oOReXxX
Documentation 5.0.0

Open Object Rexx

Reference

R

ooRexx Documentation 5.0.0 Open Object Rexx
Reference
Edition 2022.12.22

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Erich Steinbdck
Author Jon Wolfers

Copyright © 2005-2022 Rexx Language Association. All rights reserved.
Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://www.oorexx.org/license.html

Preface Xiv
I B o Toi [g 1= o | 0] 0 VZ=] o] i o] o PPN Xiv
1.1. TypographiC CONVENTIONSccouuuiieiiiii ettt ettt e e et eeeae e eeees Xiv

2 N o) (<SR- U (o YA = Vg 11 o TS Xiv

2. How to Read the Syntax DIagramscoevuieiiiieiiieiii e e e e e e e e et e e e e e e aanas XV
3. Getting Help and Submitting Feedback ... XVi
3.1. The Open Object ReXX SOUIrCEFOrge Stcoicuiiiiiiiiiiiiiii e XVi

3.2. The Rexx Language Association Mailing LiStcoooieiiiiiiiiiiniiiiicci e, XVii

3.3. cOMP.IANG.FEXX NEWSGIOUD ..cevuuiiiitietiiti ettt e e et e et e e e et e e e e eeai e eenanns XViii

4. Related INfOrMAtIONiiiii et e et e eeeab e Xviii
1. Open Object Rexx General Concepts 1
1.1. What Is Object-Oriented Programming?oocoeiuiiiiiiiiiiiie e e e eens 1
1.2. MOAUIAHZING DALA ...ttt e et e e e 1
I VT To 1= 11 o @] 1= £ 3
3 o o VYA @] o] [=Tox £ 11 =1 - Uod (PR 4
ST /1= 1 0 To o L PSPPSR 4
1.6. Data ADSIFACLIONc.uiiiit e ettt et et e e e e e e e eaas 5
1.7. ClasseS @nd INSLANCESiiiiiiiiiiieii et e e et e et e et e e e e eeanns 5
1.8, POIYMOIPRISIM ettt e e e e e 7
1.9. Subclasses, Superclasses, and INNEMtANCEc.ovviiii i 7
1.10. Structure and GENETral SYNTAXc..uiiiuuiiiiiiieiiie et e e e e e e e e e e et e e e ranae 8
O I O ¢ =V = T (] £ PP 8
1.10.2. WHITESPACE ...nietieeii ettt ettt et e et e et e e et e et e et e e et e e ea e et 9
1.10.3. COMIMENTES ettt ettt et et et et e e et e et e et e et e en e e e e e e e enaees 9
0 S o] (= 0 11
1.10.5. Implied SEMICOIONSc.uiiiiiiie e e e e eans 16
1.20.6. CONLINUALIONS ...uuuiiiiiii ettt e et e et e e et e e e e ta e e e erenes 16
1.11. Terms, EXpressions, and OPEIALOrSccuuieuueiiu it e e e e e e eaneeees 17
1.11.1. Terms and EXPreSSIONSiiuuiiiiieiii et e et e e e e e et e e et e et eeaneeeaaaes 17
R O o= = 1o £ PPN 18
1.11.3. Parentheses and Operator PreCedenCecc.uiviiiiiiiiiiiiiiineeee e 21
O B Y TS 7= o T T =1 0 23
1.11.5. MESSAQE SEUUEINCES ...uueerieetieen et eeieeieetaaeneeen e taeea e e e ea e enteanaean et e eaeeteenaeenns 24
1.10.6. *NEWX AITAY ToIMN ot e e e ans 25
1.11.7. *NEW?* Variable Reference Term ... 26
1.12. Clauses and INSIFUCHIONSiieuiiiiei e e e e e et e e e e e e eeens 26
2 O VL0 T £ = 26
O B 1 (=T 1Y PP 27
L.12.3. LADEIS et 27
L1.12.4. INSIFUCTIONS .ttt et ettt e et e et e e e e e et e e et e e e eeaens 27
1.12.5. ASSIGNIMENTS ...ttt et e et et e et e e et e e et e e et e e aa e aeaaeeenns 27
1.12.6. MeSSage INSIIUCHIONScoeuuiieiiiiie et 28
1.12.7. Keyword INSIFUCLIONSuiiiiiiiiieeiii ettt et e et e eeeaa e eees 28
1.12.8. COMMANAS ..iiiinieiiiii et e e e et e et e e e et e e e e et e e e e et e e e e et 28
1.13. Assignments and SYMDOIScooouiiiiiii 28
1.13.1. Extended ASSIGNMENLSciiiiiiii e e e e e e e e e e 29
1.13.2. CoNnStant SYMDOIScouniiiiii e e 30
1.13.3. SIMPIE SYMDOISoiieiiee e 30
] 1 0 1P 30
1.13.5. Compound SYMDOISciiiiiiiie e 33
1.13.6. Environment SYMDOIScooiiiiiiiii e 34
1.14. *NEW?* NAMESPEACES ...cuuetniiiiiiiii ettt et et e ettt et e et e et et et e en e en e e e eanaennnes 35
1.15. MESSAQe INSIIUCHIONS ...ttt et et et e e et e e e et e e e e aeannas 36

1.16. Commands to External ENVIFONMENTSoouuiiiiiiiiie e 37
1.16.1. *CHG* ENVIFONMENT . .ouitiiiii e e e e e e e e e e e 37
T o 11011 1 = 1 o [PPSR 38

1.17. Using Rexx on WINdOWS and URNIXoeeuiiiiiorireeseees e e e e e e e e e e e eeanaeeeen 40
1.17.1. Calling other REXX SCIPLS ..uuiiuiiiiiiieii e e e e e e e e e e e e ean s 40
1.17.2. SNEDANG SUPPOIT ..ttt e et e e eenns 40
1.17.3. Line-eNnd CRAraClersoiiuiiiiiiie e 40
1.17.4. End-0f-file CharacCteroiiiiii e 41

2. Keyword Instructions 42

2.1, *CHG* ADDRESS ..ottt ettt ettt e e et e e e e et e e e e et a e et e aaae 42

2 Y = C USRS 46

22 T O A I PP 47

S O €5 I T LSRR 50

2.0, DR e e 52

P22 G T = N PP 53

2.7 EXPOSE ..ottt r s 54

2.8, FORWARD ...ttt ettt e et e e e et e e e et r e e e et e et e e et aaaann 55

P I O o [S €11 N = {5 RSP 57

205 1 TR | PSP 58

2 T T N I o e 59

P N I = = N I PSPPSR 61

2,030 LEAVE oottt aaan 62

2 S X 1 | = PSP 63

25 11 T VL PP 64

2.16. NUMERIC ..ottt e et e et e e et e e e e et e e e e et e e e e et s 64

2 A 1 I 0 1IN 1 65

2,08, PARSE ..ottt e e e et aae 66

2.19. PROCEDURE ..ottt et e e et e e e et e e e et e e e e aan s 68

220 0 R = | PP 71

2 N = U 1 PSP 72

2 © 18 1 L P 72

2,23, RAISE .. 72

2. 24, REPLY it et e e e aat e e 75

2.25. RETURN ittt e et e e e et e e e et e e e et e e e e b s 76

B T A PP 76

A B 1 o [S =l O PP 77

2.28. SIGINAL ..ottt — et r 79

2.29. TRACE ..o e 81
2.29.1. Trace Alphabetic Character (Word) OptioNScovveviiviiiiiriii e 82
2.29.2. PrefiX OPtion .. 83
A TG T \\[W] 4 1= o3 @ o1 o] o 84
2.29.4. TrACING TIPS -utttuiteunaeet et e et et e et e e et e et e e e e e et e e et e e et e e etn e ean e eateaeanaaeanans 84
2.29.5. The Format of Trace OULPULcccuuuiiiiiii it 84

G 1O O o [S U PSPPSR 86
2.30.1. *CHG* USE ARG, USE STRICT ARGcciiitiiiiiiiiiiieeiiii e 86
2.30.2. *NEW?* USE LOCAL ..ottt e e s 88

3. Directives 20

3.1 *NEW?F ANNOTATE oot e e e e e e e et e e e et e e e et e e eeranas 90

3.2, FCHG™ AT TRIBUTE ..ot e e e e e e e e e e e e e e e e aaanns 91

R T O I 1 SRR 94

K O o [i 01 @ 11N S 72N 1V PP 96

G T |V 1 = N [5 LSO 97

I S O o [S @] [] 1SRN 100

3.7. TREQUIRES ... e 102

3.8. *NEW?* IRESOURCE ... ciiiiiiiiiiiii ittt e e e e et a e e et a e e e 103
G 78 TRt L I I P 104
4. Objects and Classes 107
R Y] 1= TS 0 1 = 11T 107
o I R @] o] [T o R O - T PP PTRPPTRPN 107

o A Y D] I O =TT PP 108
O T AN o)1 = T A =TT 108

A 14, METACIASSES ...vuiiiiii e et e e e ae 108

4.2. Creating and Using Classes and Methodsccuiiiiiiiiiiiiiiii e 111
o N U L= o T =TT = 112
S ol o | o1 PPN 113
4.2.3. Defining Instance Methods with SETMETHOD or ENHANCEDccccvviiieen. 113
Y/ =Y 1 T Yo I AN = Vg = 113
4.2.5. Default Search Order for Method Selectioncccooviiiiiiiiiii e 113
4.2.6. Defining an UNKNOWN Methodoiiiiiiiii e 114
4.2.7. Changing the Search Order for Methodscccooviiiiiii i, 114
4.2.8. Public, Package-Scope, and Private Methodscccoiiiiiiiiiiiiiiieee, 115
4.2.9. INILALZALION ...eeeeee e et 116
4.2.10. Object Destruction and Uninitializationc.ocoviiiiiiiiiin e, 117
4.2.11. Required String ValUESoiiiiiiiieii e e e e e e e e e e ee 117
o B @ o o1 B 1= [Y 118

4.3. Overview of Classes Provided DY REeXXoiuiiiiiiiiiiiie e 118
4.3.1. The Class HIErarChy ... e 118
4.3.2. Class LIDrary NOLESiiiiiiiiiiiiii ettt e eeeans 120

5. Builtin Classes 121
5.1. FUNDAMENTAl ClASSES ...ovviiiiiiiiieieii et et e et e e e aaans 121
5.1.1. Class Class (MetacClass)ccuuviiuiiiiiii e ea s 121
5.1.2. MESSAQE ClASS .. .ceuiiiiiiiii ettt e 132
N I T V11 To To IO = L PP 142
B5.1.4. ODJECE ClASS ...vuiiiiiiii ettt 147
B5.1.5. PACKAGE CIASS ...iiiiiiiiiiiiiii ettt 157
5.1.6. ROULINE ClASS ..oiutuiiiiiii ettt et e et e e et e e eaeanas 166
L0t O A 1 1T T4 = 1 169

5.2, SIIEAIM CIASSES ...niiitiiiiiii ettt ettt et e e e et e e et e e e e aan s 214
5.2.1. INPUtOULPULSTIEAM CIASSiiiiriieiiiii et 215
5.2.2. INPUESTIEAM CIASSciiiiiiieiiiii ettt et e et e e e eeees 215
5.2.3. OUIPULSIIEAM CIASSiiiiiiiieiiiiiie ettt e et 216
B5.2.4. SIrEAM CIASS ...iiiiiiieiiiii ettt r e aee 218

5.3. COlIECHON CIASSESietiiiiiiieii ettt ettt et e et e et e e et e e et e e eaeeennaes 236
5.3.1. Organization of the Collection CIaSSeSooiiuiiiiiiiiiiiie e 237

IR I @70 | (=Tl 1o o IO F= 11 PR 238
5.3.3. MAPCOIECHON CIASS ...ceviiniiiiiiieeeei et e e 241
5.3.4. OrderedCollection ClaSScccuiiiiiiiiieei e e e eans 243
5.3.5. SetCOlECHON ClASSuuiiiiiiiiieiiiii et 247
B.3.6. ATAY ClaSS ..vuiiiiiiiiiiiii e e 247
LR A T Vo I 5 - 1 PSP 261
5.3.8. CircularQUEUE CIASScieuiiiiiiiiii et et e e 267
5.3.9. DIFECIONY CIASS ...iiitiiiiiiiii ettt ettt ettt e s 273
5.3.10. IdentityTable ClassSooieiiiiiiiiii e 279
LT B0 I O I) A 1 = T PR 283
5.3.12. ProPertieS ClaSS ...ccuiiiiiiiiiiiie ettt e e 288
5.3.13. QUEUE ClaSS ..iitiiiiiiii ittt et e e e 292

5.3.14. REIALHON CIASS ...viiiieiiiii ettt e e et et e e e e e eaeaens 298

5,315, S ClASS ..iiiiiiiii ittt a e e e 304
LR 0 G TS (T ¢ T = T 308
5.3.17. *NEW?* StringTable CIassScovvuiiiiiiii e e e e e e e e e e 313
5.3.18. TADIE ClaSS ..iieiiiiiiiii i 318
5.3.19. Sorting Ordered ColleCtiONScoouuiiiiiii e 321
5.3.20. Concept of Set OPEratiONSuoiiuuiiiiiiiiii e 324

B4, ULIILY ClASSES ...ttt ettt et e et e e et eeeaa s 328
Lo T Y = T g T G - T 328
5.4.2. *NEW* AlarmNotification Classccuuiiiiiiiiiiiiiiiie e 331
L T =TT (=] G O = 1 PP 332
5.4.4. Comparable CIaSsSco.iiiinii e 332
5.4.5. COMPArator ClASSEScuuiiiiiiiiiaiii e ettt e aeaans 333
5.4.6. DAtETIME ClASS ..euuiiitiiiiieii et et e e e et e e an e e et e e eaeeenns 339
5.4.7. *NEW* EventSemaphore ClassSovi it 357
BUA.8. File ClasS ..oouuiiiiiiii i 360
5.4.9. *NEW* MessageNotification Classcoivviiiiiiiiiiiiciir e e e e 371
5.4.10. MONITOE CIASS ...cuniiiiiiiii et e e eees 372
5.4.11. MutableBUFfer CIassc.. i e 373
5.4.12. *NEW* MutexSemaphore Classcoiiiiiiiiiiiiiiieci e 387
5.4.13. Orderable Classccuuiiiiiiiiiiei e 390
I I B o1 1 (= G O - T PR 391
5.4.15. *CHG* ReguIarEXpPression CIassSccciiiuiiiiiiieiii e e e e e e 392
5.4.16. ReXXCONEXE CIASSuuiiiiiiiiiiiei et e ean s 398
5.4.17. *NEW?* REXXINTO ClIASS .. ciieiiiiiiiiiiei ettt e e e e eaaes 401
5.4.18. REXXQUEBUE CIASS ...uiiitiiiitiiii ettt ettt e e e e e e et e e e een s 410
5.4.19. *NEW* Singleton Class (Metaclass)oveviuuiiiiiiiiiieiiiie e 413
5.4.20. StACKFIAmME ClASS . .ciiiiiiiiiiii it e e et eees 415
5.4.21. StreamSupPPlier Classccuiiiiiiiii e 418
5.4.22. SUPPHEE ClIASS ...ttt et e 419

L e T N A N od T G O - T O 421
5.4.24. TIMESPAN CIASS ...eeeiiueiiiiii ettt ettt ettt eeeaa s 424
5.4.25. *NEW?* Validate Classccoeuiiiiiiiiiiiie e e e e 431
5.4.26. *NEW* VariableReference Classooviiiiiiiiiiiiiiiiei e 434
5.4.27. WeakReferenCe Classooiiiuiiiiiiiiii et 436

6. Rexx Runtime Objects 437
6.1. The Environment Directory ((ENVIRONMENT)couuiiiiiiiiiiiii e 437
6.1.1. The ENDOFLINE Constant (.ENDOFLINE)ccccuiiiiiiiiiiiiiiiiieeecii e 437
6.1.2. The FALSE Constant ((FALSE)ooiuiiiiiieii e e e e e e 437
6.1.3. The NIL ODBJECE ((NIL) ...iieiiieieii e e e 437
6.1.4. The RexxInfo Object ((REXXINTO)ccuuiiiiiiiie e 437
6.1.5. The TRUE Constant (TRUE)coiiiiiiiiiiiiiii e e e r e e e 438

6.2. The Local DIreCtory (\LOCAL) ...oeeiieiiii ettt 438
6.3. The Debug Input Monitor (DEBUGINPUT)ciuiiiiiiici e e 439
6.4. The Error Monitor ((ERROR)cocuiiiiiic e e e 439
6.5. The Input Monitor ((INPUT) ..ot 439
6.6. The Output MonItor (LOUTPUT) ...iiiiiii it e et e et eeeaae e eeaees 439
6.7. The Trace Output Monitor (TRACEOUTPUT)ciiiiiiiiiiiieeeei e 439
6.8. The STDERR Stream (.STDERR)uuiiiiiiiiiiii e 439
6.9. The STDIN Stream ((STDIN) ...cvuuiiiiiii e e e e e et e e e e aneees 439
6.10. The STDOUT Stream (.STDOUT) ...cvuuiiiiieiii e e e e e e e e e e e e e e e e e eens 440
6.11. The STDQUE Queue (.STDQUE)couuuiiiiiiiiiiiiii et 440
6.12. *NEW* The SYSCARGS ArIray (.SYSCARGS)ccuuiiiiiiiiiiiiiiiii et evei e et e e 440

Vi

6.13. The Rexx Context ((CONTEXT) ...iirtiiiieiiieiiiii ettt et e e e e e e eeer e e 440

6.14. The Line Number ((LINE)i e 440
6.15. The METHODS StringTable (METHODS)cceoiiiiecieeeeeee et 441
6.16. The ROUTINES StringTable (ROUTINES)coouiiiiiiiiiiieii e 441
6.17. *NEW* The RESOURCES StringTable ((RESOURCES)cccovvvviiiiiiiiiiiiieccii e 441
6.18. The Return StatuS ((RS)iiuiii i e e e 442
7. Functions 443
00 TS V] 1 = G 443
7.2. FUNCLIONS aNnd SUDIOULINESooviiieiiiiiii et e et e e e et eeeeta e e eees 443
7.2.1. SEAICH OFUEI ...ttt et e e e e e eaa s 444
7.2.2. Errors during EXECULIONiiueiiiiiiiiiee et e e 448

7.3, REIUM VAIUES ..o et e e e et e e et e e et e e e een s 448
4 = T 11 I 0T 449
7.4.1. ABBREV (ABDBreVviation)cc..oiiiiiiiieis e e e 450
7.4.2. ABS (ADSOIULE VaAlUE)coevniiii i e e e 451
T.4.3. ADDRESS ...t 451

7. 4.4, ARG (ArQUMENT) «.ouiiiitiei ettt et e e e e e e et e et e e et e e et e aeanaaeanaas 451
7.4.5. B2X (Binary to Hexadecimal)ocouuiiiiiiiiii e 453
TA.6. BEEP ... s 453
7.4.7. BITAND (Bit DY Bit AND) ...uuiiiiiiiieiiiii et 454
7.4.8. BITOR (Bit DY Bit OR) ...iiiiiiiiiiiiii e eaaens 455
7.4.9. BITXOR (Bit by Bit EXCIUSIVE OR)euuiiiiiiiiiieiiiiee e 455
7.4.10. C2D (Character t0 DeCIMal)co.uiiiiiiiiiai e 456
7.4.11. C2X (Character to Hexadecimal)cc.uiveiiiiiiiiiiii e 456
7.4.12. CENTER (08 CENTRE) ..etniiiiiiiii e e e e e s 457
7.4.13. CHANGESTR ottt e e et e eeeaanns 457
7.4.14. CHARIN (Character INPUL)cccuuiiiiiici e e e e e 458
7.4.15. CHAROUT (Character OULPUL)coeuuiiiiiiiieeei e 459
7.4.16. CHARS (Characters RemMaining)occuuieiuiiiiiiiiiaeiaeei e e e 460
A A @ 1Y =Y = S S 460
7.4.18. *CHG* CONDITION ..ottt e e e e e eaas 460
T4.19. COPIES ..o et 462
7.4.20. COUNTSTR ..ttt ettt et e e e et e e e e et e e e eatenaeeestnaeeeenes 462
7.4.21. D2C (Decimal t0 Character)ccuuivieiiiieii e e 463
7.4.22. D2X (Decimal to Hexadecimal)oooeuiiiiiiiiiii e 463
T7.4.23. *CHG™ DATATY PE ..o 464
S O o [S I A I 465
7.4.25. *CHG* DELSTR (Delete StrNQ) ...ccuueveeiiiiieieieeei e e e e e e e e e e eana e 469
7.4.26. DELWORD (Delete WOrd)ocvuuiiiiieeii e e e e e e e e e e e 470
A A G 1 (] [S T PPN 470
7.4.28. DIRECTORY ..iiiiiiiiiiiii ettt ettt e et e e et e e e et s e e e ettt e e e et s e e eatt e eeaaataaaeees 470
7.4.29. ENDLOCAL (LINUX ONIY) trttiiiiiiiiieee et e e e e et e e s e s aaai e e eaaan e eeanens 471
10 T = (] I =G 471
7431, FILESPEC ...oiiiiii ettt et e e et e e e e e 472
T.4.32. FORM Lot e e 472
T.4.33. FORMAT oottt e et e e e et e e e et e e e et e e e et e eeennns 473
TABA, FUZZ ...t e 474
AR L T N] =1 PR 474
7.4.36. LASTPOS (Last POSITION) ...cceeuiiiiiiiiieiiee et 474
AR O T e PP 475
T.4.38. LENGTH oottt e e e e e et e e e b e e e aaens 475
7.4.39. LINEIN (LIN€ INPUL) ©..eiiiiiieeeii et e et e et e e e e e e e e aen e 475
7.4.40. LINEOUT (LiNE OULPUL) 11evvuuieiiiiieeeiiie e et e et e e et s e e e e e e et e e e eai e e e eaenas 477

Vii

7.4.41. LINES (Lin€S RemMAaINING)iieuuiiiiiiiiieii et e e e e e e 478

A @ LY o PP 479
7.4.43. MAX (MEXIMUITY) oottt et et e ettt e e et e e e eab e e e eabreeeenanaeeees 479
7.4.44. MIN (MINIMUM) oo e e e e e e e e et s e e e e e s e e et e e ea e e et aeeanneeanas 480
7445, OVERLAY ..ottt et et e e aaa 480
T.4.46. POS (POSITION) ..iiiiiiiiiiie et e e e e e e e e et e e e eaa s 480
A A @ 1 7 e P 481
T.4.48. QUEUEDooiiiiiiiiii ettt e et e e e e e e e et 481
T.4.49. RANDODM ... e e e e e e e 481
7.4.50. REVERSE ... oottt 482
A T (] I PP 482
T.4.52. RXFUNGCADD ...ouuiiiiiiieee ettt e e et e e e e e e et e e eanenns 483
7.4.53. RXFUNCDROP ..ottt e et e e et e e e et e e e aatnnaeaees 483
7.4.54. RXFUNCQUERY ..ottt e e e e e e e e 483
7.4.55. *CHG* RXQUEUE ... e e e e e e e 484
7.4.56. SETLOCAL (LINUX ONIY) ©oiiiriiiiiieiis e e e e e s e e s e e e e ana e e e e eeanneees 485

T 457, SIGN Lottt 486
7.4.58. SOURCELINE ..ottt e et e et e e e e e e 486
T.4.59. SPACE ... 486
T.4.60. STREAM ..ottt e e e e e e e et e et r e s 487
T.4.BL. ST RIP e 494
7.4.62. SUBSTR (SUDBSIING) ..uiieiiiiiiiiie et e e e e e e e e e e aa e 495
7.4.63. SUBWORD ..ottt et e e e et e e 496
TA.B4. SYMBOL ..uuiiiiiiii ettt 496
A 1 TR I 1 PP 497
A T I = ¥ PP 500
T.4.67. TRANSLATE ..o e e e e e e e 501
7.4.68. TRUNC (TIUNCALE)evvueiiieeeiieeei s et e e e e e e e e et s e e e e et s e e et e e e e e et e e e e eeanns 502
T.4.69. UPPERooiiiiiiiiii ittt eaeas 502
A L U 1] =1 = 3| 5 RSP 503
A 4 Y N U PSP 503
A Y A - U S 505
0 TV =t | 506
TATA WORD ..ottt 506
T7.4.75. WORDINDEX ...ttt e et e et e e e et 507
7.4.76. WORDLENGTH ..ottt et e e e e 507
7.4.77. WORDPOS (WOrd POSItION)uiiiiiiiiieiiiiii e e 507
T.A.78. WORDS ..ottt e e e e e e e e e e aaaa 508
7.4.79. X2B (Hexadecimal t0 BiNAry)c.uoiiiiiiiiiiiiiii e 508
7.4.80. X2C (Hexadecimal t0 Character)cocvuviieiuiiiiiii e e e e e 509
7.4.81. X2D (Hexadecimal to Decimal)c.uoiviiiiiiiicii e 509
7.4.82. *CHG* XRANGE (Hexadecimal Range)ccccoveviiiiiiiiii e 510

8. Rexx Utilities (RexxUtil) 512
8.1. A NOLE ON EITOr COUESiiiiiiieieiii ettt e et e et e e e b 512
8.2. List of Rexx ULtility FUNCHONSociuiii e e e e 512
8.3. RxMessageBox (WINdOWS ONIY)c.iiniii e 514
8.4. RXWINEXEC (WINAOWS ONIY) ...oniiiiii et ea e 516
8.5. SYSAUUREXXMEACTO ...cevtiieiiii ettt ettt e et e et e et eeana s 517
8.6. SysBo0otDrive (WINAOWS ONIY) ...coiiiiiiiii e 518
8.7. SYSCIEarREXXMACIOSPACEuuieeuniieiieeii ettt e e e e e e e et e e e e e e e et s e e e e ean s eeateeennaeernae 518
SRS TS V£ PPN 518
8.9. SysCreatePipe (UNIX ONIY) ... e e 518
8.10. SySCUrPOS (WINAOWS ONIY) ...uiitiiiiiie et e e e et e e e e e 518

8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.
8.25.
8.26.
8.27.
8.28.
8.29.
8.30.
8.31.
8.32.
8.33.
8.34.
8.35.
8.36.
8.37.
8.38.
8.39.
8.40.
8.41.
8.42.
8.43.
8.44.
8.45.
8.46.
8.47.
8.48.
8.49.
8.50.
8.51.
8.52.
8.53.
8.54.
8.55.
8.56.
8.57.
8.58.
8.59.
8.60.
8.61.
8.62.
8.63.
8.64.

SysCurState (WINAOWS ONIY) ...uuniiii e e 519

SysDrivelnfo (WINAOWS ONIY) ..o 519
SysDriveMap (WINAOWS ONIY)oiiiiiiiiiii et 520
S A 0] o1 (=711, T o 521
SYSDUMPVANIADIEScoeiiiiici e 521
SY S OPY ettt 521
SYSFIIEDEIELE ... e et 522
SYSFIEEXISIS ...ttt ettt et 523
SYSFIHEMOVE ... et 523
SYSFIIESEAICH ...ceeiiii e e 524
SysFileSystemType (WINAOWS ONIY)vvviiiiiiiii e e e e 526
YA 1 S (=T P 526
SYSFOrK (UNiX ONIY) ..o et 529
NEW? SYSFOrMAtMESSAGE . .couiiiiiiiiiiiietieit ettt et e eees 530
SysFromUnicode (WINAOWS ONIY)iiiiiiiiiii et 530
YA T | g o] = A 532
YV] 1=y (1 T=T | = T L= P 533
SV S G K Y ettt 534
NEW SysGetLongPathName (WIindows ONlY)ooouiiiiiiiiiiiiiee e 534
CHG SysGetMessage (UNiX ONIY) ... 534
CHG SysGetMessageX (UNiX ONIY) ... 535
NEW SysGetShortPathName (WIindows only)coovviiiiiniiie e 536
SYSINI (WINAOWS ONIY) ..o e e e e e e e e e e an s 536
SYSISFIIE oo 538
SyslsFileCompressed (WINAOWS ONIY)cuuiiiniii e e e 539
SYSISFIHEDITECIONY ...ttt ettt ettt e e s 539
SyslsFileEncrypted (WINAOWS ONIY)uiiiiiiiiiii e 540
YA 15 1 1= I 540
SyslsFileNotContentindexed (WIiNdOWS ONIY)c.uuiiiiniiiiiiiiie e e e 541
SyslIsFileOffline (WINAOWS ONIY)ooniii e 541
SyslsFileSparse (WINAdOWS ONIY) ... 542
SyslsFileTemporary (WIiNdOWS ONIY)couuiiiiiiiiiiii e 542
SySLINVEr (LINUX ONIY) .t 542
SYSLOAAREXXMACTOSPACE ...uevvuieeiineiiieeet e et e ettt e e e et e e et s e e e e et e e e e e et e eetnaeeenaeenes 543
Y251/ T 543
SYSQUEBTYPIOCESS ...ttt e e e e e e aas 544
SYSQUENYREXXIMACTO ...ttt ettt ettt e e et e et e e e e e e e eanes 546
SYSREOIAEIREXXIMBCTOceeiiieieiii ettt ettt ettt e et e e e s 546
SYSRIMDIT <.t et ettt ettt ettt eaaans 546
SYSSAVEREXXMACIOSPACE . ..uciiiiitiei e ettt e e et e e e e e e e e e et e eaneenaaenns 548
SYSSEAICNPALN ... 548
SYSSELFIIEDAETIME . .uiiiiii e e e e e e e 549
SYSSOIPIIONTY . e e e 549
SysShutdownSystem (WINAOWS ONIY) ...coiuiiiiiiiiiec e 550
YY1 (= L PP PTTPPPTT 552
33 (=] 11) 552
SYSSIEMDEIELE ...iiiiieii e 554
S S O IMINS I L. eiti it 554
YY1 (=] 14 15T TP TPTUPTR 555
SysSwitchSession (WINAOWS ONIY)viiiiiiiii e 556
SysSystemDirectory (WIiNAOWS ONIY)iiiiiiiiiiii e 557
CHG SySTEMPFIENAME ..o e e e e een 557
SysTextScreenRead (WINAOWS ONIY) ...cvuiiiiiiiiiiec e e e e e e 557
CHG SysTextScreenSize (WINdOWS ONIY) ..oouiiniiiiiic e 558

iX

8.65.
8.66.
8.67.
8.68.
8.69.
8.70.
8.71.
8.72.
8.73.
8.74.
8.75.
8.76.

SysToUnicode (WINAOWS ONIY) ...t
SYSULIVEISION .ottt e e e e
SYSVEISION .ttt et et e enans
SysVolumeLabel (WIiNdOWS ONIY)couniiii e e e
SYSWat (UNIX ONIY) ©oeiiiii e e e e e e e e e e e e et e e e e e e eannas
SysWaitNamedPipe (WIiNdOWS ONIY)oouuiiiiii e
SysWinDecryptFile (WINdOWS ONIY)ooiniiii e
SysWiInEncryptFile (WINAOWS ONIY) ...coouuiiiii e
SysWinGetDefaultPrinter (WIiNdowWSs ONMY)iiiiiiiiiii e
SysWinGetPrinters (WINAOWS ONIY)unviiniiiii e e e
SysWinSetDefaultPrinter (WIiNdows only)c.ooiiiiiiii e
SysWinVer (WINAOWS ONIY) ...vuiiiie e e e e

9. Parsing

9.1.

9.2.
9.3.

9.4.
9.5.
9.6.
9.7.
9.8.

Simple Templates for Parsing into WOrdSc..oiiiiiiiiiiiiiiieei e
9.1.1. Message Term ASSIGNMENTSiiiiiiieeiiii et e e
9.1.2. The Period as a Placeholderoouuiiiiiiiiiii e

Templates Containing String Patternsooiiiiiiii e

Templates Containing Positional (Numeric) Patternscocooiiiiiiiiiiiniiineeeeeeen
9.3.1. Combining Patterns and Parsing into WOrdSccooeiviiiiiiiiiiiineiiii e
Parsing with Variable Patterns ..o

Using UPPER, LOWER, and CASELESScooiiiii e
Parsing INStrUCtiONS SUMMIAIYcvuuiiii e e e e e e e e e e e eeanas
Parsing INStructions EXamMPIEsccouiiiiiiiiiiii e

Advanced TOPICS IN PAISINGcoouuiiiiiii e ean e
9.8.1. Parsing Several StrNGSccouuuiiiiiiiieeiiii e e e
9.8.2. Combining String and Positional Patternscoviiiiiiiinieiiieec e
9.8.3. Conceptual OVerview Of Parsingooeeeeuuiiiiiiiiieie e

10. Numbers and Arithmetic

10.1
10.2

10.3
10.4
10.5

c PTECISION oo e
Y 11 (=] (o @ o T=] = 1 (o] £ PP
B0, 2.0, POWERT et
10.2.2. INtEYET DIVISION ...uiiiiiiiieeiii ettt et e e et e e eaans
10.2.3. REMAINAET ...ttt e e e e e e e e e
10.2.4. Operator EXAMPIESuuiiiieiii e e e
. Exponential NOTAtiONoouniii et
. NUMEIC COMPATISONS ...eneeit ettt et et e e et e et et e e et e e ea e e et e eanaaeennnns
. Limits and Errors when Rexx Uses Numbers DireCtlyccooveveeviiiiiiiiniiiiinieeeennnn,

11. Conditions and Condition Traps
11.1. Action Taken when a Condition Is NOt Trappedovviiiieiiiieiiiiecie e e
11.2. Action Taken when a Condition IS Trappedccouuiiiiiiiiiiie e
11.3. Condition INFOrMEALIONiieiie e e e e e e e e

11.3.1. DESCHIPLVE STINGS .vueeierineeieiii ettt e et e et e et e et e e et e e eaaa s
11.3.2. Additional Object INfOrmMationcoouuiiiiiiiiii e
11.3.3. The Special Variable RCcoiiiiiicii e e e e
11.3.4. The Special Variable SIGLcccoouiiiiiici e e
11.3.5. CoNditioN ODBJECLcevniiiie i e

12. Concurrency

12.1
12.2
12.3

12.4

CEAIY REPIY
. MESSAJE ODJECES ...t e
. Default CONCUITENCY ...civeiiii e e e e e e e e e e e aaaees
12.3.1. Sending Messages Within an ACHIVILYcoooiviiiiiiiii e
. Using Additional Concurrency MeChanISMSco.uiiiiiiiiiiiiiee e

X

12.4.1. SETUNGUARDED Method and UNGUARDED Optioncccccevvvviiviiiinnennnnnn.
12.4.2. GUARD ON and GUARD OFFccoiiiiiiiiiii et
12.4.3. Guarded MethOdSccuiiiiiiii e
12.4.4. Additional EXAmMPIESiiieiiiiiieie e

13. The Security Manager

13.1. Calls to the Security MANAGETuuiiiiiiiiiee e eea e eees
R T O O 5 13 o] - PP

14. Input and Output Streams

14.1. The Input and OULPUL MOEIouiie i e
ot R A 1] o1 | Y (== .4 S PR
14.1.2. OULPUL SEIEAIMS ...ieiieiieteet ettt et et et et e et et e et e et e en e e e e et e eneeneenns
14.1.3. External Data QUEUEccuuiiuiiiiiii i e e e e e e e e eans
14.1.4. Default Stream NAMESc..iieii e e
14.1.5. Line versus Character POSItIONINGoviiiiiiiiiiiiiiiec e

I [410] =T =) = 4o o

14.3. Operating SYSteM SPECITICS ...ivvuiiiiieii i e

14.4. Examples of Input and OULPULoiiuiiii e

14.5. Errors during Input and OULPULieuiiiiieei e e e e e e e eanaeees

14.6. Summary of Rexx I/O Instructions and Methodscoooiiiiiiiiiiiniiiii e,

15. Debugging Aids

15.1. Interactive Debugging Of Programscocciiiiioiiiiiiee e
15.2. DEDUGING AIGS ...ttt ettt e et e et e e
15.3. RXTRACE Variable ..o

16. Reserved Keywords
17. Special Variables

18. Useful Services

18.1. WINAOWS COMMANTAS ...uiviitiitiiiiiiiei ettt e e et e et e et e et e et eaeans
18.2. LINUX COMIMANGS ..ovuitiitiiiiitei ettt et e e et e e e et e et et e s e et e e e e te e s ae it eaaerennns
18.3. Subcommand HaNAIEr SEIVICESuuieniiieeee e

18.3.1. The RXSUBCOM COMMANGouiviiiiiiiieieee et e e e e e e e ans
18.4. The RXQUEUE FilEI ...uuiviiiiiiii e e e s
18.5. Distributing Programs WithOUt SOUICEoeiiiiiiiiiiii e

A. Using DO and LOOP

F N Y14 0] o] LT 1 11U o T
A.2. REPELILIVE LOOPS ..vniieiieii ettt ettt ettt et e et ettt e e e e ettt e e eb e e et e e et e eanaaee
A.2.1. SIMple REPELItIVE LOOPS .. ceeniiiiiiiieei ettt
A.2.2. Controlled RePetitive LOOPS . .c.vuuiiiiiiiieiiit et
A.2.3. Repetitive LOOPS OVEr COIIECHIONScccvvuniiiiiiiieiiiii e
A.2.4. *NEW* Repetitive LOOPS OVer SUPPIEIS .vuiiieiei e
A.3. Conditional Phrases (WHILE and UNTIL)ooiiuiiiiiiiiie e
A4, LABEL PRIASE ...ttt et e
A5, *NEW?* COUNTER PRIASE ...coiiiiiiiiiiiiiiiiieeet ettt
A.6. Conceptual MOdel OF LOOPSuiiiitiieiiiiii ettt eeaans

B. Migration

B.1. Incompatible 00REXX fEALUIESccoiiuiiiiiiii e
B.1.1. RexxULtil SySTEMPRIIENAMEniiiiiii e
B.2. Deprecated REXX FEAIUIESuuiiiiiiiii e
B.2.1. RexxUtil Semaphore fUNCLONScuiiiiiiiii e
B.2.2. RexxUtil SysLoadFuNCcS/SYSDIOPFUNCSccuvvuiiiiiiiiiie e e e e e
B.2.3. ::OPTIONS NOVALUE ERROR dir€CHVEcccevuiiiiiiieiiiiiiiiiiie e

Xi

B.2.4. Class ArgULIL ... e et 651
C. Error Numbers and Messages 652
O I 1 o] 1= PP 652
C.1.1. Error 3 - Failure during initialization.coooiiiiiiiii e 652
C.1.2. Error 4 - Program iNterrupted.couiiiiiiiiiiii e 652
C.1.3. Error 5 - System resources exhausted.ooooeiiiiiiiiiiiiiiii e 653
C.1.4. Error 6 - Unmatched "/*" OF QUOLE.ciiiuiieiiiii e 653
C.1.5. Error 7 - WHEN or OTHERWISE expected.cooovviviiiiiiiiiiiii e, 653
C.1.6. Error 8 - Unexpected THEN OF ELSE.cccoiiiiiiiiiiiici e 654
C.1.7. Error 9 - Unexpected WHEN or OTHERWISE.cccoiiiiiiiiiien, 654
C.1.8. Error 10 - Unexpected or unmatched END.cccoiiiiiiiiiiiiiiii e 654
C.1.9. Error 11 - Control stack full.oooeuiiiiiii e 655
C.1.10. Error 13 - Invalid character in program.coooeeuiiieiiiiinneee e 656
C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IF. ...covviiiiiiieii e 656
C.1.12. Error 15 - Invalid hexadecimal or binary string.cccooeviiiiiiiiiiiiieie e, 656
C.1.13. Error 16 - Label not fouNnd. ..o 657
C.1.14. Error 17 - Unexpected PROCEDURE.ccccciiiiiiiiiiiiiiin e 657
C.1.15. Error 18 - THEN eXPECIeU.ccouuuiiiiiiiieiiiii ettt 658
C.1.16. Error 19 - String or symbol eXpected.cocuiiiiiiiiiiiii e 658
C.1.17. Error 20 - Symbol eXPeCted.ccouuiiiiiiiiiii e 660
C.1.18. Error 21 - Invalid data on end of Clause.ccociiiiiiiiiiiiii e 662
C.1.19. Error 22 - Invalid character String.c.oovuieiiiiiieii e 663
C.1.20. Error 23 - Invalid data StriNg.coeuiieiiiiiieie e 663
C.1.21. Error 24 - Invalid TRACE FEQUESL.iiiiiiiieiiiiiie ettt 663
C.1.22. Error 25 - Invalid subkeyword found.oooiiiiiiiiiinii e 664
C.1.23. Error 26 - Invalid whole NUMDET.coouiiiiiiiii e 666
C.1.24. Error 27 - Invalid DO 0r LOOP SYNEAX. t.vuiivvuieiiiieiiiieeiiieeeiieeeieesiseeaineenaneanenns 667
C.1.25. Error 28 - Invalid LEAVE 0Or ITERATE.iiiiiiiiieeiiii e 668
C.1.26. Error 29 - Environment name t00 lONQ.couuiiiiiiiiiiiiiiiec e 668
C.1.27. Error 30 - Name or symbol t00 [0Ng.ooiiiiiiiiiiiiiic e 668
C.1.28. Error 31 - Name starts with number or ".". ..., 669
C.1.29. Error 33 - Invalid expression reSUlt.cccuiiiiiiiiiiieeie e e e e 669
C.1.30. Error 34 - Logical value NOt 0 OF L.coouiiiiiciii e e e e 669
C.1.31. Error 35 - Invalid eXPreSSION. ... 670
C.1.32. Error 36 - Unmatched "(" or "[" in @XPresSion.cccoveieiiiiiiieiiiieiiieeeieeennn 673
C.1.33. Error 37 - Unexpected "), "), OF M . e 673
C.1.34. Error 38 - Invalid template or pattern.coooiiiiiiiiiii e 673
C.1.35. Error 39 - Evaluation stack overflow.ccccooviiiiiiiiiiii e 674
C.1.36. Error 40 - Incorrect call t0 FOULINE.coeuuiiiiiiii e 674
C.1.37. Error 41 - Bad arithmetiC CONVEISION.uviiuiiiiiiiiiiieei e 677
C.1.38. Error 42 - Arithmetic overflow/underflow.coooiiiiiiiiiii e, 677
C.1.39. Error 43 - Routine Not fOUNd.coouiiiiiiii e 678
C.1.40. Error 44 - Function or message did not return data.ocoeviiieiiniinneiinnnnnn. 678
C.1.41. Error 45 - No data specified on function RETURN.ccoooviiiiiiiiiiiciieeeis 679
C.1.42. Error 46 - Invalid variable reference.ccccoovvviiiiiiiiiiiii e 679
C.1.43. Error 47 - Unexpected 1abel. 679
C.1.44. Error 48 - Failure in SYStem SEIVICE.cccuuiiiiiiiiiiiaei e 680
C.1.45. Error 49 - INterpretation ©ITOM.uu ettt e s 680
C.1.46. Error 88 - Invalid argumeNnt.couuiiiiiiiiiiiii e 680
C.1.47. Error 89 - Variable or message term expected.ccovvvviiviiiviiniiiiiieeiieeeannn, 682
C.1.48. Error 90 - External name not fouNd.coiviiiiiiiiiiiiin e 682
C.1.49. Error 91 - NO result OBJECL.ooviiiii 683
C.1.50. Error 92 - OLE EITOr. ..uuieiiiii ettt e e e e ees 683

Xii

C.1.51. Error 93 - Incorrect call to Method.cc.ouiiiniii s 684

C.1.52. Error 97 - Object method Not fouNd.coouiiiiiiiiiii e 688

C.1.53. Error 98 - EXECULION ©ITOF. ..ieuuiiiiiieie et e e e e e e e e e e e ean s 688

C.1.54. Error 99 - Translation @ITOr.uiiiiiiiiiie e e e e e 692

C.2. RXSUBCOM ULty PrOQramccueiiii i e e e e e e e s e et e e anneeanas 695
C.2.1. Error 116 - The RXSUBCOM REGISTER parameters are incorrect. 695

C.2.2. Error 117 - The RXSUBCOM DROP parameters are incorrect.cccceceuuneeee. 695

C.2.3. Error 118 - The RXSUBCOM LOAD parameters are inCorrect.ccceeveeeens 695

C.2.4. Error 125 - The RXSUBCOM QUERY parameters are incorrect.c........ 696

C.3. RXQUEUE ULlity PrOgramociueiiiieei e e e e e e e e et e s e e e s et e e e e e eanes 696
C.3.1. Error 119 - The REXX rxapi queuing system is not available. 696

C.3.2. Error 120 - The size of the data iS INCOIMECT.cocuiiiiiiiiiiiiiiiie e, 696

C.3.3. Error 121 - Storage for data queues is exhausted.ccoooeviviiiiiiiiiniiiinneeins 696

C.3.4. Error 122 - The name %1 is not a valid queue name.cccccevveeiiinneieiiinnenens 696

C.3.5. Error 123 - The queue access mode iS NOt COMECT.vveiiiiiieiiiiiiieiiiineeeene 696

C.3.6. Error 124 - The queue %1 d0es NOt EXISt.cvvivieiiiieiii e 696

C.3.7. Error 131 - The syntax of the command is INCOrrect.ccoocevveeiiiveiiineeennennnn. 697

C.3.8. Error 132 - System error occurred while processing the command. 697

C.4. rexXC ULIIILY PrOGIraMiiiiiii et et e e e e et e et e e e e eenaas 697
C.4.1. Error 127 - The rexxc command parameters are iNCOIMect.cccevvevevunneeeennn. 697

C.4.2. Error 128 - Output file name must be different from input file name. 697

C.4.3. Error 129 - SYNTAX: rexxc inputfile [outputfile] [-S] [-€] --evvvvveeveiiiiiiiiieeeeiis 697

C.4.4. Error 130 - Without outputfile rexxc only performs a syntax check. 697

D. Notices 698
D 20 O I = To [T 1 0 F= 14 2 TP 698

D.2. Source Code FOr ThiS DOCUMENTcouuiiiiiiii e 699

E. Common Public License Version 1.0 700
O I I T {011 (o LSS SPRTN 700

E.2. Grant Of RIGNTS ... e e a e 700

E.3. REQUITBIMENES ..ot ettt et e e et e e e et e e b e eaa s 701

E.4. Commercial DiStrDULIONiiiiiiiiei e e e e e e 701

E.5. INO WAITANTY oottt et e et e e e e et e e e enas 702

E.6. Disclaimer Of Liabilityooioiiiiiii e 702

O 1= 1Y | SRR 702

F. Revision History 704
Index 705

Xii

Preface

This book describes the Open Object Rexx Interpreter, called the interpreter or language processor in
the following, and the object-oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Open Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets"” the language as a program is running.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions

Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return . true or . false, the result of
performing the comparison operation.

This method is exactly equivalent to subWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasentry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Xiv

How to Read the Syntax Diagrams

@e

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

M

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The »— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next line.

The --— symbol indicates that a statement is continued from the previous line.

The —»< symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

DD—(STATEMENT)— required_item |-

Optional items appear below the main path.
optional_item

If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>—[STATEMENT required_choicel T

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

XV

Getting Help and Submitting Feedback

»»—{ STATEMENT } —
J

optional_choicel

optional _choice2

« If one of the items is the default, it is usually the topmost item of the stack of items below the main

path.

»—' STATEMENT J >«

default_choice

optional_choice

optional_choice

» A path returning to the left above the main line indicates an item that can be repeated.

»—(STATEMENT

repeatable_item

A repeat path above a stack indicates that you can repeat the items in the stack.

» A pointed rectangle around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>—(STATEMENT)—< DETAIL - fragment)—N

» Keywords appear in uppercase (for example, SIGNAL). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, index). They represent user-supplied names or values.

« If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

»—(MAX(

number

3. Getting Help and Submitting Feedback

The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site

Open Object Rexx utilizes SourceForge to house its source repositories, mailing lists and other project
features at https://sourceforge.net/projects/oorexx. ooRexx uses the Developer and User mailing lists
at https://sourceforge.net/p/oorexx/mailman for discussions concerning ooRexx. The ooRexx user is
most likely to get timely replies from one of these mailing lists.

XVi

https://sourceforge.net/projects/oorexx
https://sourceforge.net/p/oorexx/mailman

The Rexx Language Association Mailing List

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
Subscribe to the oorexx-devel mailing list at https.//lists.sourceforge.net/lists/listinfo/oorexx-
devel to discuss ooRexx project development activities and future interpreter enhancements.
You can find its archive of past messages at http://sourceforge.net/mailarchive/forum.php?
forum_name=oorexx-devel.

The Users Mailing List
Subscribe to the oorexx-users mailing list at htips://lists.sourceforge.net/lists/listinfo/oorexx-users
to discuss how to use ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
Subscribe to the oorexx-announce mailing list at https.//lists.sourceforge.net/lists/listinfo/oorexx-
announce to receive announcments of significant ooRexx project events.

The Bug Mailing List
Subscribe to the oorexx-bugs mailing list at https://lists.sourceforge.net/lists/listinfo/oorexx-bugs to
monitor changes in the ooRexx bug tracking system.

Bug Reports
You can view ooRexx bug reports at https:/sourceforge.net/p/oorexx/bugs. To be able to create
new bug reports, you will need to first register for a SourceForge userid at https://sourceforge.net/
user/registration. When reporting a bug, please try to provide as much information as possible to
help developers determine the cause of the issue. Sample program code that can reproduce your
problem will make it easier to debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at https://sourceforge.net/p/
oorexx/documentation. Please try to provide as much information in a documentation report as
possible. In addition to listing the document and section the report concerns, direct quotes of the
text will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement

You can new suggest ooRexx features or enhancements at https.//sourceforge.net/p/oorexx/
feature-requests.

Patch Reports

If you create an enhancement patch for ooRexx please post the patch at https://sourceforge.net/
p/oorexx/patches. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report at https:/
sourceforge.net/p/oorexx/bugs and attach the patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located at https://sourceforge.net/p/oorexx/discussion. There are currently three forums available:
Help, Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association maintains a forum at http.//www.rexxla.org/forum.html.

XVii

https://lists.sourceforge.net/lists/listinfo/oorexx-devel
https://lists.sourceforge.net/lists/listinfo/oorexx-devel
http://sourceforge.net/mailarchive/forum.php?forum_name=oorexx-devel
http://sourceforge.net/mailarchive/forum.php?forum_name=oorexx-devel
https://lists.sourceforge.net/lists/listinfo/oorexx-users
https://lists.sourceforge.net/lists/listinfo/oorexx-announce
https://lists.sourceforge.net/lists/listinfo/oorexx-announce
https://lists.sourceforge.net/lists/listinfo/oorexx-bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/user/registration
https://sourceforge.net/user/registration
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/discussion
http://www.rexxla.org/forum.html

comp.lang.rexx Newsgroup

3.3. comp.lang.rexx Newsgroup

The comp.lang.rexx newsgroup at https://groups.google.com/forum/#!forum/comp.lang.rexx is a good
place to obtain help from many individuals within the Rexx community. You can obtain help on Open
Object Rexx and other Rexx interpreters and tools.

