardware. Because

troff requires only a standard alphanumeric terminal, it provides much more “bang for the buck.”

There is no question that the publishing system of the future will be a wysiwyg system. But for now,

a low-cost UNIX system with vi and troff is still one of the most cost-effective publishing systems

around.

This brings us to the final strength of UNIX—its extensibility. More than an operating system or a

collection of programs, UNIX is a philosophy of computing. Let’s consider an analogy. The Volkswagen

beetle was a unique automobile of the sixties and seventies. Its simple design was one of the reasons that

made it popular; the “bug” was user-maintainable. VW owners (“users”) could tinker with their cars, per-

forming such tasks as changing spark plugs by hand. They scoffed at owners of other cars who depended

upon mechanics. It is perhaps this same feeling of independence—let me do it myself—that the UNIX

environment fosters in its users. There are many quite capable software environments that are packaged to

keep users out. In some ways, the secret of UNIX is that its working parts are visible. The UNIX environ-

ment, like the VW beetle, is designed so that users can take it apart and put it back together. UNIX is a phi-

losophy of computing. As we’ve stressed again and again, UNIX provides general-purpose tools, all of

which are designed to work together.

No single program, however well thought out, will solve every problem. There is always a special

case, a special need, a situation that runs counter to the expected. But UNIX is not a single program: it is a

collection of hundreds. And with these basic tools, a clever or dedicated person can devise a way to meet

just about any text-processing need.

Like the fruits of any advanced system, these capabilities don’t fall unbidden into the hands of new

users. But they are there for the reaching. And over time, even writers who want a word processor they

don’t hav e to think about will gradually reach out for these capabilities. Faced with a choice between an

hour spent on a boring, repetitive task and an hour putting together a tool that will do the task in a flash,

most of us will choose to tinker.

The index and table of contents mechanism in this chapter is a good example of putting together indi-

vidual UNIX tools to do a job that no one of them can easily do alone. Its explanation is a fitting end to

this book, which has tried throughout to put the UNIX text-processing tools in a wider context.

Saving an External Table of Contents

As discussed in the last chapter, troff does provide a mechanism (namely diversions) to collect and

process a table of contents directly within the formatter. Howev er, this approach is best suited to short doc-

uments, because it requires that the entire document be reformatted to produce the table of contents.

Likewise, you could even produce and sort an index entirely within troff, though the effort

required would be large. (In fact, a recent article on Usenet, the online UNIX news network, described an

implementation of a sort algorithm using troff macros. It is painfully slow—it was done just to prove

that it could be done, rather than for practical application).

The beauty of UNIX, though, is that you don’t hav e to stretch the limits of troff to do everything

necessary to produce a book. Just as editing is separated from formatting, you can separate processing the

table of contents and the index from formatting the rest of the text.

The troff formatter provides the basic mechanisms for producing the raw material—the lists of

headings or index terms, accompanied by the page numbers on which they occur. Howev er, the actual sav-

ing and processing of the raw material is done with make, sed, awk, sort, and the shell.
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In Chapter 12, we began to look at how a shell script (which we called format) could manage the

formatting process. We used the programming power of the shell not only to save the user the trouble of

remembering command-line options and complicated postprocessor names, but also to apply the power of

sed to various ancillary formatting tasks.

The collection of a table of contents and index requires that we first return to this script. As we left

Chapter 17, both the table of contents and the index macros simply write data to standard error.

A Bourne shell user can redirect this error output to a file using the following syntax:

$ ditroff file 2> tocfile

The problem is that the table of contents, index entries, and potential formatter error messages are all cap-

tured in the same file. We need a mechanism for parsing this file into its separate elements. The user could

do this manually, but it is far better to let a program do it.

The first step is to redirect all of the error output from the formatter to a temporary file. After format-

ting is done, we can use sed to search for the identifying strings that we introduced as part of the “error

message” and output the matching lines into separate files. True error messages should be sent back to the

screen, and the temporary file removed.

The trick here is naming the files into which the saved data is stored by sed. It is not appropriate

simply to append table of contents data to one file, because we are likely to reformat a document many

times while rewriting and revising it. Instead, we want to have a unique table of contents file and a unique

index file for each source file that we format. The best way to do this without cluttering up the current

directory is to create a subdirectory for each type of data we want to save — toc, index, and so on.

Let’s look at how we did these things in the format script:

roff="ditroff -Tps"; files=""; options="-mS"

pre="| ditbl"; post="| devps "

sed="| sed -f /work/macros/new/cleanup.sed"

pages=""; toc="2>/tmp$$"; lp="| lp -s"

if [ ! -d index a ! -d toc ]; then

echo "No index and toc. Use the buildmake command."

toc="2>/dev/null"

fi

while [ "$#" != "0" ]; do

case $1 in

-?) echo "Format Options are:"

echo "-m* Specify other macro package (-mm)"

echo "-s Use small format (5-1/2 by 8-1/2)"

echo "-o Print selected pages"

echo "-cg Format for Compugraphic typesetter"

echo "-E Invoke EQN preprocessor"

echo "-P Invoke PIC preprocessor"

echo "-G Invoke GRAP & PIC preprocessors"

echo "-x Redirect output to /dev/null"

echo "-y Invoke nroff; pipe output to screen"

echo "-a Set interactive troff -a option"

echo "-* Any troff option"; exit;;

-m*) options="$1";;

-s) options="$options -rS1 -rv1";;

-o) pages="$pages -o$1";toc="2>/dev/null";;

-cg) roff="ditroff -Tcg86"; post="| ditplus -dtcg86";;

-E) pre="$pre | dieqn";;

-P) pre="| pic -T720 -D $pre";;

-G) pre="| grap | pic -T720 -D $pre";;

-x) options="$options -z"; post=""; lp="";;

-y) roff="nroff"; post=""; lp="| col | pg";;

-a) post=""; options="$options -a";;

-*) options="$options $1";;

*) if [ -f $1 ]; then

files="$files $1"

txfile="$1"

if [ -d /print ]; then touch /print/$txfile
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else

echo "USAGE: format (options) files"

echo "To list options, type format -? "; exit

fi;;

esac

shift

done

if [ -n "$files" -o ! -t 0 ]; then

# Use soelim to expand .so’s in input files

# otherwise use cat to send files down pipe.

eval "cat $files $sed $pre |

$roff $options - $toc $post $pages $toc $lp"

else echo "fmt: no files specified"; exit

fi

if [ -f tmp$$ ]; then

if [ -d toc ]; then

sed -n -e "s/ˆ><CONTENTS:\(.*\)/\1/p" tmp$$ > toc/$txfile

fi

if [ -d index ]; then

sed -n -e "s/ˆ><INDEX:\(.*\)/\1/p" tmp$$ > index/$txfile

fi

if [ -d figlist ]; then

sed -n -e "s/ˆ><FIGURE:\(.*\)/\1/p" tmp$$ > figlist/$txfile

fi

if [ -d tablist ]; then

sed -n -e "s/ˆ><TABLE:\(.*\)/\1/p" tmp$$ > tablist/$txfile

fi

sed -n "/ˆ></!p"

rm /tmp$$

fi

exit

Now, for example, when we format a file called ch01, a file of the same name will be written in each of the

four subdirectories toc, index, figlist, and tablist. Each time we reformat the same file, the out-

put will overwrite the previous contents of each accessory file, giving us the most up-to-date version.

When we use the -o option for only partial formatting, writing out of these files is disabled by redirecting

error output to /dev/null, so that we don’t end up with a partial table of contents file.

There’s also a -x option, to allow us to format a file to produce the table of contents and index with-

out producing any regular output. This option uses troff’s -z option to suppress formatted output, and

sets the post and lp shell variables to the null string.

(You may also notice the -cg option, which specifies a different device to both troff and the post-

processor—in this case, a Compugraphic typesetter instead of an Apple LaserWriter. This is included as an

aside, to give you an idea of how this is done).

The contents of the toc, figlist, and tablist directories can be assembled into a complete ta-

ble of contents, or formatted on the spot for a chapter-level table of contents. We can use the following

simple sequence of commands (which could be saved into a shell script):

echo .ta \n(LLu-5n \n(LLuR > book.toc

echo .ce >> book.toc

echo \f3TABLE OF CONTENTS\fP >> book.toc

echo .sp 2 >> book.toc

echo "\t\f3Page\fP" >> book.toc

cat /toc/ch?? /toc/app? >> book.toc

echo .bp >> book.toc

cat /figlist/ch?? /figlist/app? >> book.toc

echo .bp >> book.toc

cat /tablist/ch?? /tablist/app? >> book.toc

The resulting book.toc source file looks like this:

.ta \n(LLu-5n \n(LLuR

.ce

\f3TABLE OF CONTENTS\fP

.sp 2
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|———|\f3Page\fP

.sp 3

Chapter 1 Introduction to Alcuin

.sp 1.5

1.1 A Tradition of Calligraphic Excellence\a\t1-2

1.2 Illuminated Bit-Mapped Manuscripts\a\t1-4

.sp 3

Chapter 2 Getting Started with Alcuin

.sp 1.5

2.1 Objectives of this Session\a\t2-1

2.2 Starting Up the System\a\t2-2

2.2.1 Power-up Procedure\a\t2-2

.

.

.

The index will require more serious postprocessing.

Index Processing

It is relatively simple to assemble the components of a table of contents into sequential order, but it is much

more difficult to process the index entries, because they must be sorted and manipulated in a variety of

ways.

This is one of the most complex tasks presented in this book. So let’s start at the beginning, with the

raw data that is output by troff, and directed to our index subdirectory by the format shell script. For

illustration, we’ll assume a sparse index for a short book containing only three chapters.

As you may recall, the user creates the index simply by entering macro calls of the form:

.XX "input devices"

or:

.XX "input devices, mouse"

or:

.XR "mouse (see input devices)"

throughout the text. Both macros write their arguments to standard output; the .XX macro adds the current

page number, but the .XR (cross reference) macro does not. The user is responsible for using consistent

terminology, capitalization, and spelling. A comma separates optional subordinate entries from the major

term.

An index term should be entered on any page that the user wants indexed—at the start and end of a

major topic, at least, and perhaps several in between if the discussion spans several pages.

In our example, entries are saved into the three files ch01, ch02, and ch03 in the order in which

they appear in the respective input files. The indexing term entered by the user is printed, separated from

the current page number by a tab. Certain cross reference entries do not have a page number. The content

of the raw index files after chapters 1 through 3 have been formatted follows. (Here, and in the following

discussion, a tab is represented by the symbol |———|).

$ cat index/ch??
Alcuin, overview of|———|1-1

illuminated manuscripts|———|1-1

fonts, designing|———|1-2

Alcuin, supported input devices|———|1-2

input devices|———|1-2

input devices, mouse|———|1-2

input devices|———|1-2

mouse (see input devices)

input devices, bit pad|———|1-3

bit pad (see input devices)

input devices|———|1-3
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startup, of system|———|2-1

power, location of main switch|———|2-1

power, for graphics display|———|2-1

startup, of system|———|2-2

input devices, mouse|———|2-2

input devices, bit pad|———|2-3

fonts, selecting|———|3-1

glyphs, designing|———|3-2

extra line space|———|3-3

symbolic names|———|3-3

@ operator|———|3-4

To create a presentable index from this raw data, we need to do the following:

• Sort the entries into dictionary order, and remove duplicates, if any. (Duplicate entries occur

whenever the user enters .XX macros with the same argument over sev eral input pages, and

two or more of those entries fall on the same output page).

• Combine multiple occurrences of the same term, appending a complete list of page numbers

and properly subordinating secondary terms.

• Introduce formatting codes, so that the resulting file will have a pleasing, consistent appear-

ance.

Just how complex a task this is may not be immediately apparent, but rest assured that it takes the com-

bined operations of sort, uniq, and several different awk and sed scripts to do the job properly.

Fortunately, we can hide all of this complexity within a single shell program, so that all the user

needs to type is:

$ cat index/files | indexprog > book.ndx

Sorting the Raw Index

The first part of indexprog processes the index entries before they are passed to awk. The sort pro-

gram prepares a list of alphabetical index entries; uniq removes duplicate entries.

sort -t\|———| -bf +0 -1 +1n | uniq

The options to the sort command specify primary and secondary sort operations, affecting the first and

second fields separately. The -t option specifies that a tab character separates fields. The primary sort is

alphabetic and performed on the indexing term; the secondary sort is numeric and performed on the page

number. The primary sort is also controlled by the following options: the -b option (ignore leading blanks

in making comparisons) is a safety feature; the -f (fold uppercase and lowercase letters) is more important

because the default sort order places all uppercase letters before all lowercase ones; and +0 -1 ensures

that the alphabetic sort considers only the first field. The secondary sort that is performed on the second

field (+1n) is numeric and ensures that page numbers will appear in sequence.

Now let’s look at the index entries after they hav e been sorted:

@ operator|———|3-4

Alcuin, overview of|———|1-1

Alcuin, supported input devices|———|1-2

bit pad (see input devices)

extra line space|———|3-3

fonts, designing|———|1-2

fonts, selecting|———|3-1

glyphs, designing|———|3-2

illuminated manuscripts|———|1-1

input devices|———|1-2

input devices|———|1-3

input devices, bit pad|———|1-3

input devices, bit pad|———|2-3

input devices, mouse|———|1-2

input devices, mouse|———|2-2
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mouse (see input devices)

power, for graphics display|———|2-1

power, location of main switch|———|2-1

startup, of system|———|2-1

startup, of system|———|2-2

symbolic names|———|3-3

Multiple entries that differ only in their page number are now arranged one after the other.

The sort command is a simple way to obtain a sorted list of entries. However, sorting can actually

be a complicated process. For instance, the simple sort command that we showed above obviously works

fine on our limited sample of entries. And while it is designed to process entries with section-page number-

ing (4-1,4-2,4-3), this command also works fine when sorting entries with continuous page numbering

(1,2,3).

However, section page numbering does present a few additional problems that we did not encounter

here. Two-digit section numbers and page numbers, as well as appendices (A-1,A-2,A-3) will not be sorted

correctly. For instance, this might cause the indexing program to produce the following entry:

Alcuin, software A-2, 1-1, 1-10, 1-3, 11-5, 2-1

There are two ways to handle this problem. One is to change the indexing macro in troff so that it pro-

duces three fields. Then the sorting command can sort on the section number independent of the page num-

ber. (Because our awk portion of the indexing program is set up to operate on entries with one or two

fields, you’d hav e to change the program or use a sed script to reduce the number of fields).

The second method uses sed to replace the hyphen with a tab, creating three fields. Actually, we run

a sed script before the entries are sorted and another one after that operation to restore the entry. Then

sort will treat section numbers and page numbers separately in secondary numeric sort operations, and

get them in the right order.

The only remaining problem is how to handle appendices. What happens is that when a numeric sort

is performed on section numbers, lettered appendices are sorted to the top of the list. This requires cloak-

ing the letter in a numeric disguise. Presuming that we won’t hav e section numbers greater than 99, our

sed script prepends the number 100 to each letter; this number is also removed afterwards.

sed ’

s/|———|\([0-9][0-9]*\)-/|———|\1|———|/

s/|———|\([A-Z]\)-/|———|100\1|———|/’ |

sort -t\ -bf +0 -1 +1n +2n | uniq |

sed ’

s/|———|100\([A-Z]\)|———|/|———|\1-/

s/\(|———|.*\)|———|/\1-/’

Now the sorting operation of our index program handles a wider range of entries.

Building the Page Number List

The next step is more complex. We must now combine multiple occurrences of each term that differ only

in the page number, and combine all of the page numbers into a single list. The awk program is the tool of

choice. We can use a script for comparing and manipulating successive lines similar to the one described in

Chapter 13. We begin by building the page number list for each entry.

awk ’

BEGIN { ORS = ""; FS = "|———|" }

NF == 1 { if (NR == 1) printf ("%s", $0);

else printf ("\n%s", $0) }

NF > 1 {

if ($1 == curr)

printf (",%s", $2)

else {

if (NR == 1) printf ("%s", $0)

else printf ("\n%s", $0)

curr = $1
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}

}’

First, the program sets the output record separator (ORS) to the null string, rather than the default newline.

This means that output records will be appended to the same line, unless we specify an explicit newline.

Second, it sets the field separator (FS) to the tab character. This divides each index entry into two

fields: one containing the text, the other containing the page number. (As you may recall, the page number

is separated from the text of the entry by a tab when it is output from troff).

Then, if the number of fields (NF) is 1 (that is, if there is no tab-separated page number, as is the case

with cross reference entries generated with .XR), the program prints out the entire record ($0). If this is

not the first line in the file (NR = 1), it precedes the record with an explicit newline (\n).

If the number of fields is greater than 1 (which is the case for each line containing a tab followed by a

page number), the program compares the text of the entry in the first field ($1) with its previous value, as

stored into the variable curr.

The next few lines might be easier to understand if the condition were written in reverse order:

if ($1 != curr)

{ if (NR == 1) printf ("%s", $0)

else printf ("\n%s", $0)

curr = $1

}

else printf (",%s", $2)

If the first field is not equal to curr, then this is a new entry, so the program prints out the entire

record (again preceding it with an explicit newline if this is not the first line of the file). The value of curr

is updated to form the basis of comparison for the next record.

Otherwise (if the first field in the current record is the same as the contents of the variable curr), the

program appends a comma followed by the value of the second field ($2) to the current record.

The output after this stage of the program looks like this:

@ operator|———|3-4

Alcuin, overview of|———|1-1

Alcuin, supported input devices|———|1-2

bit pad (see input devices)

extra line space|———|3-3

fonts, designing|———|1-2

fonts, selecting|———|3-1

glyphs, designing|———|3-2

illuminated manuscripts|———|1-1

input devices|———|1-2,1-3

input devices, bit pad|———|1-3,2-3

input devices, mouse|———|1-2,2-2

mouse (see input devices)

power, for graphics display|———|2-1

power, location of main switch|———|2-1

startup, of system|———|2-1,2-2

symbolic names|———|3-3

Subordinating Secondary Entries

The next trick is to subordinate secondary entries under the main entry, without reprinting the text of the

main entry. In addition, we want to represent consecutive page numbers as a range separated by two dots

(..) rather than as a list of individual pages. We’ll show this script in two sections:

awk ’

BEGIN { FS = "|———|";}

{

n = split ($1, curentry, ",")

if (curentry[1] == lastentry[1])
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printf (" %s",curentry[2])

else {

if (n > 1) printf ("%s\n %s", curentry[1], curentry[2])

else printf ("%s", $1)

lastentry[1] = curentry[1]

}

}

This section of the script uses awk’s split function to break the first field into two parts, using a comma

as a separator.

There are several cases that the program has to consider:

• The text of the entry does not contain a comma, in which case we can just print the entire first

field. See line 9: printf ("%s", $1).

• The entry does contain a comma, in which case we want to see if we have a new primary term

(curentry[1]) or just a new secondary one (curentry[2]).

• If the primary term is the same as the last primary term encountered (and saved into the vari-

able lastentry), we only need to print out the secondary term. See line 6: printf

("%s", curentry[2]).

• Otherwise, we want to print out both the primary and secondary terms: See line 8: printf

("%s\n %s", curentry[1], curentry[2]).

For example:

@ operator|———|3-4

Alcuin, overview of|———|1-1

Alcuin, supported input devices|———|1-2

When the first line is processed, the split will return a value of 0, so the entire line will be output.

When the second line is processed, lastentry contains the string @ operator, curentry[1]

contains Alcuin, and curentry[2] contains overview of. Because lastentry is not the same as

curentry[1], the program prints out both curentry[1] and curentry[2].

When the third line is processed, curentry[1] again contains the word Alcuin, but curen-

try[2] contains the words supported input devices. In this case, only curentry[2] is printed.

The next part of the script, which follows, looks considerably more complicated, but uses essentially

the same mechanism. It splits the second field on the line (the page number list) on the hyphens that sepa-

rate section number from page number. Then, it compares the various sections it has split to determine

whether or not it is dealing with a range of consecutive pages. If so, it prints only the first and last members

of the series, separating them with the range notation (..).

If you were able to follow the previous portion of the script, you should be able to piece this one

together as well:

NF == 1{ printf ("\n") }

(NF > 1) && ($2 !˜ /.*_.*/) {

printf ("\t")

n = split ($2, arr, ",")

printf ("%s", arr[1])

split (arr[1], last, "-")

for (i = 2; i <= n; ++i) {

split (arr[i], curr, "-")

if ((curr[1] == last[1]) && (curr[2]/1 == last[2]/1+1)) {

if (i != n) {

split (arr[i+1], follow, "-")

if ((curr[1] != follow[1]) || (curr[2]/1+1 != follow[2]/1))

printf ("..%s", arr[i])

} else printf ("..%s", arr[i])

} else printf (", %s", arr[i])

last[1] = curr[1]; last[2] = curr[2]

}

printf ("\n")

}’
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The output from this awk program (in sequence with the previous ones) now looks like this:

@ operator|———|3-4

Alcuin

overview of|———|1-1

supported input devices|———|1-2

bit pad (see input devices)

extra line space|———|3-3

fonts

designing|———|1-2

selecting|———|3-1

glyphs

designing|———|3-2

illuminated manuscripts|———|1-1

input devices|———|1-2..1-3

bit pad|———|1-3, 2-3

mouse|———|1-2, 2-2

mouse (see input devices)

power

for graphics display|———|2-1

location of main switch|———|2-1

startup

of system|———|2-1..2-2

symbolic names|———|3-3

That’s starting to look like an index!

Adding Formatting Codes

We could simply quit here, and let the user finish formatting the index. However, awk can continue the job

and insert formatting codes.

We’d like awk to put in headings and divide the index into alphabetic sections. In addition, it would

be nice to insert indentation requests, so that we can format the index source file in fill mode, so that any

long lines will wrap correctly.

Let’s look at the coded output before we look at the script that produces it. Only the beginning of the

output is shown:

.ti -4n

@ operator|———|3-4

.br

.ne 4

.ti -2n

\fBA\fR

.br

.ne 2

.ti -4n

Alcuin

.br

.ti -4n

overview of|———|1-1

.br

.ti -4n

supported input devices|———|1-2

.br

.ne 4

.ti -2n

\fBB\fR

.br

.ne 2

.ti -4n
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bit pad (see input devices)

.br

.ne 4

.ti -2n

\fBE\fR

.br

.ne 2

.ti -4n

extra line space|———|3-3

.br

Here’s a script that does this part of the job:

awk ’

BEGIN {OFS = ""

lower = "abcdefghijklmnopqrstuvwxyz"

upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

}

NF > 0 {

if ($0 !˜ /ˆ .*/) {

n = 1

while ((newchar = substr($1,n,1)) !˜ /[A-Za-z]/) {

n = n + 1

if (n == 100) { # bad line

newchar = oldchar

break

}

}

if (newchar ˜ /[a-z]/) {

for (i = 1; i <= 26; ++i) {

if (newchar == substr (lower, i, 1)) {

newchar = substr (upper, i, 1)

break

}

}

}

if (substr($1,1,1) ˜ /[0-9]/)

newchar = ""

if (newchar != oldchar) {

printf ("\n\n%s\n", ".ne 4")

printf ("%s\n", ".ti -2n")

printf ("%s%s%s\n", "\\fB", newchar, "\\fR")

printf ("%s\n", ".br")

oldchar = newchar }

printf ("%s\n", ".ne 2")

}

printf ("%s\n", ".ti -4n")

printf ("%s\n", $0)

printf ("%s\n", ".br")

}’

Every line in the input (NF > 1) will be subjected to the last three lines in the program. It will be sur-

rounded by formatting codes and printed out.

printf ("%s\n", ".ti -4n")

printf ("%s\n", $0)

printf ("%s\n", ".br")

The rest of the script checks when the initial character of a primary entry changes and prints a heading.

