Tutorial for Modular Forms in Pari/GP

Henri Cohen

January 3, 2025

1 Introduction

Three packages are available to work with modular forms and related func-
tions in Pari/GP. The first one is the L-function package, which has been
available since 2.9.0 (2015), and computes with general motivic L-functions,
and in particular with L-functions attached to Dirichlet characters, Hecke
characters, Artin representations, and modular forms. The name of most
functions in this package begins with 1fun, such as 1funinit.

The second is the modular symbol package, whose primary aim is not so
much to compute modular form spaces and modular forms, but to compute
p-adic L-functions attached to modular forms. The name of most functions
in this package begins with ms, such as msinit.

The third package is the modular forms package, whose aim is to compute
in the standard spaces My (To(IV), x) with k integral or half-integral, both
with modular form spaces and individual modular forms. The name of most
functions in this package begins with mf, such as mfinit. The goal of the
present manual is to describe this package in view of a guide for a new user,
so will essentially be a tutorial, although we include a reference guide at the
end.

We can work on five subspaces of My (T'o(N), x), through a correspond-
ing space flag in the commands: the cuspidal new space SV (I'o(N),x)
(flag = 0), the full cuspidal space Si(Io(V),x) (flag = 1), the old space
S};ld(Fo(N),X) (flag = 2, probably of little use), the space generated by
all Eisenstein series & (T'o(N), x) (flag = 3), and finally the full space in-
cluding the Eisenstein part My(I'o(N), x) (flag = 4, which can be omitted
since it is the default). Note that although it can be defined, we have not
included the space Mg ", nor the “certain space” of Zagier—Skoruppa. In

the half-integral weight case, we have included only the full cuspidal space
and the full space (flags 1 and 4), as well as the Kohnen’s +-space and the
corresponding newspace and eigenforms when N is squarefree.

Note in particular that the package includes the computation of modular
forms of weight £ = 1 and of half-integral weight.

The modular forms themselves are represented in a special internal for-
mat which the user need not worry about and which basically is a recipe
to compute successive Fourier coefficients at infinity: if F' is a GP modular
form, mfcoefs(F,10) will give you the Fourier coefficients at infinity from
a(0) to a(10) of the modular form corresponding to F' as a row vector (if you
want a power series expansion, use the GP function Ser, see below). Many
operations are available on such objects, but the most important thing the
user needs to know is that the number of Fourier coeflicients need not be
specified in advance: the command mfcoefs(F,n) is valid for any integer n.
We will of course explain the details of this below.

Finally, note that we may roughly divide the complexity of available
functions into three levels:

1. The first level includes all the basic modular form and modular spaces
creation and operations. Many functions are very fast, but some are
quite time-consuming for very different reasons; first those dealing
with forms and spaces involving Dirichlet characters of large order;
second finding eigenforms when the splitting using the Hecke algebra
is difficult; and third modular spaces of weight 1 when there exist
“exotic” forms. Reasonable levels (for low weight) can go up to a
few thousands. The critical parameter is actually the dimension of
the underlying modular form space where linear algebra needs to be
performed, so the time complexity is at least proportional to (N x k)3,
and in fact more than that due to coeflicient explosion in the base field

Q(x)-

2. The second level needs technical information about spaces generated
by products of two Eisenstein series, and is quite expensive. But it
allows to perform computations which would be almost impossible oth-
erwise, such as Fourier expansions of f|;vy (hence at any cusp), numer-
ical evaluation of modular forms at any point in the upper half-plane
(even close to the real axis) or L-functions attached to an arbitrary
form. We have included a caching method, so that once a single such
computation is performed in a given space, the needed technical data
is stored and no longer needs to be computed so that all subsequent

calls are much faster. Reasonable levels (for low weight) can go up
to one thousand, say. Again, the critical parameter is the space di-
mension but this time the linear algebra is performed in large degree
cyclotomic fields, even when the Nebentypus is trivial. Compared to
the first level, we lose at least a factor A(N) (the exponent of the mul-
tiplicative group (Z/NZ)*) in the time complexity, which gets as large
as N — 1if N is prime.

3. The third level, which uses the second level functions, allows more
numerical computations such as period polynomials, modular symbols,
Petersson products, etc. .. The time complexity does not increase much
since it is dominated by the second level.

2 Creation of Modular Forms
In Pari/GP modular forms can be created in three different ways:

e As basic modular forms, i.e., forms attached (or not) to different math-
ematical objects, and which are of so frequent use that we have im-
plemented them so that the user has them at his disposal. Examples:
mfDelta (Ramanujan’s delta), mfEk (Eisenstein series of weight k& on
the full modular group; of course we also have more general Eisenstein
series), mffrometaquo (eta quotients), mffromell (modular form at-
tached to an elliptic curve over Q), mffromqf (modular form attached
to a lattice).

e From existing forms by applying operations. Examples: multiplica-
tion/division, linear combination, derivation and integration, Serre
derivative, RC-brackets, Hecke and Atkin—Lehner operations, expan-
sion and diamond operators, etc. ..

e Through the creation of the modular form spaces: typically, if only
mf=mfinit is applied, then a basis of forms is obtained by the com-
mand mfbasis(mf). The command mfeigenbasis(mf) produces the
canonical basis of eigenforms.