4. Related Information

See also Open Object Rexx: Programmer Guide and Open Object Rexx: Application Programming
Interfaces.

XViii

https://groups.google.com/forum/#!forum/comp.lang.rexx

Chapter 1.

Open Object Rexx General Concepts

The Rexx language is particularly suitable for:
 Application scripting

» Command procedures

* Application front ends

» User-defined macros (such as editor subcommands)
* Prototyping

e Personal computing

As an object-oriented language, Rexx provides data encapsulation, polymorphism, an object class
hierarchy, class-based inheritance of methods, and concurrency. It includes a number of useful base
classes and allows you create new object classes of your own.

Open Object Rexx is compatible with earlier Rexx versions, both non-object based Rexx and IBM's
Object Rexx. It has the usual structured-programming instructions, for example IF, SELECT, DO
WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause
on a line, or a single clause can occupy more than one line. Any indentation scheme is allowed. You
can, therefore, code programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the size of variable values, as long as all values fit into the storage available. There
are no restrictions on the types of data that variables can contain.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and
word by word, without first being translated (compiled) to machine language. One of the advantages of
this is that you can fix the error and rerun the program faster than when using a compiler.

Note: Open Object Rexx also supplies the rexxc program that can be used to translate Rexx programs
into a sourceless executable file. Translating a program is not the same as compiling a program to
machine language. A translated Rexx program will still be interpreted line by line, though it will typically
start faster as the initial parsing has already been done.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates,
or models, objects in the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company's employees, money in a bank account, or a report, are stored
as data so the computer can act upon it. For example, when you print a report, print is the action and
report is the object acted upon. Essentially, the objects are the "nouns”, while the actions are the
"verbs".

1.2. Modularizing Data

Modularizing Data

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one

simple action. You might have a PRINT module, a SEND module, an ERASE module. The data these
modules operate on must be constructed by the programmer and passed to the modules to perform an

action.

PROGRAM ...

cata
data
data data
data data q
ata
datg data

data
data data
data

But with object-oriented programming, it is the data that is modularized. And each data module
includes its own operations for performing actions directly related to its data. The programmer that
uses the objects need only be aware of the operations an object performs and not how the data is

organized internally.

PRINT
Report

data
data
data
data
data

SEND

ERASE

ERIE

Figure 1.1. Modular Data—a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE

operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become
simpler and can be modified later with minimal effort.

2

Modeling Objects

Object-oriented programming hides any information that is not important for acting on an object,
thereby concealing the object's complexities. Complex tasks can then be initiated simply, at a very
high level.

1.3. Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also
has its own physical characteristics—size, shape, composition, weight, color, speed, position. An
accurate data model of a real ball would define not only the physical characteristics but all related
actions and characteristics in one package:

BOUNCE

Size
Shape
Comp
Weight
Color
Speed
Pos

THROW
HO1VvO

ROLL ——TOSS
Figure 1.2. A Ball Object

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a name, and an associated
data value that can change over time. The variables represent the internal state of the object, and can
be directly accessed only by the code that implements the object's actions.

BOUNCE
Size = 3
Shape = round
< Comp = rubber Q
8 Weight = 2 a
E Color = yellow T
Speed = 32
Pos = 4

ROLL ——TOSS

Figure 1.3. Ball Object with Variable Names and Values

To access an object's data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these

3

How Objects Interact

actions is an interface to the object's data. The data is said to be encapsulated because the only way
to access it is through one of these surrounding actions. The encapsulated internal characteristics of
an object are its variables. The variables are associated with an object and exist for the lifetime of that
object:

Subtraction

Addition
o
ualsing

Multiplication
Figure 1.4. Encapsulated 5 Object

1.4. How Objects Interact

The actions defined by an object are its only interface to other objects. Actions form a kind of "wall"
that encapsulates the object, and shields its internal information from outside objects. This shielding
is called information hiding. Information hiding protects an object's data from corruption by outside
objects, and also protects outside objects from relying on another object's private data, which can
change without warning.

One object can act upon another (or cause it to act) only by calling that object's actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or
both. A message to an object must specify:

» Areceiving object

» The "message send" symbol, ~, which is called the twiddle
« The action and, optionally in parentheses, any parameters required by the action

So the message format looks like this:
object~action(parameters)

Assume that the object is the string 'iH. Sending it a message to use its REVERSE action:
"1iH"~reverse

returns the string object Hi! .

1.5. Methods

Sending a message to an object results in performing some action; that is, it executes some
underlying code. The action-generating code is called a method. When you send a message to an
object, the message is the name of the target method. Method names are character strings like

4

Data Abstraction

reverse. In the preceding example, sending the reverse message to the !iH object causes it to
run the reverse method. Most objects are capable of more than one action, and so have a number of
available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example,
has completed, init, notify, result, send, and start methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx
is writing the code for the methods you create.

Rexx lets you send the same message to objects that are different:

Example 1.1. Methods

"1iH"~reverse -- Reverses the characters "!iH" to form "Hi!"
pen~reverse -- Reverses the direction of a plotter pen
ball~reverse -- Reverses the direction of a moving ball

As long as each object has its own reverse method, reverse runs even if the programming
implementation is different for each object. Each object knows only its own version of reverse. And
even though the objects are different, each reverses itself as dictated by its own code.

Although the !iH object's reverse code is different from the plotter pen's, the method name can
be the same because Rexx keeps track of the methods each object owns. You do not need to have
several message names like reverse_string, reverse_pen, reverse_ball. This keeps
method-naming schemes simple and makes complex programs easy to follow and modify.

1.6. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure
is called data abstraction. Data abstraction is at the core of object-oriented programming. Once

you model objects with real-world properties from the basic data types, you can continue creating,
assembling, and combining them into increasingly complex objects. Then you can use these objects
as if they were part of the original programming language.

1.7. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class.
In that Icon class you can include all the icon objects with similar actions and characteristics:

Classes and Instances

Icon class

Windows system icon instance
shredder icon instance
information icon instance

Figure 1.5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the
data assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

Icon class

Windows system icon instance
(position='20,20")

shredder icon instance
(position='20,30")

information icon instance
(position='20,40")

Figure 1.6. Icon Class

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name.

All instances, however, have their own unique properties—the data associated with the variables.
Everything else can be stored at the class level.

Polymorphism

e

lcon class
(position=)

Windows system icon instance
('20,20"

shredder icon instance
('20,30"

information icon instance
('20,40"

Figure 1.7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object
class you can use to create other objects with similar properties, such as an application icon or a

drives icon.

An object class is like a factory for producing instances of the objects.

1.8. Polymorphism

Polymorphism gives you a single interface to objects of different types. This example shows instances
of classes inheriting from the Collection class, all sharing a common method named put, but with a
different implementation each.

Example 1.2. Polymorphism

stem~put("value", "tail") -- sets a Stem tail to "value"
stringTable~put("value", "index") -- sets a StringTable "index" to "value"
array~put("value", 1) -- sets Array index 1 to "value"
set~put("value") -- makes "value" a member of the Set

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism. On a higher level, polymorphism permits extensive code reuse.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy) inherits the
methods and variables of one or more superclasses (classes above a class in the hierarchy):

Structure and General Syntax

Superclass
|
I | |

Subclass Subclass Subclass

Figure 1.8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Screen-Object class

Iconclass Window class Bitmap class

Figure 1.9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more
than one superclass, for example, subclass Bitmap might have the superclasses Screen-Object and
Art-Object. Acquiring methods and variables from more than one superclass is known as multiple
inheritance:

Screen-Object Art-Object
|
|

lcon Window Bitmap

Figure 1.10. Multiple Inheritance

1.10. Structure and General Syntax

A Rexx program is built from a series of clauses that are composed of:

» Zero or more whitespace characters (blank or horizontal tabs) (which are ignored)

» A sequence of tokens (see Section 1.10.4, “Tokens”)

» Zero or more whitespace characters (again ignored)

* A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing
it are identified. Instruction keywords are recognized at this stage, comments are removed, and
sequences of whitespace characters (except within literal strings) are converted to single blanks.
Whitespace characters adjacent to operator characters and special characters are also removed.

1.10.1. Characters

A character is a member of a defined set of elements that is used for the control or representation
of data. You can usually enter a character with a single keystroke. The coded representation of

a character is its representation in digital form. A character, the letter A, for example, differs from
its coded representation or encoding. Various coded character sets (such as ASCIl and EBCDIC)
use different encodings for the letter A (decimal values 65 and 193, respectively). This book uses

8

Whitespace

characters to convey meanings and not to imply a specific character code, except where otherwise
stated. The exceptions are certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on the character set
used.

A code page specifies the encodings for each character in a set. Be aware that:
« Some code pages do not contain all characters that Rexx defines as valid (for example, the logical
NOT character).

« Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Whitespace
A whitespace character is one that the interpreter recognizes as a "blank" or "space" character. There

are two characters used by Rexx as whitespace that can be used interchangeably:

(blank)
A "blank" or "space" character. This is represented by '20'X in ASCII implementations.

(horizontal tab)
A "tab". This is represented by '09'X in ASCII implementations.

Horizontal tabs encountered in Rexx program source are converted into blanks, allowing tab
characters and blanks to be use interchangeably in source. Additionally, Rexx operations such as the
PARSE instruction or the SUBWORD() built-in function will also accept either blank or tab characters
as word delimiters.

1.10.3. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program
but acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:
* A line comment, where the comment is limited to one line
* The standard Rexx comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"
"Don't Panic!"
'You shouldn''t' -- Same as "You shouldn't"

In this example, the language processor processes the statements from 'Fred' to 'You
shouldn''t"', ignores the words following the line comment, and continues to process the statement

A standard comment is a sequence of characters (on one or more lines) delimited by /* and */.
Within these delimiters any characters are allowed. Standard comments can contain other standard

9

Comments

comments, as long as each begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

Example 1.3. Comments

o1 parse pull input

02 if substr(input,1,5) = "/*123"
03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

o1 parse pull input

02 /* if substr(input,1,5) = "/*123"
03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal
string /*123 as the start of a nested standard comment. It would not process the rest of the program
because it would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"
You could comment out lines 2 and 3 correctly as follows:

Example 1.4. Comments

o1 parse pull input

02 /* if substr(input,1,5) = "/" || "*123"
03 then call process

04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

Example 1.5. Comments

"Fred"

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't"

" -- The null string */

In this example, the language processor ignores everything after 'You shouldn''t' up to the end
of the last line. In this case, the standard comment has precedence over the line comment.

10

Tokens

When nesting the two comment types, make sure that the start delimiter of the standard comment /*
is not in the line commented out with the line comment signs.

Example 1.6. Comments

"Fred"

"Don't Panic!"

'You shouldn''t' -- Same as /* "You shouldn't"
" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.4. Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They
are separated by whitespace or comments, or by the nature of the tokens themselves. The classes of
tokens are:

Literal strings

» Hexadecimal strings
 Binary strings

* Symbols

* Numbers

Operator characters

» Special characters

1.10.4.1. Literal Strings

A literal string is a sequence including any characters except line-end and end-of-file characters, and
delimited by a single quotation mark (') or a double quotation mark ("). You use two consecutive
double quotation marks ("") to represent one double quotation mark (") within a literal string delimited
by double quotation marks. Similarly, you use two consecutive single quotation marks (' ') to
represent one single quotation mark (') within a string delimited by single quotation marks. A literal
string is a constant and its contents are never modified when it is processed. Literal strings must be
complete on a single line. This means that unmatched quotation marks can be detected on the line
where they occur.

A literal string with no characters (that is, a string of length 0) is called a null string.
These are valid strings:
Example 1.7. Valid strings

"Fred"
"Don't Panic!"

11

Tokens

'You shouldn''t' /* Same as "You shouldn't" */
e /* The null string */

A literal string has no upper bound on the number of characters, limited only by available memory.

Note that a string immediately followed by a left parenthesis is considered to be the name of a
function. If immediately followed by the symbol X or X, it is considered to be a hexadecimal string. If
followed immediately by the symbol B or b, it is considered to be a binary string.

1.10.4.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading 0
is assumed, if necessary, at the beginning of the string to make an even number of hexadecimal digits.
The groups of digits are optionally separated by one or more whitespace characters, and the whole
sequence is delimited by single or double quotation marks and immediately followed by the symbol

x or X. Neither x nor X can be part of a longer symbol. The whitespace characters, which can only

be on byte boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing
the hexadecimal digits removes whitespace and converts each pair of hexadecimal digits into its
equivalent character, for example, '41'x to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

Example 1.8. Valid hexadecimal strings

"ABCD"x
"1d ec f8"X
'1 d8'x

e

A hexadecimal string is not a representation of a number. It is an escape mechanism that lets

a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, '20"'x is the encoding for a blank. In every case, a string of the form '.. ... 'xis an
alternative to a straightforward string. In ASCII '41'x and "A" are identical, as are '20'x and a
blank, and must be treated identically.

The packed length of a hexadecimal string (the string with whitespace removed) is unlimited.

1.10.4.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
can have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit,

12

Tokens

making a total of four digits. The groups of digits are optionally separated by one or more whitespace
characters, and the whole sequence is delimited by matching single or double quotation marks and
immediately followed by the symbol b or B. Neither b nor B can be part of a longer symbol. The
whitespace characters, which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing.
Binary strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

Example 1.9. Valid binary strings

"11110000"b /* == "f@"x */
"101 1101"b /* == "5d"x */
'1'b /* == '00000001'b or '01'x */
"10000 10101010"b /* == "0001 0000 1010 1010"b */
"t J5 e */

The packed length of a binary-literal string is unlimited.

1.10.4.4. Symbols

Symbols are groups of characters, selected from the:
« English alphabetic characters (A-Z and a-z).
» Numeric characters (0-9)

» Characters . ! ? and underscore ().

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

These are valid symbols:

Example 1.10. Valid symbols

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned a value to it, its value is the characters of the symbol itself, translated
to uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot directly be assigned a value.

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0-9) or a period, and it can end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The character sequence to the left of the "E" or "e" must be
a valid simple number, consisting only of digits or '.". There must be at least one digit and at most one
".". The sign in this context is part of the symbol and is not an operator.

13

Tokens

These are valid numbers in exponential notation:

Example 1.11. Valid exponential numbers

17.3E-12
.03e+9

These are not valid numbers in exponential notation, but rather multiple tokens with an operator
between:

Example 1.12. Invalid exponential numbers

.E-12 -- no digits
3ae+6 -- non-digit character
3..0e+9 -- more than one '.'

1.10.4.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a
plus (+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point.
A number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase
or lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). See Chapter 10,
Numbers and Arithmetic for a full definition of numbers.

Numbers can have leading whitespace (before and after the sign) and trailing whitespace.
Whitespace characters cannot be embedded among the digits of a number or in the exponential part.
Note that a symbol or a literal string can be a number. A number cannot be the name of a variable.

These are valid numbers:

Example 1.13. Valid numbers

12

Il_17.9Il
127.0650
73e+128

"+ 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence -17.9
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can be
prefix minus if no term is to the left of it) followed by a positive number. The result of the operation is

a number, which might be rounded or reformatted into exponential form depending on the size of the
number and the current NUMERIC DIGITS setting.

A whole number is a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS.

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

14

Tokens

1.10.4.6. Operator Characters

The characters+ - \ / % * | & = = > <andthe sequences >= <= \> \< \= >< <> ==

\== // && || ** > A< A= A== >> << >>= \<< << \>> >> <<= indicate operations
(see Section 1.11.2, “Operators”). A few of these are also used in parsing templates, and the equal
sign and the sequences += -= *= /= %= //= ||= &= |= &&= are also used to indicate

assignment. Whitespace characters adjacent to operator characters are removed. Therefore, the
following are identical in meaning:

Example 1.14. White space and numbers

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters—see the next section) might not be available
in all character sets. In this case, appropriate translations can be used. In particular, the vertical bar (])
is often shown as a split vertical bar (}).

@roe

The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the logical
OR operator. Depending on the code page or keyboard for your particular country, ASCIl 124 can
be shown as a solid vertical bar (|) or a split vertical bar (}). The character on the screen might
not match the character engraved on the key. If you receive error 13, Invalid character in
program, on an instruction including a vertical bar character, make sure this character is ASCII
124.

Throughout the language, the NOT (=) character is synonymous with the backslash (\). You can use
the two characters interchangeably according to availability and personal preference.

The Rexx interpreter recognizes both ASCII character 170 (' AA'x) and ASCII character 172 (' AC' x)
for the logical NOT operator. Depending on your country, the = might not appear on your keyboard. If
the character is not available, you can use the backslash (\) in place of =.

1.10.4.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

These characters constitute the set of special characters. They all act as token delimiters, and
whitespace characters (blank or horizontal tab) adjacent to any of these are removed. There is an
exception: a whitespace character adjacent to the outside of a parenthesis or bracket is deleted only
if it is also adjacent to another special character (unless the character is a parenthesis or bracket and

15

Implied Semicolons

the whitespace character is outside it, too). For example, the language processor does not remove the
blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalentto (A)+(Z).

1.10.4.8. Example

The following example shows how a clause is composed of tokens:

Example 1.15. Special characters

"REPEAT" A + 3;

This example is composed of six tokens—a literal string ("REPEAT"), a blank operator, a symbol (A,
which can have an assigned value), an operator (+), a second symbol (3, which is a number and a
symbol), and the clause delimiter (;). The blanks between the A and the + and between the + and the
3 are removed. However, one of the blanks between the "REPEAT" and the A remains as an operator.
Thus, this clause is treated as though written:

"REPEAT" A+3;

1.10.5. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the
semicolon at a line end, after certain keywords, and after a colon if it follows a single symbol. This
means that you need to include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.

However, there are the following exceptions:

* The line ends in the middle of a multi-line (/* ... */) comment. The clause continues on to the next
line.

» The last token was the continuation character (a comma or a minus sign) and the line does not end
in the middle of a comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol or literal string,
a label) and after certain keywords when they are in the correct context. The keywords that have
this effect are ELSE, OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

@

The two characters forming the comment delimiters, /* and */, must not be split by a line end
(that is, / and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added.

1.10.6. Continuations

16

Terms, Expressions, and Operators

One way to continue a clause on the next line is to use the comma or the minus sign (-), which is
referred to as the continuation character. The continuation character is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the continuation
character before the end of the line.

The following example shows how to use the continuation character to continue a clause:

Example 1.16. Continuations

say "You can use a comma", -- this line is continued
"to continue this clause."

or

say "You can use a minus"- -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various
ways to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections.
You can also define and create objects that are useful in particular applications—for example, a menu
object for user interaction. See Section 1.3, “Modeling Objects” for more information.

1.11.1. Terms and Expressions

Terms are literal strings, symbols, message terms and sequences, Array terms, Variable Reference
terms, function calls, or subexpressions interspersed with zero or more operators that denote
operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does not begin with a digit
or a period can be the name of a variable; in this case the value of that variable is used. A symbol
that begins with a period can identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol can also be compound.

Message terms are described in Section 1.11.4, “Message Terms”, Message sequences are described
in Section 1.11.5, “Message Sequences”.

Array terms are described in Section 1.11.6, ““NEW* Array Term”.
Variable Reference terms are described in Section 1.11.7, “*“NEW* Variable Reference Term”.

Function calls (see Chapter 7, Functions), which are of the following form:

bb—' symbolorstring(; : j @—N

expression —f

The symbolorstring is a symbol or literal string.

17

Operators

An expression consists of one or more terms. A subexpression is a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the
usual algebraic manner (see Section 1.11.3, “Parentheses and Operator Precedence”). Expressions
are wholly evaluated, unless an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators

An operator is a representation of an operation, such as an addition, to be carried out on one or

two terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols,
strings, function calls, message terms, intermediate results, or subexpressions. Each prefix operator
acts on the term or subexpression that follows it. Whitespace characters (and comments) adjacent
to operator characters have no effect on the operator; thus, operators constructed from more than
one character can have embedded whitespace and comments. In addition, one or more whitespace
characters, if they occur in expressions but are not adjacent to another operator, also act as an
operator. The language processor functionally translates operators into message terms. For dyadic
operators, which operate on two terms, the language processor sends the operator as a message to
the term on the left, passing the term on the right as an argument. For example, the sequence

say 1+2
is functionally equivalent to:

say 1~u+u(2)

The blank concatenation operator sends the message " " (a single blank), and the abuttal
concatenation operator sends the "™ message (a null string). When the - character is used in an
operator, it is changed to a \. That is, the operators == and \= both send the message \= to the target
object.

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx
sends a message to the term, with no arguments. This means -z has the same effect as z~"-".

See Section 5.1.4.2, “Comparison Methods” for comparison operator methods of the Object class and
Section 5.1.7.18, "Arithmetic Methods” for arithmetic operator methods of the String class.

There are four types of operators:
» Concatenation

» Arithmetic
» Comparison

* Logical

1.11.2.1. String Concatenation

18

Operators

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank) Concatenate terms with one blank in between

Il Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank
You can force concatenation without a blank by using the | | operator.
The abuttal operator is assumed between two terms that are not separated by another operator. This
can occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they
are only separated by a comment.
Examples:
An example of syntactically distinct terms is: if Fred has the value 37. 4, then Fred"%" evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred) (Peter) evaluates to 37.41.

The two adjoining strings, one hexadecimal and one literal, "4a 4b"x"LMN" evaluate to JKLMN.

In the case of
Fred/* The NOT operator precedes Peter. */-Peter

there is no abuttal operator implied, and the expression is not valid. However,
(Fred)/* The NOT operator precedes Peter. */(-Peter)

results in an abuttal, and evaluates to 37 . 40.

1.11.2.2. Arithmetic

You can combine character strings that are valid numbers (see Section 1.10.4.5, “Numbers”) using the
following arithmetic operators:

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

I Remainder (divide and return the remainder—not *NEW* modulo, because the
result can be negative)

** Power (raise a number to a whole-number power)

Prefix - Same as the subtraction: ® - number

Prefix + Same as the addition: @ + number

19

Operators

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is
likely that rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or @ otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The

==, \==, and-== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison,
with no padding of either of the strings being compared. The comparison of the two strings is from left
to right. If one string is shorter than the other and is a leading substring of another, then it is smaller
than (less than) the other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Section 10.4, “Numeric Comparisons”) is effected. Otherwise, both terms are treated as character
strings, leading and trailing whitespace characters are ignored, and the shorter string is padded with
blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact
collating order might depend on the character set used for the implementation. In an ASCII
environment, such as Windows and *nix, the ASCII character value of digits is lower than that of the
alphabetic characters, and that of lowercase alphabetic characters is higher than that of uppercase
alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded)

\=, == True if the terms are not equal (inverse of =)
> Greater than

< Less than

>< Greater than or less than (same as not equal)
<> Greater than or less than (same as not equal)
>= Greater than or equal to

\<, =< Not less than

<= Less than or equal to

\>, > Not greater than

== True if terms are strictly equal (identical)

==, 0== True if the terms are not strictly equal (inverse of ==
>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, =<< Strictly not less than

<<= Strictly less than or equal to

\>> a>> Strictly not greater than

20

Parentheses and Operator Precedence

@e

Throughout the language, the NOT (=) character is synonymous with the backslash(\). You
can use the two characters interchangeably, according to availability and personal preference.
The backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and
\>>,

1.11.2.4. Logical (Boolean)

A character string has the value false if it is ®, and true if it is 1. The logical operators take one or two
such values and return 0 or 1 as appropriate. Values other than © or 1 are not permitted.

& AND — returns 1 if both terms are true.

| Inclusive OR — returns 1 if either term or both terms are true.

&& Exclusive OR — returns 1 if either term, but not both terms, is true.
Prefix \, - Logical NOT— negates; 1 becomes 0, and @ becomes 1.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:

« When parentheses are encountered—other than those that identify the arguments on messages
(see Section 1.11.4, "Message Terms”) and function calls—the entire subexpression between the
parentheses is evaluated immediately when the term is required.

* When the sequence
terml operatorl term2 operator2 term3

is encountered, and operator2 has precedence over operator1, the subexpression (term2
operator2 term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as
soon as they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if a strict left-to-right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2) *5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because
the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

~ ~~ (message send)

+ - =\ (prefix operators)
** (power)

* [% I (multiply and divide)
+ - (add and subtract)

21

Parentheses and Operator Precedence

(blank) || (abuttal) (concatenation with or without blank)
= > < (comparison operators, all with equal precedence)

== >> <

\>> >>

<< <<

>= >>=

<= <<=

& (and)

| && (or, exclusive or)

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and
other variables are uninitialized. Then:

Example 1.17. Arithmetic

A+5 -> "8"

A-4*%2 > n"_gn

A/2 -> "1.5"

0.5%*2 -> "0.25"

(A+1)>7 -> "o" /* that is, .false */
n II:IIII -> II1II /* that lS, .true */
R -> "o" /* that is, .false */
n Il\::ll n -> Il1ll

/* that is, .true */

(A+1)*3=12 -> g1 /* that is, .true */
"Q77">"11" -> " /* that is, .true */
"er7" >> "11" -> "o" /* that is, .false */
"abc" >> "ab" -> " /* that is, .true */
"abc" << "abd" -> " /* that is, .true */
"ab " << "abd" -> " /* that is, .true */
Today is Day -> "TODAY IS Monday"

"If it is" day -> "If it is Monday"

Substr(Day, 2, 3) -> "ond" /* Substr is a function */
Tt xx" " -> XXX

22

Message Terms

The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:

e The prefix minus operator always has a higher priority than the power operator.

» Power operators (like other operators) are evaluated from left to right.

For example:
-3%*2 = 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2%*2*%*3 == 64 /* not 256 */

1.11.4. Message Terms

You can include messages to objects in an expression wherever a term, such as a literal string, is
valid. A message can be sent to an object to perform an action, obtain a result, or both.

A message term can have one of the following forms:

receiver messagename m' i :)
B symbol expression
»»—{ receiver [(D_><

expression

The receiver is a term (see Section 1.11.1, “Terms and Expressions” for a definition of term). It
receives the message. The ~ or ~~ indicates sending a message. The messagename is a literal
string or a symbol that is taken as a constant. The expressions (separated by commas) between

the parentheses or brackets are the arguments for the message. The receiver and the argument
expressions can themselves include message terms. If the message has no arguments, you can omit
the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename or symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term.
(A blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any humber of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during the execution of the called method. Any ARG, PARSE
ARG, or USE ARG instruction or ARG() built-in function in the called method accesses these objects
while the called method is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver object is evaluated, followed by one or more expression arguments. The message hame
(in uppercase) and the resulting argument objects are then sent to the receiver object. The receiver

23

Message Sequences

object selects a method to be run based on the message name, and runs the selected method with the
specified argument objects. The receiver eventually returns, allowing processing to continue.

If the message term uses ~, the receiver method must return a result object. This object is included
in the original expression as if the entire message term had been replaced by the name of a variable
whose value is the returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"
a="Position of 'e' is:" c~pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver method need not return a result object. Any result object is
discarded, and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see Section 5.1.1, “Class
Class (Metaclass)”) and, assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~~inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (The expressions
within the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus, a[b] is the same as a~"[]" (b).

For example, the message [] is valid for arrays (see Section 5.3.6, “Array Class”) and you could
code:

Example 1.18. Arrays

a = .array~of(10,20)

say "Second item is" a[2] /* Same as: a~at(2) */
/* or a~"[]1"(2) */

/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example, "ESCAPE"~POS("E") returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of a
variable (usually the special variable SUPER) or an environment symbol. The resulting value changes
the usual method selection. For more information, see Section 4.2.7, “Changing the Search Order for
Methods”.

1.11.5. Message Sequences

The ~ and ~~ forms of message terms differ only in their treatment of the result object. Using ~
returns the result of the method. Using ~~ returns the object that received the message. Here is an
example:

Example 1.19. Messages

/* Two ways to use the INSERT method to add items to a list */

24

NEW Array Term

/* Using only ~ */

team = .list~of("Bob", "Mary")
team~insert("Jane")
team~insert("Joe")
team~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */
/* Do the same thing using ~~ */
team=.list~of("Bob", "Mary")

/* Because ~~ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team~~insert("Jane")~~insert("Joe")~~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */

Thus, you would use ~ when you want the returned result to be the receiver of the next message in
the sequence.

1.11.6. *NEW* Array Term

As a convenience, Rexx allows a shortened syntax for creating arrays, called Array term, of the
following form:

Y

expression expression

Except for trailing commas, an Array term returns a newly created array, as if it had been created with
the message term rexx:Array~of(..). (An Array term will always return an instance of the Rexx-
defined Array class, even if a user-defined class named Array exists.)

Here are some examples:

Week = Ilmonll’ Iltuell’ "Wed", Ilthull’ Ilfrill’ "Sat", Ilsunll
say week~items "days" -- 7 days
say ("here", "we", "go")~makeString(, " ") -- here we go

is0639 = .Directory~of(("de", "Deutsch"), ("en", "English"), ("fr", "francais"))

do list over .environment, .local

say list~items -- 65
end -- 10
say O~sendwith("MAX", (2, 3, 5, 7, 11, 13)) -- 13
sparse = ,,,0
say "size" sparse~size"," sparse~items "items" -- size 4, 1 items

If the array term has trailing commas, the returned array has a bigger size than what . Array~of(...)
would have returned:

say (1, , 3, ,)~size .Array-of(1, , 3, ,)~size -- 5
say (,)~size .Array~of(,)~size -- 2

In a context, where commas already have a different meaning, it may be necessary to put an Array
term between brackets. For example:

25

NEW? Variable Reference Term

call func "uno", 2, "tre" -- no Array term: three parms
call func ("uno", 2, "tre") -- Array term: one Array as parm

An Array term cannot return an array of size zero or one, although it can return an array with zero or
one items (but still of at least size two).

say (,)~items -- 0
say (,)~size -- 2

1.11.7. *NEW?* Variable Reference Term

A variable reference term represents a reference to a variable. Variable reference terms can be used
as arguments to subroutines, functions, methods, or routines, thus allowing the original variable to be
modified or created by the called Rexx code.

While subroutines, functions, methods, or routines can modify argument objects when accessed with
the USE ARG instruction without using a variable reference, changing the value of arguments to new
objects—like setting them to a new string, a new Array, or to .nil—can only be done using a variable
reference term.

Variable reference terms start with either of the two reference operators, > or <, followed by a simple
variable name or a stem variable name. Variable references to compound variables are not allowed.

Here is an example:

call dir >files, ".txt"
say files~items "files with extension .txt"

p:iroutine dir
use strict arg >array, extension = ""
array = .Array~new
do file over .File~new(".")~list
if file~caselessEndsWith(extension) then
array~append(file)
end

Variable reference arguments and USE ARG names must match. They must either be both simple
variable references, or both stem references. USE ARG variable references can never be optional, a
default value is not allowed.

1.12. Clauses and Instructions

Clauses can be subdivided into the following types:
* Null Clauses,

» Directives,

* Labels,

* Instructions,

» Assignments,

» Message Instructions,

» Keyword Instructions, and

* Commands.

1.12.1. Null Clauses

26

Directives

A clause consisting only of whitespace characters, comments, or both is a null clause. It is completely
ignored.

@

A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons is a directive. Directives are nonexecutable code and can start
in any column. They divide a program into separate executable units (methods and routines) and
supply information about the program or its executable units. Directives perform various functions,
such as creating new Rexx classes (::CLASS directive) or defining a method (::METHOD directive).
See Chapter 3, Directives for more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colon is a label. The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label's name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label's name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters.

Labels can be any number of successive clauses. Several labels can precede other clauses. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Duplicate labels are permitted, but control is only passed to the first of any duplicates in the main
program (prolog), a method, or a routine. The duplicate labels occurring later can be traced but cannot
be used as a target of a CALL, SIGNAL, or function invocation.

1.12.4. Instructions

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An
assignment gives a (new) value to a variable. See Section 1.13, “Assignments and Symbols”.

27

Message Instructions

1.12.5.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, &&=, and **=canbe
used to create extended assignments. These sequences combine an operation with the assignment.
See Section 1.13.1, “Extended Assignments” for more details.

1.12.6. Message Instructions

A message instruction is a single clause in the form of a message term (see Section 1.11.4, “Message
Terms”) or in the form messageterm=expression. A message is sent to an object, which responds by
performing some action. See Section 1.15, “Message Instructions”.

1.12.7. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
instruction
instruction
instruction

END

A subkeyword is a keyword that is reserved within the context of a particular instruction, for example,
the symbols TO and WHILE in the DO instruction.

1.12.8. Commands

A command is a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

1.13. Assignments and Symbols

A variable is an object whose value can change during the running of a Rexx program. The process
of changing the value of a variable is called assigning a new value to it. The value of a variable is a
single object. Note that an object can be composed of other objects, such as an array or directory
object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, or
the VALUE built-in function, but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol= expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named
by the symbol to the left of the equal sign.

Example:

28

Extended Assignments

/* Next line gives FRED the value "Frederic" */
Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol
has a defined value at all times. A variable to which you have not assigned a value is uninitialized.
Its value is the characters of the symbol itself, translated to uppercase (that is, lowercase a-z to
uppercase A-Z). However, if it is a compound symbol (described in Section 1.13.5, “Compound
Symbols”), its value is the derived name of the symbol.

Example 1.20. Derived symbol names

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use
simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables although the collection classes might be
preferable in many cases. See Section 5.3.2, “Collection Class”.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical to an assignment.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=)
is an assignment, rather than an expression (or a keyword instruction). This is not a restriction,
because you can ensure that the clause is processed as a command, such as by putting a null
string before the first name, or by enclosing the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should
not cause confusion. For example, the following clause is an assignment, not an ADDRESS
instruction:

Address="10 Downing Street";

3. You can use the VAR function to test whether a symbol has been assigned a value. In addition,
you can set NOVALUE to trap the use of any uninitialized variables (except when they are tails in
compound variables or stem variables, which are always initialized with a Stem object when first
used.)

1.13.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, &&=, and **=canbe
used to create extended assignment instructions. An extended assignment combines a non-prefix
operator with an assignment where the term on the left side of the assignment is also used as the left
term of the operator. For example,

a +=1

29

Constant Symbols

is exactly equivalent to the instruction

Extended assignments are processed identically to the longer form of the instruction.

1.13.2. Constant Symbols

A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters
of the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

Example 1.21. Constants

77

827.53

.12345

12e5 /* Same as 12E5 */
3D

17E-3

Constant symbols, where the first character is a period and the second character is alphabetic, are
environment symbols and may have a value other than the symbol name.

1.13.3. Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:
Example 1.22. Simple symbols

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

1.13.4. Stems

A stem is a symbol that contains a single period as the last character of the name. It cannot start with
a digit.

These are stems:
Example 1.23. Stems

FRED.

30

Stems

The value of a stem is always a Stem object (see Section 5.3.16, “Stem Class” for details). The stem
variable's Stem object is automatically created the first time you use the stem variable or a compound
variable containing the stem variable name. The Stem object's assigned name is the name of the
stem variable (with the characters translated to uppercase). If the stem variable has been assigned

a value, or the Stem object has been given a default value, the assigned name overrides the default
stem name. A reference to a stem variable will return the associated Stem object.

When a stem is the target of an assignment, the action taken depends on the value being assigned.
If the new value is a Stem object, the new Stem object will replace the Stem object that is currently
associated with the stem variable. This can result in multiple stem variables referring to the same
Stem object, effectively creating a variable alias.

Example 1.24. Stems

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19
/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */
say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

If the new value is not a Stem object, a new Stem object is created and assigned to the stem variable,
replacing the Stem object currently associated with the stem variable.

The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the
new value until another value is assigned to the stem, the Stem object, or the individual compound
variable.

Example 1.25. Stems

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can initialize an entire collection of compound variables to the same value.

You can pass stem collections as function, subroutine, or method arguments.
Example 1.26. Stems

/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i =1 to count
stem.i = random(1,100)
end

31

Stems

return

The USE ARG instruction functions as an assignment instruction. The variable STEM. in the example
above is functionally equivalent to:

stem. = arg(2)

USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
will force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results. The resulting return value is
the Stem object associated with the stem variable.

Example 1.27. Stems

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i =1 to count
stem.i = random(1,100)
end
return stem.

When a stem. variable is used in an expression context, the stem variable reference returns the
associated Stem object. The Stem object will forward many object messages to its default value. For
example, the STRING method will return the Stem object's default value's string representation:

Example 1.28. Stems

total. = 0
say total. /* says "Q@" */

The [] method with no arguments will return the currently associated default value. variables can
always be obtained by using the stem. However, this is not the same as using a compound variable
whose derived name is the null string.

Example 1.29. Stems

total. = 0@

null = ""

total.null = total.null + 5

say total.[] total.null /* says "@ 5" */

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of
variables, referred to by their stems. DROP FRED. assigns a new Stem object to the specified stem.
EXPOSE FRED. and PROCEDURE EXPOSE FRED. expose all possible variables with that stem.

32

Compound Symbols

The *CHG* DO instruction can also iterate over all of the values assigned to a stem variable.

1.13.5. Compound Symbols

A compound symbol contains at least one period and two other characters. It cannot start with a digit
or a period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is
followed by a tail consisting of one or more name parts (delimited by periods) that are constant
symbols, simple symbols, or null. Note that you cannot use constant symbols with embedded signs
(for example, 12.3E+5) after a stem; in this case the whole symbol would not be valid.

These are compound symbols:

Example 1.30. Compound symbols

FRED.3
Array.I.J
AMESSY. .0One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, J, and One in the
examples), thus generating a new, derived tail. The value of a compound symbol is, by default, it's the
name of the Stem object associated with the stem variable concatenated to the derived tail or, if it has
been used as the target of an assignment, the value of Stem element named by the derived tail.

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can contain any characters (including periods
and blanks). Substitution is done only once.

More formally, the derived nhame of a compound variable that is referenced by the symbol

s0.s1.s2. --- .sn
is given by
do.vi.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s@ and v1 to vn are the
values of the constant or simple symbols s1 through sn. Any of the symbols s1 to sn can be null.
The values v1 to vn can also be null and can contain any characters (including periods). Lowercase
characters are not translated to uppercase, blanks are not removed, and periods have no special
significance. There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program:

Example 1.31. Compound symbols

a=3 /* assigns "3" to the variable A */
z=4 /* 4" to Z */
c="Fred" /* "Fred" to C */

33

Environment Symbols

a.z="Fred" /* "Fred" to A.4 */
a.fred=5 /* "g" to A.FRED */
a.c="Bill" /* "Bill" to A.Fred */
c.c=a.fred /* "g" to C.Fred */
y.a.z="Annie" /* "Annie" to Y.3.4 */
say a z Cc a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.5.1. Evaluated Compound Variables

The value of a stem variable is always a Stem object (see Section 5.3.16, “Stem Class” for details).
A Stem object is a type of collection that supports the [] and []= methods used by other collection
classes. The [] method provides an alternate means of accessing compound variables that also
allows embedded subexpressions.

Tails for compound variables are normally specified by symbols separated by periods. An alternative
is to specify the tail as a bracketed list of expressions separated by commas. The expressions are
evaluated to character strings. These are concatenated with intervening periods and the resulting
string is used as tail. This notation can be used in assignments to compound variables as well as
when referencing them. Examples:

Example 1.32. Evaluated compound variables

a.[1+2,3+4]=17 -- assigns A.3.7

Say a.3.7 -- = 17

vl="1+2"

v2="'3+4"'

a.vl.v2=18 -- tail used: '1+2.3+4'
Say a.['1+2','3+4'] -- => 18

Parse Value '1 2 3' wWith . a.[1,1+1] .

Say a.1.2 -- = 2

1.13.6. Environment Symbols

An environment symbol starts with a period and has at least one other character. The symbol may
not be a valid Rexx number. By default the value of an environment symbol is the string consisting of
the characters of the symbol (translated to uppercase). If the symbol identifies an object in the current
environment, its value is the mapped object.

These are environment symbols:

Example 1.33. Environment symbols

.method // A reference to the Rexx Method class
.true // The Rexx "true" object. Has the value "1"
.Xyz // Normally the value .XYZ

34

NEW Namespaces

.3DGlasses // Normally the value .3DGLASSES

When you use an environment symbol, the language processor performs a series of searches to see if
the environment symbol has an assigned value. The search locations and their ordering are:
1. Constants .true, .false and .nil.

2. The list of classes declared on ::CLASS directives within the current program package or added to
the current package using the addClass method.

3. The list of public classes declared on ::CLASS directives of other files included with a
'REQUIRES directive or added to the current Package instance using the *CHG* addPackage
method.

4. The list of public Rexx supplied classes in the REXX package, like Object, String, or Array.

5. The package local environment directory specific to the current package. You can access the
package local environment directory through the Package *NEW?* local method.

6. The local environment directory specific to the current interpreter instance. The local environment
includes instance-specific objects such as the .INPUT and .OUTPUT objects. You can directly
access the local environment directory by using the .LOCAL environment symbol.

7. The global environment directory. The global environment includes Rexx supplied objects like
.endofline or the .RexxInfo object. You can directly access the global environment by using the
.ENVIRONMENT environment symbol. Entries in the global environment directory can also be
accessed via the VALUE built-in function by using a null string for the selector argument.

8. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-
in environment objects. The currently defined built-in objects are .RS, .LINE, METHODS,
.ROUTINES, .RESOURCES, and .CONTEXT.

If an entry is not found for an environment symbol, then the default character string value is used.

@e

You can place entries in both the . LOCAL and the . ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that
you place in either directory include at least one period in the entry name, for example:

/* establish settings directory */
.local~setentry("MyProgram.settings", .directory~new)

1.14. *NEW* Namespaces

Namespaces can be used to differentiate between classes or routines of the same name, having been
loaded through ::REQUIRES directives.

Using ::REQUIRES with the NAMESPACE option allows to tag a loaded file with a namespace name,
which in turn can be used to qualify references to classes or routines within that namespace to
explicitly identify a specific class or routine. A special reserved namespace "REXX" will allow to always
access the Rexx-provided classes.

35

Message Instructions

Examples:
Example 1.34. Namespaces

-- disambiguate between two classes with same name
say .number~id -- The Real Number class
say natural:number~id -- The Natural Number class

-- use reserved namespace "REXX" to get Rexx-defined .Array
-- not :class array as defined below
say rexx:array~of(2, 3, 5, 7)~items -- 4

-- call ::routine verify, not built-in function
call natural:verify(17)

-- use natural:number as a message target
say natural:number~subclass("Integer") -- The Integer class

-- subclass natural:number, not ::class number as defined below
::class rationalNumber subclass natural:number

-- class "number"; same name as a class in 'number.cls'
::class number

::method id class

return "The Real Number class"

-- class "Array"; same name as Rexx-defined
::class array

::requires 'number.cls' namespace natural

Example 1.35. number.cls

::class number public
::method id class
return "The Natural Number class"

::routine verify public
return arg(1) >= 0 & arg(1l)~dataType("W")

1.15. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a
message instruction if the main purpose of the message is to perform an action. You use a message
term if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

messageterm <
= expression

If there is only a messageterm, the message is sent in exactly the same way as for a message term. If
the message vields a result object, it is assigned to the sender's special variable RESULT. If you use
the ~~ form of message term, the receiver object is used as the result. If there is no result object, the
variable RESULT is dropped (becomes uninitialized). A message term using ~~ is sometimes referred
to as a cascading message.

36

Commands to External Environments

Example 1.36. Message instructions

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

The equal sign (=) sets a value. If =expression follows the message term, a message is sent to the
receiver object with an = concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example 1.37. Message instructions

person~age = 39 /* Same as person~"AGE="(39) */
table[i] = 5 /* Same as table~"[]="(5,1) */

The expressions are evaluated in the order in which the arguments are passed to the method.
That is, the language processor evaluates the =expression first. Then it evaluates the argument
expressions within any [] pairs from left to right.

The extended assignment form may also be used with message terms.

Example 1.38. Message instructions

table[i] += 1 -- Same as table[i] = table[i] + 1
See Section 1.13.1, “Extended Assignments” for more details

1.16. Commands to External Environments
Issuing commands to the surrounding environment is an integral part of Rexx.

1.16.1. *CHG* Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You can
change the environment by using the *CHG* ADDRESS instruction. You can find out the name of

the current environment by using the ADDRESS built-in function. The underlying operating system
defines environments external to the Rexx program. The environments selected depend on the caller.
The default environment is CMD on Windows and sh on Unix-based systems. There are three aliases
for the default environment, "" (null string), COMMAND and SYSTEM. These environments execute
commands through the standard command interpreter or system shell, which is cmd . exe on Windows
and sh on Unix-based systems. On Unix-based systems alternate environments bsh, bash, csh,
ksh, tcsh, and zsh are available, which allow execution of commands through a shell named like the
environment, if such a shell is installed on the system.

An additional environment PATH—available on both Windows and Unix-based systems—provides
an alternative to command interpreter- / shell-based environments. It executes commands directly,
without the need for a command interpreter or shell by searching the environment variable PATH

37

Commands

to locate the command. Note that this environment does not provide shell or command interpreter
features such as internal commands, redirection, piping, environment variable substitution or wildcard
expansion.

If called from an editor that accepts subcommands from the language processor, the default
environment can be that editor.

A Rexx program can issue commands—called subcommands—to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands
to make changes, test return codes to check that the subcommands have been processed as
expected, and display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx
language processor. See the Open Object Rexx: Application Programming Interfaces for a discussion
of this mechanism.

1.16.2. Commands

To send a command to the currently addressed environment, use a clause of the form:
expression;

The expression (which must not be an expression that forms a valid message instruction) is evaluated,
resulting in a character string value (which can be the null string), which is then prepared as
appropriate and submitted to the environment specified by the current ADDRESS setting.

The environment then processes the command and returns control to the language processor after
setting a return code. A return code is a string, typically a number, that returns some information about
the command processed. A return code usually indicates if a command was successful but can also
represent other information. The language processor places this return code in the Rexx special
variable RC.

In addition to setting a return code, the underlying system can also indicate to the language processor
if an error or failure occurred. An error is a condition raised by a command to which a program that
uses that command can respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a command to which
a program that uses that command cannot respond, for example, a command that is not executable or
cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or
FAILURE is ON (see Chapter 11, Conditions and Condition Traps). They can also cause the
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is
the default—see Section 2.29, “TRACE".

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment
symbol .RS has the value -1. When a command error occurs, .RS has a value of 1. If the command
did not have a FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment is Windows, the
sequence:

Example 1.39. Commands

fname = "CHESHIRE"

38

Commands

exten = "CAT"
"TYPE" fname"."exten

would result in passing the string TYPE CHESHIRE.CAT to the command processor, CMD.EXE. The
simpler expression:

Example 1.40. Commands

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or
a nonzero value if the file could not be found in the current directory.

Remember that the expression is evaluated before it is passed to the environment. Constant
portions of the command should be specified as literal strings.

Example 1.41. Commands — Windows

delete "*".1lst /* not "multiplied by" */
var.003 = anyvalue

type "var.003" /* not a compound symbol */
w = any

dir"/w" /* not "divided by ANY" */

Example 1.42. Commands — Linux

rm "*". 1st /* not "multiplied by" */
var.003 = anyvalue

cat "var.003" /* not a compound symbol */
w = any

1s "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example,
the clause

myfile~linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment, while

(myfile~linein)

39

Using Rexx on Windows and Unix

would submit the return value from the linein method as a command to the external environment.

1.17. Using Rexx on Windows and Unix

1.17.1. Calling other Rexx scripts

Rexx programs can call other Rexx programs as external functions or subroutines with the CALL
instruction.

If a program is called with the CALL instruction, the program runs in the same process as the calling
program. If you call another program by a Rexx command, the program is executed in a new process
and therefore does not share .environment, .local, or the Windows/Unix shell environment.

Example 1.43. Calling other Rexx scripts

call "other.REX" /* runs in the same process */
"rexx other.REX" /* runs in a new child process */
"start rexx other.REX" /* runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is
the exit value of the called program provided that this value is a whole number in the range -32768 to
32767. Otherwise, the exit value is ignored and the called program is given a return code of 0.

1.17.2. Shebang support

Rexx supports shebangs, also called hashbangs, as the first line of a Rexx program on both Unix-like
and Windows systems.

Typically, shebangs are found on Unix-like systems to identify the script language with which to run
a script. On these systems, to run a script as a Rexx program, depending on where the interpreter is
installed, the shebang would be something like #! /usr/bin/rexx.

With several Unix-like systems changing the standard installation location away from /usr/bin
(including macOS), a new convention is used for the sample programs, which works if the Rexx
interpreter is anywhere on the path. This convention uses the env command in the shebang, like this:
#!1/usr/bin/env rexx. This has the advantage that it is portable, and will use the first occurrence
of rexx that is found on $PATH.

On a Windows system, Rexx will simply ignore the first line of a Rexx program, if it starts with the
character sequence "#!".

1.17.3. Line-end characters

Windows and Unix-like systems use different characters to indicate a line-break (ending one line
and starting a new one) in a text file. While Windows uses the two-character sequence '0d 0a'x
(carriage-return, line-feed), Unix-like systems use the character '0a'x (line-feed) as a line-end
indicator.

Rexx supports both line-end indicators on each platform, both for the Rexx program itself, and for
data manipulated with e. g. built-in functions LINES, LINEIN, Stream methods lines, lineln, arrayin,
String method makeArray, or MutableBuffer method makeArray. This means, when moving

40

End-of-file character

from one platform to another, typically there should be no line-end conversions necessary for Rexx
programs or data read by these programs.

Note that you cannot include line-end characters '0d"'x or '0a'x in a literal string.

1.17.4. End-of-file character

Traditionally Windows used a special character '1a'x (end-of-file) to signify the end of a text file.
Although today use of this special end-of-file character has become less common, some editors may
still append it to the end of a text file. Unix-like systems do not use a special end-of-file character in
text files.

Rexx will honor the end-of-file character '1a"'x within a Rexx program source file on both Windows
and Unix-like platforms. It will not scan the source file beyond any end-of-file character it finds. This
means, that a character '1a'x cannot be directly used within a Rexx program source file, for example
within a literal string or a comment.

41

Chapter 2.

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such as expression, denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case-dependent. The symbols if, If,
and iF all have the same effect. A clause requires a semicolon (;) as a terminating delimiter unless
the end of a line implies it.

A keyword instruction is recognized only if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function.

A syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT
instruction. The keyword THEN is also recognized in the body of an IF or WHEN clause. In other
contexts, keywords are not reserved and can be used as labels or as the names of variables (though
this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Whitespace characters (blanks or horizontal tabs) adjacent to keywords separate the keyword from
the subsequent token. One or more whitespace characters following VALUE are required to separate
the expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no whitespace character is required after the VALUE subkeyword in the following example,
although it would improve readability:

ADDRESS VALUE"ENVIR"||number

2.1. *CHG* ADDRESS

bb—' ADDRESS ; f::
environment
~— expression WITH - fragment

< a env_expression

WITH:

42

CHG ADDRESS

WITH INPUT NORMAL) 7 j)

STEM stem
STREAM stream
USING expr

NORMAL

l OUTPUT '
ERROR

(sTEM)— stem

N

'l STREAM stream
APPEND

USING expr

ADDRESS permanently changes the destination or 1/O redirection of commands, or temporarily
changes the destination and sends a command with optional 1/0O redirection of standard input,
standard output, and standard error from or to Rexx objects.

Commands are strings sent to an external environment. You can send commands by specifying
clauses consisting of only an expression or by using the ADDRESS instruction. (See Section 1.16,
“Commands to External Environments”.)

To send a single command to a specified environment, code an environment, a literal string or a
single symbol, which is taken to be a constant, followed by an expression. The environment name
is the name of an external procedure or process that can process commands. The expression is
evaluated to produce a character string value, and this string is routed to the environment to be
processed as a command. After execution of the command, environment is set back to its original
state, thus temporarily changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands processed in this way are
trapped or traced.

The following evironments are available in ooRexx:

sh (Unix only)
This is the default environment on Unix systems. It uses sh as a shell program to execute the
command. All shell features such as redirection or piping can be used.

bsh, bash, csh, ksh, tcsh, zsh (Unix only)
These environments use alternate Unix shells bsh, bash, csh, ksh, tcsh, or zsh to execute the
command. If the appropriate shell is not installed on the system, executing a command in any of
these enviroments will raise a failure.

cmd (Windows only)
This is the default environment on Windows systems. It uses cmd . exe as a command interpreter
to execute the command. Command interpreter features such as internal commands, redirection
or piping can be used.

command, system, ""
These environment names are synonyms for the default environments sh on Unix and cmd on
Windows.

path
This environment executes commands directly, without using an intermediate command interpreter
or shell program. It searches the environment variable PATH to locate the command to execute.

43

CHG ADDRESS

No shell features such as internal commands, redirection, piping or environment variable
substitution are available.

The WITH subkeyword sets a command's I/O redirection. STDIN input can be redirected from a Rexx
object to the command, and STDOUT and STDERR output from the command can be redirected to a
Rexx object.

I/O redirection is permanent when specified on an ADDRESS instruction without a command,

and temporary if a command is specified. Any permanent I/O redirection is associated with the
environment name and will be saved and restored across function and subroutine calls. For
permanent I/O redirections, any redirection objects or expressions are not evaluated at the time the
ADDRESS instruction is processed. Each time a command is sent to this environment, these objects
and expressions will be evaluated in the then current variable context.

WITH INPUT
redirects data from a stem, a stream, or other Rexx object to the command's input.

If option NORMAL is specified, the command's standard input will be used.

If option STEM is specified, stem must be a stem variable, where stem. 0 specifies the number of
input lines, and each stem.i (with i from 1 through stem . 0) specifies an input line.

If option STREAM is specified, stream must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a string which is used as the stream name. Input lines
for the command are read from stream using the 1ineIn method.

If option USING is specified, expr must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a String, a Stem object, an InputStream, a Monitor or
a File object, or an Array object or any other object that supports a makeArray method (e. g.

a RexxQueue object). If the resulting object is a String, the command will receive a single input
line, if it is a Stem, an InputStream, a Monitor, or a File object, input is redirected as described for
options STEM and STREAM. If the resulting object is an Array object, all Array items are converted
to strings and are sent to the command as input lines. Empty array items are ignored.

WITH OUTPUT and WITH ERROR
redirect a command's standard output or error output to a stem, a stream, or other Rexx objects.

If option NORMAL is specified, the command's default output destination, or default error
destination is used.

If option STEM is specified, stem must be a stem variable. If REPLACE is specified together with
STEM, the number of output lines is stored in stem.® and individual lines are stored as stem.i,
with j running from 1 through stem. 0. REPLACE is the default. If APPEND is specified with STEM,
individual lines are stored as stem.i, with i starting at the value of the existing stem. 0 plus 1. The
initial stem . @ value is then incremented by the total number of output lines for the command.

If option STREAM is specified, stream must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a string which is used as the stream name. Output or
error lines from the command are written to the stream with the 1ineOut method. If REPLACE

is specified with STREAM, stream is truncated to zero length before any output lines are written.
REPLACE is the default. If APPEND is specified with STREAM, output lines are appended to stream.

If option USING is specified, expr must be a constant symbol, or an expression enclosed in
parentheses that evaluates to a Stem object, an OutputStream, a Monitor, a RexxQueue, a File
object, or an OrderedCollection object. If the resulting object is a Stem or a File object, output
lines are written as described for options STEM and STREAM. If it is an OutputStream or a Monitor
object, output lines are always appended to the stream; neither REPLACE nor APPEND can be

44

CHG ADDRESS

specified in this case. If the object is a RexxQueue, method queue is used for each output line.
Neither REPLACE nor APPEND can be specified for a RexxQueue. If the resulting object is an
OrderedCollection object and REPLACE is specified, the collection is emptied using method emtpy
before any output lines are added to the collection using method append. REPLACE is the default.
If APPEND is specified, output lines are appended to the existing collection using method append.

Notes:
1. Specifying one of the INPUT, OUTPUT, or ERROR subkeywords more than once is an error.

2. If an input source object and an output or error target object is the same, Rexx uses appropriate
read and write buffering to make sure results are correct.

3. If the standard output target and the standard error target object is the same object, Rexx will send
interleaved output and error lines to the target.

Example 2.1. Instructions — ADDRESS

ADDRESS "CMD" 'dir "\Program Files"' -- Windows

ADDRESS "sh" "1s /usr/bin" -- Unix

address "" "cat" with input using "single line" -- Unix: "single line"
address "" "ver" with output stem v.; say v.2 -- "Microsoft Windows ..."
address "" with input using (a) output using (a)

a=4,2,3,1

"SOrt"

say a~toString(, " ") -- 1234

If you specify only environment, a lasting change of destination occurs: all commands (see
Section 1.16.2, "“Commands”) that follow are routed to the specified command environment, until the
next ADDRESS instruction is processed. The previously selected environment is saved.

Assume that the environment for a Windows text editor is registered by the name EDIT:

Example 2.2. Instructions — ADDRESS environments

address CMD

"DIR C:\AUTOEXEC.BAT"

if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Here
env_expression, which can be a variable name, is evaluated, and the resulting character string value
forms the name of the environment. You can omit the subkeyword VALUE if env_expression does
not begin with a literal string or symbol, that is, if it starts with a special character such as an operator
character or parenthesis.

Example 2.3. Instructions — ADDRESS environments

ADDRESS ("ENVIR"||number) /* Same as ADDRESS VALUE "ENVIR"||number */

45

ARG

With no arguments, commands are routed back to the environment that was selected before the
previous change of the environment, and the current environment name is saved. After changing the
environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name (") is the same as using the
default environment.

The two environment names are automatically saved across internal and external subroutine and
function calls. See the CALL instruction for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. The Open Object Rexx: Application Programming
Interfaces describes the creation of alternative subcommand environments.

2.2. ARG

ARG

template_list

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns
them to variables. It is a short form of the instruction:

bb—(PARSE)—(UPPER)—(ARG

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace characters, patterns, or both.

template_list

The objects passed to the program, routine, or method are converted to string values and parsed into
variables according to the rules described in Chapter 9, Parsing.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercase a-z to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do
not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change.

Example 2.4. Instructions — ARG

/* String passed is "Easy Rider" */
Arg adjective noun .

/* Now: ADJECTIVE contains "EASY" */
/* NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsing template_list so each template is selected in turn.

Example 2.5. Instructions — ARG

/* Function is called by FRED("data X",1,5) */

46

CALL

Fred: Arg string, numl, num2

/* Now: STRING contains "DATA X" */

/* NUM1 contains "1" */

/* NUM2 contains "5" */
Notes:

1. The ARG built-in function can also retrieve or check the arguments.

2. The USE ARG instruction is an alternative way of retrieving arguments. USE ARG performs
a direct, one-to-one assignment of argument objects to Rexx variables. You should use this
when your program needs a direct reference to the argument object, without string conversion
or parsing. ARG and PARSE ARG produce string values from the argument objects, and the
language processor then parses the string values.

2.3. CALL

bb—(CALL name : : >«

L expression
(expr
CALL m ANY e <
L(NAME

trapname

ERROR o

HALT o

NOTREADY

USER usercondition |’

i

?O

s

CALL OFF ANY

\—' ERROR ; o
FAILURE
\—' HALT ; o

NOTREADY
{ USER)— usercondition

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. The usercondition is a single symbol
that is taken as a constant. The trapname is a symbol or string taken as a constant. All information on
condition traps is contained in Chapter 11, Conditions and Condition Traps.

47

CALL

To call a routine, specify name, which must be a literal string or symbol that is taken as a constant.
The routine called can be:

An internal routine
A subroutine that is in the same program as the CALL instruction or function call that calls it.
Internal routines are located using label instructions.

A built-in routine
A function that is defined as part of the Rexx language.

An external routine
A subroutine that is neither built-in nor a label within the same same program as the CALL
instruction call that invokes it. See Section 7.2.1, “Search Order” for details on the different types
of external routines.

If name is a literal string (that is, specified in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that built-in function
names are in uppercase. Therefore, a literal string call to a built-in function must also use uppercase
characters.

You can also specify (expr), any valid expression enclosed in parentheses. The expression is
evaluated before any of the argument expressions, and the value is the target of the CALL instruction.
The language processor does not translate the expression value into uppercase, so the evaluated
name must exactly match any label name or built-in function name. See Section 1.12.3, “Labels” for a
description of label names.

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

result = name —@ : : @—N

L expression

You can use any humber of expressions, separated by commas. The expressions are evaluated
from left to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or
USE ARG instruction or ARG built-in function in the called routine accesses these objects while the
called routine is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same mechanism as function
calls. See Chapter 7, Functions. The search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting at the label that matches
name in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution
of an internal routine.

Built-in routines
These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. See Section 7.4, “Built-in Functions”.

48

CALL

You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify CALL, the function name (with no parenthesis) and any arguments, for example:

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

External routines
Users can write or use routines that are external to the language processor and the calling
program. You can code an external routine in Rexx or in any language that supports the system-
dependent interfaces. If the CALL instruction calls an external routine written in Rexx as a
subroutine, you can retrieve any argument strings with the ARG, PARSE ARG, or USE ARG
instructions or the ARG built-in function.

For more information on the search order, see Section 7.2.1, “Search Order”.

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can
expose selected variables to a routine.

Calling an external program or routine defined with a ::ROUTINE directive is similar to calling an
internal routine. The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values, for example NUMERIC settings, start with
their defaults (rather than inheriting those of the caller). In addition, you can use EXIT to return from
the routine.

When control reaches an internal routine, the line number of the CALL instruction is available in

the variable SIGL (in the caller's variable environment). This can be used as a debug aid because

it is possible to find out how control reached a routine. Note that if the internal routine uses the
PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example 2.6. Instructions — CALL

/* Recursive subroutine execution... */

arg z

call factorial z

say z"! =" result

exit

factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */

if n=0 then return 1
call factorial n-1
return result * n

49

CHG DO

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

* The status of loops and other structures: Executing a SIGNAL within a subroutine is safe
because loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

» Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly, ? (interactive debug) is saved across routines.

* NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations are saved and then
restored on return. A subroutine can, therefore, set the precision, for example, that it needs to use
without affecting the caller.

* *CHG* ADDRESS settings: The current and previous destinations for commands, including any
associated 1/0O redirection configurations, are saved and then restored on return.

» Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means
that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

» Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information.

* .RS value: The value of the .RS environment symbol.

» Elapsed-time clocks: A subroutine inherits the elapsed-time clock (see Section 7.4.65, “TIME”)
from its caller, but because the time clock is saved across routine calls, a subroutine or internal
function can independently restart and use the clock without affecting its caller. For the same
reason, a clock started within an internal routine is not available to the caller.

2.4. *CHG* DO

DO
L(LABEL name L(COUNTER ctr 1—< REPETITOR - fragment >—f
LOOP

1—< CONDITIONAL - fragment >—j

instruction

END

name

REPETITOR:

50

CHG DO

»P»—<—1 controll = expri e e —pd
TO exprt BY exprb L(FOR exprf

control2 OVER collection o
L(FOR exprf |—
WITH INDEX index OVER supplier o
L(FOR)—

exprf

ITEM item

\—' FOREVER } o

exprr

CONDITIONAL:
WHILE exprw
UNTIL expru

DO groups instructions and optionally processes them repetitively. During repetitive execution, control
variables (control1, control2, index, or item) can be stepped through some range of values.

LOOP groups instructions and processes them repetitively. LOOP behaves identically to DO, except
for the simple LOOP ... END case, which is equivalent to DO FOREVER ... END.

Notes:

1.

The LABEL and COUNTER phrases can be in any order, if used. They must precede any repetitor
or conditional fragment.

The COUNTER phrase is only valid with a repetitive or conditional DO, it cannot be used on a
simple DO group.

control1, control2, index, item, and ctr must be symbols that are valid variable names.

The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of a conditional expression, which is a list of expressions separated by ",".
The list of expressions is evaluated left-to-right. Each subexpression must evaluate to either 0 or
1. Evaluation will stop with the first @ result and 0@ will be returned as the condition result. If all of
the subexpressions evaluate to 1, then the condition result is also 1.

The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.

The INDEX and ITEM phrases can be in any order, if used. They cannot be used more than once.

51

DROP

8. The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the DO or LOOP instruction itself).

9. The subkeywords WHILE, UNTIL, OVER, WITH, INDEX, and ITEM are reserved within a DO or
LOORP instruction in that they act as expression terminators for other keywords. Thus they cannot
be used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in
expri, exprt, exprb, or exprf. FOREVER is also reserved, but only if it immediately follows the
keyword DO or LOOP and is not followed by an equal sign. However, parentheses around or
within an expression can prevent these keywords from terminating an expression. For example,

Example 2.7. Instructions — DO variable without parenthesis

do i = 1 while i < until
say 1
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.8. Instructions — DO variable with parenthesis

do i = 1 while (i < until)
say i
end

10. The exprb option defaults to 1, if relevant.

11. The collection can be any expression that evaluates to an object that supports a makeArray
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

12. The supplier can be any expression that evaluates to an object that supports a supplier
method.

For more information, refer to Appendix A, Using DO and LOOP.

2.5. DROP

DROP name
name)

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more whitespace characters or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
desired. This subsidiary list must follow the same rules as the original list, that is, be valid character

52

EXIT

strings separated by whitespace, except that no parentheses are allowed. The list need not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name more than once or to

drop a variable that is not known. If an exposed variable is named (see Section 2.7, "EXPOSE” and
Section 2.19, "PROCEDURE"), then the original variable is dropped.

Example 2.9. Instructions — DROP

j=4
Drop a z.3 z.j

/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.
Example 2.10. Instructions — DROP

mylist="c d e"

drop (mylist) f

/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the
stem variable to a new, empty stem object.

Example:

Drop z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

EXIT

expression

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back to
the caller when the program stops.

Example 2.11. Instructions — EXIT

j=3
Exit j*4
/* Would exit with the string "12" */

53

EXPOSE

If you do not specify expression, no data is passed back to the caller. If the program was called as a
function, this is detected as an error.

You can also use EXIT within a method. The method is stopped immediately, and the result object, if
specified, is returned to the sender. If the method has previously issued a REPLY instruction, the EXIT
instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is made to convert the
returned value to a return code acceptable by the underlying operating system. The returned string
must be a whole number in the range -32768 to 32767. If the conversion fails, no error is raised,
and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied at the end of the program, but no result value is
returned.

3. On Unix/Linux systems the returned value is limited to a numerical value between 0 and 255.

2.7. EXPOSE

@ name
o name)

EXPOSE causes the object variables identified in name to be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object's variable
pool. (An object variable pool is a collection of variables that is associated with an object rather

than with any individual method.) Therefore, the values of existing variables are accessible, and any
changes are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable scope. All other variables that a method uses are local to the
method and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the
first instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than
once, or to specify a name that has not been used as a variable.

Example 2.12. Instructions — EXPOSE

/* Example of exposing object variables */

myobj = .myclass~new

myobj~c

myobj~d /* Would display "z is: 120" */
::class myclass /* The ::CLASS directive */
::method c /* The ::METHOD directive */

54

FORWARD

expose z
z = 100 /* Would assign 100 to the object variable z */
return

::method d
expose z
z=7+20 /* Would add 20 to the same object variable z */
say "Z is:" z
return

You can expose an entire collection of compound variables by specifying their stem in the variable list
or a subsidiary list. The variables are exposed for all operations.

Example 2.13. Instructions — EXPOSE

expose j k c. d.

/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1="7." /* This sets "C.1" in the object */
/* variable pool, even if it did not */
/* previously exist. */

2.8. FORWARD

FORWARD
(J
CONTINUE ARGUMENTS

L |
L(MESSAGE exprm L(CLASS exprs TO exprt

You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluates exprt to produce a new target object for
the forwarded message. The exprt is a literal string, a constant symbol, or an expression enclosed in
parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates expra to produce an array
object that supplies the set of arguments for the forwarded message. The expra can be a literal string,

55

FORWARD

a constant symbol, or an expression enclosed in parentheses. The ARGUMENTS value must evaluate to
a Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce a set of arguments for
the forwarded message. It is an error to use both the ARRAY and the ARGUMENTS options on the same
FORWARD instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor uses the same arguments
specified on the original method call.

If you specify the MESSAGE option, the exprm is a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its value. The uppercase character string value of the
MESSAGE option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, the exprs is a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded
message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are raised in the calling
program (without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result,
the language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method.
For example, the FORWARD instruction can forward a message to a different target object, using the
same message name and arguments.

Example 2.14. Instructions — FORWARD

::method substr
forward to (self~string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Example 2.15. Instructions — FORWARD

::method unknown
use arg msg, args
/* Forward to the string value */
/* passing along the arguments */
forward to (self~string) message (msg) arguments (args)

56

CHG GUARD

You can use FORWARD in a method to forward a message to a superclass's methods, passing the
same arguments. This is very common usage in object INIT methods.

Example 2.16. Instructions — FORWARD

::class savings subclass account

::method init
expose type penalty
forward class (super) continue /* Send to the superclass */
type = "Savings" /* Now complete initialization */
penalty = "1% for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with the
next instruction, rather than exiting the Savings class INIT method.

2.9. *CHG* GUARD

m & WHEN expression

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents
other methods that also require exclusive use of the same variable pool from running on the same
object. If another method has already acquired exclusive access, the GUARD instruction causes the
issuing method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive
use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression evaluates to . true. If the
expression evaluates to . false, GUARD waits until another method assigns or drops an object
variable (that is, a variable named on an EXPOSE instruction) used in the WHEN expression. When
an object variable changes, GUARD reevaluates the WHEN expression. If the expression evaluates
to . true, the method resumes running. If the expression evaluates to . false, GUARD resumes
waiting.

The condition expression after a WHEN can also be a list of expressions which is evaluated left-to-
right. Each expression must evaluate to either . false or . true. Evaluation will stop with the first
.false result and . false will be returned as the condition result. If all of the expressions evaluate to
. true, then the condition result is also . true.

Example 2.17. Instructions — GUARD

::method c
expose y
if y>0 then
return 1
else
return 0
::method d

57

expose z
guard on when z>0

self~c /* Reevaluated when Z changes */
say "Method D"

If you specify WHEN and the method has exclusive access to the object's variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive
access is reacquired before the WHEN expression is evaluated. Once the WHEN expression
evaluates to . true, exclusive access is either retained (for GUARD ON WHEN) or released (for
GUARD OFF WHEN), and the method resumes running.

If the condition expression cannot be met, GUARD ON WHEN puts the program in a continuous
wait condition. This can occur in particular when several activities run concurrently. See
Section 12.4.3, “Guarded Methods” for more information.

2.10. IF

instruction |—---

expression

@ " instruction

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in @ or 1.

The instruction after the THEN is processed only if the result is . true. If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is . false.

Example:

if answer="YES" then say "OK!"
else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

58

INTERPRET

The expression may also be a list of expressions separated by

Example 2.18. Instructions — IF

If answer = "YES" Then
If name = "FRED" Then
say "OK, Fred."
Else
nop
Else
say "Why not?"

. The list of expressions is evaluated

left-to-right. Each subexpression must evaluate to either @ or 1. Evaluation will stop with the first @
result and 0 will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

The example above is not the same as using the following

Example 2.19. Instructions — IF

If answer~datatype('w'), answer//2 = 0 Then

say answer "is even"
Else
say answer "is odd"

Example 2.20. Instructions — IF

If answer~datatype('w') & answer//2 = 0 Then

say answer "is even"
Else
say answer "is odd"

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first . false result, so the "answer//2" term will not be evaluated if the datatype test returns 0.

Notes:

1.

The instruction can be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, LOOP, SELECT, or the IF instruction
itself. A null clause is not an instruction, so putting an extra semicolon (or label) after THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is

provided for this purpose.

The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the IF clause to be

ended by THEN, without a semicolon (;) being required.

2.11. INTERPRET

PP—(INTERPRET expression >

INTERPRET processes instructions that have been built dynamically by evaluating expression.

59

INTERPRET

The expression is evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such
as DO...END and SELECT...END must be complete. For example, a string of instructions being
interpreted cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive loop) unless

it also contains the whole repetitive DO...END or LOOP...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example 2.21. Instructions — INTERPRET

/* INTERPRET example */

data="FRED"

interpret data "= 4"

/* Builds the string "FRED = 4" and

/* Processes: FRED = 4;

/* Thus the variable FRED is set to "4"

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"
interpret data /* Displays:
/* Hello there!
/* Hello there!
/* Hello there!

Notes:

1.

Labels within the interpreted string are not permanent and are, therefore, an error.

*/
*/
*/

*/
*/
*/
*/

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be helpful in interpreting the

results you get.

Example 2.22. Instructions — INTERPRET

/* Here is a small Rexx program. */
Trace Int

name="Kitty"

indirect="name"

interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

3 *-* name="Kitty"
>L> "Kitty"
>>> "Kitty"

4 *-* indirect="name"
>L> "name"
>>> "name"

5 *-* interpret 'say "Hello"' indirect'"!"'

>L> '"say "Hello""
>V> INDIRECT => "name"

>0> "o ||Say "Hello" name"
SL> wipnn

>0> nn s "Say "Hello" name"!""
>>> "Say "Hello" name"!""

5 *-* say "Hello" name"!"
>L> "Hello"
>V> NAME => "Kitty"

60

ITERATE

>0> " " => "Hello Kitty"
SL> " 1 "
>0> "" => "Hello Kitty!"

>>> "Hello Kitty!"
Hello Kitty!

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and
another literal string. The resulting pure character string is then interpreted, just as though it
were actually part of the original program. Because it is a new clause, it is traced as such (the
second * - * trace flag under line 5) and is then processed. Again a literal string is concatenated
to the value of a variable (NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function instead of the INTERPRET instruction. The
following line could, therefore, have replaced line 5 in the previous example:

Example 2.23. Instructions — INTERPRET

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are
to be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive within an INTERPRET instruction.

2.12. ITERATE

ITERATE

name

ITERATE alters the flow within a repetitive loop (that is, any DO construct other than that with a simple
DO or a LOOP instruction).

Execution of the group of instructions stops, and control is passed to the DO or LOOP instruction just
as though the END clause had been encountered. The control variable, if any, is incremented and
tested, as usual, and the group of instructions is processed again, unless the DO or LOOP instruction
ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE continues with the
current repetitive loop. If name is specified, it must be the name of the control variable or the LABEL
name of a currently active loop, which can be the innermost, and this is the loop that is stepped. Any
active loops inside the one selected for iteration are ended (as though by a LEAVE instruction).

Example 2.24. Instructions — ITERATE

loop label MyLabelName i=1 to 4 /* label set to 'MYLABELNAME' */
if i=2 then iterate
say i

end myLabelName

/* Displays the numbers:
1

61

LEAVE

*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO
or LOOP clause in all respects except the case. No substitution for compound variables is carried
out when the comparison is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used
to continue with an inactive loop.

3. If more than one active loop uses the same name, ITERATE selects the innermost loop.

2.13. LEAVE

LEAVE

name

LEAVE causes an immediate exit from one or more repetitive loops or block instruction (simple DO or
SELECT).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable or LABEL name of a
currently active LOOP, DO, or SELECT, which can be the innermost, and that block, and any active
block inside it, are then ended. Control then passes to the clause following the END that matches the
instruction of the selected block.

Example 2.25. Instructions — LEAVE

max=5
do label myDoBlock /* define a label 'MYDOBLOCK' */
loop i=1 to max /* label defaults to control variable 'I' */
if i = 2 then iterate i
if i = 4 then leave myDoBlock
say 1i
end i
end myDoBlock
say 'after looping' i 'times'
/* Displays the following
1
3
after looping 4 times
*/

Notes:

62

LOOP

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO,
LOOP, or SELECT clause in all respects except the case. No substitution for compound variables
is carried out when the comparison is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive block.

3. If more than one active block uses the same control variable, LEAVE selects the innermost block.

2.14. LOOP

DO
L(LABEL name L(COUNTER ctr 1—< REPETITOR - fragment >—f
LOOP

1—< CONDITIONAL - fragment >—j

instruction

END

name

REPETITOR:

»p—~—{ controll = expri <
exprt exprb L(FOR)— exprf
N— control2 OVER)— collection L(o

FOR exprf

WITH INDEX index OVER supplier o
L(FOR

exprf
ITEM item
\—' FOREVER ; o
~— exprr /
CONDITIONAL:
WHILE exprw
UNTIL expru

63

NOP

LOOP groups instructions and processes them repetitively.

LOOP behaves identically to DO, except for the simple LOOP ... END case, which is equivalent to DO
FOREVER ... END.

For details refer to Section 2.4, “*CHG* DO”.
2.15. NOP

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE
clause.

Example 2.26. Instructions — NOP

Select
when a=c then nop /* Do nothing */
when a>c then say "A > C"
otherwise say "A < C"

end

@

Putting an extra semicolon instead of the NOP would merely insert a null clause, which would

be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and
is, therefore, a valid target for the THEN clause.

2.16. NUMERIC

NUMERIC DIGITS) J 4

\—' FORM J

expressionl

SCIENTIFIC

< ~— expression2

expression3

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Chapter 10, Numbers and Arithmetic.

64

OPTIONS

NUMERIC DIGITS
controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expressionl1, the precision defaults to 9 digits, but can be overridden on a source-file basis
using the *CHG* ::OPTIONS directive. Otherwise, the character string value result of expression1
must evaluate to a positive whole number and must be larger than the current NUMERIC FUZZ
setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function.

NUMERIC FORM
controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before
the decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3). The
default is SCIENTIFIC, but can be overridden on a source-file basis using the *CHG* ::OPTIONS
directive. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly, or it is
taken from the character string result of evaluating the expression (expression?2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function.

NUMERIC FUzZ
controls how many digits, at full precision, are ignored during a numeric comparison operation. If
you omit expression3, the default is 0 digits, but can be overridden on a source-file basis using
the *CHG* ::OPTIONS directive. Otherwise, the character string value result of expression3
must evaluate to O or a positive whole number rounded, if necessary, according to the current
NUMERIC DIGITS setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function.

@

The three numeric settings are automatically saved across internal subroutine and function calls.
See the CALL instruction for more details.

2.17. OPTIONS

bb—(OPTIONS expression

The OPTIONS instruction is used to pass special requests to the language processor.

The expression is evaluated, and individual words in the result that are meaningful to the language
processor will be obeyed. Options might control how the interpreter optimizes code, enforces

65

PARSE

standards, enables implementation-dependent features, etc. Unrecognized words in the result are
ignored, since they are assumed to be instructions for a different language processor.

Open Object Rexx does not recognize any option keywords.

2.18. PARSE

J

~—| ARG _
UPPER CASELESS
' ' LINEIN /

SOURCE o

VALUE L WITH '—/

expression

VAR)— name o

VERSION -

L template_list

@

You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

U

T

i

PARSE assigns data from various sources to one or more variables according to the rules of parsing.
(See Chapter 9, Parsing.)

If you specify UPPER, the strings to be parsed are translated to uppercase before parsing. If you
specify LOWER, the strings are translated to lowercase. Otherwise no translation takes place.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See Section 9.8.1,
“Parsing Several Strings” for information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE

66

PARSE

VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not
have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG

parses the strings passed to a program, routine, or method as input arguments. See the ARG
instruction for details and examples.

@

Parsing uses the string values of the argument objects. The USE ARG instruction provides
direct access to argument objects. You can also retrieve or check the argument objects to a
Rexx program, routine, or method with the ARG built-in function.

PARSE LINEIN

parses the next line of the default input stream. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

)b—(PARSE HVALUE H LINEIN() H WITH

template_list

If no line is available, program execution usually pauses until a line is complete. Use PARSE

LINEIN only when direct access to the character input stream is necessary. Use the PULL or

PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.
PARSE LINEIN will not pull lines from the external data queue.

To check if any lines are available in the default input stream, use the LINES built-in function.

PARSE PULL

parses the next string of the external data queue. If the external data queue is empty, PARSE
PULL reads a line of the default input stream (the user's terminal), and the program pauses, if
necessary, until a line is complete. You can add data to the head or tail of the queue by using

the PUSH and QUEUE instructions, respectively. You can find the number of lines currently in
the queue with the QUEUED buiilt-in function. The queue remains active as long as the language
processor is active. Other programs in the system can alter the queue and use it to communicate
with programs written in Rexx. See also the PULL instruction.

@roe

PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, .INPUT (typically, the keyboard).

PARSE SOURCE

parses data describing the source of the program running. The language processor returns a
string that does not change while the program is running.

The source string contains operating system name, followed by either COMMAND, FUNCTION,
SUBROUTINE, or METHOD, or REQUIRES, depending on whether the program was called as a

67

PROCEDURE

host command, or from a function call in an expression, or using the CALL instruction, or as a
method of an object, or from a ::REQUIRES directive to run the prolog code. These two tokens are
followed by the complete path specification of the program file.

The string parsed might, therefore, look like this:

WindowsNT COMMAND C:\MYDIR\RexxTRY.CMD

or

LINUX COMMAND /opt/orexx/bin/rexxtry.cmd

PARSE VALUE
parses the data, a character string, that is the result of evaluating expression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol within expression.

Thus, for example:

PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the character string value of the variable name. The name must be a symbol that is valid
as a variable name, which means it cannot start with a period or a digit. Note that the variable
name is not changed unless it appears in the template, so that, for example:

PARSE VAR string wordl string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string.

PARSE UPPER VAR string wordl string

also translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:
* The string REXX-00Rexx_5.0.0(MT)_64-bit, if using the ooRexx interpreter at version 5,
release 0, modification 0, and compiled for 64-bit addressing mode.

» The language level description, for example 6 .05 for ooRexx 5.0, or 6 .04 for ooRexx 4.2.

» Three tokens that describe the language processor release date in the same format as the
default for the *CHG* DATE built-in function, for example, "1 Sep 2016".

2.19. PROCEDURE

68

PROCEDURE

bb—(PROCEDURE EXPOSE name

(name)

PROCEDURE, within an internal routine (subroutine or function), protects the caller's variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variable environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller's) copy
of the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case
the variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it
must be the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the
values of existing variables are accessible, and any changes are persistent even on RETURN from
the routine. If the name is not enclosed in parentheses, it identifies a variable you want to expose
and must be a symbol that is a valid variable name, separated from any other name with one or more
whitespace characters.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to
specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the

caller's variables can be made accessible and can be changed, or new variables can be created. All
these changes are visible to the caller upon RETURN from the routine.

Example 2.27. Instructions — PROCEDURE

/* This is the main Rexx program */

j=1; z.1="a"

call toft

say j km /* Displays "1 7 M" */

exit

/* This is a subroutine */

toft: procedure expose j k z.j
say j k z.j /* Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed */
return

Note that if Z.J in the EXPOSE list is placed before J, the caller's value of J is not visible, so Z.1 is
not exposed.

The variables in a subsidiary list are also exposed from left to right.

69

PROCEDURE

Example 2.28. Instructions — PROCEDURE

/* This is the main Rexx program */
j=1;k=6;m=9

a :Ilj k mll

call test

exit

/* This is a subroutine */

test: procedure expose (a) /* Exposes A, J, K, and M */
say a j km /* Displays "j km 1 6 9" */
return

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example 2.29. Instructions — PROCEDURE

/* This is the main Rexx program */
c=11; d=12; e=13

Showlist="c d" /* but not E */

call Playvars

say c d e f /* Displays "11 New 13 9" */

exit

/* This is a subroutine */

Playvars: procedure expose (showlist) f
say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),"New") /* Displays "12" and sets new value */
say value(word(showlist,?2)) /* Displays "New" */
e=8 /* E is not exposed */
=9 /* F was explicitly exposed */
return

Specifying a stem as name exposes this stem and all possible compound variables whose names
begin with that stem.

Example 2.30. Instructions — PROCEDURE

/* This is the main Rexx program */
a.=11; i=13; j=15

i=1i+1

C.5 = "FRED"

call lucky7

say a. a.1 i j c. c.5

say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.

/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1="7" /* This sets A.1 in the caller-'s */
/* environment, even if it did not */
/* previously exist. */
return

70

PULL

@e

Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

See the CALL instruction and Chapter 7, Functions for details and examples of how routines are
called.

2.20. PULL

PULL
template_list

PULL reads a string from the head of the external data queue or, if the external data queue is empty,
from the standard input stream (typically the keyboard). (See Chapter 14, Input and Output Streams
for a discussion of Rexx input and output.) It is a short form of the following instruction:

»—(PARSE)—(UPPER)—(PULL)ﬁN
template_list

The current head of the queue is read as one string. Without a template_list specified, no further
action is taken and the string is thus effectively discarded. The template_list can be a single template
or list of templates separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z to uppercase A-2)
and then parsed into variables according to the rules described in Chapter 9, Parsing. Use the PARSE
PULL instruction if you do not desire uppercase translation.

@

If the current data queue is empty, PULL reads from the standard input (typically, the keyboard). If
there is a PULL from the standard input, the program waits for keyboard input with no prompt.

Example:

Say "Do you want to erase the file? Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user
enters.

71

PUSH

If the external data queue is empty, a line is read from the default input stream and the program
pauses, if necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been
processed. For details see PARSE LINEIN

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.21. PUSH

PUSH

expression

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) into the
external data queue. (See Chapter 14, Input and Output Streams for a discussion of Rexx input and
output.)

If you do not specify expression, a null string is stacked.

Example 2.31. Instructions — PUSH

a="Fred"
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.22. QUEUE

QUEUE

expression

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (See Chapter 14, Input and Output Streams for a discussion of Rexx
input and output.)

If you do not specify expression, a null string is queued.

Example 2.32. Instructions — QUEUE

a="Toft"
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.23. RAISE

72

RAISE

»—(RAISEHERROR)— errorcode —,—< OPTIONS - fragment)—N

FAILU RE)— failurecode

=
2
-

\

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

i

t

SYNTAX number

& L

USER usercondition

PROPAGATE

F

OPTIONS:

[
>

ADDITIONAL L(DESCRIPTION exprd

EXIT '
J
expre

RETURN

exprr

e

You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in any
order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). See Chapter 11, Conditions and Condition Traps for details of
the actions taken when conditions are raised. The RAISE instruction can raise all conditions that can
be trapped.

If the ERROR or FAILURE condition is raised, you must supply the associated return code as
errorcode or failurecode, respectively. These can be literal strings, constant symbols, or expressions

73

RAISE

enclosed in parentheses. If you specify an expression enclosed in parentheses, a subexpression, the
language processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number as number. This
error number can be either a Rexx major error code or a Rexx detailed error code in the form nn.nnn.
The number can be a literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor evaluates the expression
to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition name as usercondition,
which must be a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluates expra to produce an object
that supplies additional object information associated with the condition. The expra can be a literal
string, a constant symbol, or an expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a single-dimensional
Array.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce an array object that
supplies additional object information associated with the condition. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information as an array of values. It is an error to use both the ARRAY option and the ADDITIONAL
option on the same RAISE instruction.

The content of expra or expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a constant symbol, or

an expression enclosed in parentheses. If you specify an expression enclosed in parentheses,

the language processor evaluates the expression to obtain its character string value. This is the
description associated with the condition. The "D" option of the CONDITION built-in function and the
DESCRIPTION entry of the condition object return this string.

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive
string.

If you specify the RETURN or EXIT option, the language processor evaluates the expression exprr

or expre, respectively, to produce a result object that is passed back to the caller or sender as if

it were a RETURN or EXIT result. The expre or exprr is a literal string, a constant symbol, or an
expression enclosed in parentheses. If you specify an expression enclosed in parentheses, the
language processor evaluates the expression to obtain its character string value. If you do not specify
exprr or expre, no result is passed back to the caller or sender. In either case, the effect is the same
as that of the RETURN or EXIT instruction. The EXIT option is the default. Following the return or
exit, the appropriate action is taken in the caller or sender (see Section 11.1, “Action Taken when a
Condition Is Not Trapped”). If specified, the result value can be obtained from the RESULT entry of the
condition object.

Example 2.33. Instructions — RAISE

raise syntax 40 /* Raises syntax error 40 */

74

REPLY

raise syntax 40.12 array (1, number) /*

raise syntax (errnum)

raise user badvalue

/*
/*
/*
/*

Raises syntax error 40,

subcode 12

Passing two substitution values

Uses the value of the variable ERRNUM

as the syntax error number
Raises user condition BADVALUE

*/
*/
*/
*/
*/

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again
in the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values

for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example 2.34. Instructions — RAISE

signal on syntax
a leyz n
c

exit
syntax:
raise propagate

2.24. REPLY

REPLY

expression

a+2 /* Raises the SYNTAX condition

*/

/* Propagates SYNTAX information to caller */

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control,
and possibly a result, to its caller to the point from which the message was sent; meanwhile, the

method issuing REPLY continues running on a newly created thread.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back. If

you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues

an EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example 2.35. Instructions — REPLY

reply 42 /* Returns control and a result
/* Can run in parallel with sender */

call tidyup
return

Notes:

1. You can use REPLY only in a method.

2. A method can execute only one REPLY instruction.

*/

3. When the method issuing the REPLY instruction is the only active method on the current thread
with exclusive access to the object's variable pool, the method retains exclusive access on the
new thread. When other methods on the thread also have access, the method issuing the REPLY

75

RETURN

releases its access and reacquires the access on the new thread. This might force the method to
wait until the original activity has released its access.

See Chapter 12, Concurrency for a complete description of concurrency.

2.25. RETURN

RETURN

expression

RETURN returns control, and possibly a result, from a Rexx program, method, or routine to the point
of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run.

If called as a routine, expression (if any) is evaluated, control is passed back to the caller, and the
Rexx special variable RESULT is set to the value of expression. If you omit expression, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at the time of the
CALL (for example, tracing and addresses) are also restored.

If a function call is active, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point
where the function was called. See Chapter 7, Functions for more details.

If a method is processed, the language processor evaluates expression (if any) and returns control to
the point from which the method's activating message was sent. If called as a term of an expression,
expression is required. If called as a message instruction, expression is optional and is assigned to the
Rexx special variable RESULT if a return expression is specified. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result expression.

If a PROCEDURE instruction was processed within an internal subroutine or internal function, all
variables of the current generation are dropped (and those of the previous generation are exposed)
after expression is evaluated and before the result is used or assigned to RESULT.

If the RETURN statement causes the program to return to the operating system on a Unix/Linux
system the value returned is limited to a numerical value between 0 and 255 (an unsigned byte).
If no expression is supplied then the default value returned to the operating system is zero.

2.26. SAY

SAY

expression

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output. The string value of the expression result is written to the default

76

CHG SELECT

character output stream. The resulting string can be of any length. If you omit expression, the null
string is written.

The SAY instruction is a shorter form of the following instruction:

PP—(CALL)—(LINEOUT ’

expression

except that:
» SAY does not affect the special variable RESULT.

« If you use SAY and omit expression, a null string is used.

e CALL LINEOUT can raise NOTREADY:; SAY will not.

Example 2.36. Instructions — SAY

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream ((OUTPUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.27. *CHG* SELECT

SELECT >«
> (J
LABEL)— name CASE)— case_expression

WHEN instruction

expression

instruction

»T OTHERWISE ; S > >«
END

name

SELECT conditionally calls one of several alternative instructions.

77

CHG SELECT

Evaluation of the expression list after a WHEN is as follows:

SELECT without CASE
The list of expressions after a WHEN is evaluated left-to-right. Each expression must evaluate
to either . false or . true. Evaluation will stop with the first . false result and . false will be
returned as the condition result.

If all of the expressions evaluate to . true, then the condition result is also . true.

SELECT CASE
The case_expression is evaluated only once, before the first WHEN instruction is processed. The
list of expressions after a WHEN is evaluated left-to-right. Each expression is compared to the
result of case_expression using "==". Evaluation will stop with the first . true result and . true
will be returned as the condition result.

If all comparisons evaluate to . false, then the condition result is also . false.

If the result from above is . true, the instruction following the associated THEN (which can be a
complex instruction such as IF, DO, LOOP, or SELECT) is processed and control is then passed to the
END. If the resultis . false, control is passed to the next WHEN clause.

If none of the WHEN results are . true, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example 2.37. Instructions — SELECT

balance=100
check=50
balance = balance - check
Select
when balance > 0 then
say "Congratulations! You still have" balance "dollars left."
when balance = 0 then do
say "Warning, Balance is now zero! STOP all spending."
say "You cut it close this month! Hope you do not have any"
say '"checks left outstanding."
end
Otherwise do
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."
end
end /* Select */

Example 2.38. Instructions — SELECT

select
when answer~datatype('w'), answer//2 = @ Then
say answer "is even"
when answer~datatype('w'), answer//2 = 1 Then
say answer "is odd"
otherwise
say answer "is not a number"
end

The example above is not the same as using the following

78

SIGNAL

select
when answer~datatype('w') & answer//2 = 0 Then
say answer "is even"
when answer~datatype('w') & answer//2 = 1 Then
say answer "is odd"
otherwise
say answer "is not a number"
end

The logical "&" operator will evaluate both terms of the operation, so the term "answer//2" will result
in a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop
with the first . false result, so the "answer//2" term will not be evaluated if the datatype test returns
.false.

Example 2.39. Instructions — SELECT CASE

select case random(6)
when 1 then say "bad luck!"
when 5, 6 then say '"great!"
otherwise say "try again"
end

Notes:

1. The instruction can be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, LOOP, IF, or the SELECT instruction
itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the WHEN clause to be
ended by the THEN without a semicolon (;).

2.28. SIGNAL

bb—(SIGNAL labelname ﬁw
expression
VALUE

79

SIGNAL

~

SIGNAL ON ANY)
’ J
NAME trapname

ERROR

i

|

HALT

g

LOSTDIGITS
NOMETHOD
NOSTRING

NOTREADY

SYNTAX

{ USER usercondition
»—(SIGNAL)—(OFFHANY)—,-N

ERROR

i

L

I

HALT

U

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

i

SYNTAX

L

USER usercondition

s

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

To change the flow of control, a label name is derived from labelname or taken from the character
string result of evaluating the expression after VALUE. The labelname you specify must be a literal
string or symbol that is taken as a constant. If you specify a symbol for labelname, the search looks
for a label with uppercase characters. If you specify a literal string, the search uses the literal string
directly. You can locate label names with lowercase letters only if you specify the label as a literal
string with the same case. Similarly, for SIGNAL VALUE, the lettercase of labelname must match

80

TRACE

exactly. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character or parenthesis. All
active pending DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended
and cannot be resumed. Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname and usercondition are single symbols, which are taken as constants. The trapname is
a string or symbol taken as a constant.

Example 2.40. Instructions — SIGNAL

Signal fred; /* Transfer control to label FRED below */

Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of
a transfer of control to a label.

2.29. TRACE

DD—'TRACEi\(j\ R

Intermediates

freenene

number o

string

symbol

{VALUE)— expression p———'

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing
of a Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions

81

Trace Alphabetic Character (Word) Options

of clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise
than that of other Rexx instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the language processor while
the program is running.)

@e

TRACE cannot be used in the Rexx macrospace.

If specified, the number must be a whole number.
The string or expression evaluates to:

e A numeric option
» One of the valid prefix or alphabetic character (word) options
e Null

The symbol is taken as a constant and is therefore:

» A numeric option
» One of the valid prefix or alphabetic character (word) options

The option that follows TRACE or the character string that is the result of evaluating expression
determines the tracing action. You can omit the subkeyword VALUE if expression does not begin
with a symbol or a literal string, that is, if it starts with a special character, such as an operator or
parenthesis.

2.29.1. Trace Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an error or failure, tracing also
displays the return code from the command.

Error
Traces any command resulting in an error or failure after execution, together with the return code
from the command.

Failure
Traces any command resulting in a failure after execution, together with the return code from the
command. This is the same as the Normal option.

82

Prefix Option

Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels
Traces method and routine invocations, internal subroutine calls, transfers of control because of
the SIGNAL instruction, and labels passed during program execution. This is especially useful with
debug mode, when the language processor pauses after each invocation or call.

Normal
Traces any failing command after execution, together with the return code from the command.
This is the default setting, if not overridden using the *CHG* ::OPTIONS directive.

For the default Windows command processor, an attempt to enter an unknown command raises

a FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

off
Traces nothing and resets the special prefix option (described later) to OFF.

Results
Traces all clauses before execution. Displays the final results (in contrast with Intermediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

2.29.2. Prefix Option

The prefix ? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening whitespace).

The prefix ? controls interactive debugging. During normal execution, a TRACE option with a prefix
of ? causes interactive debugging to be switched on. (See Chapter 15, Debugging Aids for full details
of this facility.) When interactive debugging is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error, that is, a nonzero return code or explicit setting of the
error condition by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out
of interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

» Entering TRACE O turns off all tracing.

» Entering TRACE with no options restores the defaults—it turns off interactive debugging but
continues tracing with TRACE Normal (which traces any failing command after execution).

» Entering TRACE ? turns off interactive debugging and continues tracing with the current option.

» Entering a TRACE instruction with a ? prefix before the option turns off interactive debugging and
continues tracing with the new option.

83

Numeric Options

Using the ? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, use CALL TRACE "?" to turn off interactive debugging.

2.29.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (See Chapter 15, Debugging Aids for further information.) However, if the option is a negative
whole number (or an expression that evaluates to a negative whole number), all tracing, including
debug pauses, is temporarily inhibited for the specified number of clauses. For example, TRACE -100
means that the next 100 clauses that would usually be traced are not displayed. After that, tracing
resumes as before.

2.29.4. Tracing Tips

« When a loop is traced, the DO clause itself is traced on every iteration of the loop.
» You can retrieve the trace actions currently in effect by using the TRACE built-in function.

» The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

» Trace actions are automatically saved across subroutine, function, and method calls. See
Section 2.3, “CALL” for more detalils.

One of the most common traces you will use is:

Example 2.41. Instructions — TRACE

TRACE 7R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

2.29.5. The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth
of nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing whitespace characters are apparent. Any control
codes in the data encoding (ASCII values less than "20"x) are replaced by a question mark (?) to
avoid screen interference. Results other than strings appear in the string representation obtained by
sending them a STRING message. The resulting string is enclosed in parentheses. The line number
in the program precedes the first clause traced on any line. All lines displayed during tracing have a
three-character prefix to identify the type of data being traced. These can be:

*_ %

Identifies the source of a single clause, that is, the data actually in the program.

84

The Format of Trace Output

+++

Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>I>
Identifies an entry to a routine or method. This trace entry will only appear if tracing is enabled
using the ::OPTIONS directive using TRACE A, TRACE R, TRACE | or TRACE L.

>SK>
Identifies the result of a subkeyword value in a keyword instruction, like the TO subkeyword of a
DO or LOOP instruction, or the DIGITS subkeyword in a NUMERIC instruction.

>>>

Identifies the result of an expression (for TRACE R) or the value returned from a subroutine call, or
a value evaluated by execution of a DO loop.

>=>
Identifies a variable assignment or a message assignment result. The trace message includes
both the name of the assignment target and the assigned value. Assignment trace lines are
displayed by assignment instructions, variable assigned via PARSE, ARG, PULL, or USE ARG, as
well as control variable updates for DO and LOOP instructions.

>.>
Identifies the value assigned to a placeholder during parsing (see Section 9.1.2, “The Period as a
Placeholder™).

The following prefixes are used only if TRACE Intermediates is in effect:

>A>
Identifies a value used as a function, subroutine, or message argument.

>C>
The data traced is the original name of the compound variable and the name of a compound
variable, after the name has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the variable in uppercase
characters.

SE>
The data traced is the name and value of an environment symbol.

SF>
The data traced is the name and result of a function call.

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

>M>
The data traced is the name and result of an object message.

>N>
The data traced is the name and result of a namespace-prefixed symbol.

>0>
The data traced is the name and result of an operation on two terms.

85

CHG USE

>P>
The data traced is the name and result of a prefix operation.

SV>
The data traced is the name and contents of a variable.

@e

The characters => indicate the value of a variable or the result of an operation.

The characters <= indicate a value assignment. The name to the left of the marker is the
assignment topic. The data to the right of the marker is the assigned value.

The character ? could indicate a non-printable character in the output.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.30. *CHG* USE

The USE instruction can be used to
* retrieve the argument objects by using USE ARG or USE STRICT ARG, or to

* define local variables in a method by using USE LOCAL.

2.30.1. *CHG* USE ARG, USE STRICT ARG

’

D A -
STRICT name <

expr

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables, variable references, or message term assignments.

Each name must be a valid variable name, a variable reference term, or an assignment message
term. The names are assigned from left to right. For each name you specify, the language processor
assigns it a corresponding argument from the program, routine, function, or method call. If there is no
corresponding argument, name is assigned the value of expr. If = expr is not specified for the given
argument, the variable name is dropped. If the assignment target is a variable reference term, the
corresponding argument must never be omitted. If the assignment target is a message term, no action
is taken for omitted arguments.

A USE ARG instruction can be processed repeatedly and it always accesses the same current
argument data.

86

CHG USE ARG, USE STRICT ARG

If = expr is specified for an argument, the expression is evaluated to provide a default value for an
argument when the corresponding argument does not exist. The default expr must be a literal string,
a constant symbol, or an expression enclosed in parentheses. No default value is allowed for variable
reference terms.

The STRICT option imposes additional constraints on argument processing. The number of arguments
must match the number of names, otherwise an error is raised. An argument is considered optional if
expr has been specified for the argument.