As you may have noticed, in the output of the previous script, secondary entries were indented by

three leading spaces. They can be excluded from consideration at the outset by the condition:

if ($0 !˜ /ˆ .*/) {

All other lines are checked to determine their initial character. The awk program’s substr function

extracts the first letter of each line. Then, much as it did before, the program compares each entry with the

previous until it detects a change.
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The program is basically looking for alphabetic characters, but must test (especially in computer

manuals) for strings that begin with nonalphabetic characters. (If it doesn’t do this, it will loop endlessly

when it comes to a string that doesn’t begin with an alphabetic character). If the program loops 100 times

on a single line, it assumes that the character is nonalphabetic, breaks out of the loop, and goes on to the

next line.

When the program finds a change in the initial alphabetic character, it prints a heading consisting of a

single capital letter and associated formatting requests.

Primary terms beginning with nonalphabetic characters are output without causing a change of head-

ing. (Because they are already sorted to the beginning of the file, they will all be listed at the head of the

output before the A’s).

Final Formatting Touches

Having come this far, it hardly seems fair not to finish the job, and put in the final formatting codes that will

allow us to format and print the index without ever looking at the source file (although we should save it to

allow manual fine-tuning if necessary).

A simple sed script can be used for these final touches:

sed "1i\\

.Se \"\" \"Index\"\\

.in +4n\\

.MC 3.15i 0.2i\\

.ds RF Index - \\\\\\\\n(PN\\

.ds CF\\

.ds LF\\

.na

s/|———|/ /"

Assuming that we’re using our extended ms macros, these initial macros will create the section heading

Index, print the index in two columns, and use a page number of the form Index-n. (Note how many

backslashes are necessary before the number register invocation for PN. Backslashes must be protected

from the shell, sed, and troff. This line will be processed quite a few times, by different programs,

before it is output).

Finally, the script converts the tab separating the index entry from the first page number into a pair of

spaces.

Special Cases

But our indexing script is not complete. There are a number of special cases still to consider. For example,

what about font changes within index entries? In a computer manual, it may be desirable to carry through

“computer voice” or italics into the index.

However, the troff font-switch codes will interfere with the proper sorting of the index. There is a

way around this—awkward, but effective. As you may recall, we use a sed script named cleanup.sed

called from within format. This script changes double quotation marks to pairs of matched single quota-

tion marks for typesetting, and changes double hyphens to em dashes. We can also use it to solve our cur-

rent problem.

First, we add the following lines to cleanup.sed:

/ˆ\.X[XR]/{

s/\\\(fP\)/%%˜/g

s/\\\(fS\)/%%˜˜/g

s/\\\(fB\)/%%˜˜˜/g

s/\\\(fI\)/%%˜˜˜˜/g

s/\\\(fR\)/%%˜˜˜˜˜/g
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s/\\\(f(CW\)/%%˜˜˜˜˜˜/g

}

Within an .XX or .XR macro, the script will change the standard troff font-switch codes into an arbi-

trary string of nonalphabetic characters.

Then we add the -d option (dictionary order) to our initial sort command in the index program.

This option causes sort to ignore nonalphabetic characters when making comparisons. (The exception

will be lines like @ operator, which contain no alphabetic characters in the first field. Such lines will still

be sorted to the front of the list).

Finally, we use the concluding sed script in the indexing sequence to restore the proper font-switch

codes in the final index source file:

s/%%˜˜˜˜˜˜/\\\\f(CW/g

s/%%˜˜˜˜˜/\\\\fR/g

s/%%˜˜˜˜/\\\\fI/g

s/%%˜˜˜/\\\\fB/g

s/%%˜˜/\\\\fS/g

s/%%˜/\\\\fP/g

We might also want to consider the case in which a leading period (as might occur if we were indexing

troff formatting requests) appears in an index entry. Inserting the following line one line from the end of

the last awk script we created will do the trick. These lines insulate troff codes in index entries from the

formatter when the index source file is processed by troff for final printing:

if ($0 ˜ /ˆ\..*/) printf ("\\&")

if ($0 ˜ /ˆ%%˜˜*\./) printf ("\\&")

Lines beginning with a . will be preceded with a troff zero-width character (\&).

The Entire Index Program

We hav e broken the indexing process into stages to make it easier to understand. However, there is no need

to keep individual awk and sed scripts; they can be combined into a single shell program simply by piping

the output of one portion to another, within the shell program.

Here’s the whole program, as finally assembled:

sed ’

s/|———|\([0-9][0-9]*\)-/|———|\1|———|/

s/|———|\([A-Z]\)-/|———|100\1|———|/’ |

sort -t\|———| -bdf +0 -1 +1n +2n | uniq |

sed ’

s/|———|100\([A-Z]\)|———|/|———|\1-/

s/\(|———|.*\)|———|/\1-/’ |

awk ’

BEGIN { ORS = ""; FS = "|———|" }

NF == 1 { if (NR == 1) printf ("%s", $0);

else printf ("\n%s", $0) }

NF > 1 {

if ($1 == curr)

printf (",%s", $2)

else {

if (NR == 1) printf ("%s", $0)

else printf ("\n%s", $0)

curr = $1

}

}’ | awk’

BEGIN { FS = "|———|";}

{

n = split ($1, curentry, ",")

if (curentry[1] == lastentry[1])

printf (" %s",curentry[2])

else {
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if (n > 1) printf ("%s\n %s", curentry[1], curentry[2])

else printf ("%s", $1)

lastentry[1] = curentry[1]

}

}

NF == 1{ printf ("\n") }

(NF > 1) && ($2 !˜ /.*_.*/) {

printf ("\t")

n = split ($2, arr, ",")

printf ("%s", arr[1])

split (arr[1], last, "-")

for (i = 2; i <= n; ++i) {

split (arr[i], curr, "-")

if ((curr[1] == last[1]) && (curr[2]/1 == last[2]/1+1)) {

if (i != n) {

split (arr[i+1], follow, "-")

if ((curr[1] != follow[1]) || (curr[2]/1+1 != follow[2]/1))

printf ("..%s", arr[i])

} else printf ("..%s", arr[i])

} else printf (", %s", arr[i])

last[1] = curr[1]; last[2] = curr[2]

}

printf ("\n")

}’ awk’

BEGIN {OFS = ""

lower = "abcdefghijklmnopqrstuvwxyz"

upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

}

NF > 0 {

if ($0 !˜ /ˆ .*/) {

n = 1

while ((newchar = substr($1,n,1)) !˜ /[A-Za-z]/) {

n = n + 1

if (n == 100) { # bad line

newchar = oldchar

break

}

}

if (newchar ˜ /[a-z]/) {

for (i = 1; i <= 26; ++i) {

if (newchar == substr (lower, i, 1)) {

newchar = substr (upper, i, 1)

break

}

}

}

if (substr($1,1,1) ˜ /[0-9]/)

newchar = ""

if (newchar != oldchar) {

printf ("\n\n%s\n", ".ne 4")

printf ("%s\n", ".ti -2n")

printf ("%s%s%s\n", "\\fB", newchar, "\\fR")

printf ("%s\n", ".br")

oldchar = newchar

}

printf ("%s\n", ".ne 2")

}

printf ("%s\n", ".ti -4n")

if ($0 ˜ /ˆ\..*/) printf ("\\&")

if ($0 ˜ /ˆ%%˜˜*\./) printf ("\\&")

printf ("%s\n", $0)

printf ("%s\n", ".br")

}’ | sed "1i\\

.Se \"\" \"Index\"\\

.in +4n\\
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.MC 3.4i 0.2i\\

.ds RF Index - \\\\\\\\n(PN\\

.ds CF\\

.ds LF\\

.na

s/%%˜˜˜˜˜˜/\\\\f(CW/g

s/%%˜˜˜˜˜/\\\\fR/g

s/%%˜˜˜˜/\\\\fI/g

s/%%˜˜˜/\\\\fB/g

s/%%˜˜/\\\\fS/g

s/%%˜/\\\\fP/g"

The result of all this processing is source text that can be piped directly to the formatter, sav ed in a file for

later formatting (or perhaps minor editing), or both (using tee to “split” standard output into two streams,

one of which is saved in a file).

Assuming that the various raw source files produced by troff are stored in a subdirectory called

indexfiles, and that the index script is called indexprog, we can format and print the index as fol-

lows:

$ cat indexfiles/* | indexprog | ditroff -mS | ... | lp

The result will look something like this:

INDEX

@ operator 3-4 P

power

for graphics display 2-1

A location of main switch 2-1

Alcuin

overview of 1-1

supported input devices 1-2 S

startup

of system 2-1—2-2

B symbolic names 3-3

bit pad (see input devices)

•

•

•
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Let make Remember the Details

Even though we’ve hidden the really complex details of index processing inside a shell script, and the for-

mat shell script itself handles a lot of the dirty work, there is still a lot for the user to keep track of. The

make utility introduced in Chapter 11 can take us a long way towards making sure that everything that

needs to happen for final production of the finished book comes together without a hitch.

Here are some of the things we want to make sure have been done:

• All of the relevant sections have been printed in their most up-to-date form. Odd as it may

seem, it is possible to have last minute changes to a file that never make it into the printed

book.

• The book has been proofed using whatever automatic tools we have provided, including the

proof and double shell scripts (or wwb if you have it). All “review notes” embedded in the

text must also be satisfied and removed.

• An updated table of contents and index hav e been printed.

You can probably think of others as well.

The make utility is the perfect tool for this job. We’ve already seen in Chapter 11 how it can be used

to specify the files (and the formatting options) required for each section of the book. Unfortunately, this

part of the job requires that you keep formatted output files, which are quite large. If disk space is a prob-

lem, this drawback might lead you to think that make isn’t worth the bother.

However, with a little thought, you can get around this restriction. Instead of keeping the formatted

output file, you can keep a zero-length file that you touch whenever you format the source file. You could

add the following line to the end of the format script:

touch print/$file

Or, if you use make itself to print your document, you could put the touch command into the makefile.

Your makefile might look like this:

book: print/ch01 print/ch02 print/ch03...

print/ch01 : ch01

sh /usr/local/bin/format -mS -rv1 -rS2 ch01

touch print/ch01

print/ch02 : ch02

sh /usr/local/bin/format -mS -P -rv1 -rS2 ch02

touch print/ch02

.

.

.

Notice that in order to execute the local formatting shell script, it is necessary to execute sh and specify the

complete pathname. The options specified with the format shell script can be specific to each file that is

formatted. However, generally you want to use the same options to format all the files that make up a par-

ticular document. Using variables, you can create a more generalized makefile that is easier to change.

FORMAT: sh /usr/local/bin/format

OPTIONS: -mS -P -rv1 -rS2

book: print/ch01 print/ch02 print/ch03...

print/ch01 : ch01

$(FORMAT) $(OPTIONS) ch01

touch print/ch01

print/ch02 : ch02

$(FORMAT) $(OPTIONS) ch02

touch print/ch02
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.

.

.

The variables used by make are set like shell variables. But when they are referenced, the name of the

variable must be enclosed in parentheses in addition to being prefixed with a dollar sign.

A user can now easily edit the OPTIONS variable to add or remove options. You could also place

additional options on the command for a particular file. This is not necessary, though, just because some of

the files have tables, equations, or pictures and others don’t. Other than the small bit of extra processing it

requires, there’s no reason not to run the preprocessor on all files.

Our makefile can be further expanded. To make sure that our index and table of contents are up-to-

date (and to automate the process of creating them out of the individual raw output files that the format

script creates), we can add the following dependencies and creation instructions:

book: print/ch01 ... proof/ch01 ... book.index book.toc

.

.

.

print/ch01 : ch01

.

.

.

book.index : index/ch01 index/ch02 ...

cat index/* | sh /usr/local/bin/indexprog > book.index

book.toc : toc/ch01...figlist/chO1...tablist/ch01...

echo .ta \n(LLu-5n \n(LLuR > book.toc

echo .ce >> book.toc

echo \f3TABLE OF CONTENTS\fP >> book.toc

echo .sp 2 >> book.toc

echo "\t\f3Page\fP" >> book.toc

cat toc/ch01...toc/appz >> book.toc

echo ’.bp’ >> book.toc

cat figlist/ch01...figlist/appz >> book.toc

echo ’.bp’ >> book.toc

cat tablist/ch01...tablist/appz >> book.toc

toc/ch01 : ch01

$(FORMAT) $(OPTIONS) -x ch01

toc/ch02 : ch02

$(FORMAT) $(OPTIONS) -x ch02

.

.

.

index/ch01 : ch01

$(FORMAT) $(OPTIONS) -x ch01

.

.

.

figlist/ch01 : ch01

$(FORMAT) $(OPTIONS) -x ch01

.

.

.

tablist/ch01 : ch01

$(FORMAT) $(OPTIONS) -x ch01

.

.

.

Because we have directories named toc and index, we giv e our source files names such as book.toc

and book.index

We can therefore enter:
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$ make book.toc

and the table of contents will be compiled automatically. When you enter the above command, the make

program recognizes book.toc as a target. It evaluates the following line that specifies several dependent

components.

book.toc: toc/ch01 toc/ch02 toc/ch03

In turn, each of these components are targets dependent on a source file.

toc/ch02: ch02

$(FORMAT) $(OPTIONS) -x ch02

What this basically means is that if changes have been made to ch02 since the file book.toc was com-

piled, the source file will be formatted again, producing new toc entries. The other files, assuming that they

have not been changed, will not be reformatted as their entries are up-to-date.

We can add other “targets”, for instance, to check whether or not every chapter in the book has been

proofed since it was last edited. Based on when the dependent components were last updated, you could

invoke the proof program on the associated file, grep for Review Note macros, or just print a message to

the user reminding him or her to proof the file.

To do this, we create a pseudo-target. If no file with the name proof exists, it can never be up-to-

date, so typing:

$ make proof

will automatically force proofing of the document according to the rules you have specified in the makefile.

The print directory also serves as a pseudo-target, useful for printing individual chapters. Users

don’t hav e to remember the formatting options that must be specified for a particular file.

And if all these reasons don’t convince you to learn make and begin constructing makefiles for large

documents, perhaps this next benefit will. It gives you a simple two-word command to print an entire book

and its apparatus.

$ make book

When you enter this command, each formatting command as it is being executed will be displayed on the

screen. If you wish to suppress these messages while you do other work, invoke make with the -s option

or place the line .SILENT: at the top of the makefile.

Building the Makefile

You are limited only by your imagination and ingenuity in organizing your work with a makefile. However,

the more complex the makefile, the longer it gets, and the more difficult for inexperienced users to create.

You can get around this problem too—just write a shell script to build the makefile, taking as argu-

ments the files that make up the document. Here’s such a script, called buildmake, that will produce a

makefile similar to the one just described. (The make utility requires that the actions to be performed for

each target begin with a tab. Such explicit tabs are shown in the following script by the symbol |———|).

if [ $# -eq 0 ]; then

echo "USAGE: buildmake files"

echo "(You must specify the files that make up the book)"

exit

fi

if [ ! -d print ]; then

mkdir print

mkdir proof

fi

if [ ! -d index ]; then

mkdir index

fi

if [ ! -d toc ]; then

mkdir toc

mkdir figlist
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mkdir tablist

fi

for x

do

prifiles="$prifiles print/$x"

profiles="$profiles proof/$x"

tcfiles="$tcfiles toc/$x"

xfiles="$xfiles index/$x"

fgfiles="$fgfiles figlist/$x"

tbfiles="$tbfiles toc/$x"

done

echo ".SILENT:" > makefile

echo "FORMAT = sh /usr/local/bin/format" >> makefile

echo "OPTIONS = -mS" >> makefile

echo "INDEXPROG = sh /usr/local/bin/indexprog" >> makefile

echo "book : $prifiles $profiles book.toc book.index" >> makefile

echo "book.index : $xfiles/" >>makefile

echo "|———|cat $xfiles | $(INDEXPROG) > book.index" >> makefile

echo "|———|$(FORMAT) $(OPTIONS) book.index" >> makefile

echo "book.toc : $tcfiles" >> makefile

echo "|———|echo .ta \n(LLu-5n \n(LLuR > book.toc" >> makefile

echo "|———|echo .ce >> book.toc" >> makefile

echo "|———|echo\f3TABLE OF CONTENTS\fP >> book.toc" >> makefile

echo "|———|echo .sp 2 >> book.toc" >> makefile

echo "|———|echo "\t\f3Page\fP" >> book.toc" >> makefile

echo "|———|cat /work/lib/toc_top >> book.toc" >> makefile

echo "|———|cat $tcfiles >> book.toc" >> makefile

echo "|———|echo .bp >> book.toc" >> makefile

echo "|———|cat $fgfiles >> book.toc" >> makefile

echo "|———|echo .bp >> book.toc" >> makefile

echo "|———|cat $tbfiles >> book.toc" >> makefile

echo "|———|$(FORMAT) $(OPTIONS) book.toc" >> makefile

for x

do

echo "print/$x : $x" >> makefile

echo "|———|$(FORMAT) $(OPTIONS) $x" >> makefile

echo "proof/$x : $x" >> makefile

echo "|———|echo $x has not been proofed" >> makefile

echo "toc/$x : $x" >> makefile

echo "|———|$(FORMAT) $(OPTIONS) -x $x" >> makefile

echo "index/$x : $x" >> makefile

echo "|———|$(FORMAT) $(OPTIONS) -x $x" >> makefile

done

To create a complex makefile, all the user needs to do is type:

$ buildmake files

In addition, the user may want to manually edit the first line of the makefile, which specifies formatter

options.

Where to Go from Here

Large as this book is, it is far from comprehensive. We hav e covered the basic editing and formatting tools

in some detail, but even there, topics have been glossed over. And when it comes to the more advanced

tools, programs not explicitly designed for text processing, much has been left out.

The sheer size and complexity of UNIX is one of its fascinations. To a beginner, it can be daunting,

but to an advanced user, the unknown has an appeal all its own. Particularly to a technical writer, for whom

the computer is a subject as well as a tool, the challenge of taking more control over the process of book

production can be endlessly fascinating. The subject and the method of inquiry become ever more inter-

twined, until, in Yeat’s immortal phrase:
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How can you know the dancer from the dance?



Appendix A

Editor Command Summary

This section is divided into fiv e major parts, describing the commands in the text editors vi, ex, sed, and

awk, and the pattern-matching syntax common to all of them.

Pattern-Matching Syntax

A number of UNIX text-processing programs, including ed, ex, vi, sed, and grep, allow you to perform

searches, and in some cases make changes, by searching for text patterns rather than fixed strings. These

text patterns (also called regular expressions) are formed by combining normal characters with a number of

special characters. The special characters and their use are as follows:

. Matches any single character except newline.

* Matches any number (including zero) of the single character (including a character spec-

ified by a regular expression) that immediately precedes it. For example, because .

means “any character,” .* means “match any number of any characters.”

[...] Matches any one of the characters enclosed between the brackets. For example, [AB]

matches either A or B. A range of consecutive characters can be specified by separating

the first and last characters in the range with a hyphen. For example, [A-Z] matches

any uppercase letter from A to Z, and [0-9] matches any digit from 0 to 9. If a caret

(ˆ) is the first character in the brackets, the comparison is inverted: the pattern will

match any characters except those enclosed in the brackets.

\{n,m\} Matches a range of occurrences of the single character (including a character specified

by a regular expression) that immediately precedes it. n and m are integers between 0

and 256 that specify how many occurrences to match. \{n\} matches exactly n occur-

rences, \{n,\} matches at least n occurrences, and \{n,m\} matches any number of

occurrences between n and m. For example, A\{2,3\} matches either AA (as in

AARDVARK) or AAA (as in AAA Travel Agency) but will not match the single letter

A. This feature is not supported in all versions of vi.

ˆ Requires that the following regular expression be found at the beginning of the line.

$ Requires that the preceding regular expression be found at the end of the line.

\ Treats the following special character as an ordinary character. For example, \. stands

for a period and \* for an asterisk.

\( \) Saves the pattern enclosed between \( and \) in a special holding space. Up to nine

patterns can be saved in this way on a single line. They can be “replayed” in substitu-

tions by the escape sequences \1 to \9. This feature is not used in grep and egrep.

\n Matches the nth pattern previously saved by \( and \), where n is a number from 0 to 9

and previously saved patterns are counted from the left on the line. This feature is not

used in grep and egrep.

The egrep and awk programs use an extended set of metacharacters:

regexp+ Matches one or more occurrences of the regular expression (regexp).

regexp? Matches zero or one occurrences of the regular expression.

regexp | regexp Matches lines containing either regexp.

449
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(regexp) Used for grouping in complex regular expressions (e.g., with | above).

Regular expressions in ex (: commands from vi) offer some different extensions:

\< Constrains the following pattern to be matched only at the beginning of a word.

\> Constrains the following pattern to be matched only at the end of a word.

\u Appended to the replacement string of a substitute command, converts first character of

replacement string to uppercase.

\U Appended to the replacement string of a substitute command, converts entire replacement

string to uppercase.

\l Appended to the replacement string of a substitute command, converts first character of

replacement string to lowercase.

\L Appended to the replacement string of a substitute command, converts entire replacement

string to lowercase.

The vi Editor

Command-Line Syntax

There are two commands to invoke the vi editor.

vi [options] [file(s)]

or:

view [file(s)]

If a file is not named, vi will open a file that can be given a name with the :f command or when it is saved

using the :w command. If more than one file is named, the first file is opened for editing and :n is used to

open the next file. The view command opens the first file for read-only use; changes cannot be saved.

Options:

-l Open file for editing LISP programs

-r Recover file

-R Open file in read-only mode; same as using view

-ttag Start at tag

-x Open encrypted file

+ Open file at last line

+n Open file at line n

+/pattern Open file at first occurrence of pattern

-wn Set window to n lines

Operating Modes

After the file is opened, you are in command mode. From command mode, you can invoke insert mode,

issue editing commands, move the cursor to a different position in the file, invoke ex commands or a UNIX

shell, and save or exit the current version of the file.

The following commands invoke insert mode.

a A i I o O R s S

While in insert mode, you can enter new text in the file. Press the ESCAPE key to exit insert mode and

return to command mode.
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Command Syntax

The syntax for editing commands is:

[n] operator [n] object

The commands that position the cursor in the file represent objects that the basic editing operators can take

as arguments. Objects represent all characters up to (or back to) the designated object. The cursor

movement keys and pattern-matching commands can be used as objects. Some basic editing operators are.

c Change

d Delete

y Yank or copy

If the current line is the object of the operation, then the operator is the same as the object: cc, dd, yy. n is

the number of times the operation is performed or the number of objects the operation is performed on. If

both n’s are specified, the effect is n times n.

The following text objects are represented:

word Includes characters up to a space or punctuation mark. Capitalized object is variant

form that recognizes only blank spaces.

sentence Up to . ! ? followed by two spaces.

paragraph Up to next blank line or paragraph macro defined by para= option.

section Up to next section heading defined by sect= option.

Examples:

2cw Change the next two words

d} Delete up to the next paragraph

dˆ Delete back to the beginning of the line

5yy Copy the next five lines

3dl Delete three characters to the right of the cursor

Status Line Commands

Most commands are not echoed on the screen as you input them. However, the status line at the bottom of

the screen is used to echo input for the following commands:

/ ? Start pattern-matching search forward (/) or backwards (?)

: Invoke an ex command

! Invoke a UNIX command that takes as its input an object in the buffer and replaces it with out-

put from the command

Commands that are input on the status line must be entered by pressing the RETURN key. In addition, error

messages and output from the ˆG command are displayed on the status line.

Summary of vi Commands

. Repeat last command (insert, change, or delete).

ˆ@ Repeat last command.

@buffer Execute command stored in buffer.

a Append text after cursor.
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A Append text at end of line.

ˆA Unused.

b Back up to beginning of word in current line.

B Back up to word, ignoring punctuation.

ˆB Scroll backward one window.

c Change operator.