3 A First Session: working with Leaves

This is now a tutorial session. We will see sample commands as we go along.

? D = mfDelta(); V = mfcoefs(D, 8)
% = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480]

The command mfcoefs(D,n) gives the vector of Fourier coefficients (at
infinity) [a(0),a(1),...,a(n)] (note that there are n+1 coefficients). This is a
compact representation, but if you prefer power series you can use Ser(V,q)
(convert a vector into a power series).

% = q - 24%q"2 + 252%q~3 - 1472%q"4 + 4830%q~5 - 6048%q~6\
- 16744%q"7 + 84480%q~8 + 0(q~9)

(This simple-minded recipe only works when the form has rational coeffi-
cients. Make sure to use q = varhigher("q") first if the form has non-
rational algebraic coefficients to avoid problems with variable priorities.)
Similarly

7 E4 = mfEk(4); E6 = mfEk(6); apply(f->mfcoefs(f,3),[E4,E6])
% = [[1, 240, 2160, 6720], [1, -504, -16632, -122976]]

E43 = mfpow(E4, 3); E62 = mfpow(E6, 2);

DP = mflinear ([E43, E62], [1, -1]1/1728);

mfcoefs(DP, 6)

% = [0, 1, -24, 252, -1472, 4830, -6048]

? mfisequal(D, DP)

h=1

-~

N N

Self-explanatory. Note that there is a command mfcoef (F, n) (without
the final “s”) which simply outputs the coefficient a(n). A final example of
the same type:

? F = mffrometaquo([1,2; 11,2]); mfcoefs(F,10)
% = 1[0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2]

? G = mffromell(ellinit("11a1"))[2];

? mfisequal(F, G)

h=1

Here, mffrometaquo takes as argument a matrix representing an eta
quotient, here n(1 x 7)*n(11 x 7)2.

The second component of the mffromell output is the modular form
associated to the elliptic curve by modularity.

4 A Second Session: Modular Form Spaces

In the first session, we have seen a few preinstalled modular forms (that
we can call leaves), and a number of operations on them. All reasonable
operations have been implemented (if some are missing, please tell us). We
are now going to work with spaces of modular forms.

? mf = mfinit([1,12]); L = mfbasis(mf); #L

h=2
? mfdim(mf)
h=2

This creates the full space of modular forms of level 1 and weight 12.
This space is created thanks to an almost random basis that one can obtain
using mfbasis, and we see either by asking for the number of elements of
L or by using the command mfdim, that it has dimension 2, not surprising.
We can see it better by writing:

? mfcoefs(L[1],6)

% = [691/65520, 1, 2049, 177148, 4196353, 48828126, 362976252]
? mfcoefs(L[2],6)

v = [0, 1, -24, 252, -1472, 4830, -6048]

or simply

? mfcoefs(mf,6) \\ apply mfcoefs to mfbasis elements
Y =

[691/65520 0]

[1 1]

L 2049 -24]

[177148 252]
[4196353 -1472]
[48828126 4830]
[362976252 -6048]

Note two things: first, the Eisenstein series are given before the cusp
forms (this may change, but for now this is the case), and second, the
Eisenstein series is normalized so that it is the coefficient a(1) which is
equal to 1, and not a(0). In particular, here at least, it is a normalized
Hecke eigenform.

If we want to work only in the cuspidal space S12(T"), we simply use the
flag 1, such as:

? mf = mfinit([1,12], 1); L = mfbasis(mf); #L
h=1

? mfcoefs(L[1],6)

% = [0, 1, -24, 252, -1472, 4830, -6048]

Let us now look at higher dimensional cases. In the following example,
we consider the new space (flag = 0), although in the present case this is
the same as the cuspidal space:

? mf = mfinit([35,2], 0); L = mfbasis(mf); #L
% =3

? for (i = 1, 3, print(mfcoefs(L[i], 10)))
(o, 3, -1, o, 3, 1, -8, -1, -9, 1, -1]

[o, -1, 9, -8, -11, -1, 4, 1, 13, 7, 9]

[0, 0, -8, 10, 4, -2, 4, 2, -4, -12, -8]

These are essentially random cusp forms. Usually, you want the eigen-
forms: this is obtained by the function mfeigenbasis (note in passing that
B=mfeigenbasis(mf) adds components to mf, so that the next call is in-
stantaneous). You can ask for the defining number fields with the command
mffields. Note that these commands act only on the new space, but the
package also accepts the spaces that contain it (such as the cuspidal space
or the full space, but not the old space), although the result is only about
the new space.