An ellipsis (. . .) can be specified after the last variable in a USE STRICT ARG statement to indicate
that more arguments may follow. This allows defining a minimum number of arguments that must

be supplied or for which there are default values defined, which may optionally be followed by any
additional arguments.

Example 2.42. Instructions — USE

/* USE Example */
/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, numl, num2

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */

stem.1 = "Value"

array = .array~of("Item")

say "Before subroutine:" stem.l1 array[1] /* Shows "Value Item" */
Call Change_First stem. , array

say "After subroutine:" stem.1 array[1] /* Shows "NewValue NewItem" */
Exit

Change_First: Procedure
Use Arg substem., subarray

substem.1 = "NewValue"
subarray[1] = "NewItem"
Return
/* USE STRICT Example */

/* FRED("Ogof X",1) calls function */
Fred: use strict arg string, numl, num2=4

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "4" */

In the above example, a call to the function FRED may have either 2 or 3 arguments. The STRICT
keyword on the USE instruction will raise a syntax error for any other combination of arguments.

Example 2.43. Instructions — USE

call test "one"
call test "one", "two"

call test "one", "two", "three"
call test "one", , "three", "four", "five"
exit

87

NEW USE LOCAL

test: procedure /* a minimum of one argument must be supplied */
use strict arg vi, v2="zwei",
say "There are ["arg()"] argument(s); vi,v2=["v1",6 "v2"]"
do i=3 to arg()
say " arg #" i"=["arg(i)"]"
end
say "--"
return

Output:

There are [1] argument(s); vi1,v2=[one,zwei]

There are [2] argument(s); vi,v2=[one, two]

There are [3] argument(s); vi1,v2=[one, two]
arg # 3=[three]

There are [5] argument(s); vil,v2=[one,zwei]
arg # 3=[three]

arg # 4=[four]

arg # 5=[five]

The assignment targets may be any term that can be on the left side of an assignment statement.

Example 2.44. Instructions — USE

expose myArray myDirectory
use arg myArray[1], myDirectory~name

would be equivalent to

myArray[1] = arg(1)
myDirectory~name = arg(2)

You can retrieve or check the arguments by using the ARG built-in function. The ARG and PARSE
ARG instructions are alternative ways of retrieving arguments. ARG and PARSE ARG access the
string values of arguments. USE ARG performs a direct, one-to-one assignment of arguments. This
is preferable when you need direct access to an argument, without translation or parsing. USE ARG
also allows access to both string and non-string argument objects; ARG and PARSE ARG convert the
arguments to string values before parsing.

2.30.2. *NEW* USE LOCAL

name

USE LOCAL

USE LOCAL defines local variables in a method.

Generally object variables must be specified in a method using EXPOSE, while all other variables
used in the method will become local variables. In contrast to this, USE LOCAL allows to explicitly
declare local variables, while all other variables not listed on the USE LOCAL instruction will
automatically become object variables.

88

NEW USE LOCAL

Each name must be a valid variable name. if no name is specified, all variables will become object
variables.

If a USE LOCAL instruction is present, it must be the first instruction of the method.

Note that USE LOCAL will always keep Rexx special variables RC, RESULT, SIGL, SELF, and SUPER
as local variables.

Example 2.45. Instructions — USE LOCAL

::method init
USE LOCAL x y z -- only x, y, and z are local
-- all other become object variables

i:method init
use local -- any variable is an object variable

89

Chapter 3.

Directives

A Rexx program contains one or more executable code units. Directive instructions separate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first
directive instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program's classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

Supported directives are *NEW* ::ANNOTATE, *CHG* ::ATTRIBUTE, ::CLASS, *CHG* ::CONSTANT,
METHOD, *CHG* ::OPTIONS, ::REQUIRES, *NEW* ::RESOURCE, and ::ROUTINE.

A directive requires a semicolon (;) as a terminating delimiter unless the end of a line implies it.

3.1. *NEW* ::ANNOTATE

The ::ANNOTATE directive creates annotations to the package, its classes, methods, attributes,
constants, or routines.

bb—(::ANNOTATEHATTRIBUTE)— attribute ,1 (name value

{ CLASS class f|——

{ CONSTANT constant

L(METHOD method |——

{ROUTINE)— routine |——

The ::ANNOTATE directive can add metadata information (called "annotations") in the form of name/
value pairs to the current package, or any of its classes, methods, attributes, constants, and routines.

An annotation attribute, class, constant, method, and routine must be a valid class name, constant
name, method name, or routine name defined with its respective directive in the same source
program.

The annotation name must be a symbol that is taken as a constant; a literal string is not allowed. The
annotation value must be a single literal string, a symbol, or a valid number, optionally preceded by a
plus or minus sign, that is taken as a constant.

Example 3.1. ANNOTATE directive

::rannotate package author "B. Fox" -- annotate current package
::class command

;:attribute address
::rattribute command

::method init

90

CHG :ATTRIBUTE

use strict arg command, address = ""
self~command = command
self~address = address

:rannotate class command languagelevel "6.05" -- annotate class COMMAND
::annotate attribute command os "unix windows mac" -- annotate attribute COMMAND
::rannotate method init version "100" maxParms 2 -- annotate method INIT

Notes:

1. Each ::ANNOTATE directive, except for ::ANNOTATE PACKAGE, must be placed after its
respective ::ATTRIBUTE, ::CLASS, ::CONSTANT, ::METHOD, or ::ROUTINE directive in the
sourcefile.

2. When annotating non-floating attributes, constants, or methods, the ::ANNOTATE directive must
precede any following ::CLASS directive.

3. An annotation for an attribute, a method, or a routine should be placed after any attribute/method/
routine code body, as ::ANNOTATE, like any other directive, will end the code body.

4. A subclass of an annotated class will not inherit any annotations of its superclass or mixinclass.

5. A copy of an annotated method, package, or routine object will keep any existing annotations.

6. The ::ANNOTATE directive cannot be used to annotate packages, classes, methods, attributes,
constants, and routines which are provided by Rexx or have been made available through
a ::REQUIRES directive.

7. Currently Rexx does not use or predefine any specific annotation names.

8. To query an annotation name/value pair, to get a list of all attached annotation name/value pairs,

or to add new or change existing annotations, use

 the Package methods *NEW* annotation and *NEW* annotations,
» the Class methods *NEW* annotation and *NEW* annotations,

» the Method methods *NEW* annotation and *NEW?* annotations, or
» the Routine methods *NEW* annotation and *NEW* annotations.

3.2. *CHG* ::ATTRIBUTE

The ::ATTRIBUTE directive creates attribute methods and defines the method properties.

»—(::ATTRIBUTE)— name

"

SET

. GUARDED '
UNGUARDED

PRIVATE

Il

ABSTRACT

DELEGATE delegatename

. UNPROTECTED '
PROTECTED

EXTERNAL spec

91

CHG :ATTRIBUTE

The ::ATTRIBUTE directive creates accessor methods for object instance variables. An accessor
method allows an object instance variable to be retrieved or assigned a value. ::ATTRIBUTE can
create an attribute getter method, a setter method, or the getter/setter pair.

The name is a literal string or a symbol that is taken as a constant. The name must also be a valid
Rexx variable name. The ::ATTRIBUTE directive creates methods in the class specified in the most
recent ::CLASS directive. If no ::CLASS directive precedes an ::ATTRIBUTE directive, the attribute
methods are not associated with a class but are accessible to the main (executable) part of a program
through the .METHODS built-in object. Only one ::ATTRIBUTE directive can appear for any method
name not associated with a class.

If you do not specify either GET or SET, ::ATTRIBUTE will create two attribute methods with the names
name and name=. These are the methods for getting and setting an attribute. These generated
methods are equivalent to the following code sequences:

Example 3.2. ATTRIBUTE directive equivalent code

::method name -- attribute get method
expose name -- establish direct access to object variable (attribute)
use strict arg -- enforce zero parameters
return name -- return object variable's current value

::method "NAME=" -- attribute set method
expose name -- establish direct access to object variable (attribute)
use strict arg name -- retrieve argument and assign it to the object variable

Both methods will be created with the same method properties (for example, PRIVATE, GUARDED,
etc.). If GET or SET are not specified, the pair of methods will be automatically generated. In that case,
there is no method code body following the directive, so another directive (or the end of the program)
must follow the ::ATTRIBUTE directive.

If GET or SET is specified, only the single get or set attribute method is generated. Specifying separate
GET or SET ::ATTRIBUTE directives allows the methods to be created with different properties. For
example, the sequence:

::attribute name get
r:attribute name set private

will create a NAME method with PUBLIC access and a NAME= method with PRIVATE access.

The GET and SET options may also be used to override the default method body generated for the
attribute. This is frequently used so the SET attribute method can perform new value validation.

Example 3.3. ATTRIBUTE directive — get and set methods

::attribute size get
irattribute size set
expose size /* establish direct access to object variable (attribute) */
use arg value /* retrieve argument */
if datatype(value, "Whole") = .false | value < 0 then
raise syntax 93.906 array ("size", value)
size=value

If you specify the CLASS option, the created methods are class methods. See Chapter 4, Objects and
Classes. The attribute methods are associated with the class specified on the most recent ::CLASS
directive. The ::ATTRIBUTE must be preceded by a ::CLASS directive if CLASS is specified.

92

CHG :ATTRIBUTE

If ABSTRACT is specified, then all created methods will be marked as ABSTRACT and will raise
an error if directly invoked. For ABSTRACT methods there is no method code body following the
directive, so another directive (or the end of the program) must follow the ::ATTRIBUTE directive.

NEW? If DELEGATE is specified, execution of get method name and set method name= (depending
on whether GET or SET or none of these two is specified on the ::ATTRIBUTE directive) is delegated
to object delegatename. It is a common design pattern to delegate method execution to an embedded
object. The directive for such a delegation

::attribute name delegate delegateName
is equivalent to the following code sequence:
Example 3.4. DELEGATE subkeyword equivalent code

::method name
expose delegateName
forward to(delegateName)

::method "NAME="
expose delegateName
forward to(delegateName)

If the EXTERNAL option is specified, then spec identifies a method in an external native library that

will be invoked as the named method. The spec is a literal string containing a series of whitespace-
delimited tokens defining the external method. The first token must be LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-based systems, the library name is case-sensitive. The
third token is optional and specifies the name of the method within the library package. If not specified,
the ::METHOD name is used. The target package method name is case insensitive.

If the GET or SET option is not specified with the EXTERNAL option, then two method objects need to
be created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".
If GET or SET is specified and the method name is not specified within spec, then the target library
method name is generated by concatenating name with "GET" or "SET" as appropriate. If the method
name is specified in spec and GET or SET is specified, the spec name will be used unchanged.

Example 3.5. ATTRIBUTE directive — naming the get and set methods

-- maps "NAME" method to "GETNAME and

- "NAME=" to "SETNAME"

:!ATTRIBUTE name EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETADDRESS"

1 ATTRIBUTE address GET EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS=" method to "setHomeAddress"

:!ATTRIBUTE address SET EXTERNAL "LIBRARY mylib setHomeAddress"

Notes:

1. You can specify all options in any order.

93

::CLASS

2. If you specify the PACKAGE option, the methods are created with a package-scope, if you specify
the PRIVATE option, the created methods are private methods. Package-scope and private
methods have restricted access rules on how they can be invoked. See Section 4.2.8, “Public,
Package-Scope, and Private Methods” for details of how these methods can be used. If you omit
the PACKAGE or PRIVATE option, or specify PUBLIC, the method is a public method that any
sender can activate.

3. Ifyou specify the UNGUARDED option, the methods can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the methods are protected methods. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the methods are not protected.

5. ltis an error to specify ::ATTRIBUTE more than once within a class definition that creates a
duplicate get or set method.

3.3. ::CLASS

The ::CLASS directive causes the interpreter to create a Rexx class.

bb—(::CLASS classname
L(METACLASS)— metaclass I PRIVATE '

1 (INHERIT iclass
MIXINCLASS)— mclass \—| ABSTRACT '—/

SUBCLASS sclass

The ::CLASS directive creates a Rexx class hamed classname. The classname is a literal

string or symbol that is taken as a constant. The created class is available to programs through

the Rexx environment symbol .classname. The classname acquires all methods defined by
subsequent ::METHOD directives until the end of the program or another ::CLASS directive is found.
Only null clauses (comments or blank lines) can appear between a ::CLASS directive and any
following directive instruction or the end of the program. Only one ::CLASS directive can appear for
classname in a program.

If you specify the METACLASS option, the instance methods of the metaclass class become class
methods of the classname class. (See Chapter 4, Objects and Classes.) The metaclass and
classname are literal strings or symbols that are taken as constants. In the search order for methods,
the metaclass methods precede inherited class methods and follow any class methods defined

by ::METHOD directives with the CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. If you do not specify the PUBLIC

option, the class is visible only within its containing Rexx program. All public classes defined within a

program are used before PUBLIC classes created with the same name.

94

::CLASS

If you specify the SUBCLASS option, the class becomes a subclass of the class sclass for inheritance
of instance and class methods. The sclass is a literal string or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the class mclass for
inheritance of instance and class methods. You can add the new class instance and class methods
to existing classes by using the INHERIT option on a ::CLASS directive or by sending an INHERIT
message to an existing class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the
class becomes a non-mixin subclass of the Object class.

If you specify the ABSTRACT option, the class will be marked as an abstract class. Trying to create an
instance of an abstract class will raise an error. Only subclasses of abstract classes will allow to create
instances from.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classes iclasses in their order of appearance (leftmost first). This is equivalent to sending a series of
inherit messages to the class object, with each inherit message (except the first) specifying the
preceding class in iclasses as the classpos argument. As with the inherit message, each of the
classes in iclasses must be a mixin class. The iclasses is a whitespace-separated list of literal strings
or symbols that are taken as constants. If you omit the INHERIT option, the class inherits only from
sclass.

Example 3.6. CLASS directive

::class rectangle

::method area /* defined for the RECTANGLE class */
expose width height
return width*height

::class triangle

::method area /* defined for the TRIANGLE class */
expose width height
return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class's dependencies have been processed.

Example 3.7. CLASS directive deferred processing

::class savings subclass account /* requires the ACCOUNT class */
::method type

return "a Savings Account"
::class account

::method type
return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in
the program has been created.

Notes:

1. You can specify the options METACLASS, MIXINCLASS, SUBCLASS, and PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

95

CHG ::CONSTANT

3.4. *CHG* ::CONSTANT

The ::CONSTANT directive creates methods that return constant values for a class and its instances.
bb—(::CONSTANT name

A :CONSTANT directive defines a method that returns a constant value. This is useful for creating
named constants associated with a class.

value

The name is a literal string or a symbol that is taken as a constant. A method of the given nhame

is created as both an instance method and a class method of the most recent ::CLASS directive.

A ::CLASS directive is not required before a ::CONSTANT directive. If no ::CLASS directive
precedes ::CONSTANT, a single "floating" constant method is created that is not associated with a
class but is accessible through the .METHODS built-in object. Only one ::CONSTANT directive can
appear for any method name not associated with a class.

The methods created by a ::CONSTANT directive are UNGUARDED and will have a return result that
is specified by value. If specified, the constant value must be a single literal string, a symbol that is
taken as a constant, or an expression enclosed in parentheses. Also permitted is the single character
"-"or "+" followed by a symbol that is a valid number. If value is omitted, the constant name will return
its value in uppercase.

Here are some examples of valid constants:

Example 3.8. CONSTANT examples

::class MathConstants public
::constant pi 3.14159265

::constant author "Isaac Asimov"
::constant absolute_zero -273.15
::constant e (rxcalcexp(1l))
::constant eSquare (self~e ** 2)
::constant primes (2, 3, 5, 7, 11, 13)

::class Search
;:constant caseless

rirequires rxmath library

A ::CONSTANT directive is a shorthand syntax for creating constants associated with a class. The
created name constant can be accessed using either the class object or an instance of the class itself.

Example 3.9. CONSTANT access examples

say "Pi is" .MathConstants~pi -- displays "Pi is 3.14159265"
instance = .MathConstants~new

say "Pi is" instance~pi -- also displays "Pi is 3.14159265"
say .Search~caseless -- "CASELESS"

::class MathConstants public
::constant pi 3.14159265

::class Search
::constant caseless

96

:METHOD

Notes:

1. Calculated ::CONSTANT directives (where value is an expression enclosed in parenthesis) can
reference any other constant ::CONSTANT directives (where value is omitted, a single literal
string, a symbol that is taken as a constant, or a valid number optionally preceded by "-" or "+").
For a calculated ::CONSTANT directive to reference another calculated :: CONSTANT directive,
the referenced directive must be defined earlier in order of appearance. Forward references to
calculated ::CONSTANT directives are not allowed.

2. For afloating ::CONSTANT directive the constant value must be a single literal string, or a symbol
that is taken as a constant. An expression enclosed in parentheses is not allowed.

3. A ::CONSTANT directive cannot have a method body.

3.5. ::METHOD

The ::METHOD directive creates a method object and defines the method attributes.

bb—(::METHOD)— methodname
- {(rmamire) =N
l PRIVATE l

I UNPROTECTED '
PROTECTED

A ::METHOD directive creates method objects that may be associated with a class instance.
The created method may be from Rexx code, mapped to method in an external native library, or
automatically generated. The type of method is determined by the combination of options specified.

I GUARDED '
UNGUARDED

ABSTRACT

DELEGATE)— delegatename

EXTERNAL spec

The methodname is a literal string or a symbol that is taken as a constant. The method is defined
as methodname in the class specified in the most recent ::CLASS directive. Only one ::METHOD
directive can appear for any methodname in a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive

precedes ::METHOD, the method is not associated with a class but is accessible to the main
(executable) part of a program through the .METHODS built-in object. Only one ::METHOD directive
can appear for any method name not associated with a class.

If you specify the CLASS option, the method is a class method. See Chapter 4, Objects and
Classes. The method is associated with the class specified on the most recent ::CLASS directive.
The ::METHOD directive must follow a ::CLASS directive when the CLASS option is used.

If ABSTRACT is specified, then the created method will be marked as an abstract method and will raise
an error if directly invoked. For abstract methods there is no method code body following the directive,
so another directive (or the end of the program) must follow the ::METHOD directive.

97

:METHOD

If ABSTRACT, ATTRIBUTE, or EXTERNAL is not specified, the ::METHOD directive starts a section of
method code which is ended by another directive or the end of the program. The ::METHOD is not
included in the source of the created METHOD object.

Example 3.10. METHOD examples

r = .rectangle~new(20,10)
say "Area is" r~area /* Produces "Area is 200" */

::class rectangle

::method area /* defined for the RECTANGLE class */
expose width height
return width*height

::method init
expose width height
use arg width, height

::method perimeter

expose width height
return (width+height)*2

If you specify the ATTRIBUTE option, method variable accessor methods are created. In addition to
generating a method named methodname, another method named methodname= is created. The
first method returns the value of object instance variable that matches the method name. The second
method assigns a new value to the object instance variable.

For example, the directive

::method name attribute

creates two methods, NAME and NAME=, equivalent to the following code sequences:

::method name -- attribute get method
expose name -- establish direct access to object variable (attribute)
use strict arg -- enforce zero parameters
return name -- return object variable's current value

::method "NAME=" -- attribute set method
expose hame -- establish direct access to object variable (attribute)
use strict arg name -- retrieve argument and assign it to the object variable

Using the ATTRIBUTE option is equivalent to using the *CHG* ::ATTRIBUTE directive.

If you specify the ABSTRACT option, the method creates an ABSTRACT method placeholder.
ABSTRACT methods define a method that an implementing subclass is expected to provide a
concrete implementation for. Any attempt to invoke an ABSTRACT method directly will raise a
SYNTAX condition.

NEW? If DELEGATE is specified, execution of method name is delegated to object delegatename. It is
a common design pattern to delegate method execution to an embedded object. The directive for such
a delegation

::method name delegate delegateName

is equivalent to the following code sequence:

98

:METHOD

Example 3.11. DELEGATE subkeyword equivalent code

::method name
expose delegateName
forward to(delegateName)

If the EXTERNAL option is specified, then spec identifies a method in an external native library that

will be invoked as the named method. The spec is a literal string containing a series of whitespace
delimited tokens defining the external method. The first token must be LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-based systems, the library name is case-sensitive. The
third token is optional and specifies the name of the method within the library package. If not specified,
the ::METHOD name is used. The target package method name is case insensitive.

Example 3.12. METHOD EXTERNAL examples

-- creates method INIT from method RegExp_Init in library rxregexp
::METHOD INIT EXTERNAL "LIBRARY rxregexp RegExp_Init"

-- creates method RegExp_Parse from library rxregexp
::METHOD RegExp_Parse EXTERNAL "LIBRARY rxregexp"

If the ATTRIBUTE option is specified with the EXTERNAL option, then two method objects need to be
created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".

Example 3.13. METHOD EXTERNAL examples

-- maps "NAME" method to "GETNAME and
- "NAME=" to "SETNAME"
::METHOD name ATTRIBUTE EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETMyAddress and
- "ADDRESS=" to "SETMyAddress"
::METHOD address ATTRIBUTE EXTERNAL "LIBRARY mylib MyAddress"

Notes:

1. You can specify all options in any order.

2. If you specify the PACKAGE option, the method is created with a package-scope, if you specify the
PRIVATE option, the created method is a private method. Package-scope and private methods
have restricted access rules on how they can be invoked. See Section 4.2.8, “Public, Package-
Scope, and Private Methods” for details of how these methods can be used. If you omit the
PACKAGE or PRIVATE option, or specify PUBLIC, the method is a public method that any sender
can activate.

3. Ifyou specify the UNGUARDED option, the method can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the

99

CHG ::OPTIONS

object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method is a protected method. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the method is not protected.

5. If you specify ATTRIBUTE, ABSTRACT, or EXTERNAL, another directive (or the end of the program)
must follow the ::METHOD directive.

6. Itis an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.6. *CHG* ::OPTIONS

The ::OPTIONS directive defines default values for numeric, trace, and other runtime settings for all
Rexx code contained within a package.

::OPTIONS DIGITS digits 7 j 4

;(FORM ENGINEERING
{ FUZZ)— fuzz o

CONDITION

ERROR

S

YNTAX

FAILURE

LOSTDIGITS

NOSTRING

NOTREADY

Igiagee

PROLOG o
NOPROLOG 1
L(TRACE trace o

N\ J

Any of the options may be specified on a single ::OPTIONS directive in any order. If an option is
specified more than once, the last specified value will the be one used. If more than one ::OPTIONS
directive appears in a source file, the options are processed in the order they appear and the effect is
accumulative. If a given option type is specified on more than one directive, the last specified will be
the value used.

The specified options will override the normal default settings for all Rexx code contained in the source
file. For example,

100

CHG ::OPTIONS

: :OPTIONS DIGITS 20

would direct that all method and routine code defined in this source package execute with an initial
NUMERIC DIGITS setting of 20 digits. The ::OPTIONS directive controls only the initial setting. A
method or routine may change the current setting with the NUMERIC DIGITS instruction as normal.
The values specified with ::OPTIONS only apply to code that appears in the same source file. It does
not apply to code in other source files that may reference or use this code. For example, a subclass of
a class defined in this source package will not inherit the ::OPTIONS settings if the subclass code is
located in a different source package.

The following options may be specified on an ::OPTIONS directive:

DIGITS

FORM

FuUzz

NEW ALL

NEW ERROR
FAILURE
LOSTDIGITS
NOSTRING
NOTREADY
NOVALUE

controls the precision to which arithmetic operations and built-in functions are
evaluated. The value digits must be a symbol or string that is a valid positive whole
number value and must be larger than the current FUZZ ::OPTIONS setting. The
package value can be retrieved using the Package class digits method.

There is no limit to the value for DIGITS (except the amount of storage available),
but high precisions are likely to require a great amount of processing time. It is
recommended that you use the default value whenever possible.

controls the form of exponential notation for the result of arithmetic operations and
built-in functions. This can be either SCIENTIFIC (in which case only one, nonzero
digit appears before the decimal point) or ENGINEERING (in which case the power
of 10 is always a multiple of 3). The default is SCIENTIFIC. The subkeywords
SCIENTIFIC or ENGINEERING must be specified as symbols. The package value
can be retrieved using the Package class form method.

controls how many digits, at full precision, are ignored during a numeric comparison
operation. The value fuzz must be a symbol or string that is a valid positive whole
number value and must be smaller than the current DIGIT ::OPTIONS setting. The
package value can be retrieved using the Package class fuzz method.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the comparison
and are then compared with 0.

is a shortcut for all six ::OPTIONS condition directives ERROR, FAILURE,
LOSTDIGITS, NOSTRING, NOTREADY, and NOVALUE.

::OPTIONS ALL SYNTAX sets all six conditions to raise SYNTAX, while ::OPTIONS
ALL CONDITION sets all of them to their default state.

controls whether an ERROR, FAILURE, LOSTDIGITS, NOSTRING, NOTREADY,
or NOVALUE condition event raises its associated condition, or raises a SYNTAX
condition.

If ::OPTIONS condition CONDITION is in effect, which is the default, the condition
event raises its associated condition as usual. If ::OPTIONS condition SYNTAX is in
effect, a SYNTAX condition is raised instead.

To override an ::OPTIONS condition SYNTAX package default, you can use
SIGNAL ON condition, SIGNAL OFF condition, SIGNAL ON ANY, or SIGNAL OFF
ANY, to raise the associated condition, or raise no condition at all. For conditions
ERROR, FAILURE, and NOTREADY you can also use CALL ON condition, CALL OFF
condition, CALL ON ANY, or CALL OFF ANY, to raise the associated condition, or
raise no condition at all.

101

REQUIRES

NEW controls whether prolog code (any code in the source program that comes before
PROLOG the first directive) is run when another program requires it through a ::REQUIRES
NOPROLOG directive.

If ::OPTIONS PROLOG is in effect, any prolog code is run as usual when the
source program is being required using a :REQUIRES directive. If ::OPTIONS
NOPROLOG is in effect, any prolog code is not run. The default is ::OPTIONS
PROLOG.

TRACE controls the tracing action (that is, how much is displayed to the user) during the
processing of all Rexx code contained in the package. Tracing describes some
or all of the clauses in a program, producing descriptions of clauses as they are
processed. TRACE is mainly used for debugging. The value trace must be one of
the prefix or alphabetic character (word) options valid for the TRACE instruction.
The package value can be retrieved using the Package class trace method.

3.7. ::REQUIRES

The ::REQUIRES directive specifies that the program requires access to the classes and objects of
the Rexx program programname.

bb—(:REQUIRES programname >«

LIBRARY\

NAMESPACE)— namespace

If the LIBRARY option is not specified, all public classes and routines defined in the named program
are made available to the executing program. The programname is a literal string or a symbol that is
taken as a constant. The string or symbol programname can be any string or symbol that is valid as

the target of a CALL instruction. The program programname is called as an external routine with no

arguments. The program is searched for using the external program search order.

If any Rexx code precedes the first directive in programname then that code is executed at the time
the ::REQUIRES is processed by the interpreter. This will be executed prior to executing the main
Rexx program in the file that specifies the ::REQUIRES statement.

If the LIBRARY option is specified, programname is the name of an external native library that is
required by this program. The library will be loaded using platform-specific mechanisms, which
generally means the library name is case sensitive. Any routines defined in the library will be made
available to all programs running in the process. If the native library cannot be loaded, the program will
not be permitted to run. All LIBRARY ::REQUIRES directives will be processed before ::REQUIRES for
Rexx programs, which will ensure that the native libraries are available to the initialization code of the
Rexx packages.

NEW? If the NAMESPACE option is specified, namespace must be a symbol that is taken as a
constant; a literal string is not allowed.

The NAMESPACE option attaches the qualifier namespace to the package loaded by the ::REQUIRES
directive. To distinguish public classes or public routines of the same name in different ::REQUIRES
files, use a namespace-qualified symbol of the form namespace : class or namespace : routine. For
details see Section 1.14, “*NEW* Namespaces”.

::REQUIRES directives can be placed anywhere after the main section of code in the package. The
order of ::REQUIRES directives determines the search order for classes and routines defined in
the named programs and also the load order of the referenced files. Once a program is loaded by

102

NEW ::RESOURCE

a REQUIRES statement in a program, other references to that same program by ::REQUIRES
statements in other programs will resolve to the previously loaded program. The initialization code for
the ::REQUIRES file will only be executed on the first reference.

The following example illustrates that two programs, ProgramA and ProgramB, can both access
classes and routines that another program, ProgramC, contains. (The code at the beginning of
ProgramC runs prior to the start of the main Rexx program.)

/* ProgramA */ /* ProgramB *x/
::Requires 'ProgramC' ::Requires 'ProgramcC'
/* ProgramC *x/

*

The language processor uses local routine definitions within a program in preference to routines of
the same name accessed through ::REQUIRES directives. Local class definitions within a program
override classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses
can appear between them.

3.8. *NEW* ::RESOURCE

The ::RESOURCE directive allows to include associated data directly in the program code.

bb—(::RESOURCE name >«
L(END)— delimiter

resource_data

::END

ignored_data —f

The ::RESOURCE directive allows to include lines of resource_data of almost arbitrary form directly
within the source program.

delimiter

The resource name must be a symbol or a literal string that is taken as a constant. The optional
resource end delimiter must be a symbol or a literal string that is taken as a constant. If delimiter is not
specified, it defaults to the string "::END".

103

:ROUTINE

Example 3.14. RESOURCE directive

::resource greyCat end "-"
La nuit, tous les chats sont gris

::resource "brown fox"
The quick brown fox jumps over the lazy dog
1 tEND
::resource nollop end ANONYMOUS
The wicked peon quivered,
then gazed balefully at the judges

who examined him.
ANONYMOUS TYPESETTER

Notes:

1. Specifying more than one ::RESOURCE directive with the same resource name is an error.

2. The terminating resource end delimiter must start in the first column and is case-sensitive. Any
text following on the same line as the terminating delimiter is ignored.

3. Although resource_data may include almost arbitrary data (including any Rexx code), it is not well-
suited for inclusion of binary data. Including special characters like line-end or end-of-file may
cause unwanted results.

4. Resource data is accessible through the .RESOURCES built-in object, and the Package class
methods *NEW?* resource and *NEW?* resources.

3.9. ::ROUTINE

The ::ROUTINE directive creates named routines within a program.

spec

bb—(::ROUTINE)— routinename J >«
. PRIVATE ' L(EXTERNAL
PUBLIC
The routinename is a literal string or a symbol that is taken as a constant. Only one ::ROUTINE
directive can appear for any routinename in a program.

If the EXTERNAL option is not specified, the ::ROUTINE directive starts a routine, which is ended by
another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any
other program that references this program with a ::REQUIRES directive. If you do not specify the
PUBLIC option, or specify the PRIVATE option, the routine is visible only within its containing Rexx
program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.

104

:ROUTINE

Example 3.15. ROUTINE examples

::class c
::method a
call r "A" /* displays "In method A" */

::method b
call r "B" /* displays "In method B" */

riroutine r
use arg name
say "In method" name

If the EXTERNAL option is specified, then spec identifies a routine in an external native library that will
be defined as the named routine for this program. The spec is a literal string containing a series of
whitespace delimited tokens defining the external function. The first token identifies the type of native
routine to locate:

LIBRARY
Identifies a routine in an external native library of the type supported by the ::REQUIRES directive.
The second token must identify the name of the external library. The external library is located
using platform-specific mechanisms for loading libraries. For Unix-based systems, the library
name is case-sensitive. The third token is optional and specifies the name of the routine within
the library package. If not specified, the ::ROUTINE name is used. The routine name is not case
sensitive.

REGISTERED
Identifies a routine in an older-style Rexx function package. The second token must identify the
name of the external library. The external library is located using platform-specific mechanisms
for loading libraries. For Unix-based systems, the library name is case-sensitive. The third token
is optional and specifies the name of the function within the library package. If not specified,
the ::ROUTINE name is used. Loading of the function will be attempted using the name as given
and as all uppercase. Using REGISTERED is the equivalent of loading an external function using
the RXFUNCADD buiilt-in function.

Example 3.16. ROUTINE EXTERNAL examples

-- load a function from rxmath library

::routine RxCalcPi external "LIBRARY rxmath"

-- same function, but a different internal name

::routine Pi external "LIBRARY rxmath RxCalcPi"

-- same as call rxfuncadd "SQLLoadFuncs", "rexxsql", "SQLLoadFuncs"
riroutine SQLLoadFuncs EXTERNAL "REGISTERED rexxsql SQLLoadFuncs"

Notes:

1. Itis an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE
in another program that the ::REQUIRES directive accesses. The language processor uses the
local ::ROUTINE definition in this case.

105

:'ROUTINE

2. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.

@

If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an
error.

106

Chapter 4.

Objects and Classes

This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods and object variables ("attributes"). Sending a message to
an object causes the object to perform some action; a method whose name matches the message
name defines the action that is performed. Only an object's methods can access the object variables
belonging to an object. EXPOSE instructions within an object's methods specify which object variables
the methods will use. Any variables not exposed are local to the method and are dropped on return
from a method.

You can create an object by sending a message to a class object—typically a "new" method. An object
created from a class is an instance of that class. The methods a class defines for its instances are
called the instance methods of that class. These are the object methods that are available for every
instance of the class. Classes can also define class methods, which are a class's own object methods.

@e

When referring to instance methods (for objects other than classes) or class methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to instance methods and class methods of classes, this book uses the qualified terms to
avoid possible confusion.

4.1. Types of Classes

There are four kinds of classes:

» Object classes
* Mixin classes

« Abstract classes
» Metaclasses

The following sections explain these.

4.1.1. Object Classes

An object class is a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before
the definition of these methods do not acquire the new or changed methods.

The instance variables within an object are created on demand whenever a method EXPOSEs an
object variable. The class creates the object instance, defines the methods the object has, and the
object instance completes the job of constructing the object.

The String class and the Array class are examples of object classes.

107

Mixin Classes

4.1.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
called mixin classes, or simply mixins.

You can add mixin methods to an existing class by sending an INHERIT message or using the
INHERIT option on the ::CLASS directive. In either case, the class to be inherited must be a mixin.
During both class creation and multiple inheritance, subclasses inherit both class and instance
methods from their superclasses.

Mixins are always associated with a base class, which is the mixin's first non-mixin superclass. Any
subclass of the mixin's base class can (directly or indirectly) inherit a mixin; other classes cannot. For
example, a mixin class created as a subclass of the Array class can only be inherited by other Array
subclasses. Mixins that use the Object class as a base class can be inherited by any class.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use
the ::CLASS directive with the MIXINCLASS option. A mixin class is also an object class and can
create instances of the class.

4.1.3. Abstract Classes

Abstract classes provide definitions for instance methods and class methods but are not intended
to create instances. Abstract classes often define the message interfaces that subclasses should
implement.

You create an abstract class by specifying the ABSTRACT subkeyword on the ::CLASS directive.
Trying to create an instance from an abstract class will result in an error.

It is possible to create abstract methods or attributes on a class. Abstract methods or attributes are
placeholders that subclasses are expected to override. Failing to provide a real method or attribute
implementation will result in an error when the abstract version is called.

4.1.4. Metaclasses

A metaclass is a class you can use to create another class. The Class class is the metaclass of all the
classes Rexx provides. This means that instances of .Class are themselves classes. The Class class
is like a factory for producing the factories that produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example,
you can create Statarray, a subclass of the Array class. The statArray class can include a method for
computing a total of all the numeric elements of an array.

Example 4.1. Creating an array subclass

/* Creating an array subclass for statistics */
::class statArray subclass array public

::method init /* 1Initialize running total and forward to superclass */
expose total
total = 0
forward class (super)

108

Metaclasses

::method put /* Modify to increment running total */
expose total
use arg value
total = total + value /* Should verify that value is numeric!!! */
forward class (super)

::method "[]=" /* Modify to increment running total */
forward message "PUT"

::method remove /* Modify to decrement running total */
expose total
use arg index
forward message "AT" continue
total = total - result
forward class (super)

::method average /* Return the average of the array elements */
expose total
return total / self-~items

::method total /* Return the running total of the array elements */
expose total
return total

You can use this method on the individual array instances, so it is an instance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add a class method is to create a new metaclass that changes the behavior of the Statarray class. A
new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use

the ::METHOD directive with the CLASS option. However, if you are adding a class method that would
be useful for many classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

Example 4.2. Adding a CLASS method

/* Adding a class method using ::METHOD */

a = .point~new(1,1) /* Create some point instances */
say "Created point instance" a
b = .point~new(2,2) /* create another point instance */
say "Created point instance" b
c = .point~new(3,3) /* create another point instance */

say "Created point instance" c
/* ask the point class how many */
/* instances it has created */
say "The point class has created" .point~instances "instances."

109

Metaclasses

::class point public

::method init class

expose instanceCount
instanceCount = 0
forward class (super)

::method new class

expose instanceCount
instanceCount = instanceCount + 1
forward class (super)

::method instances class

expose instanceCount
return instanceCount

::method init

expose xVal yval
use arg xval, yval

::method string

expose xVal yval
return "("xval","yval")"

Version 2

/* Adding a class method using a metaclass

a = .point~new(1,1)

say "Created point instance" a

b = .point~new(2,2)

say "Created point instance" b

c = .point~new(3,3)

say "Created point instance" c
say "The point class has created"

::class InstanceCounter subclass class /*

::method init

expose instanceCount
instanceCount = 0
forward class (super)

::method new

expose instanceCount
instanceCount = instanceCount + 1
forward class (super)

::method instances
expose instanceCount
return instanceCount

::class point public metaclass InstanceCounter

::method init

expose xVal yval
use arg xVal, yval

::method string

expose xVal yval

/*

/*
/*

/*
/*
/*

/*

/*

/*

/*
/*

create Point class

Initialize instanceCount
Forward INIT to superclass

Creating a new instance
Bump the count
Forward NEW to superclass

Return the instance count

Set object variables

as passed on NEW

Use object variables
to return string value

*/

/* Create some point instance

*/

*/
*/

*/
*/
*/

*/

*/

*/

*/
*/

S

*/

/* ask the point class how many */

/* instances it has created

.point~instances "instances."

/* will count its instances

/*
/*

Initialize instanceCount
Forward INIT to superclass

/*
/*
/*

Creating a new instance
Bump the count
Forward NEW to superclass

/* Return the instance count

/*

*/

Create a new metaclass that */

*/

*/
*/

*/
*/
*/

*/

Create Point class */

/* using InstanceCounter metaclass

/* Set object variables
/* as passed on NEW

/* Use object variables

*/
*/

*/

*/

110

Creating and Using Classes and Methods

return "("xval", "yval")" /* to return string value */

4.2. Creating and Using Classes and Methods

You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive after the main part of your source
program:

::class "Account"

This creates an Account class that is a subclass of the Object class. Object is the default superclass
if one is not specified. See Section 5.1.4, “Object Class” for details. The string "Account” is a string
identifier for the new class. The string identifier is both the internal class name and the name of the
environment symbol used to locate your new class instance.

Now you can use ::METHOD directive to add methods to your new class. The ::METHOD directives
must immediately follow the ::CLASS directive that creates the class.

Example 4.3. Adding a method

::method type
return "an account"

::method "name="
expose name
use arg name

::method name

expose name
return name

This adds the methods TYPE, NAME, and NAME= to the Account class.
You can create a subclass of the Account class and define a method for it:
Example 4.4. Adding a method

::class "Savings" subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the new method and send TYPE, NAME,
and NAME= messages to that instance:

Example 4.5. Invoking a method

asav = .savings~new
say asav~type
asav~name = "John Smith"

The Account class methods NAME and NAME= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:

111

Using Classes

Example 4.6. Defining SET and GET methods

::method "name="
expose name
use arg name

::method name

expose hame
return name

You can replace this with a single *CHG* ::ATTRIBUTE directive. For example, the directive

::attribute name

adds two methods, NAME and NAME-= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

In addition to defining operational methods and attribute methods, you can add "constant” methods to
a class using the *CHG* ::CONSTANT directive. The ::CONSTANT directive will create both a class
method and an instance method to the class definition. The constant method will always return the

same constant value, and can be invoked by sending a message to either the class or an instance
method. For example, you might add the following constant to your Account class:

::constant checkingMinimum 200

This value can be retrieved using either of the following methods

Example 4.7. Retrieving method values

say .Account~checkingMinimum -- displays "200"
asave = .savings~new
say asave~checkingMinimum -- also displays "200"

4.2.1. Using Classes

When you create a new class, it is always a subclass of an existing class. You can create new classes
with the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the
superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

persistence = .object~mixinclass("Persistence")
myarray=.array~subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object
::class myarray subclass array inherit persistence

112

Scope

4.2.2. Scope

A scope refers to the methods and object variables defined for a single class (not including the
superclasses). Only methods defined in a particular scope can access the object variables within that
scope. This means that object variables in a subclass can have the same names as object variables
used by a superclass, because the variables are created at different scopes.

4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED

In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the setMethod or enhanced method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-

off objects, objects that must be absolutely unique so that a class that is capable of creating other
instances is not necessary. The Class class also provides an ENHANCED method that lets you create
new instances of a class with additional methods. The methods and the object variables defined on an
object with SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy
defines.

4.2.4. Method Names

A method name can be any string. When an object receives a message, the language processor
searches for a method whose name matches the message name in uppercase.

@e

The language processor also translates the specified name of all methods added to objects into
uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not
allowed in a symbol (for example, the operator characters). The following example creates a new class
(the Cost class), defines a new method (%), creates an instance of the Cost class (mycost), and sends
a % message to mycost:

Example 4.8. Accessing a method

cost=.object~subclass("A cost")
cost~define("%", 'expose p; say "Enter a price."; pull p; say p*1.07;')
mycost=cost~new

mycost~"%" /* Produces: Enter a price. */
/* If the user specifies a price of 100, */
/* produces: 107.00 */

4.2.5. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with setMethod or enhanced.

113

Defining an UNKNOWN Method

2. A method the object's class defines. (Note that an object acquires the instance methods of the
class to which it belongs at the time of its creation. If a class gains additional methods, objects
created before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object's class defines. This is also limited to methods that were
available when the object was created. The order of the inherit messages sent to an object's class
determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor
checks the object for a method name UNKNOWN. If it exists, the language processor calls the
UNKNOWN method and returns as the message result any result the UNKNOWN method returns.
The UNKNOWN method arguments are the original message name and a Rexx array containing the
original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition. If there are no active traps for the NOMETHOD condition, a syntax error is raised.

4.2.6. Defining an UNKNOWN Method

When an object that receives a message does not have a matching message name, the language
processor checks if the object has a method named UNKNOWN. If the object has an UNKNOWN
method, the language processor calls UNKNOWN, passing two arguments. The first argument is the
name of the method that was not located. The second argument is an array containing the arguments
passed with the original message.

For example, the following UNKNOWN method will print out the name of the invoked method and then
invoke the same method on another object. This can be used track the messages that are sent to an
object:

Example 4.9. Defining an UNKNOWN method

::method unknown

expose target -- will receive all of the messages
use arg name, arguments

say name "invoked with" arguments~toString

-- send along the message with the original args
forward to(target) message(name) arguments(arguments)

4.2.7. Changing the Search Order for Methods

You can change the usual search order for methods by specifying a colon and a class symbol after the
message name. The class symbol can be a variable name or an environment symbol. It identifies the
class object to be used as the starting point for the method search.

The class object must be a superclass of the class defining the active method, or, if you used
setMethod to define the active method, the object's own class. The class symbol is usually the
special variable SUPER , but it can be any environment symbol or variable name whose value is a
valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method
for the Account class, and create the Savings class that is a subclass of Account. You could define a
TYPE method for the Savings class as follows:

114

Public, Package-Scope, and Private Methods

savings~define("TYPE", 'return "a savings account"')
You could change the search order by using the following line:
savings~define("TYPE", 'return self~type:super "(savings)"')

This changes the search order so that the language processor searches for the TYPE method first
in the Account superclass (rather than in the Savings subclass). When you create an instance of the
Savings class (asav) and send a TYPE message to asav:

say asav~type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE
method of the Account class, and adds the string (savings) to the results.

4.2.8. Public, Package-Scope, and Private Methods

A method can be public, package-scope, or private.
Any object can send a message that runs a public method.

A package-scope method can only be invoked from methods or routines defined in the same package
as the package-scope method.

A private method can only be invoked from specific calling contexts. These contexts are:

1. From within a method owned by the same class as the target. This is frequently the same object,
accessed via the special variable SELF. Private methods of an object can also be accessed from
other instances of the same class (or subclass instances).

2. From within a method defined at the same class scope as the method. For example:

Example 4.10. Referencing methods

::class Savings

::method newCheckingAccount CLASS
instance = self~new
instance~makeChecking
return instance

::method makeChecking private

expose checking
checking = .true

The newCheckingAccount CLASS method is able to invoke the makeChecking method because
the scope of the makeChecking method is .Savings.

3. From within an instance (or subclass instance) of a class to a private class method of its class. For
example:

Example 4.11. Referencing methods

::class Savings
::method init class

115

Initialization

expose counter
counter = 0

::method allocateAccountNumber private class
expose counter
counter = counter + 1
return counter

::method init
expose accountNumber
accountNumber = self~class~allocateAccountNumber

The instance init method of the Savings class is able to invoke the allocateAccountNumber private
method of the .Savings class object because it is owned by an instance of the .Savings class.

Private methods include methods at different scopes within the same object. This allows superclasses
to make methods available to their subclasses while hiding those methods from other objects.

A private method is like an internal subroutine. It shields the internal information of an object to
outsiders, but allowing objects to share information with each other and their defining classes.

4.2.9. Initialization

Any object requiring initialization at creation time must define an INIT method. If this method is
defined, the class object runs the INIT method after the object is created. If an object has more than
one INIT method (for example, it is defined in several classes), each INIT method must forward the
INIT message up the hierarchy to complete the object's initialization.

Example 4.12. Instance initialization

asav = .savings~new(1000.00, 6.25)
say asav~type
asav~name = "John Smith"

::class Account

::method INIT
expose balance
use arg balance

::method TYPE
return "an account"

::method name attribute
::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self~init:super(balance)

::method type
return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method
of the new object. The INIT method arguments are the arguments specified on the NEW method. In
the Savings INIT method, the line:

116

Object Destruction and Uninitialization

Example 4.13. Instance initialization

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.2.10. Object Destruction and Uninitialization

Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding
an unreported error. An object requiring uninitialization should define an UNINIT method. If this
method is defined, Rexx runs it before reclaiming the object's storage. If an object has more than
one UNINIT method (defined in several classes), each UNINIT method is responsible for sending the
UNINIT method up the object hierarchy.

4.2.11. Required String Values

Rexx requires a string value in a number of contexts within instructions and built-in function calls.
» DO statements containing exprr or exprf

» Substituted values in compound variable names

» Commands to external environments

* Commands and environment names on ADDRESS instructions

» Strings for ARG, PARSE, and PULL instructions to be parsed

« Parenthesized targets on CALL instructions

 Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions
* Instruction strings on INTERPRET instructions

* DIGITS, FORM, and FUZZ values on NUMERIC instructions

» Options strings on OPTIONS instructions

» Data queue strings on PUSH and QUEUE instructions

» Label names on SIGNAL VALUE instructions

» Trace settings on TRACE VALUE instructions

* Arguments to built-in functions

 Variable references in parsing templates

» Data for PUSH and QUEUE instructions to be processed

» Data for the SAY instruction to be displayed

117

Concurrency

» Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor
converts it to some string representation and uses this. However, the programmer can cause the
language processor to raise the NOSTRING condition when the supplied object does not have an
equivalent string value.

To obtain a string value, the language processor sends a request ("STRING") message to the
object. Strings and other objects that have string values return the appropriate string value for Rexx to
use. (This happens automatically for strings and for subclasses of the String class because they inherit
a suitable makeString method from the String class.) For this mechanism to work correctly, you must
provide a makeString method for any other objects with string values.

For other objects without string values (that is, without a makeString method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(see Chapter 11, Conditions and Condition Traps), the language processor raises the NOSTRING
condition. If the NOSTRING condition is not being trapped, the language processor sends a string
message to the object to obtain its readable string representation and uses this string.

Example 4.14. Comparing to the .nil object

d = .directory~new

say substr(d,5,7) /* Produces "rectory" from "a Directory" */
signal on nostring

say substr(d,5,7) /* Raises the NOSTRING condition */

say substr(d~string,3,6) /* Displays "Direct" */

For arguments to Rexx object methods, different rules apply.

For String arithmetic, comparison, and concatenation methods:
These methods always require a string argument, so first a request ("STRING") message is
sent to the argument object. If request returns . nil because the argument object does not have
a makeString method, and the NOSTRING condition is not being trapped, a string message is
sent to the object to obtain its string representation.

For all other methods:
When a method expects a string as an argument, the argument object is sent the
request ("STRING") message. If request returns .nil, the method raises an error.

4.2.12. Concurrency

Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Chapter 12, Concurrency for a full description of concurrency.

4.3. Overview of Classes Provided by Rexx

This section gives a brief overview of the classes and methods Rexx defines.

4.3.1. The Class Hierarchy

Rexx provides the following classes belonging to the Object class.

The classes are in a class hierarchy with an inheriting class indented below its superclass or mixin
class. Classes inheriting from multiple mixin classes are only listed below one of these mixin classes.

Alarm class

118

The Class Hierarchy

AlarmNotification class
Buffer class
Class class
Collection class
MapCollection class
Bag class
Directory class
Properties class
IdentityTable class
Relation class
Set class
Stem class
StringTable class
Table class
OrderedCollection class
Array class
List class
Queue class
CircularQueue class
SetCollection class
Comparable class
DateTime class
File class
String class
TimeSpan class
Comparator class
CaselessColumnComparator class
CaselessComparator class
CaselessDescendingComparator class
ColumnComparator class
DescendingComparator class
InvertingComparator class
NumericComparator class
InputStream class
InputOutputStream class
Stream class
MessageNotification class
Message class
Method class
Monitor class
MutableBuffer class
Object class
Orderable class
OutputStream class
Package class
Pointer class
RexxContext class
RexxInfo class
RexxQueue class
Routine class
StackFrame class
Supplier class
StreamSupplier class
Ticker class

119

Class Library Notes

Validate class
VariableReference class
WeakReference class

Note that there might also be other classes available, depending on the operating system. Additional
classes may be accessed by using an appropriate : : requires directive to load the class definitions.

4.3.2. Class Library Notes

The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available through
environment symbols.

Notes:

1.

In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns”.

For [] and []= methods, the syntax diagrams include the index or indexes within the brackets.
These diagrams are intended to show how you can use these methods. For example, to set the
element (2, 3) of a multi-dimensional Array named matrix to 0, you would typically use the
syntax:

matrix[2, 3] = 0

rather than:

matrix~"[]="(0, 2, 3)

even though the latter is valid and equivalent. For more information, see Section 1.11.4, “Message
Terms” and Section 1.12.6, “Message Instructions”.