C Change to end of current line.

ˆC Unused.

d Delete operator.

D Delete to end of current line.

ˆD Scroll down half-window.

e Move to end of word.

E Move to end of word, ignoring punctuation.

ˆE Show one more line at bottom of window.

f Find next character typed forward on current line.

F Find next character typed back on current line.

ˆF Scroll forward one window.

g Unused.

G Go to specified line or end of file.

ˆG Print information about file on status line.

h Left arrow cursor key.

H Move cursor to home position.

ˆH Left arrow cursor key; BACKSPACE key in insert mode.

i Insert text before cursor.

I Insert text at beginning of line.

ˆI Unused in command mode; in insert mode, same as TAB key.

j Down arrow cursor key.

J Join two lines.

ˆJ Down arrow cursor key.

k Up arrow cursor key.

K Unused.

ˆK Unused.

l Right arrow cursor key.

L Move cursor to last position in window.

ˆL Redraw screen.

m Mark the current cursor position in register (a-z).

M Move cursor to middle position in window.

ˆM Carriage return.

n Repeat the last search command.

N Repeat the last search command in reverse direction.

ˆN Down arrow cursor key.

o Open line below current line.

O Open line above current line.

ˆO Unused.

p Put yanked or deleted text after or below cursor.

P Put yanked or deleted text before or above cursor.

ˆP Up arrow cursor key.

q Unused.

Q Quit vi and invoke ex.

ˆQ Unused in command mode; in input mode, quote next character.

r Replace character at cursor with the next character you type.

R Replace characters.

ˆR Redraw the screen.



Editor Command Summary 453

s Change the character under the cursor to typed characters.

S Change entire line.

ˆS Unused.

t Move cursor forward to character before next character typed.

T Move cursor back to character after next character typed.

ˆT Unused in command mode; in insert mode, used with autoindent option set.

u Undo the last change made.

U Restore current line, discarding changes.

ˆU Scroll the screen upward half-window.

v Unused.

V Unused.

ˆV Unused in command mode; in insert mode, quote next character.

w Move to beginning of next word.

W Move to beginning of next word, ignoring punctuation.

ˆW Unused in command mode; in insert mode, back up to beginning of word.

x Delete character under the cursor.

X Delete character before cursor.

ˆx Unused.

y Yank or copy operator.

Y Make copy of current line.

ˆY Show one more line at top of window.

z Redraw the screen, repositioning cursor when followed by CR at the top, .

at the middle, and - at the bottom of screen.

ZZ Exit the editor, saving changes.

ˆZ Unused.

Characters Not Used in Command Mode

The following characters are unused in command mode and can be mapped as user-defined com-

mands.

ˆA g K ˆK

ˆO q ˆT v

V ˆW ˆX ˆZ

* \ (underscore)

vi set Options

The following options can be specified with the :set command.

Option

(Abbreviation) Default Description

noaiautoindent

(ai)

Indents each line to the same level as the line above.

Use with shiftwidth option.

apautoprint

(ap)

Changes are displayed after each editor command.

(For global replacement, last replacement displayed.)

noawautowrite

(aw)

Automatically writes (saves) file if changed before

opening another file with :n or before giving UNIX

command with :!.
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nobfbeautify

(bf)

Ignores all control characters during input (except

tab, newline, or formfeed).

=tmpdirectory

(dir)

Names directory in which ex stores buffer files.

(Directory must be writable.)

edcompatible noed-

compatible

Uses ed-like features on substitute commands.

errorbellserrorbells

(eb)

Error messages ring bell.

=8hardtabs

(ht)

Defines boundaries for terminal hardware tabs.

noicignorecase

(ic)

Disregards case during a search.

nolisplisp Indents are inserted in appropriate LISP format. () {}

[[ and ]] are modified to have meaning for lisp.

nolistlist

(li)

Tabs print as ˆI; ends of lines are marked with $.

(Used to tell if end character is a tab or a space.)

magicmagic Wildcard characters . * [ are special in patterns.

mesgmesg Permits messages to display on terminal while editing

in vi.

nonunumber

(nu)

Displays line numbers on left of screen during editing

session.

openopen Allows entry to open or visual mode from ex.

nooptoptimize

(opt)

Deletes carriage returns at the end of lines when

printing multiple lines; speeds output on dumb termi-

nals when printing lines with leading white space

(blanks or tabs).

paragraphs

(para)

=IPLPPPQP

LIpplpipbp

Defines paragraph delimiters for movement by { or

}. The pairs of characters in the value are the names

of nroff/troff macros that begin paragraphs.

promptprompt Sets ex prompt (:).

nororeadonly

(ro)

Any writes (saves) of a file will fail unless you use !

after the write (works with w, ZZ, or autowrite).

noredrawredraw

(re)

Terminal will redraw the screen whenever edits are

made (insert mode pushes over existing characters;

deleted lines immediately close up). Default depends

on line speed and terminal type. noredraw is use-

ful at slow speeds on a dumb terminal; deleted lines

show up as @, and inserted text appears to overwrite

existing text until you press ESC.

remapremap Allows nested map sequences.

=5report Size of a large edit (i.e., number of lines affected by a

single edit) that will trigger a warning message on

bottom line of screen.

=[½ window]scroll Amount of screen to scroll.

=SHNHH HUsections Defines section delimiters for { } movement. The

pairs of characters in the value are the names of

nroff/troff macros that begin sections.

=/bin/shshell

(sh)

Pathname of shell used for shell escape (:!) and

shell command (:sh). Value is derived from shell

environment.

sw=8shiftwidth

(sw)

Defines number of spaces to indent when using the

>> or << commands in the autoindent option.
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nosmshowmatch

(sm)

In vi, when ) or } is entered, cursor moves briefly to

matching ( or {. (If match is not on the screen,

rings the error message bell.) Very useful for pro-

gramming.

nosmdshowmode

(smd)

(System V, Release 2 vi only). The string Input

Mode is printed on the command line whenever input

mode is entered.

slowopen

(slow)

Holds off display during insert. Default depends on

line speed and terminal type.

=8tabstop

(ts)

Sets number of spaces that a TAB indents during edit-

ing session. (Printer still uses system tab of 8.)

=0taglength

(H)

Defines the number of characters that are significant

for tags. Default (zero) means that all characters are

significant.

tags =tags

/usr/lib/tags

Pathname of files containing tags. (See the tag(1)

command.) By default, system searches

/usr/lib/tags and the file tags in the current

directory.

term Terminal type.

noterseterse Displays briefer error messages.

timeouttimeout Macros “time out” after 1 second.

ttytype Terminal type.

warnwarn Displays No write since last change as warning.

window

(w)

Shows a certain number of lines of the file on the

screen. Default depends on line speed and terminal

type.

wswrapscan

(ws)

Searches wraparound end of file.

=0wrapmargin

(wm)

Defines right margin. If greater than zero, automati-

cally inserts carriage returns to break lines.

nowawriteany

(wa)

Allows saving to any file.

The ex Editor

The ex editor is a line editor that serves as the foundation for the screen editor, vi. All ex commands

work on the current line or a range of lines in a file. In vi, ex commands are preceded by a colon and

entered by pressing RETURN. In ex itself, the colon is supplied as the prompt at which you enter com-

mands.

The ex editor can also be used on its own. To enter ex from the UNIX prompt:

ex filename

Any of the options described for invoking vi may also be used with ex. In addition, the vi command Q

can be used to quit the vi editor and enter ex.

To exit ex:

x Exit, saving changes

q! Quit, without saving changes

vi Enter vi from ex

To enter an ex command from vi:

:address command options
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The colon (:) indicates an ex command. The address is a line number or range of lines that are the object

of the command.

The following options can be used with commands.

! Indicates a variant form of the command.

parameters Indicates that additional information can be supplied. A parameter can be the name of

a file.

count Is the number of times the command is to be repeated.

flag #, p, and l indicate print format.

Unlike vi commands, the count cannot precede the command as it will be taken for the address. d3

deletes three lines beginning with the current line; 3d deletes line 3. As you type the address and com-

mand, it is echoed on the status line. Enter the command by pressing the RETURN key.

Addresses

If no address is given, the current line is the object of the command. If the address specifies a range of

lines, the format is:

x,y

where x and y are the first and last addressed lines. x must precede y in the buffer. x and y may be line

numbers or primitives. Using ; instead of , sets the current line to x before interpreting y (that is, the cur-

rent position will be at x at the completion of the command). 1,$ addresses all lines in the file.

The following address symbols can be used.

. Current line

n Absolute line number

$ Last line

% All lines, same as 1,$

x-|+n n line before or after x

-[n] One or n lines previous

+[n] One or n lines ahead

’x Line marked with x

’’ Previous context

/pat/ or ?pat? Ahead or back to line matching pat

ex Commands

abbrev ab[string text]

Define string when typed to be translated into text. If string and text

are not specified, list all current abbreviations.

append [address]a[!]

text

.

Append text at specified address, or at present address if none is speci-

fied. With the ! flag, toggle the autoindent setting during the

input of text.
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args ar

Print the members of the argument list, with the current argument

printed within brackets ([ ]).

change [address]c[!]

text

.

Replace the specified lines with text. With the ! flag, toggle the

autoindent setting during the input of text.

copy [address]codestination

Copy the lines included in address to the specified destination address.

The command t is a synonym for copy.

delete [address]d[buffer]

Delete the lines included in address. If buffer is specified, save or

append the text to the named buffer.

edit e[!][+n]file

Begin editing on file. If the ! flag is used, do not warn if the present

file has not been saved since the last change. If the +n argument is

used, begin editing on line n.

file f[filename]

Change the name of the current file to filename, which is considered

“not edited.” If no filename is specified, print the current status of the

file.

global [address]g[!]/pattern/[commands]

Execute commands on all lines that contain pattern. If commands are

not specified, print all such lines. If the ! flag is used, execute com-

mands on all lines not containing pattern.

insert [address]i[!]

text

.

Insert text at line before the specified address, or at present address if

none is specified. With the ! flag, toggle the autoindent setting

during the input of text.

join [address]j[count]

Place the text in the specified range on one line, with white space

adjusted to provide two blank characters after a (.), no blank characters

if a ) follows, and one blank character otherwise.

k [address]kchar

Mark the given address with char.

list [address]l[count]

Print the specified lines in an unambiguous manner.

map map char commands

Define a macro named char in visual mode with the specified sequence

of commands. char may be a single character, or the sequence #n,

representing a function key on the keyboard.

mark [address]machar

Mark the specified line with char, a single lowercase letter. Return

later to the line with ’x.

move [address]mdestination

Move the lines specified by address to the destination address.
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next n[!][[+command]filelist]

Edit the next file in the command-line argument list. Use args for a

listing of arguments. If filelist is provided, replace the current argument

list with filelist and begin editing on the first file; if command is given

(containing no spaces), execute command after editing the first such

file.

number [address]nu[count]

Print each line specified by address preceded by its buffer line number.

# may be used as an abbreviation for number as well as nu.

open [address]o[/ pattern/]

Enter open mode at the lines specified by address, or lines matching

pattern. Exit open mode with Q.

preserve pre

Save the current editor buffer as though the system had crashed.

print [address]p[count]

Print the lines specified by address with nonprinting characters printed.

P may also be used as an abbreviation.

put [address]pu[char]

Restore previously deleted or yanked lines from named buffer specified

by char to the line specified by address; if char is not specified, the last

deleted or yanked text is restored.

quit q[!]

Terminate current editing session. If the file was not saved since the

last change, or if there are files in the argument list that have not yet be

accessed, you will not be ab1e to quit without the ! flag.

read [address]r[!][file]

Copy the text of file at the specified address. If file is not specified, the

current filename is used.

read [address]r !command

Read in the output of command into the text after the line specified by

address.

recover rec[ file]

Recover file from system save area.

rewind rew[!]

Rewind argument list and begin editing the first file in the list. The !

flag rewinds without warning if the file has not been saved since the last

change.

set se parameter parameter2 ...

Set a value to an option with each parameter, or if no parameter is sup-

plied, print all options that have been changed from their defaults. For

Boolean-valued options, each parameter can be phrased as option or

nooption; other options can be assigned with the syntax, option=value.

shell sh

Create a new shell. Resume editing when the shell is terminated.

source so file

Read and execute commands from file.

substitute [address]s[[/pattern/repl/]options][count]

Replace each instance of pattern on the specified lines with repl. If

pattern and repl are omitted, repeat last substitution. The following

options are supported:

g Substitute all instances of pattern

c Prompt for confirmation before each change
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t [address]tdestination

Copy the lines included in address to the specified destination address.

ta [address]ta tag

Switch the focus of editing to tag.

unabbreviateuna word

Remove word from the list of abbreviations.

undo u

Reverse the changes made by the last editing command.

unmap unm char

Remove char from the list of macros.

v [address]v/pattern/[commands]

Execute commands on all lines not containing pattern. If commands

are not specified, print all such lines.

version ve

Print the current version number of the editor and the date the editor

was last changed.

visual [address]vi [type][count]

Enter visual mode at the line specified by address. Exit with Q. type

is either -, ˆ, or . (see the z command). count specifies an initial

window size.

write [address]w[!][[>>]file]

Write lines specified by address to file, or full contents of buffer if

address is not specified. If file is also omitted, save the contents of the

buffer to the current filename. If >>file is used, write contents to the

end of the specified file. The ! flag forces the editor to write over any

current contents of file.

write [address]w !command

Write lines specified by address to command through a pipe.

wq wq[!]

Write and quit the file in one movement.

xit x

Write file if changes have been made to the buffer since last write, then

quit.

yank [address]ya[char][count]

Place lines specified by address in named buffer indicated by char. If

no char is specified, place in general buffer.

z [address]z[type][count]

Print a window of text with line specified by address at the top. type is

as follows:

+ Place specified line at the top of the window (default)

- Place specified line at bottom of the window

ˆ Print the window before the window associated with type -

= Place specified line in the center of the window and leave the current line at this line

count specifies the number of lines to be displayed.

! [address]!command

Execute command in a shell. If address is specified, apply the lines contained in address as

standard input to command, and replace the lines with the output.

= [address]=

Print the line number of the line indicated by address.
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< > [address]<[count]

or [address]>[count]

Shift lines specified by address in specified direction. Only blanks and tabs are shifted in a left

shift (<).

address address

Print the lines specified in address.

RETURN RETURN

Print the next line in the file.

& [address]&[options][count]

Repeat the previous substitute command.

~ [address]~[count]

Replace the previous regular expression with the previous replacement pattern from a substi-

tute command.

The sed Editor

sed [options] file(s)

The following options are recognized:

-n Only print lines specified with the p command, or the p flag of the s command

-e cmd Next argument is an editing command

-f file Next argument is a file containing editing commands

All sed commands have the general form:

[address][,address][!]command [arguments]

The sed editor copies each line of input into a pattern space. sed instructions consist of addresses and

editing commands. If the address of the command matches the line in the pattern space, then the command

is applied to that line. If a command has no address, then it is applied to each input line. It is important to

note that a command affects the contents of the space; subsequent command addresses attempt to match the

line in the pattern space, not the original input line.

Pattern Addressing

In a sed command, an address can either be a line number or a pattern, enclosed in slashes (/pattern/).

Address types cannot be mixed when specifying two addresses. Patterns can make use of regular expres-

sions, as described at the beginning of this appendix. Additionally, \n can be used to match any newline in

the pattern space (resulting from the N command), but not the newline at the end of the pattern space. If no

pattern is specified, command will be applied to all lines. If only one address is specified, the command

will be applied to all lines between the first and second addresses, inclusively. Some commands can only

accept one address.

The ! operator following a pattern causes sed to apply the command to all lines that do not contain

the pattern.

A series of commands can be grouped after one pattern by enclosing the command list in curly

braces:
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[/pattern/][,/pattern/]{

command1

command2

}

Alphabetical List of Commands

: :label

Specify a label to be branched to by b or t. label may contain up to eight characters.

= [/pattern/]=

Write to standard output the line number of each line addressed by pattern.

a [address]a\

text

Append text following each line matched by address. If text goes over more than one line,

newlines must be “hidden” by preceding them with a backslash. The insertion will be termi-

nated by the first newline that is not hidden in this way. The results of this command are read

into the pattern space (creating a multiline pattern space) and sent to standard output when the

list of editing is finished or a command explicitly prints the pattern space.

b [address1][,address2]b[label]

Branch to label placed with : command. If no label, branch to the end of the script. That is,

skip all subsequent editing commands (up to label) for each addressed line.

c [address1][,address2]c\

text

Replace pattern space with text. (See a for details on text.)

d [address1][,address2]d

Delete line in pattern space. Thus, line is not passed to standard output and a new line of input

is read; editing resumes with first command in list.

D [address1][,address2]D

Delete first part (up to embedded newline) of multiline pattern created by N command and

begin editing. Same as d if N has not been applied to a line.

g [address1][,address2]g

Copy contents of hold space (see h or H command) into pattern space, wiping out previous

contents.

G [address1][,address2]G

Append contents of hold space (see h or H command) to contents of the pattern space.

h [address1][,address2]h

Copy pattern space into hold space, a special buffer. Previous contents of hold space are oblit-

erated.

H [address1][,address2]H

Append pattern space to contents of the hold space. Previous and new contents are separated

by a newline.

i [address]i\

text

Insert text before each line matched by address. (See a for details on text.)

n [address1][,address2]n

Read next line of input into pattern space. Current line is output but control passes to next

editing command instead of beginning at the top of the list.

N [address1][,address2]N

Append next input line to contents of pattern space; the two lines are separated by an embed-

ded newline. (This command is designed to allow pattern matches across two lines.)
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p [address1][,address2]p

Print the addressed line(s). Unless the -n command-line option is used, this command will

cause duplication of the line in the output. Also used when commands change flow control (d,

N, b).

P [address1][,address2]P

Print first part (up to embedded newline) of multiline pattern created by N command. Same as

p if N has not been applied to a line.

q [address]q

Quit when address is encountered. The addressed line is first written to output, along with any

text appended to it by previous a or r commands.

r [address]r file

Read contents of file and append after the contents of the pattern space. Exactly one space

must separate the r and the filename.

s [address1][,address2]s/pattern/replacement/[flags]

Substitute replacement for pattern on each addressed line. If pattern addresses are used, the

pattern // represents the last pattern address specified. The following flags can be specified:

g Replace all instances of /pattern/ on each addressed line, not just the first

instance.

p Print the line if a successful substitution is done.

If several successful substitutions are done, multiple copies of the line will be

printed.

wfile Write the line to a file if a replacement was done. A maximum of ten different

files can be opened.

t [address1][,address2]t [label]

Test if successful substitutions have been made on addressed lines, and if so, branch to label.

(See b and :.) If label is not specified, drop to bottom of list of editing commands.

w [address1][,address2]w file

Write contents of pattern space to file. This action occurs when the command is encountered

rather than when the pattern space is output. Exactly one space must separate the w and the

filename. A maximum of ten different files can be opened.

x [address1][,address2]x

Exchange contents of the pattern space with the contents of the hold space.

awk

An awk program consists of patterns and procedures:

pattern { procedure }

Both are optional. If pattern is missing, {procedure} will be applied to all lines. If {procedure} is miss-

ing, the line will be passed unaffected to standard output (i.e., it will be printed as is).

Each input line, or record, is divided into fields by white space (blanks or tabs) or by some other user-

definable record separator. Fields are referred to by the variables $1, $2,..., $n. $0 refers to the entire

record.
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Patterns

Patterns can be specified using regular expressions as described at the beginning of this appendix.

pattern {procedure}

The following additional pattern rules can be used in awk:

• The special pattern BEGIN allows you to specify procedures that will take place before the first

input line is processed. (Generally, you set global variables here.)

• Interrupt place after the last input line is processed.

• ˆ and $ can be used to refer to the beginning and end of a field, respectively, rather than the

beginning and end of a line.

• A pattern can be a relational expression using any of the operators <, <=, ==, !=, >=, and >.

For example, $2 > $1 selects lines for which the second field is greater than the first. Com-

parisons can be either string or numeric.

• Patterns can be combined with the Boolean operators || (or), && (and), and ! (not).

• Patterns can include any of the following predefined variables. For example, NF > 1 selects

records with more than one field.

Special Variables

FS Field separator (blank and tab by default)

RS Record separator (newline by default)

OFS Output field separator (blank by default)

ORS Output record separator (newline by default)

NR Number of current record

NF Number of fields in current record

$0 Entire input record

$1, $2,..., $n First, second, ...nth field in current record, where fields are separated by

FS

Procedures

Procedures consist of one or more commands, functions, or variable assignments, separated by newlines or

semicolons, and contained within curly braces. Commands fall into four groups:

• variable or array assignments

• printing commands

• built-in functions

• control flow commands
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Variables and Array Assignments

Variables can be assigned a value with an = sign. For example:

FS = ,’’

Expressions using the operators +, -, /, and % (modulo) can be assigned to variables.

Arrays can be created with the split function (see following awk commands) or can be simply

named in an assignment statement. ++, +=, and -= are used to increment or decrement an array, as in the

C language. Array elements can be subscripted with numbers (array[1], ..., array[n]) or with names. For

example, to count the number of occurrences of a pattern, you could use the following program:

/pattern/ {n["/pattern/"]++}
END {print n["/pattern/"]}

awk Commands

for for(i=lower; i<=upper; i++)

command

While the value of variable i is in the range between lower and upper, do command. A

series of commands must be put within braces. <= or any relational operator can be used;

++ or -- can be used to decrement variable.

for for i in array

command

For each occurrence of variable i in array, do command. A series of commands must be

put inside braces.

if if(condition)

command

[else]

[command]

If condition is true, do command(s), otherwise do command in else clause. condition

can be an expression using any of the relational operators <, <=, ==, !=, >= or >, as well

as the pattern-matching operator ~ (e.g., if $1 ~ /[Aa].*/). A series of commands

must be put within braces.

length x = length(arg)

Return the length of arg. If arg is not supplied, $0 is assumed.

log x = log(arg)

Return logarithm of arg.

print print[args]

Print args on output. args is usually one or more fields, but may also be one or more of

the predefined variables. Literal strings must be surrounded by quotation marks. Fields

are printed in the order they are listed. If separated by commas in the argument list, they

are separated in the output by the character specified by OFS. If separated by spaces,

they are concatenated in the output.
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printf printf "format",expression(s)

Formatted print statement. Fields or variables can be formatted according to instructions

in the format argument. The number of arguments must correspond to the number speci-

fied in the format sections.

Format follows the conventions of the C language’s printf statement. Here are a few

of the most common formats:

%n.md a floating point number;

n = total number of digits.

m = number of digits after decimal point.

%[-]nc n specifies minimum field length for format type c. - justifies value in

field; otherwise value is right justified.

Format can also contain embedded escape sequences: \n (newline) or \t (tab) are the

most common.

Spaces and literal text can be placed in the format argument by surrounding the entire

argument with quotation marks. If there are multiple expressions to be printed, you

should specify multiple formats. An example is worth a thousand words. For an input

file containing only the line:

5 5

The program:

{printf ("The sum of line %s is %d \n", NR, $1+$2)}

will produce:

The sum of line 1 is 10

followed by a newline.

split x = split(string, array[, sep])

Split string into elements of array array[1],..., array[n]. string is split at each

occurrence of separator sep. If sep is not specified, FS is used. The number of array ele-

ments created is returned.

sprintf x = sprintf("format", expression(s))

Return the value of expression(s), using the specified format (see printf).

sqrt x = sqrt(arg)

Return square root of arg.

substr x = substr(string, m, [n])

Return substring of string beginning at character position m and consisting of the next n

characters. If n is omitted, include all characters to the end of string.

while while (condition)

command

Do command while condition is true (see if for a description of allowable conditions).

A series of commands must be put within braces.