? mffields (mf)

h=1ly, y2 -y - 4]

? L = mfeigenbasis(mf); #L

h=2

? mfcoefs(L[1],10)

%= [0, 1, 0, 1, -2, -1, 0, 1, 0, -2, 0]

? mfcoefs(L[2],4)

% = [Mod(0, y°2 - ¥ - 4), Mod(1, y°2 - 7 - 4),\
Mod(-y, y°2 -y - 4),Mod(y - 1, y°2 - y - 4),\
Mod(y + 2, y°2 -y - 4)]

? lift(mfcoefs(L[2],10))

h=10,1, -y, y-1,y+2,1, -4, -1, -y - 4, -y + 2, -y]

The command mffields gives the polynomials in the variable y defining
the number field extensions on which the eigenforms are defined. Here, one
of the fields is Q, the other is Q(1/17). To obtain the eigenforms, we use

mfeigenbasis, and there are only two and not three, since the one defined on
Q(V/17) goes together with its conjugate. Asking directly mfcoefs(L[2],4)
gives the coefficients as polmods, not easy to read, so it is usually preferable
to lift them, giving the last command, where in the output we must of
course remember that y stands for one of the two roots of y> —y — 4 = 0,
ie., (14+17)/2.

In fact, for some numerical computations, we really need the coefficients
of the eigenform embedded in C, and not just as abstract algebraic numbers
(in our case of trivial character, they will be in R). This is why a few
functions (most notably mfeval and 1funmf) will return a vector of results
and not a scalar when called on such a form.

For instance, here is a little GP script which computes the numerical
expansion of a modular form instead of the expansion in polmods:

mfcoefsembed(F,n) = mfembed(F, mfcoefs(F,n));

Note that this produces a vector of expansions when the eigenforms are
defined over an extension, i.e. [Q(F') : Q(x)] > 1, one per conjugate form.

7 mfcoefsembed(L[2],5) \\ two conjugate forms
% = [[0, 1, 1.5615..., -2.5615..., 0.43844..., 1],
(o, 1, -2.561...,, 1.5615...,, 4.5615..., 1]1]

The first eigenform found above is rational, hence by the modularity
theorem there exists up to isogeny a unique elliptic curve to which it corre-
sponds. We check this by writing

? [mf,F] = mffromell(ellinit("35a1")); mfcoefs(F, 10)
% = [Oa 1, O: 19 -2: -1, O: 19 O, -2’ O]

? mfisequal(F, L[1])

h=1

For a more typical example (still with no character):

-~

[mfdim([96,2], flag) | flag <- [0..4]]
h=1[2,9, 7, 15, 24]

This gives us the dimensions of the new space, the cuspidal space, the
old space, the space of Eisenstein series, and the whole space of modular
forms.

Just for fun, we write (recall that the default is the full space):

? mf = mfinit([96,2]); L = mfbasis(mf);
? for (i = 12, 15, print(mfcoefs(L[i], 15)))

[23/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]
[31/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]
(47/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]
[95/24, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24]

Apparently, these four Eisenstein series differ only by their constant
term, which is of course not possible. Indeed:

? F = mflinear([L[14],L[12]],[1,-1]); mfcoefs(F, 50)

pA [+, o, o, o, o, o, 0, o, 0, 0, 0, 0, 0, 0, 0, O, O, 0,\
o, o, 0, 0, 0, O, 24, 0, 0, O, O, O, O, O, O, O, O, O,\
o, 0, 0, 0, 0, 0, O, O, O, O, O, O, 24, 0, 0]

? G = mfhecke(mf, F, 24); mfcoefs(G, 12)

% [1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96]

? mftobasis(mf, G)

% = [0, O, O, O, 24, O, O, O, O, O, O, O, O, O, O, O, O, O,\
o0, 0, 0, 0, 0, 01"

? 24*mfcoefs(L[5], 12)

% =[1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96]

The first command shows that the Eisenstein series differ on their n-th
Fourier coefficient for n = 0, 24, and 48, and the second command applies
the Hecke operator Ths4 (sometimes denoted Us4) to the difference, whose
effect is to replace a(n) by a(24n), giving the much more compact output of
G. The last commands show that G is equal to 24 times the fifth Eisenstein
series L[5].

? mf=mfinit ([96,2],0); mffields(mf)

%= ly, yl

? L = mfeigenbasis(mf); for(i=1, 2, print(mfcoefs(L[i], 16)))
(o, o, 1, 0, 2, 0, -4, 0, 1, 0, 4, 0, -2, 0, 2, 0]

(o, o, -1, 0, 2, 0, 4, 0, 1, 0, -4, 0, -2, 0, -2, 0]

? Fa = mffromell(ellinit("96a1"))[2]; mfcoefs(Fa, 16)

% = [0, 1, 0, 1, O, 2, O, -4, O, 1, O, 4, 0, -2, 0, 2, O]

? Fb = mffromell(ellinit("96b1"))[2]; mfcoefs(Fb, 16)

% = [0, 1, O, -1, 0, 2, O, 4, O, 1, O, -4, 0, -2, 0, -2, 0]

1,
1,

The mffromell function returns a triple [mf,F,C], where mf is the mod-
ular form cuspidal space to which F belongs, F is the rational eigenform

corresponding to the elliptic curve by modularity, and C is the vector of
coefficients of F on the basis in mf, which we recall is usually not a basis of
eigenforms (otherwise F would belong to this basis).