When the argument of a method must be a specific kind of object (such as array, class, method,
or string) the variable you specify must be of the same class as the required object or be able
to produce an object of the required kind in response to a conversion message. In particular,
subclasses are acceptable in place of superclasses (unless overridden in a way that changes
superclass behavior), because they inherit a suitable conversion method from their Rexx
superclass.

The isA method of the Object class can perform this validation.

120

Chapter 5.

Builtin Classes

This chapter describes all of the Rexx built-in classes.

Fundamental Classes
These classes are the fundamental building blocks for all other classes.
» Object and Class class,
» String Class,
» Method, Routine, and Package class, and
» Message class.

Stream Classes
This set of classes implements Rexx data streams. They consist of InputStream, OutputStream,
InputOutputStream, and Stream class.

Collection Classes
This set of classes implements object collections. It includes
e Ordered collections Array, List, Queue, and CircularQueue class,
» Map collections Directory, StringTable, Stem, Table, IdentityTable, Relation, and Properties
class, and
» Map/Set collections Bag and Set class.

Utility Classes

This set of classes consists of

* MutableBuffer Class,

 File Class,

» Date-, time-, and timing-related classes DateTime, TimeSpan, Alarm, Ticker, and the notification
classes AlarmNotification and MessageNotification,

« the synchronization classes EventSempahore and MutexSempahore,

e Comparable class and Orderable class,

 eight Comparator classes used for sorting (Caseless)Comparator,
(Caseless)ColumnComparator, (Caseless)DescendingComparator, InvertingComparator, and
NumericComparator, and

 other miscellaneous classes Buffer, Monitor, Pointer, RegularExpression, RexxContext,
RexxInfo, RexxQueue, StackFrame, StreamSupplier, Supplier, Validate, VariableReference, and
WeakReference.

5.1. Fundamental Classes

This section describes the Rexx fundamental classes.
* Object and Class class,

« String Class,

» Method, Routine, and Package class, and

* Message class.

5.1.1. Class Class (Metaclass)

The Class class is like a factory that produces the factories that produce objects. It is a subclass of the
Object class. The instance methods of the Class class are also the class methods of all classes.

Note that the copy method is forbidden for Class and all other class objects, and will result in an error.

121

Class Class (Metaclass)

Table 5.1. Class Class

Object
Methods inherited from the Object class

Class
NEW Comparison Methods = == <> ><\=\==
activate id new
NEW annotation inherit *NEW* package
NEW annotations *NEW?* isAbstract queryMixinClass
baseClass *NEW* isMetaclass subclass
defaultName isSubclassOf subclasses
define metaClass superClass
NEW? defineMethods method superClasses
delete methods uninherit

enhanced mixinClass

5.1.1.1. *NEW* Comparison Methods

»—(comparison_operator(argument)

Returns . true or .false, the result of performing a specified comparison operation.

For the Class class, if argument is the same class as the receiver class, the result is . true, otherwise
.false is returned.

The comparison operators you can use in a message are:

. true if the terms are the same class.

\=, ><, <> \==
. true if the terms are not the same class (inverse of =).

5.1.1.2. activate

Completes initialization of a class object created from a ::CLASS directive. The activate method is
called after all classes in a package have been created and made available, but before the main
portion of the program starts to execute. Activate is called for each class in the package in their
construction order. The class object is fully constructed and capable of creating new instances of the
class. All other classes in the same package are also available, although other classes might not have
been activated yet. Because the INIT method is called early in the class construction process, only
limited class initialization is possible at that time. The activate method is the preferred method for
initializing a class object.

5.1.1.3. *NEW* annotation

»—(annotation(name)

122

Class Class (Metaclass)

Returns the value of the annotation named name for this class. If no such annotation exists, .nil is
returned.

See also
* method *NEW* annotations and
o *NEW* ::ANNOTATE directive.

5.1.1.4. *NEW* annotations

Returns a StringTable of all annotation name/value pairs for this class.

See also
* method *NEW* annotation and
o *NEW* ::ANNOTATE directive.

5.1.1.5. baseClass

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the baseClass message.

5.1.1.6. defaultName

defaultName

Returns a short human-readable string representation of the class. The string returned is of the form
The id class

where id is the identifier assigned to the class when it was created.

Example 5.1. Class class — defaultName method

say .array~defaultName /* Displays "The Array class" */
say .account~defaultName /* Displays "The ACCOUNT class" */
say .savings~defaultName /* Displays "The Savings class" */

::class account /* Name is all upper case */
::class "Savings" /* String name is mixed case */

5.1.1.7. define

bb—(define(methodname @—N

’ method

123

Class Class (Metaclass)

Incorporates the method object method in the receiver class's collection of instance methods. The
method name methodname is translated to uppercase. Using the define method replaces any
existing definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the receiver class.
Sending a message of that name to an instance of the class causes the unknown method (if any) to
be run.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, define
creates an equivalent method object.

Notes:
1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. The define method is a protected method.

Example 5.2. Class class — define method

bank_account=.object~subclass("Account")
bank_account~define("TYPE", 'return "a bank account"')

5.1.1.8. *NEW* defineMethods

bb—(defineMethods()— methods)

Incorporates all methods methods in the receiver class's collection of instance methods.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). The method names are translated to
uppercase. Any existing methods with the same method name in the receiver class are replaced.

If, for any item in methods, the method name is .nil, then a method of this name in the receiver class
is made unavailable.

See also method define.

Example 5.3. Class class — defineMethods method

before = .c~new
say before~a -- a-original

.c~defineMethods(.methods)
after = .c~new
say after~a after~b -- a-define b-define

::method a
return "a-define"
::method b
return "b-define"

::class ¢
::method a

124

Class Class (Metaclass)

return "a-original"

5.1.1.9. delete

bb—(delete(methodname)

Removes the receiver class's definition for the method name methodname. If the receiver class
defined methodname as unavailable with the define method, this definition is nullified. If the receiver
class had no definition for methodname, no action is taken.

Notes:
1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. delete deletes only methods the target class defines. You cannot delete inherited methods the
target's superclasses define.

3. The delete method is a protected method.

Example 5.4. Class class — delete method

myclass=.object~subclass("Myclass") /* After creating a class */
myclass~define("TYPE", 'return "my class"') /* and defining a method */
myclass~delete("TYPE") /* this deletes the method */

5.1.1.10. enhanced

>>—(enhanced()— methods o J j @—N

argument

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collection methods. The collection indexes are
the names of the enhancing methods, and the items are the method objects (or strings or arrays of
strings containing method code). You can use any collection that supports a supplier method.

enhanced sends an init message to the created object, passing the arguments specified on the
enhanced method.

See also method define.

Example 5.5. Class class — enhanced method

/* Set up rclass with class method or methods you want in your */
/* remote class */
rclassmeths = .directory~new

rclassmeths["DISPATCH"]=d_source /* d_source must have code for a */
/* DISPATCH method. */
/* The following sends init("Remote Class") to a new instance */

125

Class Class (Metaclass)

rclass=.class~enhanced(rclassmeths, "Remote Class")

5.1.1.11.id

Returns the class identity (instance) string. (This is the string that is an argument on the subclass
and mixinClass methods.) The string representations of the class and its instances contain the class
identity.

Example 5.6. Class class — id method

myobject=.object~subclass("my object") /* Creates a subclass */
say myobject~id /* Produces: "my object" */

5.1.1.12. inherit

classpos

bb—(inherit(classobj S @—N

Causes the receiver class to inherit the instance and class methods of the class object classobj. The
classpos is a class object that specifies the position of the new superclass in the list of superclasses.
(You can use the superClasses method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If the classpos class is not
found in the set of superclasses, an error is raised. If you do not specify classpos, the new superclass
is added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobj in the class hierarchy. Any subsequent change to the instance methods of classobj takes
immediate effect for all the classes that inherit from it.

The new superclass classobj must be created with the MIXINCLASS option of the : : CLASS directive
or the mixinClass method and the base class of the classobj must be a direct superclass of the
receiver object. The receiver must not already descend from classobj in the class hierarchy and vice
versa.

The method search order of the receiver class after inherit is the same as before inherit, with
the addition of classobj and its superclasses (if not already present).

Notes:
1. You cannot change the classes that Rexx provides by sending inherit messages.

2. The inherit method is a protected method.

Example 5.7. Class class — inherit method

room~inherit(.location)

126

Class Class (Metaclass)

5.1.1.13. *NEW?* isAbstract

Returns . true if the receiving class is an abstract class, otherwise returns . false.

See also ABSTRACT option of the ::CLASS directive.

Example 5.8. Class class — isAbstract method

say .abs~isAbstract -- 1

::class abs abstract

5.1.1.14. *NEW?* isMetaclass

Returns . true if the receiving class is a metaclass, otherwise returns . false. The Class class is
the only metaclass that Rexx provides; any subclasses of the Class class are also metaclasses.

Example 5.9. Class class — isMetaclass method

do class
over .RexxInfo~package~classes~allItems~appendAll(.context~package~classes~allItems)
if class~isMetaclass then
say class~string": metaclass" -- The Class class: metaclass
-- The META class: metaclass
end

::class meta subclass class
::class other

5.1.1.15. isSubclassOf

bb—(isSubclassOf(class)

Returns . true if the object is a subclass of the specified class. Returns . false if the object is not a
subclass of the specified class. A class is a subclass of a class if the target class is the same as class
or if class is in the object's direct or mixin class inheritance chain. For example:

Example 5.10. Class class — isSubclassOf method

.String~isSubclassOf(.object) -> 1
.String~isSubclassOf(.mutablebuffer) -> 0

5.1.1.16. metaClass

127

Class Class (Metaclass)

Returns the receiver class's default metaclass. This is the class used to create subclasses of this
class when you send subclass or mixinClass messages (with no metaclass arguments). The instance
methods of the default metaclass are the class methods of the receiver class.

For more information about class methods, see Section 4.1.1, “Object Classes”. See also the
description of method subclass.

5.1.1.17. method

»—(method(methodname

Returns the method object for the receiver class's definition for the method name methodname. If the
receiver class defined methodname as unavailable, this method returns . nil. If the receiver class did
not define methodname, an error is raised.

Example 5.11. Class class — method method

/* Create and retrieve the method definition of a class */
myclass=.object~subclass("My class") /* Create a class */
mymethod=.method~new(" ","Say arg(1)") /* Create a method object */
myclass~define("ECHO", mymethod) /* Define it in the class */
method_source = myclass~method("ECHO")~source /* Extract it */
say method_source /* Says "an Array" */
say method_source[1] /* Shows the method source code */

5.1.1.18. methods

=) SR0n

class_object

Returns a Supplier object for all the instance methods of the receiving class and its superclasses, if
no argument is specified. In this case, the supplier's indexes may contain duplicate entries, if classes
override methods in superclasses.

If class_object is .nil, methods returns a Supplier object for only the instance methods of the
receiving class. If a class_object is specified, this method returns a Supplier object containing only the
instance methods that class_object defines.

The returned supplier's indexes are the method names and the supplier's items are their associated
Method objects. The Supplier enumerates all the names and methods existing at the time of the
supplier's creation.

Methods that have been hidden with a setMethod or define method are included with the
other methods that methods returns. The hidden methods have .nil for their associated
method.

128

Class Class (Metaclass)

Example 5.12. Class class — methods method

objsupp = .object~methods
do while objsupp~available

say objsupp~index -- displays all instance method
objsupp~next -- names of the Object class
end

5.1.1.19. mixinClass

>>—(mixinClass(classid —O @—N

metaclass o methods

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin
class that is a subclass of the superclass to which you send the message. The classid is a string that
identifies the new mixin subclass. You can use the id method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the hames of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaClass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.13. Class class — mixinClass method

buyable=.object~mixinClass("Buyable") /* New subclass is buyable */
/* Superclass is Object class */

5.1.1.20. new

- @0 L@

new()

Returns a new instance of the receiver class, whose object methods are the instance methods of
the class. This method initializes a new instance by running its init methods (see Section 4.2.9,
“Initialization”). new also sends an init message. If you specify args, new passes these arguments
on the init message.

129

Class Class (Metaclass)

Example 5.14. Class class — new method

/* new method example */

a = .account~new /* -> Object variable balance=0 */

y = .account~new(340.78) /* -> Object variable balance=340.78 */
/* plus free toaster oven */

::class account subclass object

::method init /* Report time each account created */

/* plus free toaster when more than $100 */
Expose balance
Arg opening_balance
Say "Creating" self-~objectName "at time" time()
If datatype(opening_balance, "N") then balance = opening_balance
else balance = 0
If balance > 100 then Say " You win a free toaster oven"

5.1.1.21. *NEW* package

Returns the Package class instance that defined the receiving class. The package instance controls
and defines the search order for classes and routines referenced by the receiving class.

See also Package class.

Example 5.15. Class class — package method

say .Class~package~name -- REXX
say .other~package~name -- C:\ExampleClassPackage.rex

::class other

5.1.1.22. queryMixinClass

queryMixinClass

Returns . true if the class is a mixin class, or . false.

5.1.1.23. subclass

PP—(subclass(classid —O @—N

metaclass o methods

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the message. The classid is a string that identifies the
subclass. (You can use the id method to retrieve this string.)

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

130

Class Class (Metaclass)

If you do not specify a metaclass, the new subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the nhames of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaclass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.16. Class class — subclass method

room=.object~subclass("Room") /* Superclass is .object */
/* Subclass is room */
/* Subclass identity is Room */

5.1.1.24. subclasses

Returns the immediate subclasses of the receiver class in the form of a single-dimensional Array of
the required size, in an unspecified order. (The program should not rely on any order.)

5.1.1.25. superClass

Returns the immediate superclass of the receiver class. The immediate superclass is the original class
used on a subclass or amixinClass method. For the Object Class, superClass returns .nil.

Example 5.17. Class class — superClass method

say .object~superclass -- displays "The NIL object"
say .class~superclass -- displays "The Object class"
say .set~superclass -- displays "The Table class"

5.1.1.26. superClasses

Returns the immediate superclasses of the receiver class in the form of a single-dimensional Array

of the required size. The immediate superclasses are the original class used on a subclass or a
mixinClass method, plus any additional superclasses defined with the inherit method. The array
is in the order in which the class has inherited the classes. The original class used on a subclass or
mixinClass method is the first item of the array.

131

Message Class

Example 5.18. Class class — superClasses method

z=.class~superClasses
/* To obtain the information this returns, you could use: */
do i over z
say i
end

5.1.1.27. uninherit

bb—(uninherit(classobj)

Nullifies the effect of any previous inherit message sent to the receiver for the class classobj.

@

You cannot change the classes that Rexx provides by sending uninherit messages.

Example 5.19. Class class — uninherit method

location=.object~mixinClass("Location")

room=.object~subclass("Room")~~inherit(location) /* Creates subclass */
/* and specifies inheritance */

room~uninherit(location)

5.1.2. Message Class

A message object provides for the deferred or asynchronous sending of a message. You can create
a message object by using the new (Class Method) method of the Message class or the start and
startWith methods of the Object class.

Table 5.2. Message Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ AlarmNotification (Mixin Class)

Methods inherited from the AlarmNotification class
NEW? cancel
NEW? triggered (Abstract method)

+ MessageNotification (Mixin Class)

Methods inherited from the MessageNotification class

132

Message Class

NEW messageComplete (Abstract Method)

Message
new (Class Method)
arguments messageName *CHG* start
completed *CHG™* notify *NEW?* startWith
errorCondition *NEW* reply target
NEW halt *NEW?* replyWith *NEW?* triggered
hasError result *NEW* wait
NEW hasResult *CHG* send
NEW messageComplete *NEW* sendWith

5.1.2.1. new (Class Method)

bb—(new(target o messagename

argument

arguments

Initializes the message object for sending the message name messagename to object target.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

If you specify neither Individual nor Array, the message sent has no arguments.

If you specify the Individual or Array option, any remaining arguments are arguments for the
message. (You need to specify only the first letter; all characters following the first are ignored.)

Individual

If you specify this option, specifying argument is optional. Any arguments are passed as message
arguments to target in the order you specify them.

Array
If you specify this option, you must specify arguments, which is an Array object. The member
items of the array are passed to target as arguments. The first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
corresponding message arguments are also omitted.

@

This method does not send the message messagename to object target. See methods *CHG*
startI*NEW* startWith , *CHG* send I*NEW?* sendWith , and *NEW* reply I*NEW* replyWith .

133

Message Class

5.1.2.2. arguments

Returns an array of argument objects used to invoke the message.

5.1.2.3. completed

Returns 1 if the message object has completed executing its message, or 0. You can use this method
to test for completion as an alternative to calling result and waiting for the message to complete.

5.1.2.4. errorCondition

Returns an error condition object from any execution error with the message object's message
invocation. If the message completed normally, or is still executing, errorCondition returns .nil.

5.1.2.5. *NEW* halt

SRR

description

Returns . true if it could raise the halt condition for the message the receiving message object is
currently executing. Returns . false if there is no message executing.

An optional string description can be supplied, which the halted message can retrieve by requesting
the "DESCRIPTION" item of the *CHG* CONDITION built-in function or the Condition Object.

Example 5.20. Message class — halt method

dog = .WatchDog~new(1) -- watchdog with 1 sec time-out
say dog~watchTask(.task~new~start("runsLong", 0.5))
say dog~watchTask(.task~new~start("runsLong", 1.5))

::class Task

-- a long-running task that we may want to terminate early
::method runsLong
use strict arg seconds
signal on halt
do s = 0 to seconds by 0.1 -- split SysSleep to enable halting
call SysSleep 0.1 -- do "hard work"
end
return "task finished"

halt:
return condition("DESCRIPTION") -- return description from halt()

::class Watchdog inherit AlarmNotification

134

Message Class

-- sets a time-out, after which a running task will be halted
::method init

expose timeOut
use strict arg timeOut

watches over a task, halting it if it runs too long

::method watchTask

expose timeOut

use strict arg message

-- we set an Alarm for 'timeOut' seconds, which, upon triggering

-- will call method triggered(), passing this Alarm object as an argument
-- (this is why we inherit from AlarmNotification)

-- we also attach 'message' to enable triggered() to halt the task

alarm = .Alarm~new(timeOut, self, message)

-- now we just wait for 'message' to finish; either normally, or halted
msgResult = message~result

alarm~cancel -- cancel alarm; may still be active
return msgResult

::method triggered unguarded

expose timeOut

-- our watchTask Alarm has triggered

-- this means that the task has run too long

use arg alarm

message = alarm~attachment -- message is our attachment
message~halt("task took longer than" timeOut "sec")

will output

task finished
task took longer than 1 sec

5.1.2.6. hasError

Returns 1 if the message object's message was terminated with an error condition. Returns 0 if the
message has not completed or completed without error.

5.1.2.7. *NEW* hasResult

Returns . true if the message object has completed executing its message, and the message
has returned a result. Returns . false if the message object has not yet completed executing its
message, or the message hasn't returned a result.

See also method result.

5.1.2.8. *NEW* messageComplete

.

geComplete() @—N

source

135

Message Class

This method implements the MessageNotification interface. It will be called whenever a message
completes processing, for which notification was requested by using the *CHG* notify method with a
message object as the notification target.

As a result of receiving such a natification, messageComplete will send the receiving message to
start processing. Any source argument will be ignored.

See also class MessageNotification.

Example 5.21. Message class — messageComplete method

msg = .Message~new(.Array~new(1000)~fill(0)~allIndexes, "sort")
msg~notify(.Message~new(.stdout, "say", "I", "sorting complete"))
msg~notify(.Message~new(.r~new, "items", "I", msg))

msg~start

say "processing continues"

riclass r

::method items

use strict arg m

say m~target~items "items sorted"

will output

processing continues
sorting complete
1000 items sorted

5.1.2.9. messageName

messageName

Returns the message name of the receiving message object.

5.1.2.10. *CHG* notify

bb—(notify()— target)

Requests notification about the completion of processing of the message.

The notification target must be an object that implements the MessageNotification interface. Upon
completion of message processing, target will be sent a messageComplete message, with the
completed Message object as argument source.

Any number of notifications can be requested for a message.
To retrieve the result of the completed message, use method result.
See also class MessageNotification.

Example 5.22. Message class — notify method

msg = .Message~new(.Array~new(1000)~fill(0@)~allIndexes, "sort")

136

Message Class

msg~notify(.Sorter~new)
msg~start
say "processing continues"
::class Sorter inherit MessageNotification
::method messageComplete
use strict arg message

say message~target~items "items sorted"

will output

processing continues
1000 items sorted

5.1.2.11. *NEW* reply

(=) J(@ Jj@*‘

target argument

Returns and sends a copy of the message to start processing, while the sender also continues
processing.

As this method, other than the similar method *CHG* start, starts a copy of the message, it can be
called mutiple times with the same receiving message.

If target is specified, the message is sent to target and both the receiving message and the message
copy are changed to use the new target. Otherwise the message is sent to the target the message
object provides.

If any arguments are specified, the message is sent with these arguments and both the receiving
message and the message copy are changed to use the new arguments. Otherwise the message is
sent with any arguments the message object provides.

This method returns as soon as possible and does not wait until message processing is complete.

The *CHG* notify method can be used to request notification that message processing is complete.
When message processing is complete, the message object retains any result and holds it until
requested via the result method.

See also

» method *NEW* replyWith ,

* methods *CHG?* start and *NEW* startWith , and
* methods *CHG* send and *NEW* sendWith .

5.1.2.12. *NEW* replyWith

bb—' replyWith()‘ ' arguments —@—N

target

Returns and sends a copy of the message with the specified arguments to start processing, while the
sender also continues processing.

137

Message Class

As this method, other than the similar method *NEW* startWith , starts a copy of the message, it can
be called mutiple times with the same receiving message.

If target is specified, the message is sent to target and both the receiving message and the message
copy are changed to use the new target. Otherwise the message is sent to the target the message
object provides.

The arguments array items are used as message arguments and both the receiving message and the
message copy are changed to use these new arguments.

This method returns as soon as possible and does not wait until message processing is complete.

The *CHG* notify method can be used to request notification that message processing is complete.
When message processing is complete, the message object retains any result and holds it until
requested via the result method.

See also

* method *NEW* reply ,

* methods *CHG?* start and *NEW* startWith , and
* methods *CHG* send and *NEW* sendWith .

5.1.2.13. result

Returns the result of the message send or start. If message processing is not yet complete, this
method waits until it completes. If the message send or start raises an error condition, this method
also raises an error condition.

For an example see halt method example.

5.1.2.14. *CHG* send

SED -0 L@~

target argument

Returns the result (if any) of sending the message.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

If any arguments are specified, the message is sent with these arguments and the receiving message
object is changed to use the new arguments. Otherwise the message is sent with any arguments the
message object provides.

This method does not return until message processing is complete.

The *CHG* notify method can be used to request notification that message processing is complete.
When message processing is complete, the message object retains any result and holds it until
requested via the result method.

See also
* method *NEW* sendWith ,
* methods *CHG* start and *NEW?* startWith , and

138

Message Class

* methods *NEW* reply and *NEW* replyWith .

5.1.2.15. *NEW* sendWith

bb—' sendWith(J J O— arguments)

target

Returns the result (if any) of sending the message with the specified arguments.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

The arguments array items are used as message arguments and the receiving message object is
changed to use these new arguments.

This method does not return until message processing is complete.

The *CHG* notify method can be used to request notification that message processing is complete.
When message processing is complete, the message object retains any result and holds it until
requested via the result method.

See also

* method *CHG* send ,

* methods *CHG?* start and *NEW?* startWith , and
* methods *NEW* reply and *NEW* replyWith .

5.1.2.16. *CHG* start

D P S O

target argument

Sends the message to start processing, while the sender also continues processing.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

If any arguments are specified, the message is sent with these arguments and the receiving message
object is changed to use the new arguments. Otherwise the message is sent with any arguments the
message object provides.

This method returns as soon as possible and does not wait until message processing is complete.

Note that once a message object has been started with either the start or the startWith
method, it can not be run with any of the send/sendwWith, start/startWith, reply/replyWith
methods again. A message object can be run multiple times with methods send/sendwith and
reply/replywith.

The *CHG* notify method can be used to request notification that message processing is complete.
When message processing is complete, the message object retains any result and holds it until
requested via the result method.

See also
* method *NEW?* startWith ,
* methods *CHG* send and *NEW?* sendWith , and

139

Message Class

* methods *NEW* reply and *NEW* replyWith .

Example 5.23. Message class - start method

ez=.testclass~new /* Creates a new instance of Testclass

/* Creates and starts message mymsg to send SHOWMSG to ez
mymsg=ez~start("SHOWMSG", "Hello, Ollie!",5)

/* Continue with main processing while SHOWMSG runs concurrently
do 5

say "Hello, Stan!"
end

/* Get final result of the SHOWMSG method from the mymsg message object
say mymsg-~result
say "Goodbye, Stan..."

exit
::class testclass public /* Directive defines Testclass
::method showmsg /* Directive creates new method SHOWMSG
use arg text,reps /* class Testclass
do reps
say text
end

reply "Bye Bye, Ollie..."
return

The following output is possible:

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

Bye Bye,
Goodbye, Stan...

5.1.2.17. *NEW?* startWith

bb—' startWith(J

Ollie!
Stan!
Ollie!
Stan!
Ollie!
Stan!
Ollie!
Stan!
Ollie!
Stan!

Ollie...

target

1

arguments

*/

*/

*/

*/

*/

*/
*/

Sends the message with the specified arguments to start processing, while the sender also continues
processing.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

The arguments array items are used as message arguments and the receiving message object is

changed to use these new arguments.

This method returns as soon as possible and does not wait until message processing is complete.

Message Class

Note that once a message object has been started with either the start or the startWith
method, it can not be run with any of the send/sendwWith, start/startWith, reply/replyWith
methods again. A message object can be run multiple times with methods send/sendwith and
reply/replywith.

The *CHG* notify method can be used to request notification that message processing is complete.
When message processing is complete, the message object retains any result and holds it until
requested via the result method.

See also

* method *CHG?* start,

* methods *CHG* send and *NEW* sendWith , and
» methods *NEW* reply and *NEW* replyWith .

5.1.2.18. target

Returns the object that is the target of the invoked message.

5.1.2.19. *NEW* triggered

>>—' triggered(J @—N

source

This method implements the AlarmNotification interface. It will be called whenever an Alarm or a
Ticker triggers, for which a Message object was set as notification target.

As a result of receiving such a notification, triggered will send the receiving message to start
processing. Any source argument will be ignored.

See also class AlarmNotification.
Example 5.24. Message class — triggered method

arg = .Array~new(1)

msg = .Message~new(.a~new, '"ring", "A", arg)

oneSecond = .Alarm~new(1, msg, arg)

arg~append(oneSecond)

-- oneSecond = .Alarm~new(1, .Message~new(.a~new, "ring", "I", alarm))
say "processing continues"

i:iclass a

::method ring

use strict arg alarm

say "alarm went off at" .DateTime~new

say "was scheduled for" alarm~scheduledTime

may output

processing continues
alarm went off at 2015-12-18T16:54:15.550000
was scheduled for 2015-12-18T16:54:15.545000

141

Method Class

5.1.2.20. *NEW* wait

Waits until the message object has completed executing its message.

See also method completed.

5.1.3. Method Class

The Method class creates method objects from Rexx source code. It is a subclass of the Object class.

Table 5.3. Method Class

Object

Methods inherited from the Object class
Class (Metaclass)

Methods inherited from the Class class

Method
new (Class Method)
loadExternalMethod (Class Method)
CHG newFile (Class Method)
NEW annotation *NEW?* isPackage setPrivate
NEW annotations isPrivate setProtected
NEW? isAbstract isProtected setSecurityManager
NEW isAttribute package setUnguarded
NEW isConstant *NEW* scope source
isGuarded setGuarded

5.1.3.1. new (Class Method)

context

bb—(new/(name ; source | @—N

Returns a new instance of the Method class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of the new method.

5.1.3.2. *CHG* newFile (Class Method)

»—(newFile(filename J @—N

; context

142

Method Class

Returns a new instance of the Method class, which is an executable representation of the code
contained in the file filename. Raises an error if the file flename cannot be read. The filename is a
string.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of the newFile method.

5.1.3.3. loadExternalMethod (Class Method)

bb—(loadExternalMethod()— name P descriptor)

Resolves a native method in an external library package and returns a Method object instance that
can be used to call the external method. The descriptor is a string containing whitespace-delimited
tokens that identify the location of the native method. The first token identifies the type of native
function and must be LIBRARY. The second token must identify the name of the external library. The
external library is located using platform-specific mechanisms for loading libraries. For Unix-based
systems, the library name is case-sensitive. The third token is optional and specifies the name of
the method within the library package. If not specified, name is used. The method name is not case
sensitive. If the target method cannot be resolved, .nil is returned.

Example 5.25. Method class — loadExternalMethod method

method = .Method~loadExternalMethod("homeAddress=", "LIBRARY mylib setHomeAddress")

5.1.3.4. *NEW* annotation

bb—(annotation()— name)

Returns the value of the annotation named name for this method. If no such annotation exists, .nil is
returned.

See also
* method *NEW* annotations and
o *NEW* ::ANNOTATE directive.

5.1.3.5. *\NEW* annotations

Returns a StringTable of all annotation name/value pairs for this method.

See also
* method *NEW* annotation and
o *NEW* ::ANNOTATE directive.

5.1.3.6. *NEW* isAbstract

143

Method Class

Returns . true if the method is an Abstract method, otherwise returns . false.

See also
» ABSTRACT option of the ::METHOD directive and
« ABSTRACT option of the *CHG* ::ATTRIBUTE directive.

Example 5.26. Method class — isAbstract method

say .InputStream~method("lines")~isAbstract --1
say .Stream~method("lines")~isAbstract -- 0

5.1.3.7. *NEW?* isAttribute

Returns . true if the method is an Attribute method, otherwise returns . false.

See also *CHG* ::ATTRIBUTE directive.

Example 5.27. Method class — isAttribute method

say .File~method("lastModified")~isAttribute -- 1
say .File~method("lastModified=")~isAttribute --1

5.1.3.8. *NEW?* isConstant

Returns . true if the method is a Constant method, otherwise returns . false.

See also *CHG* ::CONSTANT directive.

Example 5.28. Method class — isConstant method

say .physics~method("c")~isConstant -- 1

::class physics
;:constant ¢ 299792458

5.1.3.9. isGuarded

Returns . true if the method is a Guarded method. Returns . false for Unguarded methods.

5.1.3.10. *NEW* isPackage

144

Method Class

Returns . true if the method is a Package-scope method. Returns . false for Public methods or
Private methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on
package-scope method restrictions.

See also method isPrivate.

5.1.3.11. isPrivate

Returns . true if the method is a Private method. Returns . false for Public methods or Package-
scope methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on
private method restrictions.

See also method *NEW?* isPackage .

5.1.3.12. isProtected

isProtected

Returns . true if the method is a Protected method. Returns . false for unprotected methods.

5.1.3.13. package

Returns the Package class instance that defined the method instance. The package instance controls
and defines the search order for classes and routines referenced by the method code.

#

5.1.3.14. *NEW* scope

Returns the defining class scope for a method. Returns . nil for any method not defined by a class
scope.

Example 5.29. Method class — scope method

scopes = .Stem~new
scopes[] = 0
loop with item method over .List~methods

scopes[method~scope] += 1 -- possible output:
end -- 27 methods from The List class
loop scope over scopes -- 19 methods from The Collection class

say scopes[scope] "methods from" scope -- 20 methods from The OrderedCollection class
end -- 31 methods from The Object class
.Method~new("any", "nop")~scope -- .nil
.methods["FLOAT"]~scope -- .nil

::method float

145

Method Class

5.1.3.15. setGuarded

Specifies that the method is a guarded method that requires exclusive access to its scope variable
pool to run. If the receiver is already guarded, a setGuarded message has no effect. Guarded is the
default state for method objects.

5.1.3.16. setPrivate

Specifies that a method is a private method. By default, method objects are created as public
methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on private
method restrictions.

5.1.3.17. setProtected

setProtected

Specifies that a method is a protected method. Method objects are not protected by default. (See
Chapter 13, The Security Manager for details.)

5.1.3.18. setSecurityManager

PP—(setSecurityManager() @—N

security_manager_object

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.3.19. setUnguarded

setUnguarded

Turns off the guard attribute of the method, allowing this method to run on an object even if another
method has acquired exclusive access to the scope variable pool. Methods are unguarded by default.

A guarded method can be active for an object only when no other method requiring exclusive access
to the object's variable pool is active in the same object. This restriction does not apply if an object
sends itself a message to run a method and it already has exclusive use of the same object variable
pool. In this case, the method runs immediately regardless of its guarded state.

5.1.3.20. source

Returns the method source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

146

Object Class

5.1.4. Object Class

The Object class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

Table 5.4. Object Class

Class (Metaclass)

Methods inherited from the Class class

Object
new (Class Method)
Comparison Methods = == <> >< \=\==
Concatenation Methods (abuttal) || (blank)
class iSA sendWith
copy isinstanceOf setMethod (Private Method)
defaultName *NEW?* isNil start
hashCode objectName startWith
hasMethod objectName= string
identityHash request unsetMethod (Private Method)
instanceMethod run (Private Method)
instanceMethods send

5.1.4.1. new (Class Method)

Returns a new instance of the receiver class.

5.1.4.2. Comparison Methods

»—(comparison_operator(argument

Returns . true or . false, the result of performing a specified comparison operation.

For the Object class, if argument is the same object as the receiver object, the result is . true,
otherwise . false is returned. Subclasses may override this method to define equality using different
criteria. For example, the String class determines equality based on the value of the string data.

@roe

The MapCollection classes such as Table and Relation use the == operator combined with
the hashCode method to determine index and item equivalence. It is generally necessary for a
class to override both the hashCode method and the == operator method to maintain the contract
specified for the hashCode method.

The comparison operators you can use in a message are:

147

Object Class

. true if the terms are the same object.

\=, ><, <>, \==
. true if the terms are not the same object (inverse of =).

5.1.4.3. Concatenation Methods

bb—(concatenation_operator(argument)

Returns a new string that is the concatenation the of receiver object's string value with argument. (See
Section 1.11.2.1, “String Concatenation”.) The concatenation_operator can be:

concatenates without an intervening blank. The abuttal operator " is the null string. The language
processor uses the abuttal operator to concatenate two terms that another operator does not
separate.

concatenates without an intervening blank.

concatenates with one blank between the receiver object and the argument. (The operator " " is a
blank.)

5.1.4.4. class

Returns the class object that created the object instance.

5.1.4.5. copy

Returns a copy of the receiver object. The copied object has the same methods as the receiver object
and an equivalent set of object variables, with the same values.

Example 5.30. Object class — copy method

myarray=.array~of ("N",6"S", 6 "E", "W")
/* Copies array myarray to array directions */
directions=myarray~copy

148

Object Class

@e

The copy method is a “shallow copy”. Only the target object is copied. Additional objects
referenced by the target object are not copied. For example, copying an Array object instance
only copies the Array, it does not copy any of the objects stored in the Array.

5.1.4.6. defaultName

defaultname

Returns a short human-readable string representation of the object. The exact form of this
representation depends on the object and might not alone be sufficient to reconstruct the object. All
objects must be able to produce a short string representation of themselves in this way, even if the
object does not have a string value. See Section 4.2.11, “Required String Values” for more information.
defaultName returns a string that identifies the class of the object, for example, an Array or a
Directory.

See also methods objectName and string.

See objectName= for an example using defaultName.

5.1.4.7. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollections such as Table, Relation, Set,
Bag, and Directory. MapCollections use this string value to hash an object for hash table-based
searches.

Object implementations are expected to abide by a general contract for hash code usage:

» Whenever hashCode is invoked on the same object more than once, hashCode must return the
same hashcode value, provided than none of the internal information the object uses for an "=="
comparison has changed.

« If two object instances compare equal using the "==" operator, the hashCode methods for both
object instances must return the same value.

« lItis not required that two object instances that compare unequal using "==" return different hash
code values.

» Returning a wide range of hash values will produce better performance when an object is used as
an index for a MapCollection. A return value of 4 string characters is recommended. The characters
in the hash value may be any characters from '00"'x to ' ff'x, inclusive.

5.1.4.8. hasMethod

»—(hasMethod(methodname)

149

Object Class

Returns . true if the receiver object has a method named methodname (translated to uppercase).
Otherwise, it returns . false.

@

The hasMethod method will return . true even if the target method is defined as private. A
private method has restricted access rules, so it's possible to receive an unknown method error
(error 97) when invoking methodname even if hasMethod indicates the method exists. See
Section 4.2.8, “Public, Package-Scope, and Private Methods” for private method restrictions.

5.1.4.9. identityHash

identityHash

Returns a unique identity number for the object. This number is guaranteed to be unique for the
receiver object until the object is garbage collected.

5.1.4.10. init

Performs any required object initialization. Subclasses of the Object class can override this method to
provide more specific initialization.

5.1.4.11. instanceMethod

bb—(instanceMethod(methodname —@—N

Returns the corresponding Method class instance if the methodname is a valid method of the class.
Otherwise it returns .nil.

5.1.4.12. instanceMethods

bb—' instanceMethods(J J @—N

class_object

Returns a Supplier object for all the object methods of the receiving object and its superclasses, if no
argument is specified. In this case, the supplier's indexes may contain duplicate entries, if classes
override methods in superclasses.

If a class_object is specified, instanceMethods returns a Supplier object for only the object methods
of the receiving object. If the receiving object object is not an instance of class_object, an empty
Supplier is returned.

The returned supplier's indexes are the method names and the supplier's items are their associated
Method objects. The Supplier enumerates all the names and methods existing at the time of the
supplier's creation.

150

Object Class

Methods that have been hidden with a setMethod or define method are included with the
other methods that instanceMethods returns. The hidden methods have .nil for their
associated method.

Example 5.31. Object class — instanceMethods method

-- list all class methods of .String only
say .String~instanceMethods(.String)~allIndexes --> CR,NEW, NL,NULL, TAB

-- count all class methods of .String and its superclasses
-- 4 .String class methods, 32 .0Object class methods, 34 .Class class methods
say .String~instanceMethods~allIndexes~items --> 70

-- count all instance methods of .String only
say ''~instanceMethods(.String)~allIndexes~items --> 116

-- count all instance methods of .String and its superclasses
say ''~instanceMethods~allIndexes~items --> 148

5.1.4.13. i

sA

()

class

This method is an alias of the is/instance Of method.

5.1.4.14. isinstanceOf

>>—[islnstance0f()— class

Returns . true if the object is an instance of the specified class, otherwise it returns . false, An
object is an instance of a class if the object is directly an instance of the specified class or if class is in
the object's direct or mixin class inheritance chain. For example:

Example 5.32. Object class — isIlnstanceOf method

"abc"~isInstanceOf(.string) -> 1
"abc"~isInstanceOf(.object) -> 1
"abc"~isInstanceOf (.mutablebuffer) -> 0

151

Object Class

5.1.4.15. *NEW* isNil
Returns . true if the receiving object is the .nil object. Returns . false otherwise.
Example 5.33. Object class — isNil method

say .0Object~isNil -- 0
say .nil~isNil -- 1

5.1.4.16. objectName

objectName

Returns any name set on the receiver object using the objectName= method. If the receiver

object does not have a name, this method returns the result of the defaultName method. See
Section 4.2.11, “Required String Values” for more information. See the objectName= method for an
example using objectName.

5.1.4.17. objectName=

bb—(objectName=()— newname)

Sets the receiver object's name to the string newname.

Example 5.34. Object class — objectName= method

points=.array~of ("N",6 "S",6 "E", "W")

say points~objectName /* (no change yet) Says: "an Array" */
points~objectName=("compass") /* Changes obj name POINTS to '"compass"*/
say points~objectName /* Shows new obj name. Says: "compass" */
say points~defaultName /* Default is still available. */
/* Says "an Array" */
say points /* Says string representation of */
/* points "compass" */
say points[3] /* Says: "E" Points is still an array */
/* of 4 items */

5.1.4.18. request

bb—(request(classid)

Returns an object of the classid class, or .nil if the request cannot be satisfied.

This method first compares the identity of the object's class (see the id method of the Class

class) to classid. If they are the same, the receiver object is returned as the result. Otherwise,
request tries to obtain and return an object satisfying classid by sending the receiver object the
conversion message make with the string classid appended (converted to uppercase). For example,

152

Object Class

arequest("string") message causes a makeString message to be sent. If the object does not
have the required conversion method, request returns .nil.

The conversion methods cause objects to produce different representations of themselves.

The presence or absence of a conversion method defines an object's capability to produce the
corresponding representations. For example, lists can represent themselves as arrays, because they
have a makeArray method, but they cannot represent themselves as directories, because they do
not have a makeDirectory method. Any conversion method must return an object of the requested
class. For example, makeArray must return an array. The language processor uses the makeString
method to obtain string values in certain contexts; see Section 4.2.11, “Required String Values”.

5.1.4.19. run (Private Method)

)»—(run(method

argument

arguments

Runs method, which can be either

» a method object, or

* a string containing a method source line, or an Array of strings containing individual method source
lines (for these cases an equivalent method object is created).

The method has access to the object variables of the receiver object, as if the receiver object had
defined the method by using setMethod.

If you specify neither Individual nor Array, the method runs without arguments.

If you specify the Individual or Array option, any remaining arguments are arguments for the
method. (You need to specify only the first letter; all characters following the first character are
ignored.)

Individual
Passes any remaining arguments to the method as arguments in the order you specify them.

Array
Requires arguments, which is an Array object. The member items of the array are passed to the
method as arguments. The first argument is at index 1, the second argument at index 2, and so
on. If you omitted any indexes when creating the array, the corresponding arguments are omitted
when passing the arguments.

Notes:

1. The run method is a private method (see Section 4.2.8, “Public, Package-Scope, and Private
Methods”) with the additional restriction that it can only be called
» from an instance method of the receiving object itself, or
» from a class method in the receiving object's inheritance chain.

2. The run method is a protected method.

5.1.4.20. send

153

Object Class

>>—(send(messagename ' L j @—N

argument

Returns the result of invoking a method on the target object using the specified message name and
arguments. The send method allows methods to be invoked using dynamically constructed method
names.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

Example 5.35. Object class — send method

world = .WorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"
say world~hello("world", "Fred")

say world~send("HELLO", "world", "Fred")

::class WorldObject
::method hello
use strict arg place, name
return "Hello" place", I'm" name"!"

5.1.4.21. sendWith

bb—(sendWith()— messagename o arguments)

Returns the result of invoking a method on the target object using the specified message name and
arguments. The sendwith method allows methods to be invoked using dynamically constructed
method names and arguments.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

The arguments argument must be a single-dimensional Array instance. The values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

Example 5.36. Object class — sendWith method

world = .wWorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"
say world~hello("world", "Fred")

say world~sendwith("HELLO", .Array~of("world", "Fred"))

::class WorldObject
::method hello
use strict arg place, name
return "Hello" place", I'm" name"!"

154

Object Class

5.1.4.22. setMethod (Private Method)

>>—(setMethod()— methodname f @—N
o method
.I "FLOAT" '
' "OBJECT"

Adds method to the receiver object's collection of object methods.

The methodname is the name of the new method. This name is translated to uppercase. If you
previously defined a method with the same name using setMethod, the new method replaces the
earlier one. If you omit method, setMethod makes the method name methodname unavailable for the
receiver object. In this case, sending a message of that name to the receiver object runs the unknown
method (if any).

The method can be either
« a method object, or

* a string containing a method source line, or an Array of strings containing individual method source
lines (for these cases an equivalent method object is created).

The third parameter is optional, and describes if the method that is attached to an object should have
OBJECT or FLOAT scope. FLOAT scope, which is the default, means that it shares the same scope
with methods that were defined outside of a class. OBJECT scope means it shares the scope with
other, potentially statically defined, methods of the object it is attached to.

Notes:

1. The setMethod method is a private method (see Section 4.2.8, “Public, Package-Scope, and
Private Methods”) with the additional restriction that it can only be called

« from an instance method of the receiving object itself, or
» from a class method in the receiving object's inheritance chain.

2. The setMethod method is a protected method.

5.1.4.23. start

bb—(start(messagename ’ j @—N

argument

Returns a message object and sends it a start message to start concurrent processing. The
object receiving the message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

155

Object Class

When the receiver object has finished processing the message, the message object retains its result
and holds it until the sender requests it by sending a result message. For further details, see
Message class method *CHG* start.

Example 5.37. Object class — start method

world = .WorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"
msgl = world~start("HELLO", "world", "Fred")

msg2 = .message~new(world, "HELLO", "i", "world", "Fred")~~start
say msgl-~result

say msg2~result

::class WorldObject
::method hello
use strict arg place, name
return "Hello" place", I'm" name"!"

5.1.4.24. startWith

bb—(startWith()— messagename o arguments)

Returns a message object and sends it a start message to start concurrent processing. The
object receiving the message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

The arguments argument must be a single-dimensional Array instance. Any values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

When the receiver object has finished processing the message, the message object retains its result
and holds it until the sender requests it by sending a result message. For further details, see
Message class method *CHG* start.

Example 5.38. Object class — startWith method

world = .WorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"

msgl = world~startWith("HELLO", .Array~of("World", "Fred"))

msg2 = .message~new(world, "HELLO", "a", .Array~of("World", "Fred"))~~start
say msgl-~result

say msg2~result

::class WorldObject
::method hello

use strict arg place, name
return "Hello" place", I'm" name"!"

5.1.4.25. string

156

Package Class

Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be
able to produce a string representation of themselves in this way.

The object's string representation is obtained from the objectName method (which can in turn use the
defaultName method).

The distinction between this method, the makeString method (which obtains string values) and the
request method is important. All objects have a string method, which returns a string representation
(human-readable form) of the object. This form is useful in tracing and debugging. Only those objects
that have information with a meaningful string form have a makeString method to return this value.
For example, Directory objects have a readable string representation ("a Directory"), but no string
value, and, therefore, no makeString method.

Of the classes that Rexx provides, the Array Class, the CircularQueue Class, the DateTime Class,

the File Class, the MutableBuffer Class, the StackFrame Class, the String Class, and the TimeSpan
Class have a makeString method. Any subclasses of these classes inherit this method by default, so
these subclasses also have string values. Any other class can also provide a string value by defining a
makeString method.

5.1.4.26. unsetMethod (Private Method)

PP—(unsetMethod(methodname —@—N

Cancels the effect of all previous setMethods for method methodname. It also removes any method
methodname introduced with enhanced when the object was created. If the object has received no
setMethod method, no action is taken.

Notes:

1. The unsetMethod method is a private method (see Section 4.2.8, “Public, Package-Scope, and
Private Methods”) with the additional restriction that it can only be called
« from an instance method of the receiving object itself, or
» from a class method in the receiving object's inheritance chain.

2. The unsetMethod method is a protected method.

5.1.5. Package Class

The Package class contains the source code for a package of Rexx code. A package instance holds
all of the routines, classes, and methods created from a source code unit and also manages external
dependencies referenced by ::REQUIRES directives. The files loaded by ::REQUIRES are also
contained in Package class instances. It is a subclass of the Object class.

Table 5.5. Package Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Package

CHG new (Class Method)

157

Package Class

addClass

CHG addPackage
addPublicClass
addPublicRoutine
addRoutine

NEW annotation
NEW annotations
CHG classes
definedMethods
digits

findClass

NEW findNamespace
NEW? findProgram

NEW? findPublicClass
NEW? findPublicRoutine
findRoutine

form

fuzz

importedClasses
importedPackages
importedRoutines
loadLibrary
loadPackage

NEW local

name

NEW namespaces

NEW? prolog
publicClasses
publicRoutines
NEW resource
NEW resources
routines
setSecurityManager
source
sourceLine
sourceSize

trace

5.1.5.1. *CHG* new (Class Method)

bb—(new()— name 0

source E context

()

Returns a new instance of the package class, which is a representation of the code contained in

the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines. If source isn't specified, name identifies a file that will be used as the package
source. The file is searched for using the external program search order.

The context allows the created package to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, or a Package object. If not specified, the
newly created package will inherit the class and routine search scope from the caller of new method.

5.1.5.2. addClass

bb—(addClass()— name

r

class)

Adds the class object class to the available classes under the name name. This is added to the

package as a non-public class.

5.1.5.3. *CHG* addPackage

bb—(addPackage()— package

’ namespace

yalie

Adds the package object package to the dependent packages. An optional string namespace may be
specified, which will allow to qualify references to classes or routines within package.

The added package is processed as if it had been added using a ::REQUIRES directive in the original

package source.

Example 5.39. Package class — addPackage method

.context~package~addPackage(.Package~new('winsystm.cls'),
say windows:virtualkeycodes~new~keyName (36)

-- HOME

'windows')

158

Package Class

5.1.5.4. addPublicClass

bb—(addPublicClass()— name 0 class)

Adds the class object class to the available public classes under the name name. This is added to the
package as a public class.

5.1.5.5. addPublicRoutine

bb—(addPublicRoutine(name o routine)

Adds the routine object routine to the available routines under the name name. This is added to the
package as a public routine.

5.1.5.6. addRoutine

»—(addRoutine(name y routine

Adds the routine object routine to the available routines under the name name. This is added to the
package as a non-public routine.

5.1.5.7. *NEW* annotation

»—(annotation(name —@—N

Returns the value of the annotation named name for this package. If no such annotation exists, .nil
is returned.

See also
* method *NEW* annotations and
o *NEW* ::ANNOTATE directive.

5.1.5.8. *NEW* annotations

Returns a StringTable of all annotation name/value pairs for this package.

See also
* method *NEW* annotation and
o *NEW* ::ANNOTATE directive.

5.1.5.9. *CHG* classes

Returns a StringTable containing all classes defined by this package.

See also methods publicClasses and importedClasses.

159

Package Class

5.1.5.10. definedMethods

definedMethods

Returns a StringTable containing all unattached methods defined by this package. This is the same
StringTable available to code within the package via the .METHODS environment symbol.

5.1.5.11. digits

Returns the initial NUMERIC DIGITS setting used for all Rexx code contained within the package. The
default value is 9. The *CHG* ::OPTIONS directive can override the default value.

5.1.5.12. findClass

bb—(findCIass()— name)

Performs the standard environment symbol searches given name. The search is performed using
the same search mechanism used for environment symbols or class names specified on ::CLASS
directives. If the name is not found, .nil will be returned.

Note that the standard environment symbol search will return an object instance (and not a class)
when searching e. g. for "nil", "true", "

, "true”, "false", "endofline”, "RexxInfo", or objects in the .LOCAL directory.