Appendix B

Formatter Command Summary

This appendix is divided into ten subsections, each covering a different facet of the nroff/troff for-

matting system. These sections are:

• nroff/troff command-line syntax

• nroff/troff requests

• escape sequences

• predefined number registers

• special characters

• the ms macro package

• the mm macro package

• the tbl preprocessor

• the eqn preprocessor

• the pic preprocessor

In the following sections, italics are used for values that you supply. Optional arguments to requests

or macros are enclosed in brackets.

nroff/troff Command-Line Syntax

nroff [options] [files]

-cname Prepend /usr/lib/macros/cmp.n.[dt].name to files (old versions of

nroff only).

-e Space words equally on the line instead of in full multiples of the space character.

-h Use tabs in large spaces.

-i Read standard input after files are processed.

-kname Compact macros and output to [dt].name (old versions of nroff only).

-mname Prepend /usr/lib/tmac/tmac.name to files.

-nn Number first page n.

-olist Print only pages contained in list. Individual pages in list should be separated by

commas; a page range is specified by n-m; n- indicates from page n to the end.

-q Invoke simultaneous input/output of .rd requests.

-ran Set register a to n.

-sni Stop every n pages.

-Tname Output is for device type name. Values are shown in Table B-1. (Check your man-

ual for other devices, especially those supported by the mm command.)

-un Embolden characters by overstriking n times.

-z 15 Throw away output except messages from .tm request.

467
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Table B.1 Device Names for nroff

Abbreviation Used for

37 TELETYPE Model 37 terminal (default for nroff)

450 DASI 450 terminal (default for mm)

tn300 GE TermiNet 300 printer

300 DASI 300 terminal

832 Anderson Jacobson 832 printer

2631 Hewlett-Packard 2631

4000a Trendata 4000a

8510 C. Itoh printer

lp ASCII line printer

X EBCDIC line printer

troff Options

troff [options] [files]

-a Send printable ASCII approximation to standard output. otroff sends its output

directly to a connected typesetter unless the -t or -a option is specified, in which

case it is sent to standard output. ditroff always writes to standard output.

-b Report phototypesetter status (otroff only).

-cname Prepend /usr/lib/macros/cmp.t.[dt].name to files (otroff only).

-f Do not stop the phototypesetter when the formatting run is done (otroff only).

-Fdir Format output for device name using the font tables in directory dir instead of

/usr/lib/font (ditroff only).

-i Read standard input after files.

-kname Compact macros and output to [dt].name (otroff only).

-mname Prepend /usr/lib/tmac/tmac.name to files.

-nn Number first page n.

-olist Print only pages contained in list. Individual pages in list should be separated by

commas. A page range is specified by n-m; n− indicates from page n to the end.

-pn Print all characters in point size n, but retain motions for sizes specified in docu-

ment (otroff only).

-q Do not echo .rd requests.

-ran Assign value n to register a.

-sn Stop every n pages.

-t Send output to standard output instead of directly to the phototypesetter (otroff

only).

-Tname Format output for device name using the device description and font width tables in

/usr/lib/font/devname (ditroff only).

-w If the phototypesetter is busy, wait until it is free (otroff only).
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nroff/troff Requests

.ab [text] Abort and print text as message. If text is not specified, the message User Abort is

printed.

.ad [c] Adjust one or both margins if filling is in effect (see .fi). c can be

b or n Adjust both margins

c Center all lines

l Adjust left margin only

r Adjust right margin only

.af r c Assign format c to register r. c can be:

1 0, 1, 2, etc.

001 000, 001, 002, etc.

i Lowercase roman

I Uppercase roman

a Lowercase alphabetic

A Uppercase alphabetic

.am xx yy Append to macro xx; end append at call to yy (default yy = ..).

.as xx string Append to string xx.

.bd f n Overstrike characters in font f, n times.

.bd f s n Overstrike special font s, n times when font f is in effect.

.bp [n] Begin new page. Number next page n.

.br Break to a new line (output partial lines).

.c2 c Set no-break control character to c (default ’).

.cc c Set control character to c (default .).

.cf file Copy contents of file into output, uninterpreted (ditroff only).

.ce [n] Center next n lines; if n is 0, stop centering (default n = 1).

.ch xx [n] Change trap position for macro xx to n. If n is absent, remove the trap.

.cs f n m Use constant character spacing for font f of n/36 ems. If m is given, the em is taken

to be m points.

.cu [n] Continuous underline (including interword spaces) on next n lines. If n is 0, stop

underlining. Italicize in troff. (See .ul.)

.da [xx] Div ert following text, appending it to macro xx. If no argument, end diversion.

.de xx [yy] Define macro xx. End definition at .yy (default .yy = ..).

.di [xx] Div ert following text to newly defined macro xx. If no argument, end diversion.

.ds xx string Define xx to contain string.

.dt n xx Install trap to invoke macro xx at position n.

.ec [c] Set escape character to c (default \).

.el anything Else portion of if-else. See .ie.

.em xx Set end macro to xx.

.eo Turn escape character mechanism off. See .ec.

.ev [n] Change environment to n. If no argument, restore previous environment (0 ≤ n ≤ 2

= initial value 0).

.ex Exit from formatter.
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.fc a b Set field delimiter to a and pad character to b.

.fi Turn on fill mode (default: fill is on).

.fl Flush output buffer.

.fp n f Assign font f to position n.

.ft f Change font to f.

.hc[c] Change hyphenation-indication character used with .hw to c (default –).

.hw words Specify hyphenation points for words (e.g., .hw spe-ci-fy).

.hy n Turn hyphenation on (n≥1) or off (n=0).

n=1 Hyphenate wherever necessary

n=2 Don’t hyphenate last word in page or diversion

n=4 Don’t split off first two characters of word

n=8 Don’t split off last two characters of word

n=14 Use all three restrictions

.ie c anything If portion of if-else. See .el.

.if !c anything If condition c is false, do anything.

.if n anything If expression n>0, do anything.

.if !n anything If expression n≤0, do anything.

.if ’string1’string2’ anything

If string1 and string2 are identical, do anything.

.if !’string1’string2’ anything

If string1 and string2 are not identical, do anything.

.ig yy Ignore following text, up to line beginning with .yy.

.in [±][n] Set indent to n or increment indent by ±n. If no argument, restore previous indent.

.it n xx Set input line count trap to invoke macro xx after n lines of input text have been

read.

.lc c Set leader repetition character to c. (See .tc.) Leaders are invoked by \a.

.lg n Turn ligature mode on if n is absent or nonzero.

.ll [±][n] Set line length to n or increment line length by ±n. If no argument, restore previous

line length (default 6.5 inches).

.ls n Set line spacing to n. If no argument, restore previous line spacing (initial value 1).

.lt n Set title length to n. If no argument, restore previous value.

.mc [c] [n] Set margin character to c, and place it n spaces to the right of margin. If c is miss-

ing, turn margin character off. Default for n is 0.2 inches in nroff and 1 em in

troff.

.mk [r] Mark current vertical place in register r. Return to mark with .rt, or .sp|\nr.

.na Do not adjust margins. (See .ad.)

.ne n If n lines do not remain on this page, start new page.

.nf No filling or adjusting of output lines. (See .ad and .fi.)

.nh Turn hyphenation off. (See .hy.)

.nm [n m s i] Number of output lines (n≥0) or turn numbering off (n=0). ±n sets initial line num-

ber; m sets numbering interval; s sets separation of numbers and text; i sets indent

of text.

.nn n Do not number next n lines, but keep track of numbering sequence, which can be

resumed with .nm+0.
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.nr r n [m] Assign the value n to number register r and optionally set autoincrement to m.

.ns Turn no-space mode on. (See .rs.)

.nx file Switch to file and do not return to current file. (See .so.)

.os Output saved space specified in previous .sv request.

.pc c Set page number character to c.

.pi cmd Pipe output of troff to cmd instead of to standard output.

.pl [±][n] Set page length to n or increment page length by ±n. If no argument, restore

default (default 11 inches).

.pm Print names and sizes of all defined macros.

.pn [±][n] Set next page number to n, or increment page number by ±n.

.po [±][n] Offset text a distance n from the left edge of page, or increment the current offset

by ±n. If no argument, restore previous offset.

.ps n Set point size to n (troff only). (Default 10 points.)

.rd [prompt] Read input from terminal, after printing optional prompt.

.rm xx Remove macro or string xx.

.rn xx yy Rename request, macro, or string xx to yy.

.rr r Remove register r.

.rs xx yy Restore spacing. (Turn no-space mode off; see .ns.)

.rt [±n] Return (upward only) to marked vertical place, or to ±n from top of page or diver-

sion. (See .mk.)

.so file Switch out to file, then return to current file. (See .nx.)

.sp n Leave n blank lines (default 1).

.ss n Space character size set to n/36 em (no effect in nroff).

.sv n Save n lines of space; output such space with .os.

.sy cmd [args] Execute UNIX command cmd with optional arguments (ditroff only).

.ta n[t] m[t] Set tab stop at positions n, m, etc. If t is not given, tab is left adjusting; if t is:

R Right adjust

C Center

.tc c Define tab character as c (e.g., .tc . will draw a string of dots to tab position).

.ti [±][n] Indent next output line n spaces, or increment the current indent by ±n for the next

output line.

.tl ’l’c’r’ Specify left (l), centred (c), right (r) title.

.tm text Terminal message. (Print text on standard error.)

.tr ab Translate character a to b.

.uf f Underline font set to f (to be switched to by .ul).

.ul [n] Underline (italicize in troff) next n input lines. Do not underline interword spa-

ces.

.vs [n] Set vertical line spacing to n. If no argument, restore previous spacing (default 1/6

inch in nroff, 12 points in troff).

.wh n xx When position n is reached, execute macro xx; neg ative values of n are with respect

to page bottom.
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Escape sequences

\ To prevent or delay the interpretation of \.

\e Printable version of current escape character.

\’ ´ (acute accent); equivalent to \(aa.

\ ` (grave accent); equivalent to \(ga.

\- − Minus sign in the current font.

\. Period (dot). (See de.)

\ (space) Unpaddable space-size space character.

\0 Digit width space.

\| 1/6-em narrow space character (zero width in nroff).

\ˆ 1/12-em half-narrow space character (zero width in nroff).

\& Nonprinting, zero-width character.

\! Transparent line indicator.

\" Beginning of comment.

\\$N Interpolate argument 1≤N≤9.

\% Default optional hyphenation character.

\(xx Character named xx.

\*x, \*(xx Interpolate string x or xx.

\a Noninterpreted leader character for use in macros.

\b´abc...´ Bracket building function—stack abc... vertically.

\c Interrupt text processing.

\d Downward 1/2-em vertical motion (1/2 line in nroff).

\D´l x,y´ Draw a line from current position to coordinates x,y (ditroff only).

\D´c d´ Draw circle of diameter d with left edge at current position (ditroff only).

\D´e d1 d2´ Draw ellipse with horizontal diameter d1 and vertical diameter d2, with left edge at

current position (ditroff only).

\D´a x1 y1 x2 y2´ Draw arc counterclockwise from current position, with center at x1, y1 and endpoint

at x1+x2,y1+y2 (ditroff only).

\D´˜ x1 y1 x2 y2 ...´

Draw spline from current position through the specified coordinates (ditroff

only).

\fx, \f(xx, \fN Change to font named x or xx or position N.

\h´N´ Local horizontal motion; move right N (negative left).

\H´n´ Set character height to n points, without changing width (ditroff only).

\jx Mark horizontal place on output line in register x.

\kx Mark horizontal place on input line in register x.

\l´Nc´ Horizontal line drawing function (optionally with c, default _).

\L´Nc´ Vertical line drawing function (optionally with c, default |).

\nx, \n(xx Interpolate register number x or xx.

\o´abc...´ Overstrike characters a, b, c...

\p Break and spread output line.
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\r Reverse 1-em vertical motion (reverse line in nroff).

\sN, \s±N Point-size change function.

\S´n´ Slant output n degrees to the right (ditroff only). Negative values slant to the

left. A value of zero turns off slanting.

\t Noninterpreted horizontal tab.

\u Reverse (up) 1/2-em vertical motion (1/2 line in nroff).

\v´N´ Local vertical notion; move down N (negative up).

\w´string´ Interpolate width of string.

\x´N´ Extra line-space function (negative before, positive after).

\zc Print c with zero width (without spacing).

\{ Begin conditional input.

\} End conditional input.

\(newline) Concealed (ignored) newline.

\X X, any character not listed above.

Predefined Number Registers

Read-Only Registers

.$ Number of arguments available at the current macro level.

.$$ Process ID of troff process (ditroff only).

.A Set to 1 in troff, if -a option is used; always 1 in nroff.

.H Av ailable horizontal resolution in basic units.

.T In nroff, set to 1 if -T option is used; in troff, always 0; in ditroff, you

can print the value of -T with the string \*(.T.

.V Av ailable vertical resolution in basic units.

.a Extra line space most recently utilized using \x´N´.

.c Number of lines read from current input file.

.d Current vertical place in current diversion; equal to nl if no diversion.

.f Current font in physical quadrant (1 to 4 in otroff; no limit in ditroff).

.h Te xt baseline high-water mark on current page or diversion.

.i Current indent.

.j Current adjustment type (0=.ad l or .na; 1=.ad b; 3=.ad c; 5=.ad r).

.l Current line length.

.n Length of text portion on previous output line.

.o Current page offset.

.p Current page length.

.s Current point size.

.t Distance to the next trap.

.u Equal to 1 in fill mode and 0 in no-fill mode.

.v Current vertical line spacing.
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.w Width of previous character.

.x Reserved version-dependent register.

.y Reserved version-dependent register.

.z Name of current diversion.

Read/Write Registers

% Current page number.

ct Character type (set by width function).

dl Width (maximum) of last completed diversion.

dn Height (vertical size) of last completed diversion.

dw Current day of the week (1 to 7).

dy Current day of the month (1 to 31).

hp Current horizontal place on input line.

ln Output line number.

mo Current month (1 to 12).

nl Vertical position of last printed text baseline.

sb Depth of string below baseline (generated by width function).

st Height of string below baseline (generated by width function).

yr Last two digits of current year.

Special Characters

On the Standard Fonts

The following special characters are usually found on the standard fonts:

’ ´ close quote fi \(fi fi ligature

` open quote fl \(fl fl ligature

— \(em 3/4 em dash ff \(ff ff ligature

- - hyphen ffi \(Fi ffi ligature

- \(hy hyphen ffl \(Fl ffl ligature

− \- current font minus sign ° \(de degree

• \(bu bullet † \(dg dagger

\(sq square ′ \(fm foot mark

\(ru rule ¢ \(ct cent sign

¼ \(14 1/4 ® \(rg registered trademark

½ \(12 1/2 © \(co copyright

¾ \(34 3/4
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On the Special Font

The following characters are usually found on the special font except for the uppercase Greek letter names

followed by † which are mapped into uppercase English letters in whatever font is mounted on font position

one (default is Times Roman).

Miscellaneous Characters

§ \(sc section ↓ \(da down arrow

´ \(aa acute accent \(br box rule

` \(ga grave accent ‡ \(dd double dagger

\(ul underrule + \(rh right hand

→ \(-> right arrow +\(lh left hand

← \(<- left arrow \(ci circle

↑ \(ua up arrow

Mathematical Symbols

+ \(pl math plus ∪ \(cu cup (union)

− \(mi math minus ∩ \(ca cap (intersection)

= \(eq math equals ⊂ \(sb subset of

∗ \(** math star ⊃ \(sp superset of

/ \(sl slash (matching backslash) ⊆ \(ib improper subset

√ \(sr square root ⊇ \(ip improper superset

\(rn root en extender ∞ \(if infinity

≥ \(>= greater than or equal to ∂ \(pd partial derivative

≤ \(<= less than or equal to ∇ \(gr gradient

≡ \(== identically equal ¬ \(no not

≈ \(˜= approx equal ∫ \(is integral sign

∼ \(ap approximates ∝ \(pt proportional to

≠ \(!= not equal ∅ \(es empty set

× \(mu multiply ∈ \(mo member of

÷ \(di divide \(or or

± \(+- plus-minus

Bracket Building Symbols

 \(lt left top of large curly bracket

 \(lk left center of large curly bracket

 \(lb left bottom of large curly bracket

 \(rt right top of large curly bracket

 \(rk right center of large curly bracket

 \(rb right bottom of large curly bracket

 \(lc left ceiling (top) of large square bracket

 \(bv bold vertical

 \(lf left floor (bottom) of large square bracket

 \(rc right ceiling (top) of large square bracket

 \(rf right floor (bottom) of large square bracket
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Greek Characters

α \(*a alpha Α \(*A Alpha†

β \(*b beta Β \(*B Beta†

γ \(*g gamma Γ \(*G Gamma

δ \(*d delta ∆ \(*D Delta

ε \(*e epsilon Ε \(*E Epsilon†

ζ \(*z zeta Ζ \(*Z Zeta†

η \(*y eta Η \(*Y Eta†

θ \(*h theta Θ \(*H Theta

ι \(*i iota Ι \(*I Iota†

κ \(*k kappa Κ \(*K Kappa†

λ \(*l lambda Λ \(*L Lambda

µ \(*m mu Μ \(*M Mu†

ν \(*n nu Ν \(*N Nu†

ξ \(*c xi Ξ \(*C Xi

ο \(*o omicron Ο \(*O Omicron†

π \(*p pi Π \(*P Pi

ρ \(*r rho Ρ \(*R Rho†

σ \(*s sigma Σ \(*S Sigma

ς \(ts terminal sigma

τ \(*t tau Τ \(*T Tau†

υ \(*y upsilon ϒ \(*Y Upsilon

φ \(*f phi Φ \(*F Phi

χ \(*x chi Χ \(*X Chi†

ψ \(*q psi Ψ \(*Q Psi

ω \(*w omega Ω \(*W Omega

The ms macros

Summary of ms macros

.1C Return to single-column format.

.2C Start two-column format.

.AB Begin abstract.

.AE End abstract.

.AI name Name of author’s institution (used in cover sheet).

.AU name Author’s name (used in cover sheet)

.B [text] Print text in boldface. If text is missing, equivalent to .ft 3.

.B1 Enclose following text in a box.

.B2 End boxed text.

.BX word Surround word in a box.

.DA Print date on each page.

.DS Start displayed text.

.DS B Start left-justified block, centered.

.DS C Start centered display.
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.DS L Start left-centered display.

.DE End displayed text.

.EQ Begin equation.

.EN End equation.

.FS Start footnote.

.FE End footnote.

.I [text] Print text in italics. If text is missing, equivalent to .ft 2.

.IP label n Indent paragraph n spaces with hanging label.

.KS Start keep.

.KE End of keep or floating keep.

.KF Begin floating keep.

.LG Increase type size by two points (troff only).

.LP Start block paragraph.

.ND Change or omit date.

.NH n Numbered section heading, level n.

.NL Restore default type size (troff only).

.PP Start indented paragraph.

.R [text] Print text in roman. If text is missing, equivalent to .ft 1.

.RP Initiate title page for a released paper’’.

.RS Increase relative indent one level. Use with .IP.

.RE End one level of relative indent.

.SG Signature line.

.SH Unnumbered section heading.

.SM Decrease type size by two points (troff only).

.TL Title line.

.TS [H] Start table. H will put table header on all pages. Use this option with following

.TH.

.TH Table header ends. Must be used with .TS H.

.TE End table.

.UL Underline following text, even in troff.

Internal Macros Worth Knowing About

.IZ Basic initialization; executed automatically before any text is processed. It is then

removed, and cannot be invoked again.

.RT Reset. Invoked by all paragraph macros, plus .RS, .RE, .TS, .TE, .SH and .NH.

Resets various values to defaults stored in number registers listed below.

.BG Prints cover sheet, if any. Also performs some first page initialization. Invoked

once by the very first .RT in a document.

.NP New page. Invoked at the top of each page. Performs various page top resets, and

calls .PT.

.PT Page titles. Contains running headers. Can be redefined. Invoked by .NP at

\n(HMu from the top of the page.
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.BT Bottom titles. Continuous running footers. Invoked by trap at \n(FMu/2u from

the bottom of the page.

.FO Footer. The bottom of the text on the page. Invoked by trap at \n(FMu.

Number Registers Containing Page Layout Defaults

CW Column width (default 7/15 of line length).

FL Footnote length (default 11/12 of line length).

FM Bottom margin (default 1 inch).

GW Intercolumn gap width for multiple columns (default 1/5 of line length).

HM Top margin (default 1 inch).

LL Line length (default 6 inches).

LT Title length (default 6 inches).

PD Paragraph spacing (default 0.3 of vertical spacing).

PI Paragraph indent (default 5 ens).

PO Page offset (default 26/27 inches).

PS Point size (default 10 points).

VS Vertical line spacing (default 12 points).

Predefined and User-Definable Strings

DY The current date.

LH Left header, printed by .tl ’\\*(LH’\\*CH’\\*(RH’ in PT macro. Null

unless user-defined.

CH Center header, printed by .tl ’\\*(LH’\\*CH’\\*(RH’ in PT macro. Null

unless user-defined.

RH Right header, printed by .tl ’\\*(LH’\\*CH’\\*(RH’ in PT macro. Null

unless user-defined.

LF Left footer, printed by .tl ’\\*(LH’\\*CH’\\(RH’ in BT macro. Null

unless user-defined.

CF Center footer, printed by .tl ’\\*(LH’\\*CH’\\RH’ in BT macro. Null

unless user-defined.

RF Right footer, printed by .tl ’\\*(LH’\\*CH’\\RH’ in BT macro. Null

unless user-defined.

Reserved Macro and String Names

The following macro and string names are used by the ms package. Avoid using these names for compati-

bility with the existing macros. An italicized n means that the name contains a numeral (generally the

interpolated value of a number register).

, AX DA FL KJ OD RT TR

.] B DW FN KS OK S0 TS
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: B1 DY FO LB PP S2 TT

[. B2 EE FS LG PT S3 TX

[c BB EG FV LP PY SG UL

[o BG EL FX LT QE SH US

ˆ BT EM FY MC QF SM UX

BX EN HO ME QP SN WB

˜ C En I MF QS SY WH

1C C1 EQ IE MH R TA WT

2C C2 EZ IH MN R3 TC XF

AB CA FA IM MO RA TD XK

AE CC FE In MR RC TE XP

AI CF FF IP ND RE TH

An CH FG IZ NH Rn TL

AT CM FJ KD NL RP TM

AU CT FK KF NP RS TQ

The following number register names are used by the ms package. An italicized n means that the

name contains a numeral (generally the interpolated value of another number register).

#T EF H5 IX MF OJ QP TV

AJ FC HM I# MG PD RO TY

AV FL HT J# ML PE SJ TZ

BC FM I0 KG MM PF ST VS

BD FP IF KI MN PI T. WF

BE GA IK KM NA PN TB XX

BH GW IM L1 NC PO TC YE

BI H1 IP LE ND PQ TD YY

BQ H2 IR LL NQ PS TK ZN

BW H3 IS LT NS PX TN

CW H4 IT MC NX QI TQ

Note that with the exception of [c and [o, none of the number register, macro, or string names contain

lowercase letters, so lowercase or mixed case names are a safe bet when you’re writing your own macros.

The mm Macros

Summary of mm Macros

.1C Return to single-column format.

.2C Start two-column format.

.AS [x] [n] Start abstract type x, indent n spaces. (Used with .TM and .RP only.) (Types:

1=abstract on cover sheet and first page; 2=abstract only on cover sheet; 3=abstract

only on Memorandum for File cover sheet.) End with .AE.

.AE End Abstract. Begin with .AS.

.AF [company name]

Alternate format for first page. Change first page Subject/Date/From’’ format. If

argument is given, other headings are not affected. No argument suppresses com-

pany name and headings.

.AL [x] [n] Start list type x (1, A, a, I or i), indent n spaces. If third argument is 1, don’t put a

blank line between items. Default is numbered listing, indented 5 spaces.
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.AT title Author’s title follows.