Note also that Fa and Fb are twists of one another:

? mfisequal (mftwist(Fa, -4), Fb)

% =

1

5 Interlude: Dirichlet characters

There are many ways to represent multiplicative characters on (Z/NZ)* in
Pari/Gp, we will list them by increasing order of sophistication, restricting
to characters with complex values:

e A quadratic character (D/.) (Kronecker symbol) is described by the

integer D. For instance 1 is the trivial character.

There is a (noncanonical but fixed) bijection between (Z/N7Z)* and
its character group, via Conrey labels. So Mod(a, N) represents a char-
acter whenever a is coprime to N. This makes it easy to loop on all
characters without worrying too much about which is which. In this
labeling, Mod(1,N) is the trivial character, and characters are mul-
tiplied/divided by performing the corresponding operation on their
Conrey labels.

The finite abelian group G = (Z/NZ)* is written

G=& (Z/dz) - g

i<n

with dy, | --- | d2 | di (SNF condition), all d; > 0, and [[; d; = ¢(V).
The SNF condition makes the d; unique, but the generators g;, of
respective order d;, are definitely not unique. The & notation means
that all elements of G' can be written uniquely as [, g;" where n; €
Z/d;Z. The g; are the so-called SNF' generators of G. The command
znstar (V) outputs the SNF structure (group order, d; and g;), but
G = znstar(N, 1) is needed to initialize a group we can work with:
most importantly we can now solve discrete logarithm problems and
decompose elements on the g;.

A character on the abelian group ®(Z/d;Z)g; is given by a row vector
X = [a1,...,a,)] of integers 0 < a; < d; such that x(g;) = e(a;/d;) for

all j, with the standard notation e(z) := exp(2imx). In other words,
x(ITg;") = e(X-ajn;/dj). In this encoding [0,...,0] is the trivial
character. Of course a character y must always be given as a pair
[G, x], since x is meaningless without knowledge of the (g;) or the

(di)-

The command znchar(S) converts a datum describing a character to the
third form [G, x]. The command znchartokronecker converts a character
of order < 2 to the first form (D/.), and functions such as zncharconductor,
znchartoprimitive, and zncharinduce allow to restrict or extend charac-
ters between different (Z/MZ)*.

Note the important fact that it is necessary to give the two arguments G
and y separately to these functions, for instance zncharconductor (G, chi)
(and not zncharconductor ([G,chi])).

Functions such as charmul, chardiv, charpow, charorder or chareval
apply to more general abelian characters than characters on (Z/NZ)*,
whence the prefix char instead of znchar.

6 A Third Session: Nontrivial Characters

Recall that a nontrivial character can be represented either by a discrim-
inant D (not necessarily fundamental), the character being the Legendre-
Kronecker symbol (D/n), or by its Conrey label in (Z/NZ)*, for instance
Mod (161,633) (which has order 42, as znorder tells us).

Defining modular form spaces with character is as simple as without: we
replace the parameters [N, k| by [V, k, x]. Instead of mf=mfinit([35,2]),
one can write mf=mfinit([35,2,5], 0), where 5 is the quadratic character
(5/.). Thus:

? mf = mfinit([35,2,5],0); mffields(mf)

%= [y 2+ 1]

? = mfeigenbasis(mf) [1]; lift(mfcoefs(F, 10))

% [0, 1, 2%y, -y, -2, -y - 2, 2, -y, 0, 2, -4*xy + 2]

o

where in the last output y is equal to one of the two roots of y? +1 =0, i.e.,
+i.

Working with nontrivial characters allows us in particular to work with
odd weights, and in particular in weight 1:

? mf = mfinit([23,1,-23], 0); mfdim(mf)

10

h

1

7 = mfbasis(mf) [1]; mfcoefs(F, 16)

% (o, ¢, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]
? mfgaloistype (mf,F)

h =6

~
[

The last output means that the image in PSLy(C) of the projective repre-
sentation associated to F'is of type D3. Note that an ”exotic” representation
is given by a negative number, opposite of the cardinality of the projective
image.

Since this form is of dihedral type, it can be obtained via theta functions.
Indeed:

? F1 = mffromqf ([2,1; 1,12])[2]; V1 = mfcoefs(F1, 16)
%=1,2,0,0,2,0, 4,0, 4,2, 0,0, 4,0, 0, 0, 2]

? F2 = mffromqf([4,1; 1,6])[2]; V2 = mfcoefs(F2, 16)
%=1[,o0, 2,2, 2,0,2, 0,2, 2, 0,0,4, 2, 0,0, 4]