See also method *NEW* findPublicClass.
Example 5.40. Package class — findClass method

say .RexxInfo~package~findClass("Dummy") -- The NIL object
say .context~package~findClass("Dummy") -- The DUMMY class

::class Dummy

5.1.5.13. *NEW* findNamespace

bb—(findNamespace()— name)

Returns the Package object that has been tagged with namespace name. Returns .nil if namespace
name does not exist.

See also method *CHG* addPackage.
Example 5.41. Package class — findNamespace method

say .context~package~findNamespace("rexx") -- The REXX Package
say .context~package~findNamespace("windows") -- a Package

rirequires "winsystm.cls" namespace windows

160

Package Class

5.1.5.14. *NEW* findProgram

bb—(findProgram()— name)

Locates program name using the target package context and returns the fully resolved filename. name
must be a string that specifies the filename or path to an external program. The program is searched
for using the external program search order.

Returns .n1il if name cannot be located.

Example 5.42. Package class — findProgram method

say .context~package~findProgram("mime.cls") -- e. g. C:\Program Files\ooRexx\mime.cls

5.1.5.15. *NEW?* findPublicClass

>>—(findPublicCIass(name —@—N

Returns the public class nhamed name. Returns . nil if no public class of the specified hame exists
within the scope of the receiving package.

See also method findClass.

Example 5.43. Package class — findPublicClass method

say .context~package~findPublicClass("String") -- The String class
say .context~package~findPublicClass("Dummy") -- The NIL object
say .context~package~findPublicClass("RexxInfo") -- The NIL object

::class Dummy -- private class

5.1.5.16. *NEW?* findPublicRoutine

bb—(findPuincRoutine()— name)

Returns the public routine named name. Returns .nil if no public routine of the specified name exists
within the scope of the receiving package.

See also methods publicRoutines and findRoutine.

Example 5.44. Package class — findPublicRoutine method

say .context~package~findPublicRoutine("Dummy")~source -- "nop"

::routine Dummy public
nop

5.1.5.17. findRoutine

161

Package Class

bb—(findRoutine()— name)

Searches for a routine within the package search order. This includes ::ROUTINE directives within
the package, public routines imported from other packages, or routines added using the addRoutine
method. The argument name must be a string object. If the name is not found, . nil will be returned.

5.1.5.18. form

Returns the initial NUMERIC FORM setting used for all Rexx code contained within the package. The
default value is SCIENTIFIC. The *CHG* ::OPTIONS directive can override the default value.

5.1.5.19. fuzz

> {f) >

Returns the initial NUMERIC FUZZ setting used for all Rexx code contained within the package. The
default value is 0. The *CHG* ::OPTIONS directive can override the default value.

5.1.5.20. importedClasses

importedClasses

Returns a StringTable containing all public classes imported from other packages.

See also methods *CHG* classes and publicClasses.

5.1.5.21. importedPackages

bb—(importedPackages)—N

Returns an Array containing all packages imported by the target package.

5.1.5.22. importedRoutines

bb—' importedRoutines '—N

Returns a StringTable containing all public routines imported from other packages.

5.1.5.23. loadLibrary

bb—(loadLibrary(name)

Loads a native library package and adds it to the list of libraries loaded by the interpreter. The name
identifies a native external library file that will be located and loaded as if it had been named on

a ::REQUIRES LIBRARY directive. If the library is successfully loaded, loadLibrary will return

. true, otherwise it returns . false.

162

Package Class

5.1.5.24. loadPackage

bb—(loadPackage()— name @—N

’ source

Loads a package and adds it to the list of packages loaded by the package manager. If only name
is specified, name identifies a file that will be located and loaded as if it had been named on a
REQUIRES directive. The file is searched for using the external program search order.

If source is given, it must be an array of strings that is the source for the loaded package.

If a package name has already been loaded by the package manager, the previously loaded version
will be used.

The resolved package object will be added to the receiving package object's dependent packages.

5.1.5.25. *NEW* local

Returns a Directory of objects local to the receiving package.

See also .LOCAL for a Directory of objects local to the interpreter instance.

5.1.5.26. name

Returns the string name of the package.

The package name may be

« the absolute path of the executing program,

« any name that was specified when creating an instance of a Package or Routine class,
» "REXX" for classes defined by Rexx, or

» "INSTORE" for code executed through the rexx -e command.

Example 5.45. Package class — name method

say .context~package~name -- e. g. C:\ExamplePackageName.rex
say .Class~package~name -- REXX

say .Routine~new("rtn", "return .context~package~name")[] -- rtn

say .Package~new("pkg", "")~name -- pkg

5.1.5.27. *NEW* nhamespaces

Returns a StringTable of all namespaces defined in the target package.

See also method *NEW* findNamespace.

163

Package Class

Example 5.46. Package class — namespaces method

say .context~package~namespaces~allIndexes -- WINDOWS

rirequires "winsystm.cls" namespace windows

5.1.5.28. *NEW* prolog

Returns a routine object that represents the code of the target package that precedes any directives.

Example 5.47. Package class — prolog method

say .context~package~prolog~source -- "say .context~package~prolog~source"

::options noprolog

5.1.5.29. publicClasses

publicClasses

Returns a StringTable containing all public classes defined in this package.

See also methods *NEW* findPublicClass and *CHG* classes.

Example 5.48. Package class — publicClasses method

say .package~new("csvstream.cls")~publicClasses~allIndexes -- CSVSTREAM
say .context~package~publicClasses~allIndexes -- DUMMY
say .rexxinfo~package~publicClasses~items -- 56

::class dummy public

5.1.5.30. publicRoutines

Returns a StringTable containing all public routines defined in this package. The StringTable indexes
are the routine names, the StringTable values are individual routine objects.

See also method *NEW* findPublicRoutine.

Example 5.49. Package class — publicRoutines method

say .package~new('"csvstream.cls")~publicRoutines~items -- ©
say .context~package~publicRoutines~allIndexes -- DUMMY
say .rexxinfo~package~publicRoutines~items -- 0

::routine dummy public

164

Package Class

5.1.5.31. *NEW* resource

bb—(resource()— name)

Returns an Array of resources data lines a ::RESOURCE name directive in the target package
defines. Returns . nil, if no resource name exists.

See also
* method *NEW* resources and

» *NEW* ::RESOURCE directive.
Example 5.50. Package class — resource method

say .context~package~resource("GREYCAT")~makeString -- La nuit, tous les chats sont gris

riresource greyCat
La nuit, tous les chats sont gris
. :END

5.1.5.32. *NEW* resources

Returns a StringTable of all data resources that ::RESOURCE directives in the target package define.
The StringTable indexes are the resource names, the StringTable values are arrays of individual
resource data lines.

See also
* method *NEW* resource and

o *NEW* ::RESOURCE directive.
Example 5.51. Package class — resources method

say .context~package~resources~allIndexes -- "BROWN FOX"
- "GREYCAT"

iiresource greyCat

La nuit, tous les chats sont gris

1 tEND

::resource "brown fox"

The quick brown fox jumps over the lazy dog
1 tEND

5.1.5.33. routines

Returns a StringTable containing all routines defined in this package. The StringTable indexes are the
routine names, the StringTable values are individual routine objects.

165

Routine Class

5.1.5.34. setSecurityManager

bb—(setSecurityManager() @—N

security_manager_object

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.5.35. source

#

Returns the package source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

5.1.5.36. sourceLine

(v} (1)

Returns the nth source line from the package source. If the source code is not available or the
indicated line does not exist, a null string is returned.

5.1.5.37. sourceSize

E

Returns the size of the source code for the package object. If the source code is not available, 0 is
returned.

5.1.5.38. trace

d

Returns the initial TRACE setting used for all Rexx code contained within the package. The default
value is Normal. The *CHG* ::OPTIONS directive can override the default value.

5.1.6. Routine Class

The Routine class creates routine objects from Rexx source code. It is a subclass of the Object class.

Table 5.6. Routine Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Routine

166

Routine Class

new (Class Method)
loadExternalRoutine (Class method)
CHG newFile (Class Method)

NEW [] call setSecurityManager
NEW? annotation callwith source
NEW annotations package

5.1.6.1. new (Class Method)

bb—(new()— name o source J @—N

’ context

Returns a new instance of the Routine class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCORPE is the default, and specifies that the newly created routine
will inherit the class and routine search scope from the caller of the new method.

5.1.6.2. *CHG* newfFile (Class Method)

context

bb—(newfFile(filename < @—N

Returns a new instance of the Routine class, which is an executable representation of the code
contained in the file filename. The filename is a string.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created routine
will inherit the class and routine search scope from the caller of the newFile method.

5.1.6.3. loadExternalRoutine (Class method)

bb—(loadExternalRoutine(name ' descriptor —@—N

Resolves a native routine in an external library package and returns a Routine object instance that

can be used to call the external routine. The descriptor is a string containing whitespace-delimited
tokens that identify the location of the native routine. The first token identifies the type of native routine
and must be LIBRARY. The second token must identify the name of the external library. The external
library is located using platform-specific mechanisms for loading libraries. For Unix-based systems, the
library name is case-sensitive. The third token is optional and specifies the name of the routine within
the library package. If not specified, name is used. The routine name is not case sensitive. If the target
routine cannot be resolved, .nil is returned.

Example 5.52. Routine class — loadExternalRoutine method

pi = .Routine~loadExternalRoutine("pi", "library rxmath rxcalcpi")

167

Routine Class

say pi~call(16) -- 3.141592653589793

5.1.6.4. *NEW* []

-0 L@~

L argument

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

See also method call for which this method is a synonym.

5.1.6.5. *NEW* annotation

>>—(annotation(name —@—N

Returns the value of the annotation named name for this routine. If no such annotation exists, .nil is
returned.

See also
* method *NEW* annotations and
o *NEW* ::ANNOTATE directive.

5.1.6.6. *\NEW* annotations

Returns a StringTable of all annotation name/value pairs for this routine.

See also
* method *NEW* annotation and
o *NEW* ::ANNOTATE directive.

5.1.6.7. call

@) L@

call(}

argument

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

See also method *NEW?* [] for which this method is a synonym.

5.1.6.8. callWith

168

String Class

bb—(caIIWith()— array)

Calls the routine object using the arguments provided in array. Each element of array will be mapped
to its corresponding call argument. The code in the routine object is called as if it was an external
routine call. The return value will be any value returned by the executed routine.

5.1.6.9. package

Returns the Package class instance that defined the routine instance. The package instance controls
and defines the search order for classes and routines referenced by the routine code.

5.1.6.10. setSecurityManager

bb—(setSecurityManager() L @—N

security_manager_object

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.6.11. source

Returns the routine source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

5.1.7. String Class

String objects represent character-string data values. A character string value can have any length
and contain any characters.

Table 5.7. String Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparable (Mixin Class)

Methods inherited from the Comparable class
CHG compareTo

String

new (Class Method) *NEW?* digit (Class Method) *NEW?* punct (Class Method)
NEW alnum (Class Method) *NEW* graph (Class Method) *NEW?* space (Class Method)
NEW? alpha (Class Method) *NEW?* lower (Class Method) tab (Class Method)

NEW blank (Class Method) nl (Class Method) *NEW* upper (Class Method)
NEW? cntrl (Class Method) null (Class Method) *NEW* xdigit (Class Method)

169

String Class

cr (Class Method)

Arithmetic Methods + - *** [|| %

NEW? print (Class Method)

Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
Concatenation Methods (abuttal) || (blank)

Logical Methods \ & && |

NEW []

NEW ? (inline if)

abbrev

abs

NEW append

b2x

bitAnd

bitOr

bitXor

c2d

c2x

caselessAbbrev
caselessChangeStr
caselessCompare
caselessCompareTo
NEW? caselessContains
NEW? caselessContainsWord
caselessCountStr

NEW caselessEndsWith
caselessEquals
caselessLastPos
caselessMatch
caselessMatchChar
caselessPos

NEW caselessStartsWith
caselessWordPos

ceiling

center/centre

changeStr

compare
compareTo
NEW? contains

NEW containsWord

copies
countStr

d2c

dz2x

CHG dataType
decodeBase64
CHG delStr
delWord
encodeBase64
NEW endsWith
equals

floor

format
hashCode
insert

lastPos

left

length

lower
makeArray
makeString
match
matchChar
max

min

NEW modulo
overlay

pos
replaceAt
reverse
right

round

sign

space
NEW startsWith
strip
subChar
substr
subWord
subWords
translate
trunc

upper
verify

word
wordIndex
wordLength
wordPos
words

x2b

Xx2c

x2d

5.1.7.1. new (Class Method)

»—(new(

stringvalue —@—N

Returns a new string object initialized with the characters in stringvalue.

5.1.7.2. *\NEW* alnum (Class Method)

Returns the string

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, a character
sequence representing the POSIX character class name ALNUM (alphanumeric characters).

See also class methods alpha and digit.

170

String Class

5.1.7.3. *NEW* alpha (Class Method)

Returns the string ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, a character
sequence representing the POSIX character class name ALPHA (alphabetic characters).

See also class methods lower and upper.

5.1.7.4. *NEW* blank (Class Method)

Returns the string '09 20'Xx, a character sequence representing the POSIX character class name
BLANK (tab and space character).

See also class method space.

5.1.7.5. *NEW* cntrl (Class Method)

Returns the string '00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF 10 11 12 13
14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 7F'X, a character sequence representing the POSIX
character class name CNTRL (control characters).

See also class method *NEW* print (Class Method).

5.1.7.6. cr (Class Method)

()

Returns the single character string for the carriage-return character, which has the value '0d'x.

5.1.7.7. *NEW* digit (Class Method)

Returns the string 0123456789, a character sequence representing the POSIX character class name
DIGIT (digits).

See also class method xdigit.

5.1.7.8. *NEW* graph (Class Method)

171

String Class

Returns the string 1"#$%&"' () *+, - . /0123456789 : ; <=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ "~ abcdefghijklmnopqrstuvwxyz{|}~, a character
sequence representing the POSIX character class name GRAPH (visible characters).

See also class method print.

5.1.7.9. *NEW* lower (Class Method)

Returns the string abcdefghijklmnopqgrstuvwxyz, a character sequence representing the POSIX
character class name LOWER (lowercase letters).

See also class methods upper and alpha.

5.1.7.10. nl (Class Method)

()

Returns the single character string for the line-feed character, which has the value '0a'x.

5.1.7.11. null (Class Method)

:

Returns the single character string for the null character, which has the value '00'Xx.

5.1.7.12. *NEW* print (Class Method)

Returns the string !"#$%&' () *+, -./0123456789: ; <=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_~ abcdefghijklmnopqrstuvwxyz{]|}~ (with a
leading space), a character sequence representing the POSIX character class name PRINT (visible
characters and space character).

See also class method graph.

5.1.7.13. *NEW* punct (Class Method)

Returns the string "#$%&"' () *+, -./:;<=>?2@[\]"_"{| }~, a character sequence representing the
POSIX character class name PUNCT (punctuation characters).

172

String Class

5.1.7.14. *NEW* space (Class Method)

Returns the string '09 GA 0B 0C 0D 20'Xx, a character sequence representing the POSIX
character class name SPACE (whitespace characters horizontal tab, line feed, vertical tab, form feed,
carriage return, and space).

See also class method blank.

5.1.7.15. tab (Class Method)

Returns the single character string for the tab character, which has the value '09'x.

5.1.7.16. *NEW* upper (Class Method)

Returns the string ABCDEFGHIJKLMNOPQRSTUVWXYZ, a character sequence representing the POSIX
character class hame UPPER (uppercase letters).

See also class method lower.

5.1.7.17. *NEW* xdigit (Class Method)

Returns the string 0123456789ABCDEFabcdef, a character sequence representing the POSIX
character class name XDIGIT (hexadecimal digits).

See also class method digit.

5.1.7.18. Arithmetic Methods
»»— arithmetic_operator argument

@

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.

173

String Class

Returns the result of performing the specified arithmetic operation on the receiver object. The receiver
object and the argument must be valid numbers. The arithmetic_operator can be:

+

/
%
I

*%

Prefix -

Prefix +

Addition

Subtraction

Multiplication

Division

Integer division (divide and return the integer part of the result)

Remainder (divide and return the remainder—not *NEW* modulo, because the
result can be negative)

Exponentiation (raise a number to a whole-number power)
Same as the subtraction: ® - number

Same as the addition: ® + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it
might have been rounded.

Example 5.53. String class — arithmetic methods

5+5 ->
8-5 ->
5*2 ->
6/2 ->
9//4 =
9%4 ->
2**3 ->
+5 =
_5 ->

B
[5)

O U oOoNRE WO

/* Prefix + */
/* Prefix - */

5.1.7.19. Comparison Methods

PP—(comparison_operator(argument —@—N

Returns . true or . false, the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared. Both must be string objects. If argument is not a
string object, it is converted to its string representation for the comparison. The one exception is when
argument is .nil for the ==, \==, =, \=, ><, and <> operators. A string object will never compare
equal to .nil, even when the string matches the string value of .nil ("The NIL object"). As a result,
== will always return . false when compared to .nil and \== will always return . true. All of the
relational comparisons (for example, <, >, <=, etc.) will always return . false when compared to

.nil.

The comparison operators you can use in a message are:

\=, ><, <>

. true if the terms are equal (for example, numerically or when padded). . false if
argument is .nil.

. true if the terms are not equal (inverse of =). . true if argument is .nil.
Greater than. . false if argumentis .nil.

174

String Class

< Less than. . false if argumentis .nil.

>= Greater than or equal to. . false if argument is .nil.
\< Not less than. . false if argumentis .nil.

<= Less than or equal to. . false if argument is .nil.
\> Not greater than. . false if argumentis .nil.

Example 5.54. String class — comparison methods

5=5 -> 1 /* equal */
42\=41 -> 1 /* All of these are */
42><41 -> 1 /* "not equal" */
42<>41 -> 1
13>12 -> 1 /* Variations of */
12<13 -> 1 /* less than and */
13>=12 -> 1 /* greater than */
12\<13 -> 0
12<=13 -> 1
12\>13 -> 1

All strict comparison operations have one of the characters doubled that define the operator. The
== and \== operators check whether two strings match exactly. The two strings must be identical
(character by character) and of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple character-by-character
comparison. There is no padding of either of the strings being compared. The comparison of the two
strings is from left to right. If one string is shorter than and a leading substring of another, then it is
smaller than (less than) the other. The strict comparison operators do not attempt to perform a numeric
comparison on the two operands.

For all the other comparison operators, if both terms are numeric, the String class does a numeric
comparison (ignoring, for example, leading zeros—see Section 10.4, “Numeric Comparisons”).
Otherwise, it treats both terms as character strings, ignoring leading and trailing whitespace characters
and padding the shorter string on the right with blanks.

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than

the alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

== . true if terms are strictly equal (identical)
== . true if the terms are NOT strictly equal (inverse of ==

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to
\<< Strictly NOT less than

<<= Strictly less than or equal to

175

String Class

\>> Strictly NOT greater than

Example 5.55. String class — comparison methods

"space'=="space" -> 1
"space"\==" space" -> 1
"space">>" space" -> 1
" space'<<"space" -> 1
"space">>=" space" -> 1
"space"\<<" space" -> 1
" space''<<="space" -> 1
" space"\>>"space" -> 1

5.1.7.20. Logical Methods

/*
/*
/*

/*
/*

»—(Iogical_operator()— argument

Strictly equal
Strictly not equal
Variations of

strictly greater
than and less than

For NOT (prefix \), omit the parentheses and argument.

*/
*/
*/

*/
*/

Returns . true or . false, the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or 0.

The logical_operator can be:

& AND (Returns 1 if both terms are . true.)

| Inclusive OR (Returns 1 if either term or both terms are true.)

&& Exclusive OR (Returns 1 if either term, but not both terms, is . true.)
Prefix \ Logical NOT (Negates; 1 becomes 0, and @ becomes 1.)

Example 5.56. String class — logical methods

1&0 -> 0]
1|0 -> 1
1&&0 -> 1
\1 -> 0]

5.1.7.21. Concatenation Methods

bb—(concatenation_operator()— argument

Concatenates the receiver object with argument. (See Section 1.11.2.1, “String Concatenation”.) The

concatenation_operator can be:

176

String Class

concatenates without an intervening blank. The abuttal operator "™ is the null string.
The language processor uses the abuttal to concatenate two terms that another
operator does not separate.

|l concatenates without an intervening blank.

" concatenates with one blank between the receiver object and the argument. (The
operator " " is a blank.)

Example 5.57. String class — concatenation methods

f = "abc"
fdef" -> "abcdef"
f || "def" -> “abcdef"
f "def" -> "abc def"

5.1.7.22. *NEW* []

@])

0 length

If length is omitted, returns the character at position n of the receiving string. If n is larger than the
length of the receiving string, a null string is returned.

If length is specified, returns the substring of the receiving string starting at position n and of length
length. No padding occurs for any portion of the returned string not within the boundaries of the
receiving string.

The n must be a positive whole number, and, if specified, length must be a a non-negative whole
number.

See also methods subChar and substr.

Example 5.58. String class — [] method

"abC"[Z] . npn
"abC"[2,4] -- "pc"

5.1.7.23. *NEW* ? (inline if)

2(first 0 second)

Returns first if the receiving string is . true, returns second if itis . false.

Example 5.59. String class — ? method

do apples = 0 to 2 -- 0 apples
say apples (apples = 1)~?("apple", "apples") -- 1 apple
end -- 2 apples

177

String Class

5.1.7.24. abbrev

bb—[abbrev()— info @—N
L@— length J

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.60. String class — abbrev method
"Print"~abbrev("Pri") -> 1
"PRINT"~abbrev("Pri") -> 0
"PRINT"~abbrev("PRI", 4) -> 0
"PRINT"~abbrev("PRY") -> 0
"PRINT"~abbrev("") -> 1
"PRINT"~abbrev("",1) -> 0

A null string always matches if a length of @, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.61. String class — abbrev method

say "Enter option:"; pull option .

select /* keywordl is to be the default */
when "keywordl"~abbrev(option) then ...
when "keyword2"~abbrev(option) then ...

otherwise nop;
end;

5.1.7.25. abs

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

Example 5.62. String class — abs method

12.3~abs -> 12.3
"-0.307"~abs -> 0.307

178

String Class

5.1.7.26. *NEW* append

bb—(append()— string)

Returns a string consisting of string appended to the receiving string.

5.1.7.27. b2x

Returns a string, in character format, that represents the receiving binary string converted to
hexadecimal.

The receiving string is a string of binary (0@ or 1) digits. It can be of any length. It can optionally include
whitespace characters (at 4-digit boundaries only, not leading or trailing). These are to improve
readability and are ignored.

The returned string uses uppercase alphabetic characters for the values A-F and does not include
whitespace.

If the receiving binary string is a null string, b2x returns a null string. If the number of binary digits
in the receiving string is not a multiple of four, up to three 0 digits are added on the left before the
conversion to make a total that is a multiple of four.

Example 5.63. String class — b2x method

"11000011"~b2x -> R C3
"10111"~b2x -> "7
1101"~b2x > ngn

"1 1111 0000"~b2x -> "1FO"

You can combine b2x with the methods x2d and x2c to convert a binary number into other forms.

Example 5.64. String class — b2x method with x2d

"10111"~b2x~x2d -> "23" /* decimal 23 */

5.1.7.28. bitAnd

string 7 pad

el

Returns a string composed of the receiver string and the argument string logically ANDed together, bit
by bit. (The encodings of the strings are used in the logical operation.) The length of the result is the
length of the longer of the two strings. If you omit the pad character, the AND operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

179

String Class

Example 5.65. String class — bitand method

"12"x~bitAnd -> "121x

"73"x~bitAnd("27"x) -> "23"x
"13"x~bitAnd("5555"x) -> "1155"x
"13"x~bitAnd("5555"x, "74"x) -> "1154"x

"pQrs"~bitAnd(, "DF"x) -> "PQRS" /* ASCII */

5.1.7.29. bitOr

»_@L @—N
string pad

Returns a string composed of the receiver string and the argument string logically inclusive-ORed, bit
by bit. The encodings of the strings are used in the logical operation. The length of the result is the
length of the longer of the two strings. If you omit the pad character, the OR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

Example 5.66. String class — bitor method

"12"x~bitOr -> "12"x
"15"x~bitOr("24"x) -> "35'"x

"15"x~bitOr ("2456"x) -> "3556"x

"15"x~bitOr ("2456"x, "FO"x) -> "35F6"x
"1111"x~bitOr(, "4D"x) -> "5D5D" X
"pQrS"~bitor(, "20"x) -> "pqrs" /* ASCII */

5.1.7.30. bitXor

string o pad

yalie

Returns a string composed of the receiver string and the argument string logically eXclusive-ORed,
bit by bit. The encodings of the strings are used in the logical operation. The length of the result is
the length of the longer of the two strings. If you omit the pad character, the XOR operation stops
when the shorter of the two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If you provide pad, it extends the shorter of the two strings on the right
before carrying out the logical operation. The default for string is the zero-length (null) string.

Example 5.67. String class — bitxor method

"12"x~bitXor -> "12"x
"12"x~bitXor("22'"x) -> "30"X
"1211"x~bitXor ("22"x) -> "3011"x

180

String Class

"1111"x~bitXor ("444444"X) -> "555544"x
"1111"x~bitXor ("444444"X,"40"X) -> "555504"x
"1111"x~bitXor(, "4D"X) -> "5C5C"X

"C711"x~bitXor ("222222"x," ") -> "E53302"x /* ASCII */

5.1.7.31. c2d

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do
not specify n, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns 0.

Example 5.68. String class — c2d method

"09"X~c2d -> 9
"81"X~c2d -> 129
"FF81"X~c2d -> 65409
""~c2d -> 0
"a"~c2d -> 97 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in n characters. The
number is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is
converted to a whole number, which can therefore be negative. The receiving string is padded on the
left with "00"x characters (hot "sign-extended"), or truncated on the left to n characters. This padding
or truncation is as though receiving_string~right(n, '00'x) had been processed. If nis 0,
c2d always returns 0.

Example 5.69. String class — c2d method

"81"X~c2d (1) -> -127
"g1"X~c2d(2) -> 129
"FE81"X~c2d(2) -> -127
"FE81"X~c2d(1) -> -127
"FE7F"X~c2d(1) -> 127
"FE81"X~c2d(2) -> -3967
"FE81"X~c2d(1) -> -127
"@E31"X~c2d(0) -> 0

5.1.7.32. c2x

()

Returns a string, in character format, that represents the receiving string converted to hexadecimal.
The returned string contains twice as many bytes as the receiving string. On an ASCII system,
sending a c2x message to the receiving string 1 returns 31 because "31"X is the ASCII representation
of 1.

181

String Class

The returned string has uppercase alphabetic characters for the values A-F and does not include
whitespace. The receiving string can be of any length. If the receiving string is null, c2x returns a null
string.

Example 5.70. String class — ¢2x method

"0123"X~c2x -> "0123" /* "30313233"X in ASCII */
"ZD8"~c2x -> "5A4438" /* "354134343338"X in ASCII */

5.1.7.33. caselessAbbrev

»—(caselessAbbrev(info @—N

o length

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met. The characters are tested using a
caseless comparison.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.71. String class — caselessAbbrev method

"Print"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("PRI", 4) -> (0]
"PRINT"~caselessAbbrev("PRY") -> 0
"PRINT"~caselessAbbrev("") -> 1
"PRINT"~caselessAbbrev("",1) -> (0]

A null string always matches if a length of @, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.72. String class — caselessAbbrev method

say "Enter option:"; parse pull option .

select /* keywordl is to be the default */
when "keywordl"~caselessAbbrev(option) then ...
when "keyword2"~caselessAbbrev(option) then ...

otherwise nop;
end;

182

String Class

5.1.7.34. caselessChangeStr

bb—(caselessChangeStr()— needle o newneedle @—N

, count

Returns a copy of the receiver object in which newneedle replaces occurrences of needle. If count is
not specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced. The needle searches
are performed using caseless comparisons.

Here are some examples:

Example 5.73. String class — caselessChangeStr method

"AbaAbb"~caselessChangeStr("A","") -> "bbb"
AbaBabAB~changeStr("ab", "xy") -> "Xyxyxyxy"
AbaBabAB~changeStr("ab", "xy",1) -> "xyaBabAB"

5.1.7.35. caselessCompare

pad

bb—(caselessCompare(string S @—N

Returns 0 if the argument string is identical to the receiving string using a caseless comparison.
Otherwise, returns the position of the first character that does not match. The shorter string is padded
on the right with pad if necessary. The default pad character is a blank.

Example 5.74. String class — caselessCompare method

"abc'"~caselessCompare("ABC") -> 0
"abc'"~caselessCompare("Ak") -> 2
"ab "~caselessCompare("AB") -> 0
"AB "~caselessCompare("ab"," ") -> 0
"ab "~caselessCompare("ab","x") -> 3
"abXX "~caselessCompare("ab","x") -> 5

5.1.7.36. caselessCompareTo

bb—(caselessCompareTo()— string o e @—N
o length

Performs a caseless sort comparison of the target string to the string argument. If the two strings are
equal, 0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger
string. The comparison is performed starting at character n for length characters in both strings. n
must be a positive whole number. If n is omitted, the comparison starts at the first character. length
must be a non-negative whole number. If omitted, the comparison will take place to the end of the
target string.

183

String Class

Example 5.75. String class — caselessCompareTo method

"abc"~caselessCompareTo("abc") -> 0
"b"~caselessCompareTo("a") -> 1
"a"~caselessCompareTo("b") -> =dl
"abc"~caselessCompareTo("aBc") -> 0
"aBc'"~caselessCompareTo("abc") -> 0

"000abcOOO"~caselessCompareTo(11llabc111", 4, 3) -> 0

5.1.7.37. *NEW* caselessContains

bb—(caselessContains(other o @—N
L start L@— length

Returns . true if the receiving string contains the other string. It returns . false if other is the null
string or is not found within the receiving string. The search is performed using caseless comparisons.

By default, the search starts at the first character of the receiving string and continues to the end. You
can override this by specifying start, the point at which the search starts, and length, the bounding limit
for the search.

If specified, start must be a positive whole number and length must be a non-negative whole number.

See also methods *NEW?* contains, *NEW?* caselessStarts\With, *NEW* caselessEndsWith, and
caselessPos.

Example 5.76. String class — caselessContains method

say "-abcdef-"~caselessContains("EF") -- 1
say "-abcdef-"~caselessContains("-", 2, 6) -- 0

5.1.7.38. *NEW* caselessContainsWord

start

bb—(caselessContainsWord(phrase < @—N

Returns . true if phrase is found in the receiving string. Returns . false if phrase contains no
words or if phrase is not found. Word matches are made independent of case. Multiple whitespace
characters between words in either phrase or the receiving string are treated as a single blank for the
comparison, but, otherwise, the words must match, except for case.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be a positive whole number), the word at which the search is to be started.

See also methods *NEW* containsWord and caselessWordPos (caselessContainsWord returns
.false exactly if caselessWordPos would have returned "0".)

Example 5.77. String class — caselessContainsWord method

good = "Now is the time for all good men"

184

String Class

good~caselessContainsWord("the") -- .true
good~caselessContainsWord("The") -- .true
good~caselessContainsWord("is the") -- .true
good~caselessContainsWord("is the ") -- .true
good~caselessContainsWord("is time") -- .false
good~caselessContainsWord("time") -- .true
good~caselessContainsWord("time", 5) -- .false

5.1.7.39. caselessCountStr

bb—(caselessCountStr(needle)

Returns a count of the occurrences of needle in the receiving string that do not overlap. All matches
are made using caseless comparisons.

Here are some examples:

Example 5.78. String class — caselessCountStr method

"aOAaOA"~caselessCountStr("a") -> 4
"JOkKke"~caselessCountStr("KK") -> 1

5.1.7.40. *NEW?* caselessEndsWith

bb—(caselessEndsWith()— other)

Returns . true if the characters of the other match the characters at the end of the target string.
Returns . false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessEndsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

See also methods *NEW* caselessStartsWith, *NEW* endsWith, and caselessMatch.

5.1.7.41. caselessEquals

bb—(caselessEquals(other)

Returns . true if the target string is strictly equal to the other string, using a caseless comparison.
Returns . false if the two strings are not strictly equal.

Example 5.79. String class — caselessEquals method

"a"~caselessEquals("A") -> 1
"aa"~caselessEquals("A") -> 0]
"4"~caselessEquals("3") -> 0

185

String Class

5.1.7.42. caselessLastPos

bb—(caselessLastPos()— needle 7 @—N

start 7 length

Returns the position of the last occurrence of a string, needle, in the receiving string. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
string and scans backward to the beginning of the string. You can override this by specifying start,

the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_string~length if larger than that
value or omitted. The length must be a non-negative whole number and defaults to start. The search is
performed using caseless comparisons.

See also methods /astPos, caselessPos, and pos.

Example 5.80. String class — caselessLastPos method

"abc def ghi'"~caselessLastPos(" ") -> 8
"abcdefghi"~caselessLastPos(" ") -> 0
"efgxyz'"~caselessLastPos("XY") -> 4
"abc def ghi'"~caselessLastPos(" ",7) -> 4
"abc def ghi"~caselesslLastPos(" ",7,3) -> 0

5.1.7.43. caselessMatch

bb—(caselessMatch(start o other o e @—N
o length

Returns . true if the characters of the other match the characters of the target string beginning at
position start. Returns . false if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

Example 5.81. String class — caselessMatch method

"Saturday"~caselessMatch(6, "day") ->
"Saturday'"~caselessMatch(6, "DAY") ->
"Saturday"~caselessMatch(6, "SUNDAY", 4, 3) ->
"Saturday"~caselessMatch(6, "daytime", 1, 3) ->

[Y

186

String Class

5.1.7.44. caselessMatchChar

bb—(caselessMatchChar(chars)

Returns . true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The match is made
using caseless comparisons. The argument n must be a positive whole number.

Example 5.82. String class — caselessMatchChar method

"a+b"~caselessMatchChar (2, "+-*/") -> 1
"a+b"~caselessMatchChar(1, "+-*/") -> 0
"Friday'"~caselessMatchChar (3, "aeiou" -> 1
"FRIDAY"~caselessMatchChar (3, "aeiou") -> 1

5.1.7.45. caselessPos

bb—(caselessPos()— needle 7 @—N

start 7 length

Returns the position in the receiving string of another string, needle. It returns 0 if needle is the

null string or is not found or if start is greater than the length of the receiving string. The search is
performed using caseless comparisons. By default, the search starts at the first character of the
receiving string (that is, the value of start is 1), and continues to the end of the string. You can override
this by specifying start, the point at which the search starts, and length, the bounding limit for the
search. If specified, start must be a positive whole number and /length must be a non-negative whole
number.

See also methods pos and caselessLastPos.

Example 5.83. String class — caselessPos method

"Saturday'"~caselessPos("DAY") -> 6
"abc def ghi'"~caselessPos("x") -> (0]
"abc def ghi'"~caselessPos(" ") -> 4
"abc def ghi'"~caselessPos(" ",5) -> 8
"abc def ghi"~caselessPos(" ",5,3) -> 0]

5.1.7.46. *NEW* caselessStartsWith

bb—(caselessStartsWith()— other)

Returns . true if the characters of the other match the characters at the start of the target string.
Returns . false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessStartsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

187

String Class

See also methods *NEW?* startsWith, *NEW?* caselessEndsWith, and caselessMatch.

5.1.7.47. caselessWordPos

start

bb—(caselessWordPos(phrase < @—N

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Several
whitespace characters between words in either phrase or the receiving string are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.84. String class — caselessWordPos method

"now is the time'"~caselessWordPos("the") -> 3
"now is the time"~caselessWordPos("The") -> 3
"now is the time"~caselessWordPos("IS THE") -> 2
"now is the time'"~caselessWordPos("is the") -> 2
"now is the time"~caselessWordPos("is time ") -> 0
"To be or not to be'"~caselessWordPos("BE") -> 2
"To be or not to be'"~caselessWordPos("BE", 3) -> 6

5.1.7.48. ceiling

Returns the largest integer not less than the receiving string value. The receiving string is first rounded
according to standard Rexx rules, as though the operation receiving_string+0 had been carried
out. The ceiling is then calculated from that result and returned. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Example 5.85. String class — ceiling method

2~ceiling -> 2
'-2'~ceiling -> -2
12.3~ceiling -> 13
'-12.3'~ceiling -> -12
'-0.1"'~ceiling -> 0]

188

String Class

@e

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.49. center/centre

length @—N
o=

Returns a string of length length with the receiving string centered in it. The pad characters are added
as necessary to make up length. The length must be a positive whole number or zero. The default
pad character is blank. If the receiving string is longer than length, it is truncated at both ends to fit.

If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

@ve

To avoid errors because of the difference between British and American spellings, this method
can be called either center or centre.

center(

centre(

Example 5.86. String class — center method

abc~center(7) -> " ABC "
abc~CENTER(8,"-") -> "--ABC---"
"The blue sky"~centre(8) -> "e blue s"
"The blue sky"~centre(7) -> "e blue "

5.1.7.50. changeStr

A e

Returns a copy of the receiver object in which newneedle replaces occurrences of needle.

count

bb—[changeStr()— needle —@— newneedle <

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a non-
negative, whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:

189

String Class

Example 5.87. String class — changeStr method

101100~changeStr("1","") -- "eee"
101100~changeStr("1", "X") oo "XOXX00"
101100~changeStr("1","X",1) -- "X01100"

-- a Quine: will print an exact copy of itself
-- (see https://en.wikipedia.org/wiki/Quine_%28computing%29)
r=";say'r=.'r'.'r~changeStr(.,'22'x,2)";say'r=""'r'""'r~changeStr(., '22'x,2)

5.1.7.51. compare

PP—(compare(string @—N

D pad

Returns 0 if the argument string is identical to the receiving string. Otherwise, returns the position of
the first character that does not match. The shorter string is padded on the right with pad if necessary.
The default pad character is a blank.

Example 5.88. String class — compare method

"abc"~compare("abc") -> (0]
"abc"~compare("ak") -> 2
"ab "~compare("ab") -> 0]
"ab "~compare("ab"," ") -> 0
"ab "~compare("ab","x") -> 3
"ab-- "~Compare("ab","—") -> 5

5.1.7.52. compareTo

P length

PP—(compareTo(string —O @—N
SHe

Performs a sort comparison of the target string to the string argument. If the two strings are equal,

0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger string.
The comparison is performed starting at character n for length characters in both strings. n must be
a positive whole number. If n is omitted, the comparison starts at the first character. length must be a
non-negative whole number. If omitted, the comparison will take place to the end of the target string.

Example 5.89. String class — compareTo method

"abc"~compareTo("abc") -> (0]
"b"~compareTo("a") -> 1
"a"~compareTo("b") -> -1
"abc"~compareTo("aBc") -> 1
"aBc"~compareTo("abc") -> -1

"000abcOOO"~compareTo(11liabc111", 4, 3) -> 0

190

String Class

5.1.7.53. *NEW* contains

bb—(contains()— other P @—N

start 0 length

Returns . true if the receiving string contains the other string. It returns . false if other is the null
string or is not found within the receiving string.

By default, the search starts at the first character of the receiving string and continues to the end. You
can override this by specifying start, the point at which the search starts, and length, the bounding limit
for the search. If specified, start must be a positive whole number and length must be a non-negative
whole number.

See also

« method *NEW* caselessContains,
» method *NEW?* startsWith,

* method *NEW* endsWith, and

» method pos.

Example 5.90. String class — caselessContains method

say "-abcdef-"~contains("ef") -1
say "-abcdef-"~contains("-", 2, 6) -- 0

5.1.7.54. *NEW* containsWord

start

bb—(containsWord(phrase < @—N

Returns . true if phrase is found in the receiving string. Returns . false if phrase contains no

words or if phrase is not found. Multiple whitespace characters between words in either phrase or the
receiving string are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive whole number), the word at which the search is to be started.

See also
» method caselessContainsWord and
» method wordPos (containsWord returns . false exactly if wordPos would have returned "0".)

Example 5.91. String class — containsWord method

good = "Now is the time for all good men"

say good~containsWord("the") -- .true
say good~containsWord("The") -- .false
say good~containsWord("is the") -- .true
say good~containsWord("is the ") -- .true
say good~containsWord("is time") -- .false
say good~containsWord("time") -- .true
say good~containsWord("time", 5) -- .false

191

String Class

5.1.7.55. copies

Returns n concatenated copies of the receiving string. The n must be a positive whole number or zero.

Example 5.92. String class — copies method

"abc"~copies(3) -> "abcabcabc"
"abc"~copies(0) -> "

5.1.7.56. countStr

bb—(countStr(—@—N

Returns a count of the occurrences of needle in the receiving string that do not overlap.

needle

Here are some examples:

Example 5.93. String class — countStr method

"101101"~countStr("1") -> 4
"JOKKKO"~CountStr ("KK") -> 1

5.1.7.57. d2c

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specify n, it is the length of the final result in characters; leading blanks are added to
the returned string. The n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Example 5.94. String class — d2c method

"g5"~d2c -> mAn /* "41"x is an ASCII "A" x/
"65"~d2c (1) -> npn

Il65ll~d20(2) _> n AII

Il65ll__d2c(5) _> " All

"109"~d2c > e /* "6D"x is an ASCII "m" */
".109"~d2c(1) -> "o" /* "93"x is an ASCII "o" */

192

String Class

"76"~d2c(2) s> 0 LD /* "4C"x is an ASCII " L" */
Il_180|l~d2C(2) _> " Lll

5.1.7.58. d2x

Returns a string, in character format, that represents the receiving string, a decimal number converted
to hexadecimal. The returned string uses uppercase alphabetic characters for the values A-F and does
not include whitespace.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.
If you specify n, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on

the left. If you specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Example 5.95. String class — d2x method

"9""‘d2X _> Ilgll
"129"~d2X _> Il81ll
"129"~d2x(1) -> 9|0
"129"~d2x(2) -> ngqn
"129"~d2x(4) -> "0E81"
"257"~d2x(2) -> "e1"
"_127"~d2x(2) -> ngqn
"_127"~d2x(4) -> "FF81"
"12"~d2x(0) -> o

5.1.7.59. *CHG* dataType

dataType()

type

Returns NUM if you specify no argument and the receiving string is a valid Rexx number that can be
added to O without error. It returns CHAR if the receiving string is not a valid number.

If you specify type, it returns . true if the receiving string matches the type. Otherwise, it returns

. False. If the receiving string is null, the method returns . false (except when the type is X or B, for
which dataType returns . true for a null string). The following are valid types. You need to specify
only the capitalized letter, or 9 for the 9Digits option. The language processor ignores all characters
following it.

Alphanumeric
returns . true if the receiving string contains only characters from the ranges a-z, A-Z, and 0-9.

193

String Class

Binary
returns . true if the receiving string contains only the characters 0 or 1, or whitespace.
Whitespace characters can appear only between groups of 4 binary characters. It also returns
. true if string is a null string, which is a valid binary string.

NEW Internal whole number
returns . true if the receiving string is a Rexx whole number that built-in functions will accept.
Rexx built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems.

Lowercase
returns . true if the receiving string contains only characters from the range a-z.

Mixed case
returns . true if the receiving string contains only characters from the ranges a-z and A-Z.

Number
returns . true if receiving_string~dataType returns NUM.

logical
returns . true if the receiving string is exactly @ or 1. Otherwise it returns . false.

Symbol
returns . true if the receiving string is a valid symbol, that is, if SYMBOL (receiving_string) does
not return BAD. See also Section 1.10.4.4, “Symbols”. Note that both uppercase and lowercase
alphabetic characters are permitted.

Uppercase
returns . true if the receiving string contains only characters from the range A-Z.

Variable
returns . true if the receiving string could appear on the left-hand side of an assignment without
causing a SYNTAX condition.

Whole number
returns . true if the receiving string is a whole number under the current setting of NUMERIC
DIGITS.

heXadecimal
returns . true if the receiving string contains only characters from the ranges a-f, A-F, 0-9,
and whitespace characters (as long as whitespace characters appear only between pairs of
hexadecimal characters). Also returns . true if the receiving string is a null string.

9 Digits

returns . true if receiving_string~dataType("W") returns . true when NUMERIC DIGITS
is setto 9.

Example 5.96. String class — datatype method

" 12 "~dataType -> "NUM"
""~dataType -> "CHAR"
"123*"~dataType -> "CHAR"
"12.3"~dataType("N") -> 1
"12.3"~dataType("W") -> 0]

194

String Class

"Fred"~dataType("M") -> 1
""~dataType("M") > 0
"Fred"~dataType("L") -> 0]
"?20K"~dataType("s") -> 1
"BCd3"~dataType("X") -> 1
"BC d3"~dataType("X") -> 1
"1"~dataType("0") -> 1
"11"~dataType("0") -> 0

@

The dataType method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

5.1.7.60. decodeBase64

Returns a new string containing the decoded version of the base64 encoded receiving string. If the
receiving string is not in base64 format, an error results.

Example 5.97. String class — decodeBase64 method

"YWJjZGVm"~decodeBase64 -> "abcdef"

5.1.7.61. *CHG* delStr

»>—{ delstr(i _f @—N
o length

Returns a copy of the receiving string after deleting the substring that begins at the nth character and
is of length characters. If n is omitted, it defaults to 1. If you omit length, or if length is greater than the
number of characters from n to the end of string, the method deletes the rest of string (including the
nth character). The length must be a positive whole number or zero. The n must be a positive whole
number. If n is greater than the length of the receiving string, the method returns the receiving string
unchanged.

Example 5.98. String class — delStr method

"abcd"~delStr(3) -> "ab"
"abcde"~delStr(3,2) -> "abe"
"abcde'"~delStr(6) -> "abcde"

195

String Class

5.1.7.62. delWord

:)

7 length

Returns a copy of the receiving string after deleting the substring that starts at the nth word and

is of length whitespace-delimited words. If you omit length, or if length is greater than the number

of words from n to the end of the receiving string, the method deletes the remaining words in the
receiving string (including the nth word). The length must be a positive whole number or zero. The

n must be a positive whole number. If n is greater than the number of words in the receiving string,
the method returns the receiving string unchanged. The string deleted includes any whitespace
characters following the final word involved but none of the whitespace characters preceding the first
word involved.

Example 5.99. String class — delWord method

"Now is the time"~delWord(2,2) -> "Now time"

"Now is the time "~delWord(3) -> "Now is "

"Now is the time"~delword(5) -> "Now is the time"
"Now 1is the time"~delword(3,1) -> "Now is time"

5.1.7.63. encodeBase64

encodeBase64

Returns a new string that is the base64 encoded version of the receiving string.

Example 5.100. String class — encodeBase64 method

"abcdef"~encodeBase64 -> "YwJjzGvm"

5.1.7.64. *NEW* endsWith

bb—(endsWith(other)

Returns . true if the characters of the other match the characters at the end of the target string.
Returns . false if the characters are not a match, or if other is the null string.

The endsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

See also methods *NEW* startsWith, *NEW* caselessEndsWith, and match.

5.1.7.65. equals

bb—(equals(other)

196

String Class

Returns . true if the target string is strictly equal to the other string. Returns . false if the two strings
are not strictly equal. This is the same comparison performed by the "==" comparison method.

Example 5.101. String class — equals method

Il3ll~equals(ll3ll) -> 1
"33"~equals("3") -> 0]
Il4|l~equals(ll3ll) -> 0

5.1.7.66. floor

Returns the largest integer not greater than the receiving string value. The receiving string value is first
rounded according to standard Rexx rules, as though the operation receiving_string+0 had been
carried out. The floor is then calculated from that result and returned. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Example 5.102. String class — floor method

2~floor -> 2

'-2'~floor -> -2
12.3~floor -> 12
'-12.3'~floor -> -13

@roe

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.67. format

bb—' format(J J @

before

))
J u expp J expt J O—N

I

after

Returns a copy of the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method
is the same as the result of this operation. If you specify any options, the number is formatted as
described in the following.

The before and after options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as
needed.

197

String Class

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying @ causes the number to be rounded to an integer.

Example 5.103. String class — format method

"3"~format(4) -> " 3"
"1,.73"~format(4,0) -> o g0
"1.73"~format (4, 3) -> " 1.730"
"-.76"~format(4,1) -> " -0.8"
"3.03"~format(4) -> " 3.03"
" - 12.73"~format(,4) -> "-12.7300"
" - 12.73"~format -> "-12.73"
"0.000"~format -> "o"

expp and expt control the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORM. expp sets the number of places for the exponent
part; the default is to use as many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is O, the number is not an exponential expression. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent
would be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be ® when a nonzero
expp is specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent
would be 0 and expp is not specified, the number is not an exponential expression.

Example 5.104. String class — format method

"12345.73"~format(, ,2,2) -> "1.234573E+04"
"12345.73"~format(,3, ,0) -> "1,235E+4"
"1,234573"~format(,3, ,0) -> "1,235"
"12345.73"~format(, ,3,6) -> "12345,73"
"1234567e5"~format(, 3,0) -> "123456700000.000"

5.1.7.68. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollections such as Table, Relation,
Set, Bag, or Directory. The String hashCode method will return the same hash value for all pairs
of string instances for which the == operator is . true.

See also Object method hashCode for details.

5.1.7.69. insert

198

String Class

I

bb—(insert()— new , m) '—N
U length —f pad —f

Returns a copy of the receiver string with the string new, padded or truncated to length length, inserted
after the nth character. The default value for n is 8, which means insertion at the beginning of the
string. If specified, n and length must be positive whole numbers or zero. If n is greater than the length
of the receiving string, the string new is padded at the beginning. The default value for length is the
length of new. If length is less than the length of the string new, then insert truncates new to length
length. The default pad character is a blank.

Example 5.105. String class — insert method

"abc"~insert("123") -> "123abc"
"abcdef"~insert(" ", 3) -> "abc def"
"abc"~insert("123",5,6) -> "abc 123 "
"abc"~insert("123",5,6,"+") -> "abc++123+++"
"abc"~insert("123", ,5,"-") -> "123--abc"

5.1.7.70. lastPos

bb—(lastPos()— needle 7 J

start o length

yalie

Returns the position of the last occurrence of a string, needle, in the receiving string. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
string and scans backward to the beginning of the string. You can override this by specifying start, the
point at which the backward scan starts and length, the range of characters to scan. The start must
be a positive whole number and defaults to receiving_string~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start.

See also methods pos and caselessPos.

Example 5.106. String class — lastPos method

"abc def ghi"~lastPos(" ") -> 8
"abcdefghi"~lastPos(" ") -> 0
"efgxyz"~lastPos("xy") -> 4
"abc def ghi'"~lastPos(" ",7) -> 4
"abc def ghi"~lastPos(" ",7,3) -> 0

5.1.7.71. left

»—(left(length @—N

; pad

Returns a string of length length, containing the leftmost length characters of the receiving string. The
string returned is padded with pad characters (or truncated) on the right as needed. The default pad

199

String Class

character is a blank. The length must be a positive whole number or zero. The 1eft method is exactly
equivalent to substr(1, length, pad).