.AU name Author’s name and other information follows.

.AV name Approval signature line for name.

.B [w] [x] . . .  Set w in bold (underline in nroff) and x in previous font; up to six arguments.

.BS Begin block of text to be printed at bottom of page, after footnotes (if any), but

before footer.

.BE End bottom block and print after footnotes (if any), but before footer.

.BI [w] [x] . . .  Set w in bold (underline in nroff) and x in italics; up to six arguments.

.BL [n] [1] Start bullet list and indent text n spaces. If second argument is 1, don’t put a blank

line between items.

.BR [w] [x] Set w in bold (underline in nroff) and x in roman; up to six arguments.

.CS [pgs] [other] [tot] [figs] [tbls] [ref]

Cover sheet numbering information.

.DF [x] [y] [n] Start floating display of type x and mode y, with indent n. (Default is no indent,

no-fill mode.) End with .DE. x is: L (no indent), I (indent standard amount), C

(center each line individually), or CB (center as a block). y is: N (no-fill mode) or F

(fill mode).

.DS [x] [y] [n] Start floating or static display of type x and mode y, with indent n. Type and mode

are as in .DF. End with &.DE.

.DE End floating or static display started with .DS or .DF.

.DL [n] [1] Start dashed list and indent text n spaces. If second argument is 1, no space

between items.

.EC [caption] [n] [f]

Equation caption. Arguments optionally override default numbering, where flag f

determines use of number n. If f=0 (default), n is a prefix to number; if f=1, n is a

suffix; if f=2, n replaces number.

.EF [text] Print text as the footer on all even pages. text has the format ’left’center’right’.

.EH [text] Print text as the heading on all even pages. text has the format ’left’center’right’.

.EQ [text] Start equation display using text as label.

.EN End equation display.

.EX [caption] [n] [f]

Exhibit caption. Arguments optionally override default numbering, where flag f

determines use of number n. If f=0 (default), n is a prefix to number; if f=1, n is a

suffix; if f=2, n replaces number.

.FC [text] Use text for formal closing.

.FD [0-11] Setup default footnote format.

.FS [c] Start footnote using c for indicator. Default is numbered footnote.

.FE End footnote.

.FG [title] Figure title follows.

.Hn [heading] Numbered heading level n follows.

.HC [c] Use c as hyphenation indicator.

.HM [mark] Heading mark style follows arabic (1 or 001), roman (i or I) or alphabetic (a or

A).

.HU heading Unnumbered heading follows.

.HX User-supplied exit macro before printing heading.
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.HY User-supplied exit macro in middle of printing heading.

.HZ User-supplied macro after heading.

.I [w] [x] . . .  Set w in italics (underline in nroff) and x in previous font. Up to six arguments.

.IB [w] [x] . . .  Set w in italics (underline in nroff) and x in bold. Up to six arguments.

.IR [w] [x] . . .  Set w in italics (underline in nroff) and x in roman. Up to six arguments.

.LB n m pad type [mark] [LI-space] [LB-space]

List beginning. Allows complete control over list format. It takes the following

arguments:

n — Text indent.

m — Mark indent.

pad — Padding associated with mark.

type — If 0, use the specified mark. If non-zero, and mark is 1, A, a, I, i, list

will be automatically numbered or alphabetically numbered or alphabetically

sequenced. In this case, type controls how the mark will be displayed. For

example, if mark is 1, type will have the following results:

Type Format

1 1.

2 1)

3 (1)

4 [1]

5 <1>

6 {1}

mark — The symbol or text that will be used to start each list entry. mark can

be null (creates hanging indent), a text string, or 1, A, a, I, or i to create an

automatically numbered or lettered list. Format of the mark will be affected

by type.

LI-space — The number of blank lines to be output between each following

.LI macro (default 1).

LB-space — The number of blank lines to be output by the LB macro itself

(default 0).

.LC [n] Clear list level n.

.LE End list.

.LI [mark] Item in list and specify mark.

.ML mark [n] [1] Start marked list, indent n spaces. If third argument is 1, no space between items in

list.

.MT [type] [title] Specify memorandum type and title. type is

"" = No type

0 = No type

1 = Memorandum for file (default)

2 = Programmer’s notes

3 = Engineer’s notes

4 = Released paper

5 = External letter

string = string is printed.

title is user-supplied text prefixed to page number.

.ND date New date. Change date to date.

.nP Double-line indent on paragraph start.

.NS [type] Notation start. Specify notation type. type is:
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"" = Copy to

0 = Copy to

1 = Copy (with att.) to

2 = Copy (no att.) to

3 = Att.

4 = Atts.

5 = Enc.

6 = Encs.

7 = Under Separate Cover

8 = Letter to

9 = Memorandum to

10 = Copy (with atts.) to

11 = Copy (without atts.) to

12 = Abstract Only to

13 = Complete Memorandum to

string = Copy string to

.NE Notation end.

.OF [text] Print text as the footer on all odd pages. text has the format ’left’center’right’.

.OH [text] Print text as the heading on all odd pages. text has the format ’left’center’right’.

.OK [topic] Other keywords. Specify topic for TM cover sheet.

.OP Force an odd page.

.P [type] Start paragraph type. type is: 0 = left justified (default), 1 = indented, 2 = indented

except after .H, .LC, .DE.

.PF [text] Print text as the page footer on all pages. text has the format ’left’center’right’.

.PH [text] Print text as the page heading on all pages. text has the format ’left’center’right’.

.PM [type] Proprietary marking on each page (type: P=PRIVATE; N=NOTICE).

.PX Page-heading user exit.

.R Return to roman font (end underlining in nroff).

.RB [w] [x] . . .  Set w in roman and x in bold. Up to six arguments.

.RD [input] Read input from terminal.

.RI [w] [x] . . .  Set w in roman and x in italics. Up to six arguments.

.RS [arg] Start automatically numbered reference. arg manually specified reference number.

.RF End of reference text.

.RL [n] [1] Start reference listing, indent text n spaces. If second argument is 1, no space

between list items.

.RP Produce reference page.

.S [n] [m] Set point size to n and vertical spacing to m (troff only) (defaults: 10 on 12).

Alternatively, either argument can be specified as ±n/m to increment/decrement cur-

rent value, D to use default, C to use current value, P to use previous value.

.SA [n] Set right margin justification to n. n is: 0 = no justification or 1 = justification.

(Defaults: no justification for nroff, justification for troff.)

.SG [name] Use name for signature line.

.SK n Skip n pages.

.SM x[y][z] Reduce string x by one point. If strings x, y, and z are specified, y is reduced by one

point.

.SP [n] Leave n blank vertical spaces.
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.TB [title] [n] [f] Supply table title. Arguments optionally override default numbering, where flag f

determines use of number n. If f=0 (default), n is a prefix to number; if f=1, n is a

suffix; if n=2, n replaces number.

.TS [H] Start table. H will put table header on all pages. Use this option with following

.TH.

.TH N Table header ends. Must be used with .TS H. N = only print table headers on new

page.

.TE End table.

.TC [level] [level] [tab] [head1] ...

Generate table of contents.

.TL Title of memorandum follows on next line.

.TM [n] Number a technical memorandum n. (Up to nine may be specified.)

.TP Top-of-page macro.

.TX User-supplied exit for table-of-contents titles.

.TY User-supplied exit for table-of-contents header.

.VL n [m] [1] Start variable item list. Indent text n spaces and mark m spaces. If third argument

is 1, no space between list items.

.VM [n] [m] Add n lines to top margin and m lines to bottom.

.WC [x] Change column or footnote width to x. x is:

FF All footnotes same as first

-FF Turn off FF mode

N Normal default mode

WD Wide displays

-WD Use default column mode

WF Wide footnotes

-WF Turn off WF mode

Predefined String Names

BU Bullet; same as \(bu.

Ci List of indents for table of contents levels.

DT Current date, unless overridden. Month, day, year (e.g., July 28, 1986).

EM Em dash string (em dash in troff and a double hyphen in nroff).

F Footnote number generator.

HF Fonts used for each level of heading (1=roman, 2=italic, 3=bold).

HP Point size used for each level of heading.

Le Title set for List Of Equations.

Lf Title set for List Of Figures.

Lt Title set for List Of Tables.

Lx Title set for List Of Exhibits.

RE SCCS Release and Level of mm.

Rf Reference number generator.

Rp Title for references.
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TM Trademark listing. Place the letters TM one-half line above the text that it follows.

Number Registers Used in mm

A dagger (†) next to a register name indicates that the register can only be set from the command line or

before the mm macro definitions are read by the formatter. Any register that has a single-character name can

be set from the command line.

A† If set to 1, omits technical memorandum headings and provides spaces appropriate

for letterhead. See .AU macro.

Au Inhibits author information on first page. See .AU macro.

C† Flag indicating type of copy (original, draft, etc.).

Cl Level of headings saved for table of contents (default 2). See .TC macro.

Cp If set to 1, list of figures and tables appear on same page as table of contents. Oth-

erwise, they start on a new page. (Default is 1.)

D† If set to 1, sets debug mode (default 0). If set, mm will continue even when it

encounters normally fatal errors.

De If set to 1, ejects page after each floating display. (Default is 0.)

Df Format of float displays. See .DF macro.

Ds Sets the pre- and post-space used for static displays.

E† Font for the Subject/Date/From: 0=bold; 1=roman. (Default is 0.)

Ec Equation counter, incremented for each .EC macro.

Ej Heading level for page eject before headings. (Default is 0, no eject.)

Eq If set to 1, places equation label at left margin. (Default is 0.)

Ex Exhibit counter, incremented for each .EX macro.

Fg Figure counter, incremented for each .FG macro.

Fs Vertical spacing between footnotes.

H1-H7 Heading counters for levels 1-7, incremented by the .H macro of corresponding

level or the .HU macro if at level giv en by the Hu register. The H2-H7 registers

are reset to 0 by any .H (or .HU) macro at a lower-numbered level.

Hb Level of heading for which break occurs before output of body text (default 2

lines).

Hc Level of heading for which centering occurs (default 0).

Hi Indent type after heading. (Default 1=paragraph indent.) Legal values are: 0 left

justified, 1 indented, 2 indented except after .H, .LC, .DE. (Default is 0).

Hs Level of heading for which space after heading occurs. (Default = 2; .H2.)

Ht Numbering type of heading: single (1) or concatenated (0). (Default is 0.)

Hu Sets level of numbered heading that unnumbered heading resembles. (Default = 2;

.H2.)

Hy Sets hyphenation. If set to 1, Hy enables hyphenation. (Default is 0.)

L† Sets length of page. (Default is 66v.)

Le Flag for list of equations following table of contents. 0 = do not print; 1 = print.

(Default is 0.)

Lf Flag for list of figures following table of contents. 0 = do not print; 1 = print.

(Default is 0.)



Formatter Command Summary 485

Li Default indent of lists. (Default is 5.)

Ls List spacing between items by level. (Default = 6, spacing between all levels of

list.)

Lt Flag for list of tables following table of contents. 0 = do not print; 1 = print.

(Default is 0.)

Lx Flag for list of exhibits following table of contents. 0 = do not print; 1 = print.

(Default is 0.)

N† Page numbering style. 0=header on all pages; 1=header printed as footer on page

1; 2=no header on page 1; 3=section page as footer; 4=no header unless .PH

defined; 5=section page and section figure as footer. (Default is 0.)

Np Numbering style for paragraphs. 0 = unnumbered; 1 = numbered.

O Offset of page. For nroff, this value is an unscaled number representing charac-

ter positions. Default is 9. For troff, this value is scaled. Default is .5i.

Oc Table of contents page numbering style. 0=lower case roman; 1=arabic. (Default

is 0.)

Of Figure caption style. 0=period separator; 1=hyphen separator. (Default is 0.)

P Current page number.

Pi Amount of indent for paragraph. (Default is 5 for nroff, 3 for troff.)

Ps Amount of spacing between paragraphs. (Default is 3v.)

Pt Paragraph type. Legal values are: 0 left justified, 1 indented, 2 indented except

after .H, .LC, .DE. (Default is 0.)

Pv Inhibits PRIVATE’’ header. See .PV macro for values.

Rf Reference counter, incremented for each .RS.

S† Default point size for troff. Default is 10. (Vertical spacing is \n5+2.)

Si Standard indent for displays. (Default is 5 for nroff, 3 for troff.)

T† Type of nroff output device. Causes register settings for specific devices.

Tb Table counter, incremented for each .TB.

U* Underlying style (nroff) for .H and .HU. If not set, use continuous underline;

otherwise, don’t underline punctuation and white space. (Default is 0.)

W† Width of page (line and title length). (Default is 6i.)

Other Reserved Macro and String Names

In mm, the only macro and string names you can safely use are names containing a single lowercase letter,

or two character names whose first character is a lowercase letter and whose second character is anything

but a lowercase letter. Of these, c2 and nP are already used.

tbl Command Characters and Words

.TS Start table.

.TE End table.

.TS H Used when the table will continue onto more than one page. Used with .TH to

define a header that will print on every page.
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.TH With .TS H, ends the header portion of the table.

.T& Continue table after changing format line.

Options

Options affect the entire table. The options should be separated by commas, and the option line must be

terminated by a semicolon.

center Center with current margins.

expand Flush with current left and right margins.

(blank) Flush with current left margin (default).

box Enclose table in a box.

doublebox Enclose table in two boxes.

allbox Enclose each table entry in a box.

tab (x) Define the tab symbol as x.

linesize (n)

Set lines or rules (e.g., from box) to n point type.

delim (xy) Recognize x and y as the eqn delimiters.

Format

The format line affects the layout of individual columns and rows of the table. Each line contains a key let-

ter for each column of the table. The column entries should be separated by spaces, and the format section

must be terminated by a period. Each line of format corresponds to one line of the table, except for the last,

which corresponds to all following lines up to the next .T&, if any.

Key letters

c Center.

l Left justify.

r Right justify.

n Align numerical entries.

a Align alphabetic subcolumns.

s Horizontally span previous column entry across this column.

ˆ Vertically continue entry from previous row down through

this row.

Other choices (must follow a key letter)

b Boldface. Must be followed by a space.

i Italics. Must be followed by a space.

pn Point size n.

t Begin any corresponding vertically spanned table

entry at the top line of its range.

e Equal width columns.
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w(n) Minimum column width. Also used with text blocks.

n can be given in any acceptable troff units.

vn Vertical line spacing. Used only with text blocks.

n Amount of separation between columns (default is 3n).

| Single vertical line. Typed between key letters.

|| Double vertical line. Typed between key letters.

_ Single horizontal line. Used in place of a key letter.

= Double horizontal line. Used in place of a key letter.

Data

The data portion includes both the heading and text of the table. Each table entry must be separated by a

tab symbol.

.xx troff commands may be used (such as .sp # and .ce #). Do not use

macros, unless you know what you’re doing.

\ As last character in a line, combine following line with current line (\ is hid-

den).

\ˆ Vertically spanned table entry. Span table entry immediately above over this

row.

_ or = As the only character in a line, extend a single or double horizontal line the full

width of the table.

\$_ or \$= Extend a single or double horizontal line the full width of the column.

\_ Extend a single a single horizontal line the width of the contents of the column.

\Rx Print x’s as wide as the contents of the column.

...T{ Start text block as a table entry. Must be used with wn, column width option.

...T} End text block.

eqn Command Characters

.EQ Start typesetting mathematics

.EN End typesetting mathematics

Character Translations

The following character sequences are recognized and translated as shown.

>= ≥ approx ≈
<= ≤ nothing

== ≡ cdot ⋅
!= ≠ times ×
+- ± del ∇
-> → grad ∇
<- ← ... . . .

<< << ,..., , . . . ,

>> >> sum Σ

inf ∞ int ∫
partial ∂ prod Π
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half ½ union ∪
prime ′ inter ∩

Digits, parentheses, brackets, punctuation marks, and the following words are converted to roman when

encountered:

sin cos tan sinh cosh tanh arc

max min lin log ln exp

Re Im and if for det

Greek letters can be printed in uppercase or lowercase. To obtain Greek letters, simply spell them out

in the case you want:

alpha α sigma σ

beta β tau τ

gamma γ upsilon υ

delta δ phi φ

epsilon ε chi χ

zeta ζ psi ψ

eta η omega ω

theta θ GAMMA Γ
iota ι DELTA ∆
kappa κ THETA Θ
lambda λ LAMBDA Λ
mu µ XI Ξ
nu ν PI Π
xi ξ SIGMA Σ
omicron ο UPSILON ϒ
pi π PHI Φ
rho ρ PSI Ψ

OMEGA Ω

The following words translate to marks on the tops of characters.

x dot ẋ x vec
→
x

x dotdot ẍ x dyad
↔
x

x hat x̂ x bar x

x tilde x̃ x under x

Words Recognized By eqn

above Separate the pieces of a pile or matrix column.

back n Move backwards horizontally n 1/100’s of an em.

bold Change to bold font.

ccol Center a column of a matrix.

col??? Used with a preceding l or r to left or right adjust the columns of the matrix.

cpile Make a centered pile (same as a pile).

define Create a name for a frequently used string.

delim Define two characters to mark the left and right ends of an eqn equation to be

printed in line.
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down n Move down n 1/100’s of an em.

fat Widen the current font by overstriking it.

font x Change to font x, where x is the one-character name or the number of a font.

from Used in summations, integrals and other similar constructions to signify the lower

limit.

fwd n Move forward n 1/100’s of an em.

gfont x Set a global font x for all equations.

gsize n Set a global size for all equations.

up n Move up n 1/100’s of an em.

italic Change to italic font.

lcol Left justify a column of a matrix.

left Create large brackets, braces, bars, etc.

lineup Line up marks in equations on different lines.

lpile Left justify the elements of a pile.

mark Remember the horizontal position in an equation. Used with lineup.

matrix Create a matrix.

ndefine Create a definition which only takes effect when neqn is running.

over Make a fraction.

pile Make a vertical pile with elements centered above one another.

rcol Right adjust a column of a matrix.

right Create large brackets, braces, bars, etc.

roman Change to roman font.

rpile Right justify the elements of a pile.

size n Change the size of the font to n.

sqrt Draw a square root sign.

sub Start a subscript.

sup Start a superscript.

tdefine Make a definition that will apply only for eqn.

to Used in summations, integrals, and other similar constructions to signify the upper

limit.

˜ Forces extra space into the output.

ˆ Force a space one half the size of the space forced by ˜.

{ } Force eqn to treat an element as a unit.

’...’ String within quotation marks is not subject to alteration by eqn.

Precedence

If you don’t use braces, eqn will do operations in the order shown in the following list.

dyad vec under bar tilde hat dot dotdot

fwd back down up

fat roman italic bold size

sub sup sqrt over

from to
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These operations group to the left:

over sqrt left right

All others group to the right.

The pic Preprocessor

In pic there are often dozens of ways to draw a picture, not only because of the many permissible abbrevi-

ations, but because pic combines the language of geometry with English. You can specify a line, for

example, with direction, magnitude, and starting point, yet often achieve the same effect by stating from

there to there.’’

Full descriptions of primitive objects in pic can be ended by starting another line, or by the semi-

colon character (;). A single primitive description can be continued on the next line, however, by ending

the first with a backslash character (\). Comments may be placed on lines beginning with #.

pic Macros

The following macros are used to delimit pic input from the body of the source file. Only text within

these macros will be processed by pic.

.PS [h[w]] Start pic description. h and w, if specified, are the desired height and width of the

picture; the full picture will expand or contract to fill this space.

.PS <file Read contents of file in place of current line.

.PE End pic description.

.PF End pic description and return to vertical position before matching PS.

Declarations

At the beginning of a pic description, you may declare a new scale, and declare any number of variables.

pic assumes you want to do a 1-to-1 scale, with 1 = one inch. You can declare a different scale, say

1 = one-nth of an inch, by declaring scale = n.

pic takes variable substitutions for numbers used in the description. Instead of specifying, line

right n, you may use a lower case character as a variable, for example, a, by declaring at the top of the

description:

a = n

You may then write line right a.

Primitives

Primitives may be followed by relevant options. Options are discussed later in this section.

arc [cw] [options] [ text’’]

A fraction of a circle. (Default 1/4 of a circle.) The cw option specifies a clock-

wise arc; default is counterclockwise.

arrow [options] [ text’’] [then...]

Draw an arrow. Essentially the same as line ->.
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box [options] [ text’’]

Draw a box.

circle [options] [ text’’]

Draw a circle.

ellipse [options] [ text’’]

Draw an ellipse.

line [options] [ text’’] [then...]

Draw a line.

move [options] [ text’’]

A move of position in the drawing. (Essentially, an invisible line.)

spline [options] [ text’’] [then...]

A line, with the feature that a then’’ results in a gradual (sloped) change in direc-

tion.

text’’ Te xt at the current point.

Options

right [n]

left [n]

up [n]

down [n]

Specifies direction of primitive; default is direction in which the previ-

ous description has been heading. Diagonals result by using two direc-

tions on the option line. Each direction can be followed by a specified

length n.

rad n

diam n

Specifies a primitive to hav e radius n (or diameter n).

ht n

wid n

Specifies the height or width of the primitive to be n. For an arrow,

line, or spline, refers to the size of arrowhead.

same Specifies a primitive of the same dimensions of the most recent match-

ing primitive.

at point Specifies primitive to be centered at point.

with .position at point Specifies the designated position of the primitive to be at point.

from point1 to point2 Specifies the primitive to be drawn from point1 to point2. Points may

be expressed as Cartesian coordinates or in respect to previous objects.

-> Specify the arrowhead to be directed forwards.

<- Specify the arrowhead to be directed backwards.

<-> Specify the arrowhead to be directed both ways.

chop n m Chop off n from beginning of primitive, and m from end. With only

one argument, the same value will be chopped off from both ends.

dotted

dashed

invis

Specifies the primitive to be drawn dotted, dashed, or to be invisible.
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then... Continue primitive in a new direction. Relevant only to lines, splines,

moves, and arrows.

Text

Place text within quotation marks. To break the line, break into two (or more) sets of quotation marks.

Te xt always appears centered within the object, unless given one of the following arguments:

ljust Te xt appears left justified to the center.

rjust Te xt appears right justified to the center.

above Te xt appears above the center.

below Te xt appears below the center.

Object Blocks

A complex object that is the combination of several primitives (for example, an octagon) can be treated as a

single object by declaring it as a block:

Object:[

description

.

.

.

]

Brackets are used as delimiters. Note that the object is declared as a proper noun, hence it should begin

with a capital letter.

Macros

The same sequence of commands can be repeated by using macros. The syntax is:

define sequence %

description

.

.

.

%

In this example, we have used the percent sign (%) as the delimiter, but any character that is not in the

description may be used.

Macros can take variables, expressed in the definition as $1’’ through $9’’. Invoke the macro with

the syntax: sequence(value1, value2,...)
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Positioning

In a pic description, the first action will begin at (0,0), unless otherwise specified with coordinates. Thus,

the point (0,0) will move down and right on the drawing, as objects are placed above and to the left of the

first object.

All points are ultimately translated by the formatter into x- and y-coordinates. You may therefore

refer to a specific point in the picture by incrementing or decrementing the coordinates, i.e., 2nd

ellipse - (3,1).

You may refer to the x- and y-coordinates of an object by placing .x or .y at the end. For example,

last box.x will refer to the x-coordinate of the most recent box drawn. Some of the physical attributes

of the object may also be referred to similarly, as follows:

.x X-coordinate of the object’s center.

.y Y-coordinate of the object’s center.

.ht Height of object.

.wid Width of object.

.rad Radius of object.

Unless otherwise positioned, each object will begin at the point where the last object left off. If a

command (or a sequence of commands) is set off by braces ({}), however, pic will then return to the point

before the first brace.