? (V1 -V2)/2

%=1[0,1, -1, -1, 0, O, 1, O, 1, 0, O, O, O, -1, O, O, -1]
? mfisequal(F, mflinear([F1, F2], [1, -11/2))

h=1

Here we were lucky in that we “knew” that the correct character was
(—23/n). But what if we did not know this ? The first observation is
that modular form spaces corresponding to Galois conjugate characters are
isomorphic (x is Galois conjugate to x' if X’ = x" for some m coprime
to the order of x). Thus, it is sufficient to find a representative of each
equivalence class, and this is given by the GP commands G=znstar(N,1);
chargalois(G), where N is the level of the desired character (note that
N will not necessarily be the conductor of the characters). This exactly
outputs a list of representative of each equivalence class (do not for now try
to understand the details of this command, nor the fact that chargalois
and znstar have optional parameters). However, this is not quite yet what
we want. Although only for efficiency, we want characters with the same
parity as the weight, otherwise the corresponding modular form spaces will
be 0. This is achieved by the GP command zncharisodd (G, chi) which does
what you think it does. Let us first do this for NV = 23: we write

? G = znstar(23, 1);
? L = [chi | chi<-chargalois(G), zncharisodd(G,chi)]; #L
h =2

11

? [mfdim([23,1,[G,chil], 0) | chi <- L]

% = [0, 1]
? [charorder(G,chi) | chi <- L]
h = [22, 2]

This tells us that (up to Galois conjugation) there are two possible odd
characters, one, of order 22, giving a 0-dimensional space, the other being
the quadratic character given above. Note that chargalois returns (orbits
of) characters attached to an arbitrary abelian finite group G while mfinit
expects a pair [G,chi] for some znstar G, as written above.

When doing long explorations with all characters of a certain level, it is
preferable to use wildcards. For instance, instead of the above one can write:

? mfall = mfinit([23,1,0], 0); #mfall

h=1
? mf = mfall[1]; mfdim(mf)
h=1

7 mfparams (mf)
%= [23, 1, -23, 0]

This does not exactly give us the same information: the third parameter
0 in the first command asks for all nonempty spaces of level 23 and weight
1, and the program tells us that there is only one, of dimension 1. The
last command mfparams outputs [N,k,CHI,spacel], so here tells us that
the corresponding character is the Kronecker-Legendre symbol (—23/n).
Using wildcards, let us explore levels in certain ranges: we write

wtlexp(1liml,1im2)=
{ my(mfall,mf,chi,v);
for (N = 1iml, 1im2,
mfall = mfinit([N,1,0], 0); /* use wildcard */
for (i=1, #mfall,
mf = mfall[i];
chi = mfparams(mf) [3]; /* nice format: D or Mod(a,N) */
[print([N,chi,-t]) | t<-mfgaloistype(mf), t < 0]
)
);

For instance, wtlexp(1,230) outputs in 4 seconds

12

[124, Mod(87, 124), 12]
[133, Mod(83, 133), 12]
[148, Mod (105, 148), 24]
[171, Mod(94, 171), 12]
[201, Mod(104, 201), 12]
[209, Mod(197, 209), 12]
[219, Mod(8, 219), 12]
[224, Mod(95, 224), 12]
[229, Mod(122, 229), 24]
[229, Mod(122, 229), 24]

Thus, the smallest exotic A4 form is in level 124 and the smallest Sy form
is in level 148. Note that in level 229, we have two (non Galois conjugate)
eigenforms of type Sy.

If we type wtlexp(633,633), in 6 seconds we obtain [633, Mod(107,
633), 60], and this level is indeed the lowest level for which there exists a
type As form. The character orders are obtained either as znorder(chi)
(since all the chi are intmods), or using the general construction

[G,v] = znstar(chi);
ord = charorder(G,v)

where we first convert chi to a general abelian character in [G, x| format.

7 Leaf Functions

Although we have already seen most of these functions in the first session,
we repeat some of examples here.

7.1 Functions Created from Scratch

We now start a slightly more systematic exploration of the available func-
tions. We begin by leaf functions, i.e., functions created from scratch or
from a given mathematical object.

? D = mfDelta(); mfcoefs(D, 5)

% = [0, 1, -24, 252, -1472, 4830]

? E4 = mfEk(4); mfcoefs(E4, 5)

% = [1, 240, 2160, 6720, 17520, 30240]

? E6 = mfEk(6);

? D2 = mflinear([mfpow(E4, 3), mfpow(E6, 2)], [1, -1]1/1728);

13

7 mfisequal(D, D2)
ho=1

Self-explanatory. More complicated Eisenstein series:

? E3 = mfeisenstein(1l, 1, -3); mfcoefs(E3, 10)

%= [1/6, 1, 0, 1, 1, 0, 0, 2, 0, 1, O]

? E4 = mfeisenstein(5, -4, 1); mfcoefs(E4, 10)

% = [5/4, 1, 1, -80, 1, 626, -80, -2400, 1, 6481, 626]

? H2 = mfEH(5/2); mfcoefs(H2,10)

% = [1/120, -1/12, 0, O, -7/12, -2/5, 0, 0, -1, -25/12, 0]

The mfeisenstein(k,cl,c2) command generates the Eisenstein series
of weight k and characters c1 and c2. The mfEH(k) command is specific to
half-integral weight k£ and generates the Cohen—Eisenstein series of weight
k.