Example 5.107. String class — left method

"abc d"~left(8) -> "abc d "
"abc d"~left(8,".") -> "abc d..."
"abc def"~left(7) -> "abc de"

5.1.7.72. length

Returns the length of the receiving string.

Example 5.108. String class — length method

"abcdefgh"~length -> 8
"abc defg'"~length -> 8
""~length -> (0]

5.1.7.73. lower

lower(@—N
g lom=

Returns a new string with the characters of the target string beginning with character n for length
characters converted to lowercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.109. String class — lower method

"Albert Einstein"~lower -> "albert einstein"
"ABCDEF"~lower (4) -> "ABCdef"
"ABCDEF"~1lower (3, 2) -> "ABcdEF"

5.1.7.74. makeArray

o (zm) op

separator

This method returns an Array of the receiving string's strings substrings that were separated by the
separator string. separator may be any string, including the null string. If the null string is used, an

200

String Class

Array containing each character of the string is returned. If the target string starts with the separator,
the first Array item will be a null string. If the string ends with a separator, no extra null string item will
be added. If separator isn't specified, any line-end indicator is honored.

Example 5.110. String class — makeArray method

string = "hello".endofline"world".endofline"this is an array."
array = string~makeArray
say "the second line is:" array[2] /* world */

string = "hello*world*this is an array."
array = string~makeArray("*")
say "the third line is:" array[3] /* this is an array. */

string = "hello*world*this is an array.*"
array = string~makeArray("*") /* contains 3 items */

5.1.7.75. makeString

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Section 4.2.11, “Required String Values”.

5.1.7.76. match

bb—(match()— start o other o @—N

Returns . true if the characters of the other match the characters of the target string beginning
at position start. Returns . false if the characters are not a match. start must be a positive whole
number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

Example 5.111. String class — match method

"Saturday"~match(6, "day") ->
"Saturday"~match(6, "DAY") ->
"Saturday"~match(6, "Sunday", 4, 3) ->
"Saturday"~match(6, "daytime", 1, 3) ->

PR oR

201

String Class

5.1.7.77. matchChar

Returns . true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The argument n
must be a positive whole number.

Example 5.112. String class — matchChar method

"a+b"~matchChar(2, "+-*/") -> 1
"a+b"~matchChar (1, "+-*/") -> 0
"Friday"~matchChar (3, "aeiou") -> 1
"FRIDAY"~matchChar(3, "aeiou") -> 0

5.1.7.78. max

bb—(max(number

Returns the largest number from among the receiver and any arguments. The number that max
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.113. String class — max method

12~max(6,7,9) -> 12

17.3~max(19,17.03) -> 19

"-7"~max("-3" "_4 3u) -> -3
, .

1~max(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

5.1.7.79. min

min(number

Returns the smallest number from among the receiver and any arguments. The number that min
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.114. String class — min method

12~min(6,7,9) -> 6
17.3~min(19,17.03) -> 17.03

202

String Class

"—7""MIN("—3", ||_4.3||)

21~-min(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1)

5.1.7.80. *NEW* modulo

Returns the remainder after dividing the receiving string by n. The receiving string must be a whole
number and n must be a positive whole number. The returned remainder is always in the range 0

through n minus one.

If both the receiving string and n are non-negative whole numbers, the result is the same as the result

of the remainder (//) operation.

Example 5.115. String class — modulo method

say 10~modulo(3) -- 1
say (-10)~modulo(3) -- 2

5.1.7.81. overlay

bb—(overlay()— new o @

length —f

I

pad

yalie

Returns a copy of the receiving string, which, starting at the nth character, is overlaid with the string
new, padded or truncated to length length. The overlay can extend beyond the end of the receiving
string. If you specify length, it must be a positive whole number or zero. The default value for length
is the length of new. If n is greater than the length of the receiving string, padding is added before the
new string. The default pad character is a blank, and the default value for n is 1. If you specify n, it

must be a positive whole number.

Example 5.116. String class — overlay method

"abcdef"~overlay(" ", 3) -> "ab def"
"abcdef"~overlay(".",3,2) -> "ab. ef"
"abcd"~overlay("qq") -> "qqcd"
"abcd"~overlay("qq", 4) -> "abcqq"
"abc"~overlay("123",5,6,"+") -> "abc+123+++"
5.1.7.82. pos
Pb—(pos(needle —O
start P length

O

Returns the position in the receiving string of another string, needle. It returns 0 if needle is the null
string or is not found or if start is greater than the length of the receiving string. By default, the search
starts at the first character of the receiving string (that is, the value of start is 1), and continues to the
end of the string. You can override this by specifying start, the point at which the search starts, and

203

String Class

length, the bounding limit for the search. If specified, start must be a positive whole number and length
must be a non-negative whole number.

See also methods /astPos and caselessPos.

Example 5.117. String class — pos method

"Saturday"~pos("day") -> 6
"abc def ghi"~pos("x") -> 0]
"abc def ghi"~pos(" ") -> 4
"abc def ghi"~pos(" ",5) -> 8
"abc def ghi"~pos(" ",5,3) -> 0]

5.1.7.83. replaceAt

>>—(rephceAu

new

length

r

pad

O

Returns a copy of the receiving string, with the characters from the nth character for length characters
replaced with new. The replacement position and length can extend beyond the end of the receiving
string. The starting position, n, is required and must be a positive whole number. The length argument
is optional and must be a positive whole number or zero. If omitted, length defaults to the length of

new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

Example 5.118. String class — replaceAt method

"abcdef"~replaceAt(" ",3, 1) ->
"abcdef"~replaceAt(" ",3, 3) ->
"abc"~replaceAt("123",5,6,"+") ->

5.1.7.84. reverse

"ab def"
Ilab fll
"abc+123"

Returns a copy of the receiving string reversed.

Example 5.119. String class — reverse method

"ABc.'"~reverse
"XYZ "~reverse

5.1.7.85. right

-> n .CBA"
-> " zyx"

204

String Class

o) [-

v pad

Returns a string of length length containing the rightmost length characters of the receiving string. The
string returned is padded with pad characters, or truncated, on the left as needed. The default pad
character is a blank. The length must be a positive whole number or zero.

Example 5.120. String class — right method

"abc d"~right(8) -> " abc d"
"abc def'"~right(5) -> "c def"
"12"~right(5,"0") -> "00012"

5.1.7.86. round

Returns the nearest integer to the receiving string value. Half is always rounded away from zero.
The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. The rounded value is then calculated from that result
and returned. The result is never in exponential form. If there are no nonzero digits in the result, any
minus sign is removed.

Example 5.121. String class — round method

2~round -> 2
'-2'~round -> -2
2.4~round -> 2
'-2.4"~round -> -2
2.5~round -> 3
'-2.5"~round -> -3
'-0.1"'~round -> 0

5.1.7.87. sign

Returns a number that indicates the sign of the receiving string, which is a number. The receiving
string is first rounded according to standard Rexx rules, as though the operation receiving_string
+0 had been carried out. It returns -1 if the receiving string is less than 0, 0 ifitis @, and 1 if it is
greater than 0.

Example 5.122. String class — sign method

"12.3"~sign -> 1
" -0.307"~sign -> -1

205

String Class

0.0~sign -> 0

5.1.7.88. space

SEgem Y

Returns a copy of receiving string, with n pad characters between each whitespace-delimited word.

If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and
the default pad character is a blank.

Example 5.123. String class — space method

"abc def "~space -> "abc def"
" abc def'"~space(3) -> "abc def"
"abc def "~space(1) -> "abc def"
"abc def "~space(0) -> "abcdef"
"abc def '"~space(2,"+") -> "abc++def"

5.1.7.89. *NEW* startsWith

»—(startsWith(other —@—N

Returns . true if the characters of the other match the characters at the start of the target string.
Returns . false if the characters are not a match, or if other is the null string.

The startsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

See also methods abbrev, *NEW* caselessStartsWith, *NEW* endsWith, and match.

5.1.7.90. strip

option 0 chars

Returns a copy of the receiving string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (You need to specify only the first
capitalized letter; all characters following it are ignored.)

Both
Removes both leading and trailing characters. This is the default.

Leading
Removes leading characters.

Trailing
Removes trailing characters.

206

String Class

The chars specifies the set of characters to be removed, and the default is to remove all whitespace
characters (spaces and horizontal tabs). If chars is a null string, then no characters are removed.
Otherwise, any occurrences of the characters in chars will be removed.

Example 5.124. String class — strip method

" ab ¢ "~strip -> "ab c"

n ab C II___Strip(llLll) -> Ilab C n
" ab C I'NStrip("t") _> " ab C"
"12,7000"~strip(,0) -> "12.,7"
"0012.700"~strip(,0) -> "12,7"
"0012.000"~strip(,".0") -> n12"

5.1.7.91. subChar

Returns the n'th character of the receiving string. n must be a positive whole number. If n is greater
than the length of the receiving string then a zero-length string is returned.

See also methods *NEW?* [] and substr.

5.1.7.92. substr

D
L length L@— pad

Returns the substring of the receiving string that begins at the nth character and is of length
length, padded with pad if necessary. The n must be a positive whole number. If n is greater than
receiving_string~length, only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.
See also methods *NEW* [], subChar, left, and right.

In some situations the positional (numeric) patterns of Parsing templates are more convenient for
selecting substrings, in particular if you need to extract more than one substring from a string.

Example 5.125. String class — substr method

"abc"~substr(2) -> "bc"
"abc"~substr(2,4) -> "bc "
"abc"~substr(2,6,".") -> "bc...."

5.1.7.93. subWord

O e

7 length

207

String Class

Returns the substring of the receiving string that starts at the nth word and is up to length whitespace-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving string. The returned string never has leading or trailing whitespace,
but includes all whitespace characters between the selected words.

Example 5.126. String class — subWord method

"Now is the time"~subWord(2,2) -> "is the"
"Now is the time"~subWord(3) -> "the time"
"Now is the time"~subWord(5) -> "

5.1.7.94. subWords

bb—' subWords(; J @—N
’ length

Returns an array containing all words within the substring of the receiving string that starts at the nth
word and is up to length whitespace-delimited words. The n must be a positive whole number. If you
omit n, it defaults to 1. If you omit length, it defaults to the number of remaining words in the receiving
string. The strings in the returned array never have leading or trailing whitespace.

Example 5.127. String class — subWords method

"Now is the time"~subWords -> .array~of("Now", "is", "the", "time")
"Now is the time"~subWords(2,2) -> .array~of("is", "the")

"Now is the time"~subWords(3) -> .array~of("the", "time")

"Now is the time"~subWords(5) -> .array~new(0)

The subWords method is useful for iterating over the individual words in a string.
Example 5.128. String class — subWords method

do word over source~subWords -- extract all of the words to loop over
say word
end

5.1.7.95. translate

> () ()
| D)
translate()
tableo tablei pad
®—N

0 length

o
o

208

String Class

Returns a copy of the receiving string with each character translated to another character or
unchanged. You can also use this method to reorder the characters in the output table. (See last
example)

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving string. If the character is found, the corresponding character in tableo is
used in the result string. If there are duplicates in tablei, the first (leftmost) occurrence is used. If the
character is not found, the original character in the receiving string is used. The result string is always
of the same length as the receiving string.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the
entire string is translated to pad characters. tablei defaults to XRANGE ("00"x, "FF'"x), and tableo
defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If length is omitted, the remainder of the string from the
starting position to the end is used.

Example 5.129. String class — translate method

"abcdef"~translate -> "ABCDEF"
"abcdef"~translate(, , , 3, 2) -> "abCDef"
"abcdef"~translate("12", "ec") -> "ab2dif"
"abcdef'"~translate("12", "abcd", ".") -> "12..ef"
"APQRV"~translate(, "PR") -> "AQ V"
"APQRV"~translate(XRANGE("00"X, "Q")) -> "APQ "
"4123"~translate("abcd", "1234", , 2, 2) -> "4ab3"

"4123"~translate("abcd", "1234") -> "dabc"

The last example shows how to use the translate method to reorder the characters in a string.
In the example, the last character of any 4-character string specified as the first argument would
be moved to the beginning of the string.

5.1.7.96. trunc

Returns the integer part the receiving string, which is a number, and n decimal places. The default n

is @ and returns an integer with no decimal point. If you specify n, it must be a positive whole number
or zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncated to n decimal places

or trailing zeros are added if needed to reach the specified length. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

209

String Class

Example 5.130. String class — trunc method

12.3~trunc -> 12

127.09782~trunc(3) -> 127.097
127.1~trunc(3) -> 127.100
127~trunc(2) -> 127.00

@e

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.97. upper

upper(@—N
=g o=

Returns a new string with the characters of the target string beginning with character n for length
characters converted to uppercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.131. String class — upper method

"Albert Einstein"~upper -> "ALBERT EINSTEIN"
"abcdef"~upper(4) -> "abcDEF"
"abcdef"~upper(3,2) -> "abCDef"

5.1.7.98. verify

bb—(verify(reference ’ C\' W @_N
start \—' '— length

option

Returns a number that, by default, indicates whether the receiving string is composed only of
characters from reference. It returns 0 if all characters in the receiving string are in reference or
returns the position of the first character in the receiving string not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored)

If you specify Match, the method returns the position of the first character in the receiving string that is
in reference, or returns 0 if none of the characters are found.

210

String Class

The default for start is 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length, which
must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if
start is greater than receiving_string~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

Example 5.132. String class — verify method

"123"~verify("1234567890") -> 0
"173"~verify("1234567890") -> 2
"ABAT"~verify("1234567890") -> 1
"AB4T"~verify("1234567890","M") -> 3
"ABAT"~verify("1234567890", "N") -> 1
"1P3Q4"~verify("1234567890", ,3) -> 4
"123"~verify("",N,2) -> 2
"ABCDE"~verify("", ,3) -> 3
"AB3CD5"~verify("1234567890","M", 4) -> 6
"ABCDEF"~verify("ABC","N",2,3) -> 4
"ABCDEF"~verify("ADEF","M",2,3) -> 4

5.1.7.99. word

) (1)

Returns the nth whitespace-delimited word in the receiving string or the null string if the receiving
string has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to subWord(n, 1).

Example 5.133. String class — word method

"Now is the time"~word(3) -> "the"
"Now is the time"~word(5) -> n

5.1.7.100. wordIindex

() (]

Returns the position of the first character in the nth whitespace-delimited word in the receiving string. It
returns 0 if the receiving string has fewer than n words. The n must be a positive whole number.

Example 5.134. String class — wordIndex method

"Now is the time"~wordIndex(3) -> 8

211

String Class

"Now is the time"~wordIndex(6) -> 0

5.1.7.101. wordLength

wordLength(o

Returns the length of the nth whitespace-delimited word in the receiving string or 0 if the receiving
string has fewer than n words. The n must be a positive whole number.

Example 5.135. String class — wordLength method

"Now is the time"~wordLength(2) -> 2
"Now comes the time"~wordLength(2) -> 5
"Now is the time"~wordLength(6) -> 0]

5.1.7.102. wordPos

bb—(wordPos()— phrase J @—N

’ start

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Several whitespace characters between words in either
phrase or the receiving string are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.136. String class — wordPos method

"now is the time"~wordPos("the") -> 3
"now is the time"~wordPos("The") -> 0
"now is the time"~wordPos("is the") -> 2
"now is the time"~wordPos("is the") -> 2
"now 1is the time"~wordPos("is time ") -> 0
"To be or not to be"~wordPos("be") -> 2
"To be or not to be"~wordPos("be",3) -> 6

5.1.7.103. words

Returns the number of whitespace-delimited words in the receiving string.

212

String Class

Example 5.137. String class — words method

"Now is the time"~words -> 4
" "~words -> 0

5.1.7.104. x2b

Returns a string, in character format, that represents the receiving string, which is a string of
hexadecimal characters converted to binary. The receiving string can be of any length. Each
hexadecimal character is converted to a string of 4 binary digits. The receiving string can optionally
include whitespace characters (at byte boundaries only, not leading or trailing) to improve readability;
they are ignored.

The returned string has a length that is a multiple of four, and does not include any whitespace.

If the receiving string is null, the method returns a null string.

Example 5.138. String class — x2b method

"C3"~x2b -> "11000011"
"7"~x2b -> "e111"
"1 C1"~x2b -> "000111000001"

You can combine x2b with the methods d2x and c2x to convert numbers or character strings into
binary form.

Example 5.139. String class — x2b method with ¢2x

"C3"x~c2x~x2b -> "11000011"
"129"~d2x~x2b -> "10000001"
"12"~d2x~x2b -> "1100"

5.1.7.105. x2c¢c

- {z) >

Returns a string, in character format, that represents the receiving string, which is a hexadecimal
string converted to character. The returned string is half as many bytes as the receiving string. The
receiving string can be any length. If necessary, it is padded with a leading 0 to make an even number
of hexadecimal digits.

You can optionally include whitespace in the receiving string (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

213

Stream Classes

Example 5.140. String class — x2c method

ASCII */
ASCII */

"4865 6¢c6C 6f"~x2C ->
"3732 73"~x2c ->

"Hello" /*
"728" /*

5.1.7.106. x2d

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters.
If the result cannot be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in the receiving string (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned binary number.

Example 5.141. String class — x2d method

"OE"~x2d -> 14

"81"~x2d -> 129

"F81"~x2d -> 3969

"FF81"~x2d -> 65409

"46 30"X~x2d -> 240 /* ASCII */
"66 30"X~x2d -> 240 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in n hexadecimal digits. If
the leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the method returns 0.

If necessary, the receiving string is padded on the left with @ characters (note, not "sign-extended"), or
truncated on the left to n characters.

Example 5.142. String class — x2d method

"g1"~x2d(2) -> -127
"81"~x2d(4) -> 129
"FO81"~x2d(4) -> -3967
"FE81"~x2d(3) -> 129
"FE81"~x2d(2) -> -127
"FE81"~x2d (1) -> 1
"0E31"~x2d(0) -> 0

5.2. Stream Classes

This section describes the Rexx classes which implement Rexx data streams: InputStream,
OutputStream, InputOutputStream, and Stream class.

214

InputOutputStream Class

5.2.1. InputOutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.8. InputOutputStream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ OutputStream (Mixin Class)

Methods inherited from the OutputStream class

arrayout close open
charin lineln position
charOut (Abstract Method) lineOut (Abstract Method)

chars lines

+ InputStream (Mixin Class)

Methods inherited from the InputStream class

arrayln close open
charln (Abstract Method) lineln (Abstract Method) position
charOut lineOut

chars (Abstract Method) lines (Abstract Method)

InputOutputStream (Mixin Class)

(no class or instance methods)

5.2.2. InputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.9. InputStream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

InputStream (Mixin Class)

arrayin close open
charin (Abstract Method) lineln (Abstract Method) position
charOut lineOut

chars (Abstract Method) lines (Abstract Method)

5.2.2.1. arrayln

This method is a default arrayIn implementation using 1ineIn to fill the array.

215

OutputStream Class

5.2.2.2. charln (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.3. charOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.4. chars (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.5. close

This method is a NOP by default.

5.2.2.6. lineln (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.7. lineOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.8. lines (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.9. open

This method is a NOP method.

5.2.2.10. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.3. OutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

216

OutputStream Class

Table 5.10. OutputStream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

OutputStream (Mixin Class)

arrayOut close open
charln lineln position
charOut (Abstract Method) lineOut (Abstract Method)

chars lines

5.2.3.1. arrayOut

This method is a default arrayOut implementation that writes all lines to the stream using 1ineOut.

5.2.3.2. charln

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.3. charOut (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.3.4. chars

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.5. close

This method is a NOP by default.

5.2.3.6. lineln

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.7. lineOut (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.3.8. lines

217

Stream Class

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.9. open

This method is a NOP by default.

5.2.3.10. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.4. Stream Class

A stream object allows external communication from Rexx. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.)

The Stream class is a subclass of the InputOutputStream class.

Table 5.11. Stream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ OutputStream (Mixin Class)

Methods inherited from the OutputStream class

arrayOut close open
charln lineln position
charOut (Abstract Method) lineOut (Abstract Method)

chars lines

+ InputStream (Mixin Class)

Methods inherited from the InputStream class

arrayin close open
charln (Abstract Method) lineln (Abstract Method) position
charOut lineOut

chars (Abstract Method) lines (Abstract Method)

+ InputOutputStream (Mixin Class)

Methods inherited from the InputOutputStream class
(no class or instance methods)

Stream (Mixin Class)

new (Inherited Class Method)

arrayln flush qualify
arrayout init query
charln lineln say
charOut lineOut seek
chars lines state

218

Stream Class

close makeArray string
command open supplier
description position uninit

5.2.4.1. new (Inherited Class Method)

bb—(new(name

Initializes a stream object for stream name, but does not open the stream. Returns the new stream
object.

name can either be a string or a File object.

5.2.4.2. arrayin

bb—' arrayIn(J

Returns an Array that contains the data of the receiving Stream, starting from the current read
position. If LINES is specified, the Array items returned are the Stream'’s lines, that were separated
with any line-end indicator. LINES is the default. If CHARS is specified, the Array items returned are the
Stream's characters.

If you have used the charln method, the first line can be a partial line.

5.2.4.3. arrayOut

bb—(arrayout()— array @—N

Writes the data in array array to the stream. If LINES is specified, each element of the array is written
using lineOut. If CHARS is specified, each element is written using charOut. The default method is
LINES.

5.2.4.4. charin
>>—' charIn()) '—N
) start —f 0 length —f

Returns a string of up to length characters from the input stream. The stream advances the read
pointer by the number of characters read. If you omit length, it defaults to 1. If you specify start, this
positions the read pointer before reading. The start value must be a positive whole number within the
bounds of the stream. If the value is not a positive whole humber, a syntax condition is raised. When
the value is past the end of the stream, the empty string is returned and the NOTREADY condition is
raised. If the stream is not already open, the stream attempts to open for reading and writing. If that
fails, the stream opens for input only.

219

Stream Class

5.2.4.5. charOut

bb—' charout(j @—N

string o start

Returns the count of characters remaining after trying to write string to the output stream. The stream
also advances the write pointer.

The string can be the null string. In this case, charOut writes no characters to the stream and returns
0. If you omit string, charOut writes no characters to the stream and returns 0. The stream is also
closed.

If you specify start, this positions the write pointer before writing. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream opens for for output only.

5.2.4.6. chars

Returns the total number of characters remaining in the input stream. The count includes any line
separator characters, if these are defined for the stream. For persistent streams the count is the
count of characters from the current read position. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) The total number of characters remaining cannot be determined
for some streams (for example, STDIN or Windows/Unix devices). For these streams, the chars
method returns 1 to indicate that data is present, or 0 if no data is present.

5.2.4.7. close

Closes the stream. close returns READY : if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened file, then the close method returns a null string ().

5.2.4.8. command

bb—(command()— stream_command)

Returns a string after performing the specified stream_command. The returned string depends on the
stream_command performed and can be the null string. Commands are available to:
* Open a stream for reading, writing, or both

» Close a stream at the end of an operation
* Move the line read or write position within a persistent stream (for example, a file)
+ Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the description
method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.

220

Stream Class

5.2.4.8.1. Command Strings
The argument stream_command can be any expression that evaluates to one of the following

command strings:
< OPTIONS - fragment)—,—@—N
& -
m REPlace

Open

i
!

REAd
\—' Close ; o
\—' Flush ; o
Seek ~ — offset o
m Read @

T

Query Datetime

1

S
.

Exists

Handle d

Slze o

STreamtype

Timestamp

¢ goe

OPTIONS:

»h »d

=n = J
L(REClength length
. SHARERead '

OPEN
Opens the stream object and returns READY : . (If unsuccessful, the previous information about
return codes applies.) The default for OPEN is to open the stream for both reading and writing

221

Stream Class

data, for example: 'OPEN BOTH'. To specify that the stream be only opened for input or output,
add READ or WRITE, to the command string.

The following is a description of the options for OPEN:

READ
Opens the stream only for reading.

WRITE
Opens the stream only for writing.

BOTH
Opens the stream for both reading and writing. (This is the default.) The stream maintains
separate read and write pointers.

APPEND

Positions the write pointer at the end of the stream. (This is the default.) The write pointer
cannot be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance.
Use it only when data integrity is a concern, or to force interleaved output to a stream to
appear in the exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that /ine-end characters are ignored; they
are treated like any other byte of data. This is intended to process binary data using the line
operations.

@

Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option
in this case raises an error condition.

222

Stream Class

RECLENGTH length

Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.143. Stream command — OPEN option

stream~command("open")
stream~command("open write")
stream~command("open read")
stream~command("open read shared")

CLOSE

closes the stream object. The command method with the CLOSE option returns READY : if the
stream is successfully closed or an appropriate error message otherwise. If an attempt to close an
unopened file occurs, then the command method with the CLOSE option returns a null string (™).

FLUSH
forces any data currently buffered for writing to be written to this stream.

SEEK offset

sets the read or write position to a given number (offset) within a persistent stream. If the stream is

open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

e

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this command, you must first open the stream (with the OPEN stream command described
previously or implicitly with an input or output operation). One of the following characters can
precede the offset number.

explicitly specifies the offset from the beginning of the stream. This is the default if you supply
no prefix. For example, an offset of 1 with the LINE option means the beginning of the stream.

specifies offset from the end of the stream.
specifies offset forward from the current read or write position.

specifies offset backward from the current read or write position.

223

Stream Class

The command method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ
specifies that this command sets the read position.

WRITE
specifies that this command sets the write position.

CHAR
specifies the positioning in terms of characters. This is the default.

LINE
specifies the positioning in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

K —

If you do line positioning in a file open only for writing, you receive an error message.

Example 5.144. Stream command — SEEK option

stream~command("seek =2 read")
stream~command("seek +15 read")
stream~command("seek -7 write line")
fromend = 125

stream~command("seek <"fromend "read")

POSITION
is a synonym for SEEK.

QUERY
Used with these QUERY stream_commands, the command method returns specific information
about a stream. Except for QUERY HANDLE and QUERY SEEK/POSITION, the stream returns
the query information even if the stream is not open. The stream returns the null string for
nonexistent streams.

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For example:

Example 5.145. Stream command — QUERY DATETIME option

stream~command("query datetime")

224

Stream Class

A sample output might be:
11-12-15 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object, if it exists, or a null string. For example:

Example 5.146. Stream command — QUERY EXISTS option

stream~command("query exists")

A sample output might be:
c:\data\file.txt

QUERY HANDLE
Returns the handle associated with the open stream.

Example 5.147. Stream command — QUERY HANDLE option

stream~command("query handle")

A sample output might be: 3

QUERY POSITION

Returns the current read or write position for the stream, as qualified by the following options:
READ

Returns the current read position.

WRITE
Returns the current write position.

e —

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR
Returns the position in terms of characters. This is the default.

LINE
Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to

225

Stream Class

count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.148. Stream command — QUERY POSITION WRITE option

stream~command("query position write")

A sample output might be:
247

SYS
Returns the operating system stream position in terms of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size, in bytes, of a persistent stream.

Example 5.149. Stream command — QUERY SIZE option

stream~command("query size")

A sample output might be:
1305

QUERY STREAMTYPE
Returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
Returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting date and time because it provides the full 4-digit year

Example 5.150. Stream command — QUERY TIMESTAMP option

stream~command("query timestamp")

A sample output might be:

2015-11-12 03:29:12

5.2.4.9. description

226

Stream Class

Returns a descriptive string associated with the current state of the stream. The description
method is identical to the state method except that the string that description returns is followed by
a colon and, if available, additional information about ERROR or NOTREADY states.

5.2.4.10. flush

Returns READY :. It forces the stream to write any buffered data to the output stream.

5.2.4.11. init

bb—(init(name)

Initializes a stream object defined by name.

name can either be a string or a File object.

5.2.4.12. lineln

() on
line count

Returns the next count lines. The count must be 0 or 1. The stream advances the read pointer. If

you omit count, it defaults to 1. A line number may be given to set the read position to the start of a
specified line. This line number must be positive and within the bounds of the stream, and must not be
specified for a transient stream. A value of 1 for line refers to the first line in the stream. If the stream is
not already open, then the interpreter tries to open the stream for reading and writing. If that fails, the
stream is opened for input only.

5.2.4.13. lineOut

»—| lineout()' L @—N
string L@— line

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line. The stream advances the write pointer. If you omit string, the stream is closed. If you specify line,
this positions the write pointer before writing. If the stream is not already open, the stream attempts to
open for reading and writing. If that fails, the stream is opened for output only.

5.2.4.14. lines

Returns the number of lines that are available for input if no option or option Count is specified. If the
stream has already been read with charin this can include an initial partial line. If no data remains,

227

Stream Class

lines returns 0. For persistent streams the count starts at the current read position. As such, 1lines
reports whether a read action of charin or lineln will succeed. Option Count is the default.

If option Normal is specified, 1ines returns . true if at least one line remains in the stream, or
.false if no lines remain.

lines("Count") determines the actual number of lines by scanning the stream starting at
the current position and counting the lines. For large streams, this can be a time-consuming
operation. Therefore, avoid the use of 1ines() or 1ines("Count") in the condition of a loop
reading a stream. It is recommended that you use 1ines("Normal") or the chars method
instead.

For an explanation of input and output, see Chapter 14, Input and Output Streams.

For a Queue instance, the inherited method 1ines returns the actual number of lines in the queue.

5.2.4.15. makeArray

bb—' keArray(J

Returns an Array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the charin method, the first line can be a partial line.

5.2.4.16. open

bb—@ < OPTIONS - fragment

REAd

OPTIONS:

»h- »d
>

) (o) J
L(RECIength)— length
()

Opens the stream and returns READY : . If the method is unsuccessful, it returns an error message
string in the same form that the description method uses.

228

Stream Class

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

By default, open opens the stream for both reading and writing data, for example: 'open BOTH'. To
specify that the stream be only opened for input or output, specify READ or WRITE.

The options for the open method are:

READ
Opens the stream for input only.

WRITE
Opens the stream for output only.

BOTH
Opens the stream for both input and output. (This is the default.) The stream maintains separate
read and write pointers.

APPEND
Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot
be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that line-end characters are ignored; they are
treated like any other byte of data. This is for processing binary record data using the line
operations.

229

Stream Class

e

Specifying the BINARY option for a stream that does not exist but is opened for writing also
requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTH length
Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.151. Stream object — OPEN method

stream~open
stream~open("write")
stream~open("read")

5.2.4.17. position

position(|— | offset @—N
== =i
(Ci)

CH6E

position is a synonym for seek.

5.2.4.18. qualify

Returns the stream's fully qualified name. The stream need not be open.

5.2.4.19. query

230

Stream Class

bb—(query(H Datetime)

\—' Slze ;

\—' STreamtype i

\—' Timestamp ;

Used with these options, query returns specific information about a stream. Except for HANDLE and
SEEK/POSITION, the stream returns the query information even if the stream is not open. A null string

is returned for nonexistent streams.

DATETIME

returns the date and time stamps of a persistent stream in US format.

Example 5.152. Stream object — QUERY method

stream~query("datetime")

A sample output might be:

11-12-15 03:29:12

EXISTS

returns the full path specification of the stream, if it exists, or a null string. For example:

Example 5.153. Stream object — QUERY method

stream~query("exists")

A sample output might be:

c:\data\file.txt

HANDLE

returns the handle associated with the open stream.

231

Stream Class

Example 5.154. Stream object — QUERY method

stream~query("handle")

A sample output might be:

POSITION
returns the current read or write position for the stream, as qualified by the following options:
READ
returns the current read position.

WRITE
returns the current write position.

K —

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the specified position.

CHAR
returns the position in terms of characters. This is the default.

LINE
returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.155. Stream object — QUERY method

stream~query("position write")

A sample output might be:
247

SYS
returns the operating system stream position in terms of characters.

SIZE
returns the size, in bytes, of a persistent stream.

232

Stream Class

Example 5.156. Stream object — QUERY method

stream~query("size"

A sample output might be:

1305

STREAMTYPE
returns a string indicating whether the stream object is PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP
returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year.

Example 5.157. Stream object — QUERY method

stream~query("timestamp")

A sample output might be:

2015-11-12 03:29:12

5.2.4.20. say
) T Q)
string

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line.

5.2.4.21. seek

offset (E)%b(
=S

B
I

Sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

233

Stream Class

@e

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this method, you must first open the stream object (with the open method or implicitly with an
input or output operation). One of the following characters can precede the offset number:

Explicitly specifies the offset from the beginning of the stream. This is the default if you supply no
prefix. For example, an offset of 1 means the beginning of the stream.

Specifies offset from the end of the stream.
Specifies offset forward from the current read or write position.

Specifies offset backward from the current read or write position.

The seek method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for seek:

READ
specifies that the read position be set.

WRITE
specifies that the write position be set.

CHAR
specifies that positioning be done in terms of characters. This is the default.

LINE
specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially
an operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a detailed
discussion of this issue.

K

If you do line positioning in a file open only for writing, you receive an error message.

234

Stream Class

Example 5.158. Stream object — SEEK method

stream~seek("=2 read")
stream~seek("+15 read")
stream~seek("-7 write line")
fromend = 125
stream~seek("<"fromend read)

5.2.4.22. state

Returns a string indicating the current stream state.
The returned strings are as follows:

ERROR

The stream has been subject to an erroneous operation (possibly during input, output, or through
the various Stream methods). See Section 14.5, “Errors during Input and Output”. You might be
able to obtain additional information about the error with the description method.

NOTREADY

The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (See Section 14.5, “Errors during Input and Output”.) For
example, a simple input stream can have a defined length. An attempt to read that stream (with
charin or lineln, perhaps) beyond that limit can make the stream unavailable until the stream has
been closed (for example, with the close method) and then reopened.

READY

The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN

The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

5.2.4.23. string

Returns a string that indicates the name of the object the stream represents i.e. the name of the file.

5.2.4.24. supplier

Returns a StreamSupplier object for the stream containing the remaining stream lines and linenumber
positions for the stream.

235

Collection Classes

5.2.4.25. uninit

This method cleans up the object when it is garbage collected. It should not be invoked directly except
via an uninit method of a subclass of the Stream class.

If the Stream class is subclassed and the subclass provides an uninit method then that method
must invoke the superclass uninit method.

Example 5.159. Stream object — UNINIT method

::class CustomStream subclass Stream

::method uninit

/* the subclass instance cleanup code should be placed here */
super~uninit -- this should be the last action in the method
return

5.3. Collection Classes

A Collection is an object that contains a number of items, which can be any objects. Every item
stored in a Collection has an associated index that you can use to retrieve the item from the collection
with the at or [] methods.

Each Collection defines its own acceptable index types. Rexx provides the following Collection
classes:

Array Class
A sequenced collection of objects ordered by whole-number indexes.

Bag Class
A collection where the index and the item are the same object. Bag indexes can be any object and
each index can appear more than once.

CircularQueue Class
The CircularQueue class allows for storing objects in a circular queue of a predefined size.
Once the end of the queue has been reached, new item objects are inserted from the beginning,
replacing earlier entries. The collected objects can be processed in FIFO (first-in, first-out) or in a
stack-like LIFO (last-in, first-out) order.

Directory Class
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

IdentityTable Class
A collection with indexes that can be any object. The IdentityTable class determines index item
matches by using an object identity comparison. With object identity matches, an index will only
match the same object instance. An identity table contains no duplicate indexes.

236

Organization of the Collection Classes

List Class

A sequenced collection that lets you add new items at any position in the sequence. A list
generates and returns an index value for each item placed in the list. The returned index remains
valid until the item is removed from the list.

Properties Class

A collection with character string indexes and values. Properties collections include support for
saving and loading from disk files.

Queue Class
A sequenced collection with the items ordered as a queue. You can remove items from the head
of the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has
index 1, the item after the head item has index 2, up to the number of items in the queue.

Relation Class
A collection with indexes that can be any object. A relation can contain duplicate indexes.

Set Class

A collection where the index and the item are the same object. Set indexes can be any object and
each index is unique.

Stem Class

A collection with character string indexes constructed from one or more string segments. Index
comparisons are performed using the string == comparison method.

NEW StringTable Class

A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

Table Class
A collection with indexes that can be any object. A table contains no duplicate indexes.

5.3.1. Organization of the Collection Classes

The following shows the logical organization of the Collection Classes. This does not represent the
order that methods are inherited but rather the organization of the classes.

Collection Class

» MapCollection classes
Directory Class
IdentityTable Class
Properties Class
Relation Class
Stem Class
NEW StringTable Class
Table Class

» OrderedCollection classes
Array Class
CircularQueue Class
List Class
Queue Class

237

Collection Class

» SetCollection classes
Bag Class
Set Class

5.3.2. Collection Class

The Collection class is a MIXIN class that defines the basic set of methods implemented by all
Collections. Many of the Collection class methods are abstract and must be implemented by the
inheriting subclasses.

Table 5.12. Collection Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Collection (Mixin Class)

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

5.3.2.1. [] (Abstract Method)

index

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns . nil. This is an abstract method
that must be implemented by a subclasses.

5.3.2.2. []= (Abstract Method)

r

[index 1 = value [«

Adds an item to the collection at the specified index. This is an abstract method that must be
implemented by subclasses.

5.3.2.3. allindexes (Abstract Method)

allIndexes

Returns an array of all indexes used by this collection. This is an abstract method that must be
implemented by subclasses.

238

Collection Class

5.3.2.4. allitems (Abstract Method)

Returns an array containing all items stored in the collection. This is an abstract method that must be
implemented by subclasses.

5.3.2.5. at (Abstract Method)

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns . nil. This is an abstract method
that must be implemented by subclasses.

5.3.2.6. difference

bb—(difference()— argument)

Returns a new collection (of the same class as the receiver) containing only those items from

the receiver whose indexes the argument collection does not contain. The argument can be a
Collection object or any other object that supports a makeArray method. The argument must also
allow all of the index values in the receiver collection.

5.3.2.7. disjoint

bb—(disjoint(argument)

Returns . true if the receiver collection and argument collection do not have any items in common.
. false otherwise. The argument can be a Collection object or any other object that supports a
makeArray method. The argument must also allow all of the index values in the receiver collection.

5.3.2.8. equivalent

bb—(equivalent(argument —@—N

Returns . true if all indexes in the receiver collection are also contained in the argument collection
and both collections contain the same number of items; returns . false otherwise. The argument can
be a Collection object or any other object that supports a makeAr ray method. The argument must
also allow all of the index values in the receiver collection.

5.3.2.9. hasindex

)b—(hasIndex(index

239

Collection Class

Returns . true if the receiver collection contains an item associated with the specified index or
indexes. Returns . false otherwise.

5.3.2.10. hasltem

bb—(hasItem(item)

Returns . true if the collection contains the specified item at any index location. Returns . false
otherwise.

5.3.2.11. index (Abstract Method)

bb—(index()— item)

Returns the index associated with item. If item occurs more than once in the collection, the returned
index value is undetermined. This is an abstract method which must be implemented by a subclass of
this class.

5.3.2.12. intersection

bb—(intersection(argument

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be a Collection object or any other object that supports a makeArray method. The argument
must also allow all of the index values in the receiver collection.

5.3.2.13. items

Returns the number of items in the collection.

5.3.2.14. makeArray

Returns a single-dimensional Array with the same number of items as the receiver object. Any index
with no associated item is omitted from the new array. Items in the new array will have the same order
as the source array.

5.3.2.15. put (Abstract Method)

Adds an item to the collection at the specified index. This is an abstract method that must be
implemented by a subclass of this class.

240

MapCollection Class

5.3.2.16. subset

bb—(subset()— argument)

Returns . true if all indexes in the receiver collection are also contained in the argument collection;
returns . false otherwise. The argument can be a Collection object or any other object that
supports a makeArray method. The argument must also allow all of the index values in the receiver
collection.

5.3.2.17. supplier

Returns a Supplier object for the collection. The supplier allows you to enumerate through the index/
item pairs for the collection. The supplier is created from a snapshot of the collection and is unaffected
by subsequent changes to the collection's contents.

5.3.2.18. union

bb—(union()— argument)

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. This method includes an item from
argument in the new collection only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same index. The order in which
this method selects items in argument is unspecified (the program should not rely on any order). The
argument can be a Collection object or any other object that supports a makeArray method. The
argument must also allow all of the index values in the receiver collection.

5.3.2.19. xor

>>—(xor()— argument)

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all indexes that appear in both collections are removed. The
argument can be a Collection object or any other object that supports a makeArray method. The
argument must also allow all of the index values in the receiver collection.

5.3.3. MapCollection Class

The MapCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that create a mapping from an index object to a value.

This class is defined as a MIXIN class. The following classes inherit from MapCollection: Directory,
IdentityTable, Properties, Relation, Stem, StringTable, Table, and SetCollection classes Bag and
Set.

Table 5.13. MapCollection Class

Object

241

MapCollection Class

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

MapCollection (Mixin Class)

NEW? of (Class Method)

makeArray
putAll

5.3.3.1. *NEW* of (Class Method)

Returns a newly created MapCollection object containing the specified index/item pairs. Each pair
must be a single-dimensional Array with exactly two items: the index as the first Array item, and the
value as the second item. The pairs are processed left-to-right and added to the MapCollection object.

Example 5.160. MapCollection class — of method

is0639 = .Directory~of(.Array~of("de", "Deutsch"), .Array~of("en",
"English"), .Array~of("fr", "français"))
say iso0639~allIndexes~makeString(, ", ") -- de, en, fr
say iso0639~alllItems~makeString(, ", ") -- Deutsch, English, français

-- using array notation
is0639 = .Directory~of(("de", "Deutsch"), ("en", "English"), ("fr", "français"))

5.3.3.2. makeArray

Returns a single-dimensional Array of the index values used by the receiver object. The index objects
will not be ordered in any predictable order.

5.3.3.3. putAll

»—(putAll(collection

242

OrderedCollection Class

Returns the receiving collection with all items in collection added to it. The collection argument can be
any object that supports a supplier method. Items from collection are added using the index values
returned by the supplier. The item indexes from the source collection must be strings. The items are
added in the order provided by the supplier object. If duplicate indexes exist in collection, the last item
provided by the supplier will overwrite previous items with the same index.

5.3.4. OrderedCollection Class

The OrderedCollection class is a MIXIN class that defines the basic set of methods implemented
by all collections that have an inherent index ordering.

This class is defined as a MIXIN class. The following classes inherit from OrderedCollection: Array,
CircularQueue, List, and Queue.

Table 5.14. OrderedCollection Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

difference
disjoint

Methods inherited from the Collection class
[] (Abstract Method)

[]= (Abstract Method)
allindexes (Abstract Method) hasltem
allltems (Abstract Method)
at (Abstract Method)

equivalent
hasindex

index (Abstract Method)
intersection

items

makeArray

put (Abstract Method)
subset

supplier

union

xor

OrderedCollection (Mixin Class)

appendAll

difference

append (Abstract Method)
delete (Abstract Method)
first (Abstract Method)

firstitem (Abstract Method)
insert (Abstract Method)

intersection

last (Abstract Method)
lastitem (Abstract Method)
next (Abstract Method)
previous (Abstract Method)
section (Abstract Method)
sort

sortWith
stableSort
stableSortWith
subset

union

xor

5.3.4.1. append (Abstract Method)

bb—(append(

item)

Append an item to the end of the collection ordering. This is an abstract method that must be
implemented by a subclass of this class.

5.3.4.2. appendAll

»—(appendAII(

collection

208

243

OrderedCollection Class

Returns the receiving collection with all items in collection appended to the end of it. The collection
may be any object that implements an al1Items method.

5.3.4.3. delete (Abstract Method)

bb—(delete(index

Returns and deletes the member item with the specified index from the collection. If there is no item
with the specified index, .nil is returned and no item is deleted. All elements following the deleted
item will be moved up in the collection ordering and the size of the collection will be reduced by one
element. Depending on the nature of the collection, the indexes of the moved items may be modified
by the deletion.

5.3.4.4. difference

bb—(difference(argument)

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are not also contained in the argument collection. The argument can be a Collection
object or any other object that supports a makeArray method.

5.3.4.5. first (Abstract Method)

Returns the index of the first item in the collection order. Returns . nil if the collection is empty.

5.3.4.6. firstitem (Abstract Method)

Returns the first item in the collection order. Returns . nil if the collection is empty.

5.3.4.7. insert (Abstract Method)

bb—(insert(item @—N

) index

Returns a collection-supplied index for item item, which is added to the collection. The inserted item
follows an existing item with index index in the collection ordering. If index is .nil, item becomes the
first item in the ordered collection. If you omit index, the item becomes the last item in the collection.

Inserting an item in the collection at position index will cause the items in the collection after position
index to have their relative positions shifted by the collection object. Depending on the nature of the
collection, the index values for any items already in the collection may be modified by the insertion.

This is an abstract method that must be implemented by a subclass of this class.

244

OrderedCollection Class

5.3.4.8. intersection

bb—(intersection()— argument)

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can be a
Collection object or any other object that supports a makeArray method.

5.3.4.9. last (Abstract Method)

Returns the index of the last item in the collection order. Returns . nil if the collection is empty.

5.3.4.10. lastitem (Abstract Method)

Returns the first item in the collection order. Returns .nil if the collection is empty.

5.3.4.11. next (Abstract Method)

Returns the index of the item that follows the collection item having index index or returns .nil if the
item having that index is last in the collection.

5.3.4.12. previous (Abstract Method)

»—(previous(index —@—N

Returns the index of the item that precedes the collection item having index index or returns .nil if
the item having that index is first in the collection.

5.3.4.13. section (Abstract Method)

items

bb—(section(start < @—N

Returns a new collection (of the same class as the receiver) containing selected items from the
receiver. The first item in the new collection is the item corresponding to index start in the receiver.
Subsequent items in the new collection correspond to those in the receiver, in the same sequence.
If you specify the whole number items, the new collection contains only this number of items (or the
number of subsequent items in the receiver, if this is less than items). If you do not specify items, the
new collection contains all subsequent items of the receiver. The receiver remains unchanged.

5.3.4.14. sort

245

OrderedCollection Class

Sorts the collection of Comparable items into ascending order using an algorithm that is not
guaranteed to be stable, and returns the sorted collection. See Section 5.3.19, “Sorting Ordered
Collections” for details.

5.3.4.15. sortWith

bb—(sortWith(comparator)

Sorts the collection of items into ascending order using an algorithm that is not guaranteed to be
stable, and returns the sorted collection. Ordering of elements is determined using the comparator
argument. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.4.16. stableSort

stableSort

Sorts the collection of Comparable items into ascending order using a stable Mergesort algorithm, and
returns the sorted collection. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.4.17. stableSortWith

bb—(stableSortWith()— comparator)

Sorts the collection of items into ascending order using a stable Mergesort algorithm, and returns
the sorted collection. Ordering of elements is determined using the comparator argument. See
Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.4.18. subset

bb—(subset(argument)

Returns . true if all items in the receiver collection are also contained in the argument collection;
returns . false otherwise. The argument can be a Collection object or any other object that
supports a makeArray method.

5.3.4.19. union

PP—(union(argument —@—N

Returns a new collection of the same class as the receiver that contains all the items from the

receiver collection and selected items from the argument collection. This method includes an item
from argument in the new collection only if there is no equivalent item in the receiver collection and

the method has not already included. The order in which this method selects items in argument is
unspecified (the program should not rely on any order). The argument can be a Collection object or
any other object that supports a makeAr ray method.

246

SetCollection Class

5.3.4.20. xor

>>—(xor()— argument)

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
argument can be a Collection object or any other object that supports a makeArray method.

5.3.5. SetCollection Class

This is a tagging MIXIN class only and does not define any methods of its own. Collections that
implement SetCollection are MapCollections that constrain the index and item to be be the same
object.

This class is defined as a MIXIN class. The following classes inherit from SetCollection: Bag and Set.

Table 5.15. SetCollection Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

alllndexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

SetCollection (Mixin Class)

(no class or instance methods)

5.3.6. Array Class

An Array is a possibly sparse collection with indexes that are positive whole numbers. You can
reference Array items by using one or more indexes. The number of indexes is the same as the
number of dimensions of the Array. This number is called the dimensionality of the Array.

Array items can be any valid Rexx object.

Table 5.16. Array Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

247

Array Class

[] (Abstract Method)

[]= (Abstract Method)
alllndexes (Abstract Method)
allltems (Abstract Method)
at (Abstract Method)
difference

disjoint

Methods inherited from the Collection class

equivalent

hasIndex

hasltem

index (Abstract Method)
intersection

items

makeArray

put (Abstract Method)
subset

supplier

union

xor

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class

append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastitem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstitem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

Array
new (Class Method)
of (Class Method)
[firstltem previous
[I= hasIndex put
allindexes hasltem remove
allltems index removeltem
append insert section
at ISEmpty size
delete items sort
dimension last sortWith
dimensions lastitem stableSort
empty makeArray stableSortWith
fill makeString supplier
first next toString

Array objects are variable-sized. The dimensionality of an array is fixed, but the size of each
dimension is variable. When you create an array, you can specify a hint about how many elements
you expect to put into the array or the array's dimensionality. However, you do not need to specify a
size or dimensionality of an array when you are creating it. You can use any whole-number indexes to

reference items in an array.

For any array method that takes an index, the index may be specified as either individual arguments or

as an array of indexes. For example, the following are equivalent:

Example 5.161. Array class — [] method

X = myarray[1,2,3]

index = .array~of(1,2,3)
-- also retrieves from "1,2,3"

X = myarray[index]

-- retrieves an item from a multi-dimensional Array

-- create an index list

Methods such as index that return index items will return a single numeric value for single-dimensional
Arrays and an array of indexes for multi-dimensional Arrays.

248

Array Class

5.3.6.1. new (Class Method)

@
o o o

Returns a new empty array. If you specify any size arguments, the size is taken as a hint about how
big each dimension should be. The Array class uses this only to allocate the initial array object. For
multi-dimensional Arrays, you can also specify how much space is to be allocated initially for each
dimension of the array.

Each size argument must a non-negative whole number. If it is 0, the corresponding dimension is
initially empty. The dimensions may also be specified with one single-dimensional Array of sizes.

Example 5.162. Array class — of method

a = .array~new() -- create a new, empty array
a = .array~new(3,3) -- create a new 3x3 array
sizes = .array~of(4,4,4)

a = .array~new(sizes) -- create new 4x4x4 array

5.3.6.2. of (Class Method)

o (J@-N

item

Returns a newly created single-dimensional Array containing the specified item objects. The first item
has index 1, the second has index 2, and so on.

If you use the of method and omit any argument items, the returned array does not include the
indexes corresponding to the omitted arguments.

Example 5.163. Array class — of method

a = .array~of("Fred", "Mike", "David")
do name over a

say name -- displays "Fred", "Mike", and "David"
end

5.3.6.3. []

index

Returns the same value as the at method.

Note that the index argument may also be specified as an array of indexes.