Positioning between Objects

When referring to a previous object, you must use proper names. This can be done two ways:

• By referring to it by order, e.g., 1st box, 3rd box, last box, 2nd last box,

etc.

• By declaring it with a name, in initial caps, on its declaration line, e.g., Line1: line 1.5

right from last box.sw

To refer to a point between two objects, or between two points on the same object, you may write: fraction

of the way between first.position and second.position or (abbreviated) fraction<first.position, sec-

ond.position>.

Corners

When you refer to a previous object, pic will assume that you mean the center of the object, unless you

use a corner to specify a particular point on the object. The syntax is:

.corner of object

for example, .sw of last box. You can also use an abbreviated syntax:

object.corner

for example, last box.sw.

These corners may be:

n North (same as t)

s North (same as b)

e East (same as r)

w West (same as l)

ne Northeast

nw Northwest

se Southeast

sw Southwest
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t Top (same as n)

b Bottom (same as s)

r Right (same as e)

l Left (same as l)

start Point where drawing of object began

end Point where drawing of object ended

You may also refer to the upper right, upper left, lower right, and lower left of an

object.

Numerical Operators

Several operators are functional in pic. These are:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

Default Values

arcrad 0.25 ellipsewid 0.75

arrowwid 0.05 linewid 0.5

arrowht 0.1 lineht 0.5

boxwid 0.75 movewid 0.5

boxht 0.5 moveht 0.5

circlerad 0.25 scale 1

dashwid 0.05 textht 0

ellipseht 0.5 textwid 0
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Shell Command Summary

This section describes the syntax of the Bourne Shell. It lists special characters, variables, and built-in pro-

gramming commands used by the shell.

Special Files

$HOME/.profile

Executed at shell startup.

Special Characters for Filename Generation

* Match any string of characters.

? Match any single character.

[ . . . ] Match any of the enclosed characters. A pair of characters separated by a minus will

match any character lexically between the pair.

Special Characters For Control Flow

| Perform pipeline (use output of preceding command as input of following command,

e.g., cat file | lpr).

; Separate sequential commands on the same line.

& Run command in background (e.g., lpr file &).

&& Execute command if previous command was successful (e.g., grep string file && lpr

file).

|| Execute command if previous command was unsuccessful (e.g., grep string1 file ||

grep string2 file).

( ) Execute commands enclosed in ( ) in a subshell; output from the entire set can then be

redirected as a unit or placed in the background.

’. . .’ Take all characters between single quotation marks literally. (Don’t allow special char-

acter meaning.)

\ Take following character literally.

". . ." Take enclosed characters literally but allow variable and command substitution.

cmd Use output of cmd as argument to another command.

# Begin a comment in a shell file.

<file Take input from file.

<<string Read standard input up to a line identical to string.

>file Redirect output to file (overwrite).

>>file Redirect output to end of file (append).

>&digit Redirect standard output to digit e.g., 2>&1.

<&- Close standard input.
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>&- Close standard output.

Variable Substitution

variable=value Set variable to value.

$variable Use value of variable.

${variable-value}

${variable[:]-value}

Use variable if set; otherwise set to value. For example: TERM=${1:-$TERM) will

set the TERM variable to the value of the first argument to a shell script, if given, or else

to the existing (default) value of TERM.

${variable=value}

Use variable if not set; otherwise set to value.

${variable[:]=value}

${variable?value}

Use variable if set; otherwise print value then exit.

${variable[:]?value}

${variable+value}

Use value if variable is set; otherwise nothing.

${variable[:]+value}

If the colon (:) is included in these expressions, a test is performed to see if the variable is non-null as well

as set.

Shell Parameters Set by the Shell under Execution

$# Number of command-line arguments.

$- Options supplied in invocation or by the set command.

$? Return value of last executed command.

$$ Return process number of current process.

$! Return process number of last background command.

Shell Variables Initially Set By profile

$HOME Default (home directory) value for the cd command.

$IFS Internal field separators.

$MAIL Default mail file.

$PATH Default search path for commands.

$PS1 Prime prompt string; default is $.

$PS2 Second prompt string; default is >.

$TERM Specifies the type of terminal.
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Shell Functions

name() {command1; ...; commandn}

Create a function called name that consists of the commands enclosed in braces. The

function can be invoked by name within the current script.

Built-in Commands

file file

Execute contents of file.

break break[n]

Exit from a for, while, or until loop in n levels.

case case value in

pattern1) commands;;

.

.

.

patternn) commands;;

esac

For each item in list that matches pattern, execute command.

cd cd [dir]

Change current directory to dir.

continue continue [n]

Resume nth iteration of a for, while, or until loop.

echo echo args

Print args on standard output.

eval eval [arg . . . ]

Evaluate arguments, then execute results.

exec exec [cmd]

Execute cmd in place of current shell.

exit exit [n]

Exit the shell with exit status n, e.g., exit 1.

export export [var . . . ]

Export variable var to environment.

for for variable [in list . . . ]

do

commands

done

Do commands for each variable taken from the optional list (if list is not explicitly

given, it will be made up from the command line arguments).

if if condition

then commands

[elif condition2

then commands2] . . .

[else commands3]

fi

If condition is met, do list of commands, or else if condition2 is met, do commands2,

otherwise do commands3. (See test for a list of conditions.)

hash hash cmds

Temporarily add cmds to search path.
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login login [user . . . ]

Log in as another user.

newgrp newgrp [group . . . ]

Change your group ID to group; if no argument, change back to your default group.

pwd pwd

Print current working directory.

read read [var . . . ]

Read value of var from standard input.

readonly readonly [var . . . ]

Mark variable var as read only.

return return

Stop execution of current shell function and return to calling level.

set set [t] [options] [arg . . . ]

With no arguments, set prints the values of all variables known to the current shell.

The following options can be enabled (-option) or disabled (+option).

-- Don’t treat subsequent arguments beginning with -- as options.

-a Automatically export all subsequently defined variables.

-e Exit shell if any command has a nonzero exit status.

-k Put keywords in an environment for a command.

-n Read but do not execute commands.

-t Exit after one command is executed.

-u Treat unset variables as an error.

-v Print commands as they are executed.

-x Turn on trace mode in current shell (echo commands in scripts as

they are executed).

arg ... Assigned in order to $1, $2, . . . $9.

shift shift

Perform a shift for arguments, e.g., $2 becomes $1.

test test exp | [exp]

Evaluate the expression exp. An alternate form of the command uses [ ] rather than

the word test. The following primitives are used to construct expression.

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-f file True if file exists and is a regular file.

-g file True if file exists and its set-group-id bit is set.

-k file True if file exists and its sticky bit is set.

-n s True if the length of string s is nonzero.

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t [n] True if the open file whose file descriptor number is n (default is 1) is

associated with a terminal device.

-u file True if file exists and its set-user-id bit is set.

-w file True if file exists and is writable.
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-x file True if file exists and is executable.

-z s True if the length of string s is zero.

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s True if string s is not the null string.

n1 -eq n2 True if the integers n1 and n2 are algebraically equal. Any of the

comparisons -ne, -gt, -ge, -lt, and -le may be used in place of

-eq.

times times

Print accumulated process times.

trap trap [cmd] [n]

Execute cmd if signal n is received. Useful signals include:

0 Successful exit of command.

1 Hangup of terminal line.

2 Interrupt.

15 Process is killed.

type type commands

Print information about commands.

until until condition

[do commands]

done

Until condition is met, do commands (see test for conditions).

ulimit ulimit [size]

Set maximum size of file that can be created to size; if no arguments, print current limit.

umask umask [nnn]

Set file creation mask to octal value nnn.

unset unset vars . . .

Remove definitions for variables vars.

wait wait [n]

Wait for specified background process with identification number n to terminate and

report its status. If n not given, waits until all backgroud processes have terminated.

while while condition

[do commands]

done

While condition is met, do commands (see test for conditions).

filename filename

Read and execute commands from executable file filename.
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Format of troff Width Tables

As discussed in Chapter 4, troff uses width tables stored in the directory /usr/lib/font to deter-

mine how to place text on the page. To do this, it needs to know how wide each character is.

For each type of troff output device supported by your system, there should be a directory called

/usr/lib/font/devxx, where xx is the name of the device. For example, on our system:

$ ls -F /usr/lib/font
devlj/

devps/

Within each of these directories resides an overall device description file, called DESC, and individual font

files for the fonts on your system. These files exist both in ASCII and binary form. The binary files are

created from the ASCII versions using a utility called makedev, and have the suffix .out.

On our system, here’s what the font directory for the HP LaserJet contains:

$ ls /usr/lib/font/devl
B DESC I S

B.out DESC.out I.out S.out

CW HB R TY

CW.out HB.out R.out TY.out

The DESC File

The DESC file contains an overall description of the output device, including its resolution in dots per inch,

the paper size, the fonts that will be mounted by default, the available point sizes, and a complete list of all

the troff special character names supported on that device.

A DESC file might look something like the following example.

# HP LaserJet

fonts 6 R I B HB CW S

sizes 7 8 10 12 14 17 22 27 0

res 300

hor 1

vert 1

unitwidth 12

paperwidth 2400

paperlength 3300

charset

\| \ˆ \-

fi fl ff Fi Fl

br vr ul ru

bu sq em hy 14 12 34 aa ga

.

.

.

sc gr no is pt es mo

dd rh lh bs or ci

lt lb rt rb lk rk bv lf rf lc rc

The following keywords are used in the DESC file.

fonts The number of fonts to be mounted for the device, followed by a list of the font

names (maximum is ten). The user can request other fonts from within a
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document. However, the fonts listed here will be “mounted” (by analogy with the

CAT typesetter), and can by referenced by position (\f1, \f2...) as well as by

name.

sizes The sizes in which the various fonts are available.

res The resolution of the output device, in dots per inch.

hor The minimum number of units of resolution that the device can move in a horizon-

tal direction.

vert The minimum number of units of resolution that the device can move in a vertical

direction.

unitwidth The point size at which character widths are specified in the other files.

paperwidth The width of the page in units of resolution (e.g., 8 inches times 300 = 2400, the

width for the LaserJet, because it forces a ½-inch margin).

paperlength The length of the page in units of resolution (e.g., 11 inches times 300 = 3300, the

length for the LaserJet).

biggestfont The maximum number of characters in a font.

charset The list of character names that are supported on this output device. The keyword

should be on a line by itself; the list of characters starts on the next line.

# Begins a comment.

Font Description Files

For each font listed on the fonts line of the DESC file, there should be a font file with the same name.

The font file contains a list of all the characters in the font, along with the width and other associated infor-

mation.

A font file looks like this:

name R

internalname Roman

charset

4 0 0

8 0 0

vr 0 3 13

ru 25 0 17

.

.

.

A 42 2  65

B 35 2  66

C 37 2  67

.

.

.

w 40 0  119

x 28 0  120

y 28 1  121

z 25 0  122

.

.

.

Four columns, separated by tabs, are listed for each character.

The first column lists the character name—either the letter, digit, or symbol, or a two-character

troff special character name defined in the charset section of DESC.
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The second column contains the width of the character in output device units. The width is the width

of the character at the point size specified by the unitwidth keyword in DESC. For example, if

unitwidth is 12, then from the portion of the table just shown, we know that a 12-point A in the roman

font is 42 units wide. The troff formatter determines the width at other point sizes by scaling the

unitwidth size.

The third column describes the character type—that is, whether it is a descender (1), ascender (2),

both (3), or neither (0).

The fourth column contains the typeset code for the character. This code is the value that the output

device will recognize to generate the character. This information is obtained from the typesetter or laser

printer vendor. The code can be in decimal or octal form. (Octal is specified by a leading zero.)

In general, whomever supplied the driver for the output device will provide you with appropriate

width tables for the supported fonts. However, you may have access to other public domain fonts for output

devices that support downloadable raster fonts. In this case, you may need to build your own tables.

In addition, you may want to “tune” tables by adjusting the widths slightly if you find that the charac-

ter spacing is poor. Creating a font table from scratch requires a magnifying glass, a micrometer, a good

eye, and a lot of patience.

Compiling Font Files

After you are satisfied with your width tables, they need to be compiled using the makedev utility:

$ makedev DESC Compile all fonts in DESC

Running makedev on DESC will compile all of the fonts listed on the fonts line in that file. You can

compile a font that is not included in DESC by specifying its name on the command line:

$ makedev B Compile the bold font

Font Usage Limitations

The user is not restricted to using the “mounted” fonts that have been listed in DESC. Any font supported

by the output device, and for which a compiled width table exists, can be referred to from within a docu-

ment. For example, if you had a Palatino font family named PA, PB, and PI, there should be files called:

PA.out PB.out PI.out

One problem that is sometimes encountered is that troff has problems if a font that is used in this way is

larger (in absolute file size) than the largest of the mounted fonts specified in DESC. The troff formatter

only allocates enough memory for the largest font in DESC. If you encounter this problem, you can either

strip unneeded characters out of the font, pad a font in DESC, or add the large font that is giving you trouble

to DESC.
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Comparing mm and ms

Note to reviewers: Markup problem: mm’ and me’ should be lower case from .chapter.

If you have both ms and mm on your system, you may be interested in looking at both packages, perhaps

evaluating features. In general, ms has many of the same capabilities as mm. Howev er, it lacks some essen-

tial features, such as automatically numbered lists and table of contents generation. On the other hand, it is

much easier to learn the internals of ms, and therefore easier to extend it with your own macros.

Paragraphs

The basic paragraph types are block and indented.

mm ms Description

.P .LP Begin a block paragraph.

.P 1 .PP Begin a paragraph with indented first line.

In mm, the default paragraph type can be changed from block to indented by setting the number register Pt

to 1 or 2. The ms macros lack this generalizing mechanism.

Justification

When using the nroff formatter, mm does not justify the right margin. .SA 1 turns on justification for

both formatters. .SA 0 turns it off.

The ms macros do not provide a macro for inhibiting the normal justification of paragraphs. How-

ev er, the .na request can be used to do this.

Displays

Displays are produced in a very similar way in both macro packages, using the DS/DE pair of macros. In

mm, displays are left justified; in ms, displays are indented. The options that allow you to change the place-

ment of the display are basically the same.

The mm macros provide for static and floating displays (.DF). In ms, this is done with a separate pair

of keep macros (KS/KF and KE).

In mm, you can turn on fill mode within the display and specify an indent from the right margin. This

is used for quoted material and has its equivalent in ms with the Qp or the QS/QE pair.

In addition, the same set of delimiter pairs for tbl, eqn, and pic are available in both packages.
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Formatting Lists

The mm macros have sophisticated list formatting macros that are lacking in ms. The .IP macro in ms pro-

duces the equivalent of a variable-item list in mm. In other words, you can get a numbered list by specifying

the number as a label to an indented paragraph, but you cannot get an automatically numbered list.

Change Font

The .B (change to bold), .I (change to italic), and .R (change to roman) macros used for changing fonts

are the same. The mm macros allow up to sev en arguments for alternating with the previous font, but ms is

limited to two.

Change Point Size

Both packages allow you to change point size. In mm, .S specifies a new point size and .SM reduces point

size relative to the current size.

When you change the point size using ms macros, it is always done relative to the current point size.

The .LG and .SM macros increase and decrease the current point size by 2 points. The .NL macro

restores the default point size.

Headers and Footers

The mm macros provide macros for specifying a delimited string that will appear left justified, centered, and

right justified in a page header or footer. The .PH macro defines a page header and .PF defines a page

footer. In addition, mm provides variations of these macros for specifying headers and footers for odd and

ev en pages.

The ms macros handle this through setting individual strings. To define a string that appears left jus-

tified in a header, use:

.ds LH string

The other strings for the header are CH and RH; other strings for the footer are LF, CF, and RF.

Section Headings

Numbered and unnumbered section headings are available in both packages. The .SH and .NH macros are

used in ms. The .H and .HU macros are used in mm. The main difference is where you specify the heading

string. In mm, it is the first argument on the line with the macro. In ms, it follows on the line after the

macro and continues up to the first paragraph macro.
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Footnotes

The pair of macros used for footnotes is the same (.FS and .FE), although automatic numbering of foot-

notes is provided in mm. One difference is that in mm the footnote at the bottom of the page is printed in 8

points. The mm macros also provide a pair of macros (.RF and .RE) for collecting a page of references.





Appendix F

The format Macros

Note to reviewers: Markup problem: format’ should be lower case from .chapter.

Throughout this book, we’ve made extensive references to portions of the extended ms macro package that

we use in our technical writing business. These macros are used in conjunction with the format shell

script to provide a complete document formatting environment.

This package was originally developed by Steve Talbott of Massachusetts Computer Corp. (MASS-

COMP). We hav e extended and generalized it to meet the document design needs of many different clients.

The purpose of this appendix is to summarize, in one place, the function of the macros that the pack-

age contains. We hav e found that this set of macros covers the basic needs of people involved in the devel-

opment of technical books and manuals.

The package relies on the existence of the underlying ms macros. In this sense, it is not a complete

package. However, it is possible to define a simple subset of the ms macros to cover the basics if the full

implementation of ms is not available.

For more information on the full implementation of these macros, please feel free to contact us in

care of the publisher.

Summary of the Macros

The following list summarizes the user-callable macros in the format macro package.

.[ABCD]h A-level head, B-level head, and so on.

.Dr Specify whether the current version is a draft. (Drafts are dated.)

.Fs Start a figure.

.Fe title Figure end. Figures are automatically numbered, and given the specified title.

.Hl [c] Print a horizontal line the width of the page, using character c. (Default is

underscore.)

.IOC [strings] Start an interoffice memo.

.TO List of names following .TO "" will be placed in separate distribution list.

.TO name name is addressee. Maximum of five such .TO lines.

.DA date date is date of the memo; will be included in page footer.

.ND date date is date of the memo; will be omitted from page footer.

.FR name name is sender. Maximum of five such .FR lines.

.CC name name is person to receive copy of memo. Maximum of five .CC lines.

.SU subject subject is subject of the memo.

.IP label indent [0] Begin paragraph with “hanging indent.” Following text is indented, while

label remains at the margin.

.LP [0] Start a (left-justified) paragraph. 0 suppresses blank line.

.Ls [type] [indent] [bullet]

Start a (possibly nested) list. type is N (number), A (alphabetical uppercase),

a (alphabetical lowercase), I (Roman numeral uppercase), i (Roman
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numeral lowercase), B (bullet). Default indent is 5. bullet is alternative bullet

string (null string is acceptable).

.Li [0] List item. 0 suppresses preceding blank line.

.Le [0] End of innermost list. 0 suppresses preceding blank line.

.Lt [1 | 2] Enter address blocks and date (1), and salutation (2) of a letter.

.Nd n Need n lines. If n lines do not remain on the page, eject new page. Unlike

.ne, .Nd causes a break.

.Nh [1 | 0] Enable/disable numbered headings (enabled by default).

.Ns type Start a NOTE of type N (Note), C (Caution), W (Warning), R (Review Note),

or P (Private Note). Review notes are printed in the text and summarized in a

list at the end. Private notes appear only in the end list.

.Ne End a note.

.OB string Print an overbar (over a string).

.Ps [indent] Start a “printout” (display). Te xt is printed in the CW font and preserved as

is—there is no filling.

.Pe End a printout. See .Ps.

.Rh [0 | 1] [desc] head . . .

Create reference page header.

.Se [number] [title] Start a section (chapter). This sets up many defaults, and is desirable to use

for most documents.

.SE Screen end. End a computer screen illustration begun with .SS.

.SS [width] [height] Start a screen illustration (box with curved corners). If width and height are

not specified, scale to size of contents.

.Tc level Specify what level of heading will be saved in the table of contents (Ah to

Dh).

.Ti text Title—goes in left page footer.

.St text Subtitle—goes in right page footer.

.Ts title Start a table with given caption. Tables are automatically numbered.

.Te End a table. (Output a blank line.)

.XX text Make an index entry out of text, with automatic addition of a page number.

.XN text Make an index cross-reference out of text (no page number).



Appendix G

Selected Readings

The following books may be helpful either when you’re starting out, or when you’re ready to go on to more

advanced topics.

Introductory UNIX Texts

Kochan, Steven G. and Patrick H. Wood. Exploring the UNIX System, Hasbrouck Heights, NJ: Hayden

Book Co., 1984. A comprehensive introduction to the UNIX system. (371 pp.)

Todino, Grace. Learning the UNIX Operating System, Newton, MA: O’Reilly and Associates, Inc., Nut-

shell Handbooks, 1985. A brief introduction to essential UNIX skills, designed to be read and mas-

tered in one or two sessions. (73 pp.)

Advanced Topics

Kernighan, Brian and Rob Pike. The UNIX Programming Environment, Englewood Cliffs, NJ: Prentice-

Hall, 1984. The best introduction to the practical philosophy of UNIX programming. (240 pp.)

Kochan, Steven G. and Patrick H. Wood. UNIX Shell Programming, Hasbrouck Heights, NJ: Hayden

Book Co., 1985. A comprehensive and readable discussion of shell programming. (422 pp.)