? T = mfTheta(); mfcoefs(T,16)

%=1, 2,0, 0,2, 0,0,0,0,2,0,0,0,0,0,0,:2]

? mf = mfinit([4, 5, -4]); mftobasis(mf, mfpow(T, 10))
(64/5, 4/5, 32/5]

7?7 B = mfbasis(mf); apply(mfdescribe, B)

%h = ["F_5(1, -4)", "F_5(-4, 1)", "TR new([4, 5, -4, y])"]
? mfisCM(B[3])

h = -4

==
]

Here, we compute the coefficients of #'° on the basis of mf (we know
of course the level, weight, and character). We then apply the mfdescribe
function, which tells us that the first two forms in the basis are Eisenstein
series, and the third one is some trace form on the cuspidal new space. How-
ever, the last command says that this third basis element is a CM form, so
that its coefficients can be computed just as fast as those of Eisenstein series,
so that there does exist an explicit formula for the number of representations
as a sum of ten squares.

Keeping the above sessions, we can also write:

? mftobasis(mf, mfpow(H2, 2))
% = [1/18000, 1/18000, -3/2000]~

14

7.2 Functions Created from Mathematical Objects

? [mf,F,co]l = mffromell(ellinit("26b1")); co
%= [1/2, 1/2]1°

? mfcoefs(F,10)

% =10, 1,1, -3, 1, -1, -3, 1, 1, 6, -1]

This creates the modular form attached by modularity to the second
isogeny class of elliptic curves over Q for conductor 26. The result is a 3-
component vector: mf is the modular form space, F' the modular form, and
co are the coefficients of F' on the basis of mf.

Similarly, there are functions mffromlfun (from L-functions attached to
eigenforms), mffromqf (from quadratic forms) and mffrometaquo:

7?7 F = mffrometaquo([1, 2; 11, 2]); mfcoefs(F, 10)
% = [O’ 1: _2, _19 2, 1: 21 -2’ O: -2, _2]
? F = mffrometaquo([1, 2; 2, -1]); mfparams(F)

%= [16, 1/2, 1, y]
? mfcoefs(F, 10)
% = [1, _2; O, Oa 2’ O, o; O’ Oa _2’ O]

The mfparams command tells us that ' € M /5(I'0(16)).

8 Atkin, Hecke and Expanding Operators

? mf = mfinit([96,4], 0); mfdim(mf)
h =6

? M = mfheckemat(mf, 7)

b
[0 0 0 372 696 0]

=

(o 0 36 0 0 -96]
(0 27/5 0 -276/5 -276/5 0]
[1 0 -12 0 0 62]
o 0 1 0 0 -16]

[0 -3/5 0 14/5 -16/5 0]

15

? P = charpoly(M)

h = x"6 - 1456*x"4 + 209664*x"2 - 2985984
7 factor(P)

°/0=

[x - 36 1]
[x - 12 1]
[x -4 1]
[x + 4 1]
[x + 12 1]
[x + 36 1]

Note a few things: first, the matrix of the Hecke operator T'(7) does not
have integral coefficients. Indeed, recall that the basis of modular forms in
mf is mostly random, so there is no reason for the matrix to be integral.
On the other hand, since the eigenvalues of Hecke operators are algebraic
integers, the characteristic polynomial of 7'(7) must be monic with integer
coefficients. As it happens, it factors completely into linear factors to the
power 1, so all the eigenvalues of T'(7) are in fact in Z: this immediately
shows that the splitting will be entirely rational and the eigenforms with
integer coefficients. Let’s check:

? mffields (mf)

n=1y, vy, ¥, ¥, ¥, ¥l

? L = mfeigenbasis(mf); for(i=1,6,print(mfcoefs(L[i],16)))

(o, 1+, o, 3, o, 10, 0, 4, 0, 9, 0, -20, 0, 70, 0, 30, O]

(o, 1, o, 3, o, 2, o, 12, 0, 9, 0, 60, 0, -42, 0, 6, 0]

(o, 1+, o, 3, o, -14, o, -36, 0, 9, 0, -36, 0, 54, 0, -42, 0]

(o, 1, o, -3, 0, 10, 0, -4,
1, O
1, O

0, 9, 0, 20, 0, 70, 0, -30, O]
(o, 1, o, -3, o, 2, o, -12, 0, 9, 0, -60, 0, -42, 0, -6, 0]
(o, 1, o, -3, o, -14, o, 36, 0, 9, 0, 36, 0, 54, 0, 42, 0]

We see that of the six eigenforms, the last three are twists of the first
three.

There also exists the command G=mfhecke (mf ,F,n), which given a mod-
ular form F' in mf, outputs the modular form 7'(n)F.

16

? mf=mfinit([96,6],0); mffields(mf)
h=1y, ¥y, 9, ¥, ¥, ¥, y72 - 31, y°2 - 31]
? mfatk = mfatkininit(mf,3);

% factor(charpoly(mfatk[2]/mfatk[3]))

Y =

[x -1 5]

[x + 1 5]

This requires a little explanation: the command mfatkininit (mf,3)
computes a number of quantities necessary to work with the Atkin—Lehner
operator W3 in the space mf. The main part of the result is the second
component, which is essentially the matrix of W3 on the basis of mf, and
which is guaranteed to have exact coefficients (here rational). However in
the general case, the matrix of W3 is equal to mfatk[2]/mfatk[3], where
mfatk[3] may be an inexact complex number. For now you need not worry
about the first component.

Thus, the eigenvalues (or possibly the pseudo-eigenvalues) must be of
modulus 1, and in the case of a quadratic character defined modulo N/Q,
they are equal to £1 in even weight, to ¢ in odd weight. Here, 1 and
—1 both occur 5 times. However, this does not tell us which eigenvalues
correspond to each eigenspace. For this, we do the following:

? mfatkineigenvalues (mf,3)

h = [0-11, [-11, [-11, (11, (11, (11, [-1, -11, [1, 1]]

? mf=minit([96,3,-3],0); mffields(mf)

h=1[y4 +8%xy"2 + 9, y°4 + 4xy~2 + 1]

? mfatkineigenvalues (mf,32)

% = rfr, -1, -1, 11, [-I, I, I, -I1]

? mfatkineigenvalues (nf,3)

% = [[a, -conj(a), -a, conj(a)], [b, -conj(b), conj(b), -bl]

The first command tells us that in the six rational eigenspaces, the first
three have eigenvalue —1, the other three +1, and in the eigenspaces of
dimension 2, the first eigenspace has both eigenvalues —1, the second both
+1. As is seen from the next lines, it is of course not necessary for the
eigenvalues of Wy in the same eigenspace to be equal.

In the next two commands, we are now in a case where the character is
non trivial and the weight odd. The eigenvalues are now +i, and not equal
in the same eigenspace.

17

Finally, the last command is a case where the character is not defined
modulo N/Q = 96/3 = 32, so we only have pseudoeigenvalues, which are
simply of absolute value 1 by Atkin—Lehner theory. Here, a and b are com-
plicated complex numbers and conj denotes the complex conjugate (using
the algdep command, one can check that a is a root of 9z* + 1022 +9 =0
and b is a root of 3z — 222 4+ 3 = 0.

Note that when the character is (trivial or) quadratic and defined modulo
N/Q the output is always rounded, but otherwise, the eigenvalues are given
as approximate complex numbers.

As for the Hecke operators, there exists an mfatkin command, whose
syntax ismfatkin(mfatk, F), where mfatk is the output of an mfatkininit
command and F is in the space mfatk, and which outputs the modular form
F|iWq, where @ is implicit in mfatk.

Finally note the mfbd expanding command which computes B(d)F":

? E4 = mfEk(4); mfcoefs(E4,6)

% [1, 240, 2160, 6720, 17520, 30240, 60480]
= mfbd(E4,2); mfcoefs(F,6)

[1, 0, 240, 0, 2160, 0, 6720]

~
e

h

9 Algebraic Functions on Modular Forms

Here we give examples of functions on modular forms which do not involve
any approximate numerical computation. We have already mentioned the
most important ones: mfhecke, mfatkin, and mfbd.

? E4 = mfEk(4); F = mfderivE2(E4); mfcoefs(F,5)

% = [-1/3, 168, 5544, 40992, 177576, 525168]

? E6 = mfEk(6); mfisequal(F, mflinear([E6], [-1/3]))
h=1

? G = mfbracket(E4, E6, 1); mfcoefs(G,5)

% = [0, -3456, 82944, -870912, 5087232, -16692480]
? mfisequal (G, mflinear([mfDelta()], [-3456]))
h=1

In the first commands, we compute the Serre derivative of E4, and check
that it is equal to —F§/3. The name mfderivE2 of course comes from the
fact that the Serre derivative involves the quasi-modular Eisenstein series
E5. Note that there exists the function mfderiv (including to negative order,
corresponding to integration), which is provided for the user’s convenience

18

for certain computations, but whose output is outside the range of modular
forms.

The second computation checks that the first Rankin—Cohen bracket of
E4 and Eg is a multiple of A.

You may complain that it is heavy to write an mflinear command as
above simply to compute a scalar multiple of a form. But nothing prevents
you from defining in a script that you read at the beginning of your session:

mfscalmul (F,s)=mflinear ([F], [s]);
mfadd(F,G)=mflinear([F,G], [1,1]);
mfsub(F,G)=mflinear([F,G],[1,-1]1);

There also exist the natural operations on modular forms mfmul, mfdiv
(which may result in modular functions, i.e., with poles), and mfpow. There
is also a function mfshift (multiply or divide by a power of ¢), but which
again takes us outside the range of modular forms.

? E4 = mfEk(4); F = mftwist(E4, -3); mfcoefs(F, 7)
% = [0, 240, -2160, 0, 17520, -30240, 0, 82560]

? mfparams(F)

h =109, 4, 1, y]

? mf = mfinit([4,5,-4], 1); F = mfbasis(mf) [1]; mfcoefs(F, 10)
% = [0, 1, -4, 0, 16, -14, 0, 0, -64, 81, 56]

? mfisCM(F)

h=-4

? G = mftwist(F, -4); mfcoefs(G, 10)

% = [0, 1, O, O, O, -14, 0, 0, 0, 81, 0]

? mfparams(G)

% = [16, 5, -4, vyl

? mfconductor (mfinit (G, 1), G)

% =8

This session illustrates a number of important issues concerning twisting.
In the first commands, we twist E4 by the quadratic character —3 (in the
present implementation, only twisting by quadratic characters is allowed),
and we see that the resulting form has level 9 = (—3)2. Fine. In the next
command, we compute the unique form in Sy(T'g(5), x—4), and see that it
has CM by Q(v/—4).