Talbott, Steve. Managing Projects with Make, Newton, MA: Reilly and Associates, Inc., Nutshell Hand-

books, 1985. A concise but thorough description of the UNIX make utility. (63 pp.)
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INDEX

- -

.1C macro (ms), 103–104

.2C macro (ms), 103–104

- a -

.AB macro (ms), 101

.ab request, 350
absolute motions, 357, 369
.ad request, 57–59, 386
adding formatting codes, indexing,, 438
.AE macro (ms), 101
.AI macro (ms), 101
.AL macro (mm), 131–134
alias command, 239
alphabetic lists, mm macros, 131–134
altering output format, number registers,, 341
.am request, 330, 423
appending to

a file, 11
diversions,, 344
macros,, 330
strings,, 343

arguments
Bourne shell, discarding and shifting, 280
in macros, 332
in shell scripts, 17
macros,, 332
shell scripts, discarding and shifting, 280
to, shell scripts,, 17
to UNIX commands, 9

arithmetic expressions, in troff, 334
as

global variables, number registers,, 338
nested list counter, number registers,, 417

.as request, 343

.AU macro (ms), 101
autoincrementing

number registers, 341
number registers,, 341, 417

awk, 275, 309–327, 435–436
arrays, 315, 324, 464
awkronym script, 311–313, 316–319, 327
basic operations, 309
BEGIN procedures, 313
built-in functions, 324
capabilities of, 309
changing the field separator, 312
command summary, 462, 464–465
conditional statements, 314
debugging, 327
dividing input into records and fields, 310
error handling in, 322
for loops, 314, 326
for loops with arrays, 316
formatted print statement, 321
invoking, 310
passing parameters from a shell script, 311
pattern matching, 310
pattern matching, 463
scripts for order tracking, 323
similarities to sed, 309
subdividing a field, 324, 436

substr function, 439
syntax of procedures, 463
system variables, 313, 463
testing fields, 311
used for indexing, 435–440
variables, 315, 464
while loops, 313

- b -

.B macro
(mm), 117–119
(ms), 93–95

.B1 macro (ms), 102

.B2 macro (ms), 102
background processing, 15

Bourne shell,, 15
backing up

files, 270–272
files,, 270–272

bars, change, 379
baseline spacing, 80–81
.BD macro (ms), 97
.bd request, 368
bdiff command, 258
.BE macro (mm), 147
.BG macro

(ms), 87
(ms), 388

.BI macro (mm), 119

.BL macro (mm), 126, 129–130
boldfacing

by overstriking, 368
by overstriking, fonts,, 368

book production, final, 444
Bourne shell, 10, 275–284

background processing, 15
cancelling commands, 10
command summary, 495–499
conditional execution, 278–280
discarding and shifting arguments, 280
interrupting commands, 10
long command lines, 16
prompt, 10
repetitive execution, 281, 285
resuming commands, 10
secondary prompt, 17
shell functions, 496
special characters, 495
variable substitution, 12, 495
variables set by shell under execution, 496

Bourne shell
breaking out of a script (exit), 282
CDPATH environment variable, 240
export command, 40, 282
HOME variable, 12
PATH variable, 276
test options, 279
variables set by .profile, 496

boxes, drawing,, 102, 359
.bp request, 70, 72–74
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.BR macro (mm), 119

.br request, 55, 344
bracket-building characters, 371, 475
breaking out of, shell scripts,, 282
breaks

importance of, 58, 344
no-break control character, 58
page, 403
without line breaks, page, 72

breaks, troff requests which cause, 58
.BS macro (mm), 147
.BT macro (ms), 391
building the page number list, indexing,, 435
.BX macro (ms), 102
by overstriking, boldfacing,, 368
bytes, files, size in, 242

- c -

C shell, 10, 239, 275
search path, shell scripts,, 277

.c2 request, 346
cancelling

commands,, 10
commands, Bourne shell,, 10

case shell command, 278–280
cat command, 10–11, 108, 243
C/A/T typesetter, 51, 53, 61
cautions and warnings, notes,, 420–421
.cc request, 346
cd command, 12
.CD macro (ms), 97
CDPATH environment variable, 240
.ce request, 65–66
.cf request, 366
.ch request, 399
change

bars, 379
pages, 402

changes to (SCCS), files, tracking, 258
changing

directories,, 12
fonts,, 74–77
line weight, drawing,, 362

characteristics
files,, 242
of, word processors,, 1–4

characters
bracket-building, 371, 475
Greek, 191, 196, 476
redefining control and escape, 346
slanting, 376

checkeq command, 205
checking for correctness, hyphenation,, 59
checkmm command, 108, 128
chmod command, 14, 17, 242
chown command, 242
closing, diversions,, 343
col command, 70
comm command, 263–265
command

line, number registers, setting from, 82
line, page number, setting from, 110
lines, Bourne shell, long, 16
mode vs. insert mode, word processors,, 3
summary, Bourne shell,, 495–499

commands
Bourne shell, cancelling, 10
Bourne shell, interrupting, 10
Bourne shell, resuming, 10
cancelling, 10
interrupting, 10

resuming, 10
UNIX, syntax of, 9

comments, in troff, 329
comparing, strings,, 335
conditional execution

Bourne shell,, 278–280
in shell scripts, 278–280
shell scripts,, 278–280

conditional execution
in troff, 334–337
in awk, 314

conditions, inverse, 337
constant

spacing, 375, 419
width, fonts,, 375, 419

contents
created by diversion, table of, 422, 424
diversions, table of, 422
files, viewing, 243
of, directories, listing, 12
of font files, fonts,, 52, 501–503
table of, 422
written to standard error, table of, 422, 426

control
and escape characters, redefining, 346
character, breaks, no-break, 58
character, no-break, 58

conventions, macros, naming, 330
copy mode, 333

in, macros,, 333
copying, files,, 13
core dumps, 327
correctness, hyphenation, checking for, 59
counting characters in, files,, 16
cover sheet macros, 100–102, 105
cpio command, 270–273

using with find, 271–272
created by diversion, table of contents,, 422, 424
creating

directories,, 12
diversions,, 343

crypt command, 270
.cs request, 375
csh command, 275
.cshrc file, 240
csplit command, 268–269
CTRL key, 33
cu

command, 272
request, 68

current, directories, printing, 12
cursor movement, 22
curves, drawing,, 362
customizing vi, 40
cut marks, 395–396
cut command, 265–266

- d -

.da request, 344, 423
dash, em, 292
data interactively, shell scripts, reading, 319
date and time last modified, files,, 242
date command, 9
DDL, 54
.DE macro

(mm), 115
(ms), 97–99

.de request, 81, 330
debugging

in awk, 327
in troff, 347–349
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pic, 228
default values

macros, setting, 385
shell scripts, setting, 283

(defined)
em, 61
en, 61
pica, 61

defining
macros,, 105, 145, 330
strings,, 342

(definition of), filling, 48
definition of

justification,, 48
shell scripts,, 275

deroff command, 260
DESC file, 501–502
developing a package, macros,, 383
devps postprocessor, 53–54, 367
.DF macro (mm), 123
.di request, 343, 359
dial-up line, 272
diff command, 253–256, 286
diff3 command, 254, 256–257
diffmk command, 379
directories

changing, 12
creating, 12
home, 12
listing contents of, 12
printing current, 12
public, 273
root, 11
sub-, 11

directory
home, 12
root, 11

discarding and
shifting arguments, Bourne shell,, 280
shifting arguments, shell scripts,, 280

displays
fill options (mm), 122
floating (mm), 123
floating (ms), 98
in mm macros, 121–122
in ms macros, 97–99
labels (mm), 124
mm vs. ms, 505
static (mm), 123
static (ms), 98

diversions, 343, 359, 422, 424–426
appending to, 344
closing, 343
creating, 343
naming by number register interpolation, 426
splitting, 426
table of contents, 422
used for footnotes, 400

.DL macro (mm), 129–130
Documenter’s Workbench, 52
documents, here, 286
dot-matrix printers, 6
downloadable, fonts,, 52
drawing, see also pic preprocessor
drawing

boxes, 102, 359
changing line weight, 362
curves, 362
including Macintosh illustrations, 366
lines, 358
sample figures, 362

.DS macro
(mm), 115, 121–122
(ms), 97–99

.ds request, 82, 342
dumps, core, 327

- e -

.EC macro (mm), 110, 124–125

.ec request, 346
echo command, 10
editing multiple, files,, 163
.EF macro (mm), 111
egrep command, 246
.EH macro (mm), 111
.el request, 334–337
elif shell command, 279
em

dash, 292
(defined), 61

.em request, 423
emacs editor, 4, 19
en (defined), 61
end macro, 423–424
entries, indexing

indexing, sorting raw, 434
indexing, subordinating secondary, 436

environment
switch, number registers, substituting for, 419
variables, setting, 15–16

environment variables
EXINIT, 40
HOME, 12
PATH, 276
path, 277
TERM, 15

environments, 345, 419
.eo request, 346
eqn preprocessor, 70, 191–206

abbreviating a string, 202
braces and brackets, 199
diacritical marks, 191
diacritical marks, 201
displayed equations, 192
fonts, 191, 204
Greek alphabet, 191, 196
grouping items, 205
horizontal spacing, 191
inline expressions, 193
integrals, 198
invoking, 192
limits, 198
lining up equations, 203
point sizes, 191, 204
precedence of operations, 205, 489
problem checklist, 205
problems with .so request, 381
quotation marks, 195, 199, 202
simple example, 191
spaces in equations, 194
special character names, 191, 196–197
square root signs, 199
subscripts, 195
summary of command characters, 487–490
summations, 198
superscripts, 195
syntax, 191
tabs within equations, 194
using braces for grouping, 196
using mm with, 193
using nroff with, 192
using tbl with, 170, 192
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vertical piles (columns), 200
vertical spacing, 191, 204

error, standard, 10, 426
errors, messages from UNIX commands, 10
errors

in mm, 108
in ms, 86
in troff macros, 349

escape sequences, in troff, 353
.ev request, 345
ex editor, 149–168, 275, 286

search for general classes of words, 156
functions, 168
: prompt, 21
abbreviating recurring phrases, 165
address symbols, 456
appending to existing file, 160
command summary, 455–460
command mode, 150
confirming replacements, 153
copying lines, 151
creating a subshell, 161
current line, 150
deleting lines, 151
differences from sed, 289
editing multiple files, 163
executing from vi, 151
executing from vi, 22
executing UNIX commands from, 160
EXINIT variable, 40
exiting, 159, 455
.exrc file, 40–41
filtering text through a UNIX command, 161
global search and replace, 153, 155
insert mode, 150
invoking, 149, 455
leaving insert mode, 150
limiting search to complete words, 156
line addressing in, 152, 456
mapping commands to keys, 166–167
moving text blocks by patterns, 157
moving lines, 151
pattern matching, 154, 157
printing line(s), 149
quitting without saving edits, 159
range of lines, 150
reading in result of UNIX command, 161
reading in a file, 160
renaming the buffer, 159
saving part of a file, 160
saving files, 159
scripts, 275, 284–286
search and replace, 151–153
substitute command, 150–151
switching files, 163
syntax of commands, 149
using current and alternate filenames, 164
yanking text from one file to another, 164

.EX macro (mm), 110, 124–125, 142

.ex

request, 380
scripts, 284
scripts, built by diff, 286
scripts, executing with :so, 284

execution
Bourne shell, conditional, 278–280
Bourne shell, repetitive, 281, 285
Bourne shell, variables set by shell under, 496
in shell scripts, conditional, 278–280
shell scripts, conditional, 278–280
shell scripts, repetitive, 281, 285

EXINIT variable, 40
existing

names, macros, listing, 330
number registers, finding names of, 331

exit shell command, 282
export command, 40
expr command, 309
expression operators

in awk, 314
in troff, 335

expressions, regular, 154–159, 449
.exrc file, 40–41
extended ms

macros, chapter headings, 410–412
macros, section headings, 413–414
macros, 404–428, 508–510
macros, chapter headings, 408
macros, drawing horizontal lines, 411
macros, figure numbering, 415
macros, lists, 416–419
macros, notes, 420–421
macros, numbered headings, 412
macros, summary of, 508–510
macros, table numbering, 415
macros, table of contents, 422
macros, headers and footers, 414
macros, invoking, 406
macros, structure of, 406

extensions to ms macros, see extended ms macros

- f -

.FC macro (mm), 110

.fc request, 374

.FD macro (mm), 110, 143

.FE macro
(mm), 143–144
(ms), 103

.FG macro (mm), 124–125, 142
fgrep command, 246
.fi request, 56
fields

in awk, 310–312
in cut and paste, 265
in sort, 262–263
in troff, 374

figures, drawing, sample, 362
file

appending to a, 11
management, 2
system, 11

files, searching within, see also grep
files

backing up, 270–272
characteristics, 242
copying, 13
counting characters in, 16
date and time last modified, 242
editing multiple, 163
locating, 242
metacharacters, 9, 14, 240
moving, 13
naming restrictions, 20
organizing, 239
permissions, 13–14, 242
renaming, 13
searching for, 242
searching within, 244
size in bytes, 242
tracking changes to (SCCS), 258
transferring to other systems, 273
viewing contents, 243
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filling (definition of), 48
filters, 16–17, 243, 289
final

book production, 444
formatting codes, indexing,, 440

find command, 241–243, 245
using with cpio, 271–272

finding names of existing, number registers,, 331
.fl request, 105, 348, 390
.FO macro, 389, 391
font files, fonts, contents of, 52, 501–503
fonts, 50, 52

boldfacing by overstriking, 368
changing, 74–77
constant width, 375, 419
contents of font files, 52, 501–503
downloadable, 52
four standard, 52
mounted, 75, 501
special, 52, 77

fonts, changing
changing (eqn), 204
changing (ms), 93–95
changing (tbl), 178

footers, 104, 111, 391
footnotes, 397, 507

diversions, used for, 400
footnotes

mm macros, 143–144
ms macros, 103

for shell command, 285
form

letters, 380
of user entries, indexing,, 433

format, number registers, altering output, 341
format shell script, 292, 295, 427, 429, 431, 441
formatting defaults, mm, see also mm macros
formatting defaults, ms, see also ms macros
formatting

codes, indexing, adding, 438
codes, indexing, final, 440
problems, indexing, special, 440
with a markup language, 5
with a word processor, 4

formatting defaults
mm, 108
ms, 86

four standard, fonts,, 52
.fp request, 75–76
.FS macro

(mm), 143–144
(ms), 103

.ft request, 75–76
function

keys, mapping, 167
width, 370

functions, Bourne shell, shell, 496
fundamentals, UNIX, system, 9

- g -

getopt command, 280
graphics, see also pic preprocessor
graphics, 207
Greek characters, 191, 196, 476
grep command, 16, 244–246

using with find, 245

- h -

.H macro (mm), 136–139

hanging indents, 63–65, 90
head command, 244
headers, 104, 111, 391
headings

in wide margin, 414
numbered, 408
section, 407, 413

headings
in extended ms, 408–414
in mm, 136–141
in ms, 99–100

here documents, 286
.HM macro (mm), 140–141
home

directories,, 12
directory, 12

HOME variable, 12
horizontal

motions, local, 356
position, marking a, 369
position, returning to a, 369

.HU macro (mm), 136–139

.hw request, 59

.HX macro (mm), 147

.HY macro (mm), 147

.hy request, 60, 386
hyphen command, 59, 249
hyphenation, 49

checking for correctness, 59
rules for, 59

hyphenation
enabling in troff, 60
in mm, 82, 115

.HZ macro (mm), 147

- i -

.I macro
(mm), 117–119
(ms), 93–95

.IB macro (mm), 119

.ID macro (ms), 97

.ie request, 334–337

.if

request, 334–337
shell command, 278–280

.ig request, 348
illustrations, Macintosh,, 366
importance of, breaks,, 58, 344
in

macros, arguments,, 332
shell scripts, arguments,, 17
shell scripts, conditional execution,, 278–280
three-part titles, page number,, 393
wide margin, headings,, 414

.in request, 64
including Macintosh illustrations, drawing,, 366
indented (mm), 112

indented with exceptions, 113
indents, 63–65, 112

hanging, 63–65, 90
indexing, 427, 433

adding formatting codes, 438
building the page number list, 435
final formatting codes, 440
form of user entries, 433
sorting raw entries, 434
special formatting problems, 440
subordinating secondary entries, 436

influence on writing process, word processors,, 1
initializing

macros,, 386
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variables, shell scripts,, 283
input, standard, 16
integrals, see eqn
interactively, shell scripts, reading data, 319
interpolating

number registers,, 338
strings,, 83, 342

interpolation
diversions, naming by number register, 426
number registers, naming by, 417

Interpress, 54
interrupted lines (in troff), 337
interrupting

commands,, 10
commands, Bourne shell,, 10

inverse conditions, 337
.IP macro, 418

(ms), 90–93
.IR macro (mm), 119
.IZ macro, 387

- j -

join command, 262–263
justification, 48, 59

definition of, 48
types of, 57–59

justification
mm macros, 114
ms macros, 87
nroff vs. troff, 49

- k -

.KE macro (ms), 99
keep and release, see also displays
keep and release, 99, 343
Kernighan and Pike, UNIX Programming Environment, 8, 315
kerning, 50
keys, mapping

mapping function, 167
mapping, function, 167

.KS macro (ms), 99

- l -

labels, vertically stacked, 371
languages, page description, 54
laser printers, 7
last modified, files, date and time, 242
.lc request, 373
.LD macro (ms), 97
.LE macro (mm), 126–128
leaders, 373
leading, 80
length, title, 393
letter-quality printers, 6
letters, form, 380
.LG macro (ms), 95–96
.lg request, 377
.LI macro (mm), 126–128
ligatures, 377, 414
limitations of, word processors,, 2, 5
line

breaks, page breaks, without, 72
dial-up, 272
weight, drawing, changing, 362

line number, in vi, 37
lines, drawing,, 358
list, indexing, building the page number, 435
listing

contents of, directories,, 12

existing names, macros,, 330
lists

alphabetic (mm), 131–134
alphabetic (mS), 416–417
bulleted (mS), 416–417
extended in mS, 416, 418
in ms, 90
marked (mm), 128
mm macros, 126–136
mm vs. ms, 505
nested (mm), 127
nested (mS), 416–417
numbered (mm), 131–134
numbered (mS), 416–417
reference (mm), 132
user-supplied marks (mm), 130
variable-item (mm), 134

.ll request, 63, 386
local

horizontal motions, 356
vertical motions, 353

locating, files,, 242
.login file, 276
long command lines, Bourne shell,, 16
looping, shell scripts,, 285
lp command, 108
.LP macro (ms), 87, 99
ls

command, 9, 12
request, 70, 80

.lt request, 393

- m -

Macintosh
illustrations, 366
illustrations, drawing, including, 366
word processing on, 7

macro
end, 423–424
reset, 86, 387

macros, see also mm and ms
macros

appending to, 330
arguments, 332
copy mode in, 333
cover sheet, 100–102, 105
defining, 105, 145, 330
developing a package, 383
initializing, 386
listing existing names, 330
me, 85
naming conventions, 330
nested, 333
new or extended?, 384
number registers, used to generalize, 338
page transition, 389
removing, 330
renaming, 331
reset, 387
setting default values, 385
structure of package, 383–384
style, 350, 414
tabs and leaders in, 375

macros
comparing mm and ms, 504–507
/usr/lib/tmac, 384

mail command, 15
make command, 258–260

building makefile with a shell script, 446
coordinating final book production with, 444
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makedev command, 503
making executable, shell scripts,, 276
man macros, 71
management, file, 2
mapping

function keys, 167
function keys,, 167

marking a horizontal position, 369
marking

in vi, 45
in troff, 367

markup language, formatting, with a, 5
.MC macro (ms), 104
.mc request, 379
me macros, 85
me macros, 71
messages from UNIX commands, errors,, 10
metacharacters, files,, 9, 14, 240
miscellaneous

programs, Writer’s Workbench,, 252
UNIX commands, 239

.mk request, 367, 401
mkdir command, 12
.ML macro (mm), 129–130
mm

command, 107
macros, 71
macros, .AL macro, 131–134
macros, alphabetic lists, 131–134
macros, altering heading style, 137–141
macros, .B macro, 117–119
macros, .BE macro, 147
macros, .BI macro, 119
macros, .BL macro, 129–130
macros, .BL macro, 126
macros, bold font, 117
macros, bottom-of-page processing, 147
macros, .BR macro, 119
macros, .BS macro, 147
macros, changing point size, 119–121
macros, changing the heading mark, 140–141
macros, changing fonts, 117
macros, changing reference defaults, 144
macros, compared to ms, 504–507
macros, .DE macro, 115
macros, default formatting, 108
macros, .DF macro, 123
macros, display fill options, 122
macros, display formatting options, 121
macros, display labels, 124
macros, displays, 115, 121–122, 124
macros, .DL macro, 129–130
macros, .DS macro, 121–122
macros, .DS macro, 115
macros, .EC macro, 124–125
macros, .EC macro, 110
macros, .EF macro, 111
macros, .EH macro, 111
macros, errors, 108
macros, .EX macro, 124–125, 142
macros, .EX macro, 110
macros, extensions to, 145
macros, .FC macro, 110
macros, .FD macro, 143
macros, .FD macro, 110
macros, .FE macro, 143–144
macros, .FG macro, 124–125, 142
macros, floating displays, 123
macros, footers, 111
macros, .FS macro, 143–144
macros, .H macro, 136–139
macros, headers, 111

macros, heading number registers, 139
macros, heading strings, 138
macros, headings, 147
macros, .HM macro, 140–141
macros, .HU macro, 136–139
macros, .HX macro, 147
macros, .HY macro, 147
macros, hyphenation, 82, 115
macros, .HZ macro, 147
macros, .I macro, 117–119
macros, .IB macro, 119
macros, indented paragraphs, 112
macros, invoking, 107
macros, .IR macro, 119
macros, italic font, 117
macros, justification, 114
macros, .LE macro, 126–128
macros, .LI macro, 126–128
macros, lists, 126–136
macros, marked lists, 128
macros, .ML macro, 129–130
macros, modifying, 145
macros, nested lists, 127
macros, number registers, 145
macros, numbered headings, 136–139
macros, numbered lists, 131–134
macros, number registers, 484
macros, .P macro, 112–113
macros, page break, 125
macros, page layout, 110–111
macros, page numbering styles, 110
macros, page transition, 73, 147
macros, paragraphs, 112
macros, paragraphs indented with exceptions, 113
macros, .PF macro, 111
macros, .PH macro, 111
macros, predefined string names, 483
macros, .PX macro, 147
macros, .R macro, 117–119
macros, .RB macro, 119
macros, reference lists, 132
macros, references, 144–145
macros, reserved macro and string names, 485
macros, .RF macro, 144
macros, .RI macro, 119
macros, .RL macro, 132
macros, roman font, 117
macros, .RP macro, 144–145
macros, .RP macro, 110
macros, .RS macro, 144
macros, .S macro, 119–120
macros, .SA macro, 114
macros, .SK macro, 125
macros, .SM macro, 120–121
macros, .SP macro, 113–114
macros, spacing between paragraphs, 113
macros, static displays, 123
macros, strings, 146
macros, summary of macros, 479–485
macros, table of contents, 141–142, 147
macros, .TB macro, 142
macros, .TB macro, 110
macros, .TC macro, 141
macros, top-of-page processing, 147
macros, .TP macro, 147
macros, .TX macro, 147
macros, .TY macro, 147
macros, unnumbered headings, 136–139
macros, user exit, 147
macros, user-supplied list marks, 130
macros, variable-item lists, 134
macros, vertical spacing, 113–114, 119–121
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macros, vertical margins, 147
macros, .VL macro, 134
macros, .VM macro, 147

mode
copy, 333
in, macros, copy, 333
no-fill, 48, 55, 68, 122
no-space, 390, 412

modem, 272
more command, 108, 243
motions, absolute, 357, 369
mounted, fonts,, 75, 501
movement, cursor, 22
moving, files,, 13
mptx macros, 71
mS macros, see extended ms macros
ms

macros, 71, 85–105
macros, .1C macro, 103
macros, .AB macro, 101
macros, .AE macro, 101
macros, .AI macro, 101
macros, .AU macro, 101
macros, .B macro, 93–95
macros, .B1 macro, 102
macros, .B2 macro, 102
macros, .BD macro, 97
macros, .BG macro, 87
macros, .BG macro, 388
macros, .BT macro, 391
macros, .BX macro, 102
macros, .CD macro, 97
macros, changing bottom margin, 403
macros, compared to mm, 504–507
macros, date string, 104
macros, .DE macro, 97–99
macros, displays, 97–99
macros, drawing a box, 102
macros, .DS macro, 97–99
macros, error handling, 86
macros, .FE macro, 103
macros, .FO macro, 389, 391
macros, fonts, 93–95
macros, footers, 104, 391
macros, footnotes, 103, 397
macros, .FS macro, 103
macros, headers, 104, 391
macros, headings, 99–100
macros, .I macro, 93–95
macros, .ID macro, 97
macros, indented paragraphs, 90
macros, initialization sequence, 387
macros, internal number register names, 477
macros, internal macros, 477
macros, invoking, 86
macros, .IP macro, 90–93
macros, .IP macro, 90
macros, .IP macro, 418
macros, .KE macro, 99
macros, .KS macro, 99
macros, labeled item lists, 90
macros, .LD macro, 97
macros, .LG macro, 95–96
macros, .LP macro, 87
macros, .LP macro, 99
macros, .MC macro, 104
macros, multi-column processing, 104, 401
macros, .NH macro, 99–100
macros, .NH macro, 412
macros, .NL macro, 95–96
macros, .NP macro, 105, 389, 391
macros, number register default values, 386

macros, numbered lists, 92
macros, page layout, 86
macros, page layout defaults, 86
macros, page size, 394
macros, page transition, 73, 384–403
macros, paragraphs, 87–93
macros, point size, 95–96
macros, .PP macro, 87
macros, .PP macro, 99
macros, predefined and user-definable strings, 478
macros, problems on first page, 105
macros, .PT macro, 391
macros, .QE macro, 89
macros, .QP macro, 89
macros, .QS macro, 89
macros, quoted paragraphs, 89
macros, .R macro, 93–95
macros, .RE macro, 91
macros, redefining header or footer, 392
macros, reserved macro and string names, 478
macros, reset macro, 387–388
macros, reset macro, 86
macros, .RS macro, 91
macros, .RT macro, 388
macros, .RT macro, 87
macros, .SH macro, 99–100
macros, .SM macro, 95–96
macros, spacing between paragraphs, 87
macros, summary of macros, 476–479
macros, .TL macro, 101
macros, two-column processing, 103–104
macros, two-column processing, 401
macros, .UL macro, 95
macros, underlining, 95
macros, vertical spacing, 87
number registers, page layout, 478

multi-column processing, 104, 401
multiline, strings,, 82
multiple, files, editing, 163
mv command, 13