However, note that the form is not equal to the form twisted by the
character y_4 (only the coefficients of ¢" with n prime to 4 are equal, the

19

others vanish). The mfparams command tells us that the twisted form has
level 16 = (—4)2. However, the final command tells us that in fact it has
level 8: mfconductor gives the smallest level on which the form is defined.

? mf = mfinit([96,2], 1); L = mfbasis(mf);

? apply(x->mfconductor(mf,x), L)

% = [24, 48, 96, 32, 96, 48, 96, 96, 96]

apply (x->mftonew(mf,x) [1][1..2], L)

v = [[24, 11, [24, 21, [24, 4], [32, 11, [32, 31,\
(48, 11, [48, 21, [96, 11, [96, 1]]

-~

Here we compute the full cuspidal space S2(I'9(96)), of dimension 9, and
we ask which is the lowest level on which each form in the basis is defined.
This list shows that there is one form Fj in level 24 which, by applying B(d)
with d = 2 and d = 4 gives a form of level 48 and one of level 96. Then a
form Fy in level 32, by applying B(3) gives a form of level 96, a form F3 in
level 48, by applying B(2) gives a form of level 96, and finally two genuine
forms of level 96 (so that the dimension of the newspace is equal to 2, which
we can check by typing mfdim([96,2],0)).

The last command mftonew checks all this; look at the precise description
of the command.

10 Cusps and Cosets

Recall that in the present version of the package, the only congruence sub-
group that is considered is I'g(IV), so when we consider cusps in the geomet-
rical sense, they are cusps of I'g(N), and cosets are right cosets of T'g(V) in
I, so that I' = | |; To ().

The function mfcusps(N) gives the list of all (equivalence classes of)
cusps of I'g(NN), mfcuspwidth(N,cusp) gives the width of the cusp; these
are linked to the geometry. On the other hand, the notion of regularity
of a cusp is linked to the specific modular form space, and the function
mfcuspisregular ([N,k,CHI],cusp) determines if the cusp is regular or
not:

= mfcusps(108)

o, 1/2, 1/3, 2/3, 1/4, 1/6, 5/6, 1/9, 2/9, 1/12,\
5/12, 1/18, 5/18, 1/27, 1/36, 5/36, 1/54, 1/108]

? [mfcuspwidth(108,c) | c<-C]

% = [108, 27, 12, 12, 27, 3, 3, 4, 4, 3, 3, 1, 1, 4,\

?C
%:

20

1, 1, 1, 1]
? NK = [108,3,-4];
7 [mfcuspisregular(NK,c) | c<-C]
%»=10,0,1,1,1,0,0,1,1,1, 1,0, 0,1, 1,1, 0, 1]
[c | c<-C, !mfcuspisregular(NK,c)]
» = [1/2, 1/6, 5/6, 1/18, 5/18, 1/54]

N

The first command list the 18 cusps of I'g(108) (mfnumcusps(108) gives
this directly, useful if there are thousands of cusps and you do not want them
explicitly), the second command prints their widths, and the last commands
show that the cusps 1/2, 1/6, 5/6, 1/18, 5/18, and 1/54 are irregular in the
space M3(I'9(108), x_4), and the others are regular.

There is another command mfcuspval having to do with cusps, but this
will be mentioned later.

= mfcosets(4)

(o, -1; 1, o1, [1, o0; 1, 11, [0, -1; 1, 2],\
o, -1; 1, 31, [1, 0; 2, 11, [1, O; 4, 1]]

? mftocoset(4, [1, 1; 2, 3], C)

%= [[-1, 1; -4, 3], 5]

?C
Y4 =

The mfcosets(N) command lists all right cosets of I'g(/V) in I". Note
that in the present implementation the trivial coset is always the last one,
and is represented by the matrix [1,0; N, 1], but since this may change one
must be careful.

The mftocoset(N,M,C) command gives a two-component vector [y,],
where v € T'o(N) is such that M =~ - C[i].

11 The mfslashexpansion command

We now give examples of the use of advanced features of the package, which
use inexact complex arithmetic. However in many cases the results are
known algebraic numbers and, if asked to do so, the function gives them
exactly.

This command returns the Fourier expansion at infinity of f|gvy, for
v € GLy(Q)". Tt returns a vector v of coefficients, which can only be
interpreted together with three extra parameters o € Q>o, w € Z>; and
a 2 x 2 upper triangular matrix A = [a,b;0,d] (equal to the identity if

21

v € PSLy(Z)). We have f|py = F|iA, with

F(r) =Y ol

n>0

and ¢ = e(7). Of course, F|A = (a/d)*/?F(r