- n -

.na request, 57
names

macros, listing existing, 330
of existing, number registers, finding, 331

naming
by interpolation, number registers,, 417
by number register interpolation, diversions,, 426
conventions, macros,, 330
number registers,, 338
restrictions, files,, 20
strings,, 342

.ne request, 73, 403
nested, macros,, 333
new or extended?, macros,, 384
.nf request, 55
.NH macro

(ms), 99–100
(ms), 412

.NL macro (ms), 95–96

.nm request, 378

.nn request, 379
no-break control

character, 58
character, breaks,, 58

no-fill mode, 48, 55, 68, 122
no-space mode, 390, 412
notes, cautions and warnings, 420–421
.NP macro

(ms), 105
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(ms), 389, 391
.nr request, 82, 334–338
nroff formatter, see also troff
nroff formatter

command line options, 51, 467
default line length, 63
device units, 61
inability to use pic with, 207
interword spacing, 50
invoking, 51, 467
summary of requests, 467–471
units of measure, 61
using eqn with, 192

.ns request, 73–74, 105, 389
number

in three-part titles, page, 393
register interpolation, diversions, naming by, 426
registers, 82, 334–339, 386, 417, 419
registers, altering output format, 341
registers, as global variables, 338
registers, as nested list counter, 417
registers, autoincrementing, 341, 417
registers, finding names of existing, 331
registers, interpolating, 338
registers, naming, 338
registers, naming by interpolation, 417
registers, predefined, 339
registers, read-only, 340
registers, removing, 342
registers, scaled units, 338
registers, setting default values with, 386
registers, setting from command line, 82
registers, substituting for environment switch, 419
registers, used as flags, 339
registers, used to generalize macros, 338
setting from command line, page, 110

number
in ms, 82
mm, 145
ms default values, 386

numbered headings, 408
numbered lists

mm macros, 131–134
mS macros, 416–419

numerical operators, in pic, 494
.nx request, 380

- o -

offset, page, 63, 385, 414
options to UNIX commands, 9
organizing, files,, 239
.os request, 73–74
other systems, files, transferring to, 273
out of, shell scripts, breaking, 282
output

format, number registers, altering, 341
redirection, 10–11, 16, 244
standard, 10, 16
transparent, 366, 423

overstriking, 368, 370
fonts, boldfacing by, 368

- p -

.P macro (mm), 112–113
pack command, 272
package, macros

macros, developing a, 383
macros, structure of, 383–384

page
breaks, 403

breaks, without line breaks, 72
description languages, 54
layout, 391
number, 104
number, in three-part titles, 393
number list, indexing, building the, 435
number, setting from command line, 110
offset, 63, 385, 414
size, 394
space at top of, 390
top resets, 402
transition, 74, 147, 384–403
transition, macros,, 389

page
breaks, mm macros, 125
in mm, 110–111
in ms, 86
number, in mm, 110
number, in mm, 108

paragraphs, spacing between, 113
paragraphs

indented (ms), 90
mm macros, 112
ms macros, 87
quoted (ms), 89
spacing between (ms), 87

passing arguments to, shell scripts,, 277–278
paste command, 265, 267
path, search, 277
PATH variable, 276
.pc request, 393
pcat command, 272
permissions, files,, 13–14, 242
.PF macro (mm), 111
pg command, 108, 243

help screens, 243
.PH macro (mm), 111
pic preprocessor, 207–237, 421

reading description from remote file, 235
adjusting drawing motion, 212
adjusting label placement, 210
arc, 214, 230
arrow, 214
as a programming language, 228
as a programming language, 236
automatic scaling, 227
basic figures (graphics primitives), 208
changing direction of drawing, 212
controlling the dimensions of a drawing, 227
copy facility, 235
debugging, 228
declarations, 490
default dimensions of standard objects, 226
defining macros, 232, 492
defining object blocks, 224, 492
describing single objects, 208
diagonal lines, 213
dimension variables, 226
double-headed arrow, 218
drawing in clockwise direction, 214
drawing motion, 211
enhancements to, 236
executing UNIX commands from, 236
expressions, 231, 493
for loops, 236
functions, 231
height of object, 209
if conditional statements, 236
inability to use with nroff, 207
invisible reference object, 219
labeling objects, 210, 492
language of, 207
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leaving space between objects, 212
library of frequently used objects, 235
line, 210
locating specific points, 217
locating objects using Cartesian coordinates, 229
macros, 232–236
movement from a referenced object, 216
naming an object, 222
place and position notations, 221
placing text in a drawing, 220, 223
placing objects, 215
positioning object blocks, 226, 493
problems with .so request, 381
programming drawings, 228
redefining standard dimensions, 226
relational operators for if statements, 237
reusing dimensions, 209
scaling, 229
specifying size of graphics primitives, 208
specifying dimensions, 209
spline, 230
spline, 215
start and end macros, 207
start and end of an object, 213, 217
summary of command characters, 490–494
summary of graphics primitives, 490
turning a corner, 217
typical figure description, 208
units of measure, 209
use of object blocks, 225
used with troff, 207, 210
user-defined variables, 231
using bit-mapped input, 237

pica (defined), 61
pipes, 16–17
.pl request, 72, 394
.pm request, 330
.pn request, 74
.po request, 63, 386
point size, 50, 61, 78–79, 95–96
point

changing (eqn), 204
changing (mm), 119–121
changing (ms), 95–96
changing (tbl), 178

postprocessors, 366
PostScript, 54, 366, 377
.PP macro (ms), 87, 99
pr command, 243
predefined, number registers,, 339
predefined conditions, in troff, 334
printers

dot-matrix, 6
laser, 7
letter-quality, 6
(types of), 6–7

printing current, directories,, 12
problems, indexing, special formatting, 440
problems on first page (ms), 105
processing

background, 15
Bourne shell, background, 15
multi-column, 104, 401
simple macro for, two-column, 401

production, final book, 444
.profile, 276
prompt, Bourne

Bourne shell,, 10
Bourne shell, secondary, 17

proof shell script, 247, 303–307
proofreading

script, shell scripts,, 303, 307

shell script for, 303–307
proofreading, double awk script, 315
.ps request, 79–80
pseudo-page transition, 390
.PT macro (ms), 391
public, directories,, 273
putting in path, shell scripts,, 276
pwd command, 12
.PX macro (mm), 147

- q -

.QE macro (ms), 89

.QP macro (ms), 89

.QS macro (ms), 89

- r -

.R macro
(mm), 117–119
(ms), 93–95

raw entries, indexing, sorting, 434
.RB macro (mm), 119
.rd request, 380
.RE macro (ms), 91
read shell command, 319
reading data interactively, shell scripts,, 319
readings, recommended, 511
read-only, number registers,, 340
recommended readings, 511
records, in awk, 310
redefining control and escape characters, 346
redirection, output, 10–11, 16, 244
reference lists, mm macros, 132
regular

expression, search,, 244
expressions, 154–159, 449

removing
macros,, 330
number registers,, 342

renaming
files,, 13
macros,, 331

repetitive execution
Bourne shell,, 281, 285
shell scripts,, 281, 285

reset
macro, 86, 387
macros,, 387

resets, page top, 402
restrictions, files, naming, 20
resuming

commands,, 10
commands, Bourne shell,, 10

returning to a horizontal position, 369
returning to

marked position, in vi, 45
marked position, in troff, 367

.RF macro (mm), 144

.RI macro (mm), 119

.RL macro (mm), 132

.rm request, 330, 406

.rn request, 331, 407
root

directories,, 11
directory, 11

.RP macro (mm), 110, 144–145

.RS macro
(mm), 144
(ms), 91

.rs request, 73, 105, 390
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.RT macro
(ms), 87
(ms), 388

.rt request, 367, 401
rules for, hyphenation,, 59

- s -

.S macro (mm), 119–120

.SA macro (mm), 114
sample figures, drawing,, 362
scaled units, number registers,, 338
(SCCS), files, tracking changes to, 258
SCCS (Source Code Control System), 258
script, shell scripts, proofreading, 303, 307
script command, 274
scrolling, 3, 32–33
sdiff command, 254–255, 257
search, see also grep
search, 16, 35, 151, 244

path, 277
path, shell scripts, C shell, 277
regular expression, 244

searching
for, files,, 242
within, files,, 244

secondary
entries, indexing, subordinating, 436
prompt, Bourne shell,, 17

section headings, 407, 413
sed editor, 4, 275, 288–303, 460–462

matching patterns across two lines, 299–303
used in indexing script, 440–441
addressing, 289–290, 460
branching to parts of script, 293, 295
command summary, 461–462
command syntax, 289, 460
differences from ex, 289
excluding lines from editing, 292–293
hold space, 300–303
in format script, 292
inserting lines of text, 295
invoking, 289, 460
pattern space, 300–303
print command, 296
quit command, 298
script for extracting information from a file, 296
substitute command, 290
syntax of commands, 275
used in for loop, 291

set command, 15
setting

default values, macros,, 385
default values, shell scripts,, 283
default values with, number registers,, 386
environment variables,, 15–16
from command line, number registers,, 82
from command line, page number,, 110

sh command, 275
.SH macro (ms), 99–100
sheet macros, cover, 100–102
shell

background processing, Bourne, 15
Bourne, 10, 275–284
C, 10, 239, 275
cancelling commands, Bourne, 10
command summary, Bourne, 495–499
conditional execution, Bourne, 278–280
discarding and shifting arguments, Bourne, 280
functions, Bourne shell,, 496
interrupting commands, Bourne, 10
long command lines, Bourne, 16

prompt, Bourne, 10
repetitive execution, Bourne, 281, 285
resuming commands, Bourne, 10
script for, proofreading,, 303–307
scripts, 17, 275–278, 284
scripts, arguments to, 17
scripts, breaking out of, 282
scripts, C shell search path, 277
scripts, conditional execution, 278–280
scripts, definition of, 275
scripts, discarding and shifting arguments, 280
scripts, initializing variables, 283
scripts, looping, 285
scripts, making executable, 276
scripts, passing arguments to, 277–278
scripts, proofreading script, 303, 307
scripts, putting in path, 276
scripts, reading data interactively, 319
scripts, repetitive execution, 281, 285
scripts, setting default values, 283
secondary prompt, Bourne, 17
shell functions, Bourne, 496
special characters, Bourne, 495
variable substitution, Bourne, 12, 495
variables set by shell under execution, Bourne, 496

shell
export command, 282
number of arguments ($#), 281
test command in, 278–280

shift shell command, 280
simple macro for, two-column processing,, 401
size

in bytes, files,, 242
page, 394

.SK macro (mm), 125
slanting characters, 376
.SM macro

(mm), 120–121
(ms), 95–96

.so request, 83, 381, 385
soelim command, 382
sort command, 16, 261–262, 434
sorting raw entries, indexing,, 434
(Source Code Control System), SCCS, 258
.SP macro (mm), 113–114
.sp request, 58, 68–70
space

at top of page, 390
unpaddable, 59, 92, 378

spacing
baseline, 80–81
constant, 375, 419
vertical, 61, 68, 80, 87, 113, 119

special
characters, Bourne shell,, 495
fonts,, 52, 77
formatting problems, indexing,, 440

spell command, 241, 247, 303
split command, 268
splitting, diversions,, 426
SQtroff, 349
.ss request, 375–376
standard

error, 10, 426
error, table of contents, written to, 422, 426
fonts, four, 52
input, 16
output, 10, 16

strings
appending to, 343
comparing, 335
defining, 342
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interpolating, 83, 342
multiline, 82
naming, 342

strings
in troff, 82
mm, 146

structure of package, macros,, 383–384
style, macros,, 350, 414
sub-, directories,, 11
subdirectory, 11
subordinating secondary entries, indexing,, 436
subscripts, see also eqn
subscripts, 195
substituting for environment switch, number registers,, 419
substitution, Bourne shell, variable, 495
superscripts, see also eqn
superscripts, 195, 355
super-user, 242
.sv request, 73–74
.sy request, 382, 427
syntax of commands, UNIX,, 9
system fundamentals, UNIX,, 9
systems, files, transferring to other, 273

- t -

.ta request, 66–68, 372
table of

contents, 422, 430
contents, created by diversion, 422, 424
contents, diversions,, 422
contents, written to standard error, 422, 426

table of contents, mm macros, 141–142
tabs and leaders in, macros,, 375
tabs

(in troff), 66–68
(in troff), 372

tail command, 244
tar command, 274
.TB macro (mm), 110, 142
tbl preprocessor, 169–189

global format options, 170–173
alphabetic data columns, 175
breaking up long tables, 184
changing format within table, 181
column format options, 173
column format options, 486
column width, 180
column width, 179
complex table example, 186
data, 170–171, 487
describing column formats, 173
drawing lines within tables, 177
equations within tables, 176
fonts, 178
format options, 170–172
global format options, 486
headers, 174
horizontally spanning headers, 175
invoking, 170
numeric data columns, 175
point sizes, 178
problems with .so request, 381
putting text blocks in a column, 182
repeating table headers, 184
simple table example, 171
spacing within tables, 174
staggered columns, 180
summary of commands, 485–487
table end macro, 170
table formatting checklist, 186
table specifications, 169

table start macro, 170
titling tables, 185
using eqn with, 170, 192
vertical spacing within data blocks, 180
vertically spanning columns, 176

.TC macro (mm), 141

.tc request, 373
TERM variable, 15, 21
terminal type, 15, 21, 26
terminal

messages from troff, 348
troff, 350

test command, 278–280
three-part titles, page number, in, 393
.ti request, 63
tip command, 272
title length, 393
.TL macro (ms), 101
.tl request, 391
.tm request, 348, 350, 398, 422, 427
to

a file, appending, 11
macros, appending, 330
(SCCS), files, tracking changes, 258
UNIX commands, arguments,, 9

top of page, space at, 390
.TP macro (mm), 147
tplus postprocessor, 375
tr

command, 267
request, 347, 377–378

tracking changes to (SCCS), files,, 258
transferring to other systems, files,, 273
transparent output, 366, 423
traps, 72, 385, 389–391, 394, 399
troff formatter, 47–84, 329–382

predefined number register names, 473–474
returning to a vertical position, 367
selecting output pages from command line, 74
.ab request, 350
aborting, 350
absolute motions, 357, 369
.ad request, 57–59
.ad request, 386
adjusting title length, 393
aligning numeric data, 67
.am request, 330
appending to a macro, 330
appending to a diversion, 344
appending to a string, 343
arithmetic expressions, 334
.as request, 343
autoincrementing number registers, 341
basic assumptions, 48
.bd request, 368
boldfacing fonts by overstriking, 368
.bp request, 72–74
.bp request, 70
.br request, 55, 344
bracket-building characters, 371, 475
.c2 request, 346
.cc request, 346
.ce request, 65–66
.cf request, 366
.ch request, 399
change bars, 379
changing page size, 394
character output translations, 377
command line options, 468
comments, 329
comparing strings, 335
compiling font files, 503
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conditional execution, 334
constant spacing, 375
copy mode, 333
.cs request, 375
.cu request, 68
cut marks, 395–396
.da request, 344, 423
.de request, 81, 330
debugging, 347–349
default units, 62
defining macros, 70, 81, 330
defining strings, 342
device units, 61
.di request, 343, 359
diversions, 359
double or triple spacing, 70
downloadable fonts, 52
drawing, 358–362
.ds request, 82, 342
.ec request, 346
.el request, 334–337
.em request, 423
environment switching, 345
.eo request, 346
error handling, 349
escape sequences, 472–473
escape sequences, 54, 354
.ev request, 345
.ex request, 380
executing system commands from, 382
expression operators, 335
.fc request, 374
.fi request, 56
fields, 374
.fl request, 105, 348, 390
flushing output buffer, 348
fonts, 52, 74–77
footnotes, 397
form letters, 380
.fp request, 75–76
.ft request, 75–76
Greek characters, 476
headers and footers, 391
horizontal spacing, 61
.hw request, 59
.hy request, 60
.hy request, 386
hyphenation, 59–60, 385
.ie request, 334–337
.if request, 334–337
.ig request, 348
ignoring input, 348
.in request, 64
including Macintosh illustrations, 366
interactive use, 348
interrupted lines, 337
interword spacing, 50
inverse conditions, 337
invoking, 53, 468
justification using mm, 114
keeping text block together, 343
.lc request, 373
leaders, 373
.lg request, 377
ligatures, 377
line drawing, 358
line weight, 362
.ll request, 63, 386
local horizontal motions, 356
local vertical motions, 353
.ls request, 70, 80
.lt request, 393

macro arguments, 332
macro arguments, 81
macro names, 330
macro style, 350
marking a vertical position, 367
marking a horizontal position, 369
mathematic symbols, 475
.mc request, 379
.mk request, 367, 401
multi-column processing, 401
multi-column processing, 367
multiline conditions, 336
.na request, 57
names of existing macros, 330
names of existing number registers, 331
.ne request, 73, 403
negative vertical motions, 69
nested macros, 333
.nf request, 55
.nm request, 378
.nn request, 379
.nr request, 82, 338
.ns request, 73–74
.ns request, 105, 389
number registers, 82, 334–339, 386, 417, 419
numeric expressions, 62
.nx request, 380
.os request, 73–74
output line numbering, 378
overstriking, 368, 370
page breaks, 403
page breaks without line breaks, 72
page layout, 60, 391
page length, 70–71
page numbering, 74
page numbers, 392
page offset, 414
page top resets, 402
page transition, 70–71, 384–403
.pc request, 393
.pl request, 72, 394
.pm request, 330
.pn request, 74
.po request, 63, 386
point size, 78–79
postprocessors, 53–54, 366
predefined number register names, 339
predefined conditions, 334
.ps request, 79–80
pseudo-page transition, 390
.rd request, 380
reading standard input, 380
read-only number registers, 340, 473
redefining control and escape characters, 346
removing macros, 330
removing number registers, 342
renaming macros, 331
returning to a horizontal position, 369
.rm request, 330, 406
.rn request, 331, 407
.rs request, 73, 105, 390
.rt request, 367, 401
setting page number from command line, 74
.so request, 83, 348, 381, 385
space at top of page, 390
.sp request, 68–70
.sp request, 58
space size, 376
spacing to an absolute position, 69
special characters, 474–476
special characters, 77
.ss request, 375–376
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stacking up characters, 371
summary of requests, 468–471
superscripts, 355
suspending line numbering, 379
.sv request, 73–74
.sy request, 382
syntax of requests, 54
.ta request, 66–68
.ta request, 372
tabs and leaders, 372
tabs in macros, 375
.tc request, 373
terminal messages, 348
three-part titles, 393
.ti request, 63
.tl request, 391
.tm request, 348, 350, 398, 422
.tr request, 377–378
.tr request, 347
transparent output, 366
traps, 70, 385, 389–391, 394, 399
two-column processing, 367
.ul request, 68
underlining, 358
units of measure, 61–62
used with laser printers, 7
using pic with, 207
using pic with, 210
using with ms, 86
versions of, 52
vertical spacing, 61, 68, 80
vertically stacked labels, 371
.vs request, 80–81
.wh request, 70, 386, 389, 399
widows and orphans, 403
width function, 370

two-column processing, simple macro for, 401
two-column processing, ms macros, 103–104
.TX macro (mm), 147
.TY macro (mm), 147
type, terminal, 21, 26
types of, justification,, 57–59
(types of), printers, 6–7
typesetter, C/A/T, 51, 53, 61

- u -

.UL macro (ms), 95

.ul request, 68
underlining, 95
underlining

in troff, 358
ms macros, 95

uniq command, 261–262
units, number registers, scaled, 338
UNIX

commands, errors, messages from, 10
commands, miscellaneous, 239
commands, options to, 9
syntax of commands, 9
system fundamentals, 9
version used for this book, 9

unpack command, 272
unpaddable space, 59, 92, 378
used

as flags, number registers,, 339
for footnotes, diversions,, 400
to generalize macros, number registers,, 338

user entries, indexing, form of, 433
user exit macros (mm), 147
/usr/lib/font, 50, 52, 75, 501–503

DESC tile, 501–502

font description files, 502–503
/usr/lib/tmac, 83
uucp command, 272
uuname command, 273
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values
macros, setting default, 385
shell scripts, setting default, 283

variable substitution, Bourne shell,, 12, 495
variable-item lists, mm macros, 134
variables

number registers, as global, 338
set by shell under execution, Bourne shell,, 496
setting, environment, 15–16
shell scripts, initializing, 283

version used for this book, UNIX,, 9
vertical

motions, local, 353
spacing, 61, 68, 80, 87, 113, 119

vertically stacked labels, 371
vi editor, ex commands in, see also ex
vi editor, 19–42, 149–168

deleting single characters, 25–29
abbreviations, 165
alternative insert commands, 43
append text, 43
appending to named buffers, 44
changing text, 26–28
characters not used in command mode, 453
command line options, 38
command mode, 21
command summary, 451, 455
command syntax, 451
command syntax, 21
copying text, 30, 42
current and alternate filenames, 164
cursor movement within lines, 34
cursor movement within screen, 33
cursor movement, 22–23
cursor movement by line numbers, 37
cursor movement by text blocks, 34
cursor movement with numeric argument, 35
deleting text, 28–29
deleting text, 25
displaying line numbers, 24, 37
editing multiple files, 163
errors when opening, 21
ex commands in, 151
filtering text through a UNIX command, 162
ignoring case during searches, 40
insert mode, 19, 21
inserting text, 21, 25
joining lines, 31
leaving insert mode, 22, 26
mapping command sequences, 166
marking place in file, 45
movement by line number, 37
moving by screenfuls, 32
moving cursor by single lines, 23
moving cursor by spaces, 23
moving cursor by text blocks, 25
moving text, 25, 29, 46
named buffers, 44–45
numbered buffers, 43–44
numeric arguments to commands, 24
numeric prefixes to commands, 42
on a dumb terminal, 26
opening a file, 20
opening a new line for insertion, 43
opening a file to a specific place, 38
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pattern matching characters, 182
prompt line, 21
quitting, 21
quitting without saving edits, 32
read-only mode, 39
recovering a buffer, 39
recovering deletions, 43
repeat last search, 36
repeating last command, 31
replacing characters, 28, 42
returning to a position, 37
saving a file, 22
screen lines vs. logical lines, 24
scrolling, 32–33
search for pattern, 35–37
search options, 42
search within current line, 36
setting options, 40–42
setting options, 40, 453
shiftwidth, 42
showing contents of numbered buffers, 44
size of window, 40
status line, 451
summary of options, 450
undoing last change, 31, 43
view mode, 39
wrapmargin, 22, 42

view command, see vi editor
view command, 39
viewing contents, files,, 243
.VL macro (mm), 134
.VM macro (mm), 147
.vs request, 80–81
vs. text editors, word processors,, 2
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wc command, 16
.wh request, 70, 386, 389, 399
while shell command, 281
who command, 16
widows and orphans, 403
width

fonts, constant, 419
function, 370

with a
markup language, formatting,, 5
word processor, formatting,, 4

within, files, searching, 244
without line breaks, page breaks,, 72
word

processing on, Macintosh,, 7
processor, formatting, with a, 4
processors, characteristics of, 1–4
processors, command mode vs. insert mode, 3
processors, influence on writing process, 1
processors, limitations of, 2, 5
processors, vs. text editors, 2

Writer’s Workbench, 250
miscellaneous programs, 252

Writer’s
analyze style/readability (style), 250
explain diction errors (explain), 252
search for poor phrasing (diction), 251

writing process, word processors, influence on, 1
written to standard error, table of contents,, 422, 426
wysiwyg defined, 5

- x -

xargs command, 246