249

Array Class

5.3.6.4. []=

[index 1 = value

This method is the same as the put method.

Note that the index argument may also be specified as an array of indexes.

5.3.6.5. allindexes

allIndexes

Returns an array of all index positions in the array containing items. For multi-dimensional Arrays,
each returned index will be an array of index values.

Example 5.164. Array class — allindexes method

a = .array~of("Fred", "Mike", "David")
do name over a-~alllIndexes
say name -- displays "1i", "2", and "3"
end
a~remove(2) -- remove second item
do name over a-~alllndexes

say name -- displays "1" and "3"
end

5.3.6.6. allitems

Returns an array of all items contained in the array.
Example 5.165. Array class — allltems method

a = .array~of("Fred", "Mike", "David")
do name over a~allItems
say name -- displays "Fred", "Mike", and "David"
end
a~remove(2) -- remove second item
do name over a~allItems

say name -- displays "Fred" and "David"
end

5.3.6.7. append

250

Array Class

bb—(append()— item)

Appends an item to the array after the last item (the item with the highest index). The return value is
the index of the newly added item. The append method is only valid with single-dimensional Arrays.

Example 5.166. Array class — append method

a = .array~of("Mike", "Rick")
a~append("Fred") -- a = .array~of("Mike", "Rick", "Fred")
5.3.6.8. at

Returns the item associated with the specified index or indexes. If the array has no item associated
with the specified index or indexes, this method returns .nil.

Note that the index argument may also be specified as an array of indexes.
Example 5.167. Array class — at method
a = .array~of("Mike", "Rick")

say a~at(2) -- says: "Rick"

5.3.6.9. delete

bb—(delete()— index)

Returns and deletes the member item with the specified index from the array. If there is no item with
the specified index, .nil is returned and no item is deleted. All elements following the deleted item
will be moved up in the array ordering and the item indexes will be adjusted for the deletion. The size
of the array will be reduced by one element.

The delete method is only valid with single-dimensional Arrays. The index argument may also be
specified as an array of a single index.

Example 5.168. Array class — delete method

a = .array~of("Fred", "Mike", "Rick", "David")
a~delete(2) -- removes "Mike", resulting in the array
-- ("Fred", "Rick", "David")

5.3.6.10. dimension

Returns the current size (upper bound) of dimension n (a positive whole number). If you omit n, this
method returns the dimensionality (number of dimensions) of the array. If the number of dimensions
has not been determined, 0 is returned.

251

Array Class

Example 5.169. Array class — dimension method

a = .array~of(,"Mike", "Rick")
say a~dimension -- says: 1 (number of dimensions in the array)
say a~dimension(1l) -- says: 3 (upper bound of dimension one)

a = .array~new~~put("Mike",1,1)~~put("Rick",1,2)

say a~dimension -- says: 2 (number of dimensions in the array)
say a~dimension(1) -- says: 1 (upper bound of dimension one)
say a~dimension(2) -- says: 2 (upper bound of dimension two)

5.3.6.11. dimensions

Returns an array containing each of the array dimension sizes. A single-dimensional Array will return
an array with a single size element.

5.3.6.12. empty

Returns the receiving Array with all items removed.

!

Example 5.170. Array class — empty method

a = .array~of("Mike", "Rick", "Fred", "Rick")
a~empty -- a~items now returns "@"

5.3.6.13. fill

*@— value)

Returns the receiving Array with all index locations set to value.

Example 5.171. Array class — fill method

a = .array~new(3,3)
a~fill(0) -- initialize the matrix to all zeroes.

5.3.6.14. first

Returns the index of the first item in the array or .nil if the array is empty. For multi-dimensional
Arrays, the index is returned as an array of index values.

252

Array Class

Example 5.172. Array class — first method

a = .array~of("Mike", "Rick", "Fred", "Rick")

say a~first -- says: 1
a = .array~of(,"Mike", "Rick")
say a~first -- says: 2

5.3.6.15. firstitem
Returns the first item in the array or .nil if the array is empty.
Example 5.173. Array class — firstltem method

musketeers=.array~of("Porthos", "Athos", "Aramis"") /* Creates array MUSKETEERS */
item=musketeers~firstItem /* Gives first item in array */
/* (Assigns "Porthos" to item) */

5.3.6.16. hasindex

»—(hasIndex(index

Returns . true if the array contains an item associated with the specified index or indexes. Returns
. false otherwise.

Note that the index argument may also be specified as an array of indexes.

Example 5.174. Array class — haslindex method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~hasIndex(2) -- says: 1
say a~hasIndex(5) -- says: 0

5.3.6.17. hasltem

bb—(hasItem(item)

Returns . true if the array contains the specified item at any index location. Returns . false
otherwise. Item equality is determined by using the == method of item.

Example 5.175. Array class — hasltem method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~hasItem("Rick") -- says: 1
say a~hasItem("Mark") -- says: 0

253

Array Class

5.3.6.18. index

bb—(index()— item)

Returns the index of the specified item within the array. If the target item appears at more than one
index, the first located index will be returned. For multi-dimensional Arrays, the index is returned as an
array of index values. If the array does not contain the specified item, .nil is returned. Item equality
is determined by using the == method of item.

Example 5.176. Array class — index method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~index("Rick") -- says: 2

5.3.6.19. insert

ey W @~

o index

Returns an Array-supplied index for item item, which is added to the Array. The inserted item follows
an existing item with index index in the Array ordering. If index is .nil, item becomes the first item in
the Array. If you omit index, the item becomes the last item in the Array.

Inserting an item in the Array at position index will cause the items in the Array after position index

to have their indexes shifted by the Array object. The index values for any items in the Array are
incremented by the insertion.

Example 5.177. Array class — insert method

musketeers=.Array~of ("Porthos", "Athos", "Aramis") /* Creates Array MUSKETEERS */
/* consisting of: Porthos */
/* Athos */
/* Aramis */
musketeers~insert("D'Artagnan", 1) /* Adds D'Artagnan after Porthos */
/* Array 1is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers~insert("D'Artagnan", .nil) /* Adds D'Artagnan before Porthos */
/* Array is now: D'Artagnan */

/* Porthos */
/* Athos */
/* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */
/* Array is now: Porthos */
/* Athos */
/* Aramis */
/* D'Artagnan */

5.3.6.20. isEmpty

254

Array Class

Returns . true if the array is empty. Returns . false otherwise.

Example 5.178. Array class — isEmpty method

a = .array-~new

say a~isEmpty -- says: 1
a[l] = Il1ll

say a~isEmpty -- says: 0O

5.3.6.21. items
Returns the number of items in the array.
Example 5.179. Array class — items method

a = .array~of("Fred", , "Mike", , "David")
say a~items -- says: 3

5.3.6.22. last

Returns the index of the last item in the array or .nil if the array is empty. For multi-dimensional

Arrays, index is returned as an array of index items.
Example 5.180. Array class — last method

a = .array~of("Fred", , "Mike", , "David")
say a~last -- says: 5

5.3.6.23. lastitem
Returns the last item in the array or .nil if the array is empty.
Example 5.181. Array class — lastltem method

musketeers=.array~of ("Porthos", "Athos", "Aramis"") /* Creates array MUSKETEERS
item=musketeers~lastItem /* Gives last item in array
/* (Assigns "Aramis" to item)

5.3.6.24. makeArray

*/
*/
*/

255

Array Class

Returns a single-dimensional Array with the same number of items as the receiver object. Any index
with no associated item is omitted from the new array. Items in the new array will have the same order
as the source array. A multi-dimensional Array will be converted into a non-sparse single-dimensional
Array.

Example 5.182. Array class — makeArray method

.array~of("Fred", , "Mike", , "David")
a~makeArray -- b = .array~of("Fred", "Mike", "David")

o
1 n

5.3.6.25. makeString

makeString(@—N

"Char"

Returns a string that contains the data of an array (one to n dimensional). The elements of the array
are treated either in line or character format, starting at the first element in the array. The line format
is the default. If the line format is used, a separator string can be specified. The separator will be used
between concatenated elements instead of the default line end separator.

See method toString (which is a synonym for this method) for examples.

5.3.6.26. next

bb—(next(

Returns the index of the item that follows the array item having index index or returns .nil if the item
having that index is last in the array. For multi-dimensional Arrays, the same ordering as used by the
allltems method is used to determine the next position and the index is returned as an array of index
values.

Note that the index argument may also be specified as an array of indexes.
Example 5.183. Array class — next method

a = .array~of("Fred", , "Mike", , "David")
say a~next(3) -- says: 5

5.3.6.27. previous

bb—(previous(

256

Array Class

Returns the index of the item that precedes the array item having index index or .nil if the item
having that index is first in the array. For multi-dimensional Arrays, the same ordering used by the
allltems method is used to determine the previous position and the index is returned as an array of
index values.

Note that the index argument may also be specified as an array of indexes.
Example 5.184. Array class — previous method

a = .array~of("Fred", , "Mike", , "David")
say a~previous(3) -- says: 1

5.3.6.28. put

bb—(put()— item index

Makes the object item a member item of the array and associates it with the specified index or
indexes. This replaces any existing item associated with the specified index or indexes with the new
item. If the index for a particular dimension is greater than the current size of that dimension, the array
is expanded to the new dimension size.

Note that the index argument may also be specified as an array of indexes.

Example 5.185. Array class — put method

a = .array~new
a~put("Fred", 1) -- a
a~put("Mike", 2) -- a
a~put("Mike", 1) -- a

.array~of ("Fred")
.array~of("Fred", "Mike")
.array~of("Mike", "Mike")

do name over a
say name
end
/* Output would be: */

Mike
Mike

5.3.6.29. remove

remove(index

Returns and removes the member item with the specified index or indexes from the array. If there is
no item with the specified index or indexes, .nil is returned and no item is removed. The index of
the removed item becomes unused and the hasIndex method for the given index will now return
.false. The size of the array is unchanged and no other indexes of the array are modified with the
removal.

Note that the index argument may also be specified as an array of indexes.

257

Array Class

Example 5.186. Array class — remove method

a = .array~of("Fred", "Mike", "Mike", "David")
a~remove(2) -- removes "Mike"

5.3.6.30. removeltem

bb—(removeltem()— item)

Removes an item from the array. If the target item exists at more than one index, the first located
item is removed. Item equality is determined by using the == method of item. The return value is the
removed item.

Example 5.187. Array class — removeltem method

a = .array~of("Fred", "Mike", "Mike", "David")
a~removeItem("Mike") -- removes the item at index "2"

5.3.6.31. section

bb—(section()— start @—N

, items

Returns a new array (of the same class as the receiver) containing selected items from the receiver
array. The first item in the new array is the item corresponding to index start in the receiver array.
Subsequent items in the new array correspond to those in the receiver array (in the same sequence).
If you specify the whole number items, the new array contains only this number of items (or the
number of subsequent items in the receiver array, if this is less than items). If you do not specify
items, the new array contains all subsequent items of the receiver array. The receiver array remains
unchanged. The section method is valid only for single-dimensional Arrays.

Note that the index argument start may also be specified as an array of indexes.

Example 5.188. Array class — section method

a = .array~of(1,2,3,4) -- Loads the array
b = a~section(2) -- b = .array~of(2,3,4)
c = a~section(2,2) -- ¢ = .array~of(2,3)

d = a~section(2,0) -- d = .array~new

5.3.6.32. size

Returns the number of items that can be placed in the array before it needs to be extended. This value
is the same as the product of the sizes of the dimensions in the array.

258

Array Class

5.3.6.33. sort

Sorts the Array of Comparable items into ascending order using an algorithm that is not guaranteed to
be stable, and returns the sorted Array. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.6.34. sortWith

bb—(sortWith(comparator)

Sorts the Array of items into ascending order using an algorithm that is not guaranteed to be stable,
and returns the sorted Array. Ordering of elements is determined using the comparator argument. See
Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.6.35. stableSort

Sorts the Array of Comparable items into ascending order using a stable Mergesort algorithm, and
returns the sorted Array. See Section 5.3.19, “Sorting Ordered Collections” for details.

5.3.6.36. stableSortWith

bb—(stableSortWith(comparator)

Sorts the Array of items into ascending order using a stable Mergesort algorithm, and returns the
sorted Array. Ordering of elements is determined using the comparator argument. See Section 5.3.19,
“Sorting Ordered Collections” for details.

5.3.6.37. supplier

Returns a Supplier object for the array. The supplier allows you to iterate over the index/item pairs of
the array. The supplier enumerates the array items in their sequenced order. For multi-dimensional
Arrays, the supplier index method will return the index values as an array of index numbers.

Example 5.189. Array class — supplier method

a = .array~of("Fred", "Mike", "David")

sup = a~supplier

a~append("Joe")

do while sup~available
say sup~item -- displays "Fred", "Mike", and "David"
sup~next

end

5.3.6.38. toString

259

Array Class

toString(J @—N

"Char"

Returns a string that contains the data of an array (one to n dimensional). The elements of the array
are treated either in line or character format, starting at the first element in the array. The line format
is the default. If the line format is used, a separator string can be specified. The separator will be used
between concatenated elements instead of the default line end separator.

See also method makeString for which this method is a synonym.

Example 5.190. Array class — toString method

a = .array~of(1,2,3,4) -- Loads the array
say a~toString -- Produces: 1
-- 2
oo 3
-- 4
say a~toString("c") -- Produces: 1234
say a~toString(, ", ") -- Produces: 1, 2, 3, 4

5.3.6.39. Examples

Example 5.191. Array class — examples

arrayl=.array~of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */

array2=.array~new(4) /* Creates array2, containing 4 items */

do i=1 to 4 /* Loads the array */
array2[i]=1

end

You can produce the elements loaded into an array, for example:
Example 5.192. Array class — examples

do i=1 to 4
say arrayl[i]
end

If you omit any argument values before arguments you supply, the corresponding indexes are skipped
in the returned array:

Example 5.193. Array class — examples

directions=.array~of("North", "South", ,"West")
do i=1 to 4 /* Produces: North */

260

Bag Class

say directions[i] /* South */
/* The NIL object */
end /* West */

Here is an example using the ~~:

Example 5.194. Array class — examples

z=.array~of(1,2,3)~~put(4,4)
do i =1 to z~size

say z[i] /* Produces: 12 3 4 */
end

5.3.7. Bag Class

A Bag is a non-sparse collection that restricts the elements to having an item that is the same as the
index. Any object can be placed in a Bag, and the same object can be placed in a Bag several times.

Table 5.17. Bag Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ SetCollection (Mixin Class)

Methods inherited from the SetCollection class
(no class or instance methods)

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset

alllndexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
NEW? of (Class Method)

makeArray
putAll
Bag
CHG new (Class Method)
of (Class Method)
[hasindex remove
[]= hasltem removeAll
allAt index removeltem
allindex intersection subset

261

Bag Class

alllndexes ISEmpty supplier
allltems items union

at makeArray uniquelndexes
difference put xor

empty putAll

5.3.7.1. *CHG* new (Class Method)

new()

size

Returns a new empty Bag object.

If you specify size, a hint how large the new Bag object is expected to grow, this is used to optimize
the initial allocation.

size must be a non-negative whole number.

5.3.7.2. of (Class Method)

Returns a newly created Bag containing the specified item objects.

5.3.7.3.]

[index —@—N

Returns the item associated with index index. Returns .nil if the Bag has no item associated with
index.

Index equality is determined by using the == method of index.

This method is the same as the at method.

5.3.7.4. allAt

»—(allAt(index —@—N

Returns a single-dimensional Array containing all the items associated with index index.

Index equality is determined by using the == method of index.

This method has the same result as the alllndex method.

5.3.7.5. allindex

262

Bag Class

bb—(alllndex()— item)

Returns a single-dimensional Array containing all indexes for item item.

Item equality is determined by using the == method of item.

This method has the same result as the allAt method.

5.3.7.6. allindexes

allIndexes

Returns an Array of all indexes contained in the Bag, in an unspecified order. The returned Array will
have one index for every item stored in the Bag, including duplicates.

To retrieve the indexes without duplicates, use the uniquelndexes method.

5.3.7.7. allitems

Returns an Array of all items contained in the Bag, in an unspecified order.

5.3.7.8. at

at(index —@—N

Returns the item associated with index index. Returns . nil if the Bag does not contain index.

Index equality is determined by using the == method of index.

This method is the same as the [] method.

5.3.7.9.]=

*@ 1 = item <

index

Adds an item to the Bag. If specified, index must be the same object as item.

This method is the same as the put method.

5.3.7.10. difference

bb—(difference()— argument)

Returns a new Bag containing only those items from the receiver that the argument collection does not
contain. The argument can be a Collection object or any other object that supports a makeArray
method.

263

Bag Class

5.3.7.11. empty

Returns the receiving Bag with all items removed.

5.3.7.12. hasindex

bb—(hasIndex(index)

Returns . true if the Bag contains any item associated with index index, otherwise returns . false.

Index equality is determined by using the == method of index.

5.3.7.13. hasltem

index

bb—(hasItem(item < @—N

Returns . true if the Bag contains the member item item, otherwise returns . false. If index is
specified, it should be the same object as index, otherwise hasItem will always return . false.

Item and index equality is determined by using the == method.

5.3.7.14. index

»—(index(item)

Returns the index for item item if the Bag contains item, otherwise returns . false.

Item equality is determined by using the == method of item.

5.3.7.15. intersection

bb—(intersection()— argument)

Returns a new Bag containing only those items from the receiver that are also in the argument
collection. The argument can be a Collection object or any other object that supports a
makeArray method.

5.3.7.16. isEmpty

Returns . true if the Bag is empty. Returns . false otherwise.

5.3.7.17. items

264

Bag Class

- J@*‘

index

Returns the number of Bag items with index index. If you specify no index, this method returns the
total number of items in the Bag.

Index equality is determined by using the == method of index.

5.3.7.18. makeArray

Returns a single-dimensional Array containing all Bag items, in an unspecified order.

5.3.7.19. put

PP—(put(item @—N

o index

Adds an item to the Bag. If specified, index must be the same object as item.

This method is the same as the [J= method.

5.3.7.20. putAll

)b—(putAll(collection

Returns the receiving Bag with all items in collection added to it. The collection argument can be
any object that supports a supplier method. Items from collection are added using the item values
returned by the supplier.

5.3.7.21. remove

bb—(remove()— index)

Returns and removes from the Bag one member item with index index. Returns . nil if the Bag does
not contain index.

Index equality is determined by using the == method of index.

5.3.7.22. removeAll

bb—(removeAll(index)

Returns and removes from the Bag all member items with index index. All removed items are returned
in an Array containing each of the removed items. If the Bag does not contain index, an empty Array is
returned.

Index equality is determined by using the == method of index.

265

Bag Class

5.3.7.23. removeltem

bb—(removeltem()— item @—N

o index

Returns and removes from a Bag one member item item. Returns .nil if item is not a member of the
Bag.

If index is specified, it should be the same object as index, otherwise removeItem will always return
.nil.

5.3.7.24. subset

bb—(subset()— argument)

Returns . true if all indexes in the receiver Bag are also contained in the argument collection; returns
. false otherwise. The argument can be a Collection object or any other object that supports a
makeArray method.

5.3.7.25. supplier

=), D

index

Returns a Supplier object for the Bag. The supplier allows you to iterate over all index/item pairs in the
Bag at the time the supplier was created. The supplier enumerates the items in an unspecified order. If
you specify index, the supplier contains all of the items with the specified index.

5.3.7.26. union

bb—(union()— argument)

Returns a new Bag that contains all the items from the receiver Bag and selected items from the
argument collection. The argument can be a Collection object or any other object that supports a
makeArray method.

5.3.7.27. uniquelndexes

Returns an Array of all indexes contained in the Bag, with no duplicates.

5.3.7.28. xor

>>—(xor()— argument)

Returns a new Bag that contains all items from the receiver Bag and the argument collection; items
that appear in both collections are removed. The argument can be a Collection object or any other
object that supports a makeArray method.

266

CircularQueue Class

5.3.7.29. Examples

Example 5.195. Bag class — examples

/* Create a bag of fruit
fruit = .bag~of("Apple",
say fruit~items

say fruit~items("Apple")
fruit~remove("Apple")

*/

||0range||’ "Apple", "Pear")
/* How many pieces? (4)

/* How many apples? (2)

/* Remove one of the apples.

fruit~~put("Banana")~put("Orange") /* Add a couple.

say fruit~items

/* How many pieces? (5)

5.3.8. CircularQueue Class

*/
*/
*/
*/
*/

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once
the end of the queue has been reached, new item objects are inserted from the beginning, replacing
earlier entries. Any object can be placed in the queue and the same object can occupy more than one

position in the queue.

The collected objects can be processed in FIFO (first-in, first-out) or in a stack-like LIFO (last-in, first-

out) order.

Table 5.18. CircularQueue Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

[] (Abstract Method)

[]= (Abstract Method)
alllndexes (Abstract Method)
allltems (Abstract Method)
at (Abstract Method)
difference

disjoint

Methods inherited from the Collection class

equivalent

hasindex

hasltem

index (Abstract Method)
intersection

items

makeArray

put (Abstract Method)
subset

supplier

union

xor

+ OrderedCollection (Mixin Class)

append (Abstract Method)
appendAll

delete (Abstract Method)
difference

first (Abstract Method)
firstitem (Abstract Method)
insert (Abstract Method)

Methods inherited from the OrderedCollection class

intersection

last (Abstract Method)
lastitem (Abstract Method)
next (Abstract Method)
previous (Abstract Method)
section (Abstract Method)
sort

sortWith
stableSort
stableSortWith
Subset

union

xor

Queue

CHG new (Class Method)
of (Class Method)

Methods inherited from the Queue class

267

CircularQueue Class

[l hasltem pull
[~ index push
alllndexes insert put
allltems ISEmpty queue
append items remove
at last removeltem
delete lastitem section
empty makeArray *NEW* size
first next supplier
firstitem peek
hasIndex previous

CircularQueue
of (Class Method)
append *NEW* makeString size
init push string
insert queue supplier
intersection resize union
makeArray section xor

5.3.8.1. of (Class Method)

of(: :

item

e

Returns a newly created circular queue containing the specified item objects. The first item has index
1, the second has index 2, and so on. Any omitted item will be set to the null string. The total number

of item objects (including omitted ones) determines the size of the circular queue.

5.3.8.2. init

- ()

size

)

Performs initialization of the circular queue. The required size argument, a non-negative whole
number, specifies the initial size of the queue.

5.3.8.3. append

»—(append(

item

@

Append an item to the end of the collection ordering, returning the index of the added item. If the
circular queue is full, then the first item will be deleted, before the insertion takes place.

5.3.8.4. insert

268

CircularQueue Class

e Wy Sk

o index

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is .nil, item is inserted at the head of
the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index
to have their indexes modified by the queue object. If inserting an object causes the queue to grow
beyond the size, the last item in the queue will be removed.

5.3.8.5. intersection

bb—(intersection(argument)

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can
be a Collection object or any other object that supports a makeAr ray method. The resulting
CircularQueue instance will be the same size as the receiver.

5.3.8.6. makeArray

) D)

order

Returns a single-dimensional Array containing the items of the circular queue in the specified order.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out order. This is the default.

Lifo
Last-in, first-out order (stack-like).

5.3.8.7. *NEW* makeString

bb—' keString(j L @—N
delimiter L@— order

Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specified order. If the delimiter is omitted, the comma character
(", ") is used as the default delimiter string.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This is the default

269

CircularQueue Class

Lifo
Last-in, first-out (stack-like)

Example 5.196. CircularQueue class — makeArray method

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

say .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")~makeString(, ", ")
-- five, four, three, two, one

5.3.8.8. push

bb—(pUSh()— item J @—N

’ option

Makes the object item a member item of the circular queue, inserting the item object in front of the first
item in the queue. The pushed item object will be the new first item in the circular queue.

If the circular queue is full, then the last item stored in the circular queue will be deleted, before the
insertion takes place. In this case the deleted item will be returned, otherwise .nil will be returned.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the capitalized
letter is needed; all characters following it are ignored. If option is 'Unique’, any matching items already
in the queue will be removed before item is added to the queue. This allows you to maintain a list like
the recent files list of an editor.

5.3.8.9. queue

bb—(queue()— item @—N
Makes the object item a member item of the circular queue, inserting the item at the end of the circular
queue.

If the circular queue is full, then the first item will be deleted, before the insertion takes place. In this
case the deleted item will be returned, otherwise .nil will be returned.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the capitalized
letter is needed; all characters following it are ignored. If option is 'Unique’, any matching items already
in the queue will be removed before item is added to the queue. This allows you to maintain a list like
the recent files list of an editor.

5.3.8.10. resize

order

bb—(resize(newsize < @—N

Resizes the circular queue object to be able to contain newSize items. If more than newSize items are
in the queue, any extra items are removed in the specified order.

270

CircularQueue Class

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This keeps the items at the front of the queue. Iltem deletions occur at the end of
the queue. This is the default action.

Lifo
Last-in, first-out (stack-like). This removes items from the front of the queue.

Resizing with a value of @ removes all items from the circular queue.

5.3.8.11. section

items

»—(section(start < @—N

Returns a new queue (of the same class as the receiver) containing selected items from the receiver.
The first item in the new queue is the item corresponding to index start in the receiver. Subsequent
items in the new queue correspond to those in the receiver (in the same sequence). If you specify the
whole number jitems, the new queue contains only this number of items (or the number of subsequent
items in the receiver, if this is less than items). If you do not specify items, the new queue contains all
subsequent items from the receiver. The receiver queue remains unchanged. The new queue item will
be sized to the larger of the receiver queue size or items. The selection of the items will wrap from the
end around to the beginning of the queue. For example,

ql = .circularqueue~of("Fred", "Mike", "David")
g2 = gl~section(2) -- effectively rotates the queue
do name over a
say name -- displays "Mike", "David", and "Fred"
end

returns a new queue of three items, starting with the second item, effectively rotating the order of the
contained items.

5.3.8.12. size

Returns the maximum number of objects that can be stored in the circular queue.

5.3.8.13. string

delimiter 0 order

271

CircularQueue Class

Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specified order. If the delimiter is omitted, the comma character
(", ") is used as the default delimiter string.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This is the default

Lifo
Last-in, first-out (stack-like)

5.3.8.14. supplier

=), D

order

Returns a Supplier object for the collection. The supplier allows you to iterate over the items that were
in the queue at the time of the supplier's creation.

The supplier will iterate over the items in the specified order. (Only the capitalized letter is needed; all
characters following it are ignored.)

Fifo
First-in, first-out, default

Lifo
Last-in, first-out (stack-like)

5.3.8.15. union

>>—(union(argument —@—N

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. The resulting CircularQueue object

will have a size that is the larger of the receiver's size or the union size of the two collections. This
method includes an item from argument in the new collection only if there is no equivalent item in the
receiver collection and the method has not already included. The order in which this method selects
items in argument is unspecified (the program should not rely on any order.). The argument can be a
Collection object or any other object that supports a makeArray method.

5.3.8.16. xor

)»—(xor(argument

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
resulting CircularQueue object will have a size that is the larger of the receiver's size or the xor size
of the two collections. The argument can be a Collection object or any other object that supports a
makeArray method.

272

Directory Class

5.3.8.17. Example

Example 5.197. CircularQueue class — examples

-- create a circular buffer with five items
u=.circularQueue~of("a", "b", "c", "d", "e")
say "content: ["u"]," "content (LIFO): ["u~string("->",6"L")"]"
say

u~resize(4, "FIFO") -- resize fifo-style (keep newest)

say "after resizing to 4 items in FIFO style (keeping the newest):"
say "content: ["u"]," "content (LIFO): ["u~string("->",6"L")"]"

say

u~resize(2, "LIFO") -- resize lifo-style (keep oldest)

say "after resizing to 2 items in LIFO style (keeping the oldest):"
say "content: ["u"]," "content (LIFO): ["u~string("->",6"L")"]"

say

u~resize(0) -- resize lifo-style (keep oldest)

say "after resizing to 0 items, thereby deleting all items:"
say "content: ["u"]," "content (LIFO): ["u~string("->",6"L")"]"
say

u~resize(2) -- resize lifo-style (keep oldest)
say "after resizing to 2, size="u~size "and items="u~items
u~~queue('x"')~~queue('y"')~~queue('z"')

say "after queuing the three items 'x', 'y', 'z':"
say "content: ["u"]," "content (LIFO): ["u~string("->",6"L")"]"
say

u~~push('1')~~push('2"')~~push('3")

say "after pushing the three items '1', '2', '3':"

say "content: ["u"]," "content (LIFO): ["u~string("->",6"L")"]"
say

Output:

content: [a,b,c,d,e], content (LIFO): [e->d->c->b->a]

after resizing to 4 items in FIFO style (keeping the newest):
content: [b,c,d,e], content (LIFO): [e->d->c->b]

after resizing to 2 items in LIFO style (keeping the oldest):
content: [b,c], content (LIFO): [c->b]

after resizing to © items, thereby deleting all items:
content: [], content (LIFO): []

after resizing to 2, size=2 and items=0
after queuing the three items 'x', 'y', 'z':
content: [y,z], content (LIFO): [z->Y]

after pushing the three items '1', '2', '3':
content: [3,2], content (LIFO): [2->3]

5.3.9. Directory Class

A Directory is a MapCollection using unique character string indexes. The items of a Directory can
be any valid Rexx object.

273

Directory Class

See also *NEW* StringTable Class, a MapCollection similar to Directory, but without methods

setMethod and unsetMethod.

Table 5.19. Directory Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset
alllndexes (Abstract Method) hasltem supplier
allltems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items
disjoint makeArray

+ MapCollection (Mixin Class)
Methods inherited from the MapCollection class
NEW of (Class Method)
makeArray
putAll

Directory

CHG new (Class Method)
[] hasindex *NEW* removeEntry
[~ hasltem removeltem
alllndexes index setEntry
allltems ISEmpty setMethod
at items supplier
empty makeArray unknown
entry put unsetMethod
hasEntry remove

In addition to the standard put, []=, at, and [] methods defined for Collections, Directory provides
access to items using methods. For example:

mydir = .directory~new
mydir~name = "Mike" -- same as mydir~put("Mike", "NAME")
say mydir-~name -- same as say mydir['NAME']

5.3.9.1. *CHG* new (Class Method)

new()

size

Returns an empty Directory object.

If you specify size, a hint how large the new Directory object is expected to grow, this is used to

optimize the initial allocation.

274

Directory Class

size must be a non-negative whole number.

5.3.9.2.]

[name 1

Returns the item corresponding to name. This method is the same as the at method.

5.3.9.3. []=

>>—@— name 1 = item

Adds or replaces the entry at index name. This method is the same as the put method.

5.3.9.4. allindexes

Returns an array of all the directory indexes, including those of all the setMethod methods.

5.3.9.5. allitems

Returns an array of all items contained in the directory, including those returned by all setMethod
methods.

5.3.9.6. at

at(name

Returns the item associated with index name. If a method defined using setMethod is associated
with index name, the result of running this method is returned. If the Directory has no item or method
associated with index name, .nil is returned.

Example 5.198. Directory class — at method

say .environment~at("OBJECT") /* Produces: "The Object class" */

5.3.9.7. empty

Returns the receiving Directory with all items removed. empty also removes all methods added using
setMethod.

275

Directory Class

5.3.9.8. entry

>>—(entry()— name)

Returns the directory entry with index name (translated to uppercase). If there is no such entry, name
returns the item for any method that setMethod supplied. If there is neither an entry nor a method for
name, .nil is returned.

5.3.9.9. hasEntry

bb—(hasEntry()— name)

Returns . true if the directory has an entry or a method for index name (translated to uppercase), or
.false.

5.3.9.10. hasindex

bb—(hasIndex(name)

Returns . true if the Directory contains any item associated with index name, or . false.

5.3.9.11. hasltem

»—(hasItem(item

Returns . true if the Directory contains the item at any index position or otherwise returns . false.
Item equality is determined by using the == method of item.

5.3.9.12. index

»—(index(item —@—N

Returns the index of the specified item within the directory. If the target item appears at more than one
index, the first located index will be returned. If the directory does not contain the specified item, .nil
is returned. Item equality is determined by using the == method of jitem.

5.3.9.13. isEmpty

Returns . true if the directory is empty. Returns . false otherwise.

5.3.9.14. items

Returns the number of items in the collection.

276

Directory Class

5.3.9.15. makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order. (The program
should not rely on any order.)

5.3.9.16. put

»—(put(item o name

Makes the object item a member item of the collection and associates it with index name. The new
item replaces any existing item or method associated with index name.

5.3.9.17. remove

bb—(remove()— name)

Removes and returns the member item with index name from the directory. If a method is associated
with setMethod for index name, the method is removed and the result of running the method is
returned. If there is no item or method with index name, .nil is returned.

5.3.9.18. *NEW* removeEntry

bb—(removeEntry(name)

Removes and returns the member item with index name (translated to uppercase) from the directory.
If a method is associated with setMethod for index name, the method is removed and the result of
running the method is returned. If there is no item or method with index name, .nil is returned.

See also setEntry, setMethod, hasEntry, and entry.

5.3.9.19. removeltem

»—(removeltem(item

Removes an item from the directory. If the target item exists at more than one index, the first located
item is removed. The return value is the removed item. Item equality is determined by using the ==
method of item.

5.3.9.20. setEntry

>>—(setEntry(name J @—N

h entry

277

Directory Class

Sets the directory entry with index name (translated to uppercase) to the object entry, replacing any
existing entry or method for name. If you omit entry, this method removes any entry or method with
this name.

5.3.9.21. setMethod

bb—(setMethod()— name J @—N

o method

Associates index name (translated to uppercase) with method method. Thus, the object returns the
result of running method when you access this entry. This occurs when you specify name on the [],
at, entry, or remove method. This method replaces any existing item or method for name.

You can specify "UNKNOWN" as name. Doing so supplies a method that is run whenever an at

or entry message specifies a name for which no item or method exists in the collection. This
method's first argument is the specified directory index. This method has no effect on the action of any
hasgntry, hasIndex, items, remove, or supplier message sent to the collection.

The method can be a string containing a method source line instead of a method object. Alternatively,
an array of strings containing individual method lines can be passed. In either case, an equivalent
method object is created.

If you omit method, setMethod removes the entry with the specified name.

5.3.9.22. supplier

Returns a Supplier object for the collection. The supplier allows you to iterate over the index/item pairs
in the directory at the time the supplier was created. The supplier iterates the items in an unspecified
order.

5.3.9.23. unknown

bb—(unknown()— messagename) messageargs)

Runs either the entry or setEntry method, depending on whether messagename ends with an equal
sign.

If messagename does not end with an equal sign, this method runs the entry method, passing
messagename as its argument. The messageargs argument is ignored. The entry method is the
return result.

If messagename does end with an equal sign, this method runs the setEntry method, passing the
first part of messagename (up to, but not including, the final equal sign) as its first argument, and the
first item in the array messageargs as its second argument. In this case, unknown returns no result.

5.3.9.24. unsetMethod

bb—(unsetMethod(name —@—N

Removes the association between index name (translated to uppercase) and a method.

278

IdentityTable Class

5.3.9.25. Examples

Example 5.199. Directory class — examples

/**/

/* A Phone Book Directory program
/* This program demonstrates use of the directory class.

*/
*/

/**/

/* Define an UNKNOWN method that adds an abbreviation lookup feature.
/* Directories do not have to have an UNKNOWN method.
book = .directory~new~~setMethod("UNKNOWN", .methods["UNKNOWN"])

book["ANN"] = "Ann B. 555-6220"
book["ann"] = "Little annie . 555-1234"
book["JEFF"] = "Jeff G. 555-5115"
book["MARK"] = "Mark C. 555-5017"
book["MIKE"] = "Mike H. 555-6123"
book~Rick = "Rick M. 555-5110" /* Same as book["RICK"] = ..
Do i over book /* Iterate over the collection
Say book[i]
end i
Say "" /* Index lookup is case sensitive...
Say book~entry("Mike") /* ENTRY method uppercases before lookup
Say book["ANN"] /* Exact match
Say book~ann /* Message sends uppercase before lookup
Say book["ann"] /* Exact match with lowercase index
Say nn
Say book["M"] /* Uses UNKNOWN method for lookup
Say book["Z"]
Exit

/* Define an unknown method to handle indexes not found.
/* Check for abbreviations or indicate listing not found
::Method unknown
Parse arg at_index
value = ""
Do i over self
If abbrev(i, at_index) then do

If value <> "" then value = value", "
value = value || self~at(i)
end
end i
If value = "" then value = "No listing found for" at_index

Return value

5.3.10. IdentityTable Class

*/
*/

*/

*/

*/
*/
*/
*/
*/

*/

*/
*/

An IdentityTable is a collection with indexes that can be any object. In an IdentityTable, each
item is associated with a single index, and there can be only one item for each index. Index and item
matches are made using an object identity comparison. That is, an index will only match if the same

instance is used in the collection.

Table 5.20. IdentityTable Class

Object

Methods inherited from the Object class

279

IdentityTable Class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset

alllndexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
NEW? of (Class Method)

makeArray
putAll
IdentityTable
CHG new (Class Method)
[l hasIndex put
[I= hasltem remove
allindexes index removeltem
allltems ISEmpty supplier
at items
empty makeArray

5.3.10.1. *CHG* new (Class Method)

new()

size

Returns an empty IdentityTable object.

If you specify size, a hint how large the new IdentityTable object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.10.2. []

>>—@— index 1

Returns the item associated with index. This method is the same as the at method.

5.3.10.3. []=

[index 1 = item >4

280

IdentityTable Class

Adds item to the table at index index. This method is the same as the put method.

5.3.10.4. allindexes

allIndexes

j

Returns an array of all indices contained in the table.

5.3.10.5. allitems

Returns an array of all items contained in the table.

5.3.10.6. at

at(index —@—N

Returns the item associated with index index. Returns . nil if the IdentityTable has no item associated
with index.

5.3.10.7. empty

Returns the receiving ldentityTable with all items removed.

5.3.10.8. hasindex

bb—(hasIndex(index)

Returns . true if the IdentityTable contains any item associated with index index, or . false.

5.3.10.9. hasltem

bb—(hasItem()— item)

Returns . true if the IdentityTable contains the item at any index position or otherwise returns
.false.

5.3.10.10. index

bb—(index()— item)

Returns the index of the specified item within the table. If the target item appears at more than one
index, the first located index will be returned. Returns . nil if the table does not contain the specified
item.

281

IdentityTable Class

5.3.10.11. isEmpty

isEmpty

!

Returns . true if the table is empty. Returns . false otherwise.

5.3.10.12. items

i

Returns the number of items in the collection.

5.3.10.13. makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order.

5.3.10.14. put

bb—(put(item ' index)

Makes the object item a member item of the collection and associates it with index index. The new
item replaces any existing item associated with index index.

5.3.10.15. remove

bb—(remove()— index)

Returns and removes from a collection the member item with index index. Returns .nil if no item has
index index.

5.3.10.16. removeltem

bb—(removeltem()— item)

Removes an item from the table. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item.

5.3.10.17. supplier

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

282

List Class

5.3.11. List Class

A List is a non-sparse sequenced collection similar to the Array class to which you can add new
items at any position in the sequence. The List creates a new index value whenever an item is added
to the List and the associated index value remains valid for that item regardless of other additions or
removals. Only indexes the List object generates are valid, i.e. the List is never a sparse list and the
List object will not modify indexes for items in the list.

Table 5.21. List Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method)
[]= (Abstract Method)

alllndexes (Abstract Method)

allltems (Abstract Method)
at (Abstract Method)
difference

disjoint

equivalent

hasIndex

hasltem

index (Abstract Method)
intersection

items

makeArray

put (Abstract Method)
subset

supplier

union

xor

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class

append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) stableSort
delete (Abstract Method) lastitem (Abstract Method) stableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstitem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

List
CHG new (Class Method)
of (Class Method)
[l firstitem makeArray
[~ hasIndex next
alllndexes hasltem previous
allltems index put
append insert remove
at ISEmpty removeltem
delete items section
empty last supplier
first lastltem

5.3.11.1. *CHG* new (Class Method)

283

List Class

new()

size

Returns a new empty List object.

If you specify size, a hint how large the new List object is expected to grow, this is used to optimize the
initial allocation.

size must be a non-negative whole number.

5.3.11.2. of (Class Method)

Returns a newly created list containing the specified item objects in the order specified.

5.3.11.3.[]

[index —@—N

Returns the item located at index. This method is the same as the at method.

5.3.11.4. []=

[index 1 = item >4

Replaces the item at index with item. This method is the same as the put method.

5.3.11.5. allindexes

Returns an array of all indexes contained in the list in the same order they are used in the list.

5.3.11.6. allitems

Returns an array of all items contained in the list in list iteration order.

5.3.11.7. append

bb—(append(item)

Appends item to the end of the list, returning the index associated with item.

284

List Class

5.3.11.8. at

index)

Returns the item associated with index index. Returns .nil if the list has no item associated with
index.

5.3.11.9. delete

»—(delete(index —@—N

Returns and deletes the member item with the specified index from the list. If there is no item with the
specified index, .nil is returned and no item is deleted. All elements following the deleted item will
be moved up in the list ordering, but the indexes associated with the moved items will not change. The
size of the list will be reduced by one element. The delete method and the remove method produce
the same result for the list class.

5.3.11.10. empty

Returns the receiving List with all items removed.

!

5.3.11.11. first

;

Returns the index of the first item in the list or . nil if the list is empty.

5.3.11.12. firstitem
Returns the first item in the list or . nil if the list is empty.
Example 5.200. List class — firstitem method

musketeers=.list~of ("Porthos", "Athos", "Aramis") /* Creates list MUSKETEERS */
item=musketeers~firstItem /* Gives first item in list */
/* (Assigns "Porthos" to item) */

5.3.11.13. hasindex

bb—(hasIndex(index)

Returns . true if the list contains any item associated with index index, or . false.

285

List Class

5.3.11.14. hasltem

bb—(hasItem()— item)

Returns . true if the list contains the jitem at any index position or otherwise returns . false. Item
equality is determined by using the == method of item.

5.3.11.15. index

>>—{Fndex(

item —@—N

Returns the index of the specified item within the list. If the target item appears at more than one
index, the first located index will be returned. Returns . nil if the list does not contain the specified
item. Iltem equality is determined by using the == method of item.

5.3.11.16. insert

e

item 7 0)

o index

Returns a list-supplied index for item item, which is added to the list. The inserted item follows an
existing item with index index in the list ordering. If index is .nil, jtem becomes the first item in the
list. If you omit index, the item becomes the last item in the list.

Inserting an item in the list at position index will cause the items in the list after position index to have
their relative positions shifted by the list object. The index values for any items in the list are not
modified by the insertion.

Example 5.201. List class — insert method

musketeers=.list~of ("Porthos", "Athos", "Aramis") /*

Creates list MUSKETEERS

/* consisting of: Porthos

*/

/* Athos
/* Aramis
index=musketeers~first /* Gives index of first item
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos
/* List is now: Porthos
/* D'Artagnan */
/* Athos
/* Aramis
/* Alternately, you could use */
musketeers~insert("D'Artagnan", .nil) /* Adds D'Artagnan before Porthos */
/* List is now: D'Artagnan */
/* Porthos
/* Athos
/* Aramis
/* Alternately, you could use */
musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */
/* List is now: Porthos
/* Athos
/* Aramis
/* D'Artagnan */

*/

*/

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

286

List Class

5.3.11.17. isEmpty

isEmpty

!

Returns . true if the list is empty. Returns . false otherwise.

5.3.11.18. items

i

Returns the number of items in the list.

5.3.11.19. last

:

Returns the index of the last item in the list or . nil if the list is empty.

5.3.11.20. lastitem

!

Returns the last item in the list or . nil if the list is empty.

5.3.11.21. makeArray

makeArray

|

Returns a single-dimensional Array containing the list collection items. The array indexes range from 1
to the number of items. The order in which the collection items appear in the array is the same as their
sequence in the list collection.

5.3.11.22. next

next()— index)

Returns the index of the item that follows the list item having index index. Returns .nil if index is the
end of the list.

1

5.3.11.23. previous

previous(index)

A

Returns the index of the item that precedes the list item having index index. Returns .nil if index is
the beginning of the list.

287

Properties Class

5.3.11.24. put

bb—(put()— item o index)

Replaces any existing item associated with the specified index with the item. If index does not exist in
the list, an error is raised.

5.3.11.25. remove

>>—(remove(index —@—N

Returns and removes from a collection the member item with index index. If no item has index index,
this method returns .nil and removes no item.

Removing an item from the list at position index will shift the relative position of items after position
index. The index values assigned to those items will not change.

5.3.11.26. removeltem

bb—(removeltem(item)

Removes an item from the list. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.11.27. section

e Sk

o items

Returns a new list (of the same class as the receiver) containing selected items from the receiver list.
The first item in the new list is the item corresponding to index start in the receiver list. Subsequent
items in the new list correspond to those in the receiver list (in the same sequence). If you specify the
whole number jtems, the new list contains only this number of items (or the number of subsequent
items in the receiver list, if this is less than items). If you do not specify items, the new list contains all
subsequent items from the receiver list. The receiver list remains unchanged.

5.3.11.28. supplier

Returns a Supplier object for the list. The supplier allows you to iterate over the index/item pairs stored
in the list at the time the supplier is created. The iteration is in the same order as the list sequence
order.

5.3.12. Properties Class

288

Properties Class

A Properties object is a collection with unique indexes that are character strings representing
names and items that are also restricted to character string values. Properties objects are useful for
processing bundles of application option values.

Table 5.22. Properties Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset

alllndexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
NEW? of (Class Method)

makeArray
putAll

Directory
Methods inherited from the Directory class
CHG new (Class Method)
[hasindex *NEW* removeEntry
[]= hasltem removeltem
allindexes index setEntry
allltems ISEmpty setMethod
at items supplier
empty makeArray unknown
entry put unsetMethod
hasEntry remove

Properties
load (Class method)
[~ load setProperty
getLogical put setWhole
getProperty save
getWhole setLogical

5.3.12.1. load (Class method)

>>—(load()— source)

289

Properties Class

Loads a set of properties from source and returns them as a new Properties object. The load source
can be either the string name of a file, a File object, or a Stream object. Properties are read from
source as individual lines using lineln. Blank lines and lines with a Rexx line comment ("--") as the first
non-blank characters are ignored. Otherwise, the lines are assumed to be of the form "name=value"

and are added to the receiver Properties value using name as the index for the value.

5.3.12.2. *CHG* new (Class method)

new()

size

Returns an empty Properties object.

If you specify size, a hint how large the new Properties object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.12.3. []=

[name] = item [»<

Adds item using the index index. This method is the same as the put method.

5.3.12.4. getLogical

bb—(getLogical()— name @—N

0 default

Returns the value of name as either . true or . false. The raw value of the name may be either the
numeric values "0" or "1" or the string values "true" or "false". Any other value will raise a syntax error.
If the property name does not exist and default has been specified, the default value will be returned. If
default has not been specified, a syntax error is raised for missing values.

5.3.12.5. getProperty

>>—(getProperty()— name J @—N

0 default

Returns the value of name. If property name does not exist and default has been specified, the default
value will be returned. If default has not been specified, .nil is returned.

5.3.12.6. getWhole

Wy Wps Sk

o default

290

Properties Class

Returns the value of name, validated as being a Rexx whole number. If property name does not exist
and default has been specified, the default value will be returned. If default has not been specified, a
syntax error is raised for missing values.

5.3.12.7. load

bb—(load()— source)

Loads a set of properties into the receiving Properties object from source. The load source can be

either the string name of a file, a File object, or a Stream object. Properties are read from the source
as individual lines using /ineln. Blank lines and lines with a Rexx line comment ("--") as the first non-
blank characters are ignored. Otherwise, the lines are assumed to be of the form "name=value" and

are added to the receiver Properties value using name as the index for the value.

Properties loaded from source that have the same names as existing items will replace the current
entries.

5.3.12.8. put

bb—(put(item o name

Makes the object item a member item of the collection and associates it with index name. The item
value must be a character string. The new item replaces any existing item or method associated with
index name.

5.3.12.9. save

>>—(save(target

Saves a set of properties into target. The save target can be either the string name of a file, a File
object, or a Stream object. Properties are stored as individual lines using /ineOut. The lines are written
in the form "name=value". A saved Properties file can be reloaded using the Properties load method.

5.3.12.10. setLogical

bb—(setLogical()— name o value)

Sets a logical value in the property bundle. The value argument must be either the numbers "0" or "1",
or the logical values . true or . false. The property value will be added with value converted in to
the appropriate "true" or "false" string value.

5.3.12.11. setProperty

bb—(setProperty(name o value)

Sets a named property in the property bundle. The value argument must be a character string value.

5.3.12.12. setWhole

291

Queue Class

bb—(setWhole()— name P value)

Sets a whole number value in the property bundle. The value argument must be a valid Rexx whole
number.

5.3.13. Queue Class

A Queue is a non-sparse sequenced collection with whole-number indexes. The indexes specify the
position of an item relative to the head (first item) of the queue. Adding or removing an item changes
the association of an index to its queue item. You can add items at either the tail or the head of the
queue.

Table 5.23. Queue Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

+ OrderedCollection (Mixin Class)

Methods inherited from the OrderedCollection class

append (Abstract Method) intersection sortWith
appendAll last (Abstract Method) StableSort
delete (Abstract Method) lastitem (Abstract Method) StableSortWith
difference next (Abstract Method) subset
first (Abstract Method) previous (Abstract Method) union
firstitem (Abstract Method) section (Abstract Method) xor
insert (Abstract Method) sort

Queue
CHG new (Class Method)
of (Class Method)
[hasltem pull
[]= index push
alllndexes insert put
allltems ISEmpty queue
append items remove
at last removeltem
delete lastitem section
empty makeArray *NEW* size
first next supplier
firstitem peek

292

Queue Class

‘ hasindex previous

5.3.13.1. *CHG* new (Class Method)

new()

size

Returns a new empty Queue object.

If you specify size, a hint how large the new Queue object is expected to grow, this is used to optimize
the initial allocation.

size must be a non-negative whole number.

5.3.13.2. of (Class Method)

Returns a newly created queue containing the specified item objects in the order specified.

5.3.13.3. []

>>—®— index 1

Returns the item located at index index. This method is the same as the at method.

5.3.13.4. []=

[index 1 = item >4

Replaces item at index with jtem. This method is the same as the put method.

5.3.13.5. allindexes

allIndexes

Returns an array of all index values for the queue.

For the Queue class, the indices are integers from 1 to items.

5.3.13.6. allitems

Returns an array of all items contained in the queue, in queue order.

293

Queue Class

5.3.13.7. append

bb—(append()— item)

Appends item to the end of the queue, returning the index of the inserted item.

5.3.13.8. at

at(index)

Returns the item associated with index index. Returns .nil if the Queue has no item associated with
index.

5.3.13.9. delete

bb—(delete(index)

Returns and deletes the member item with the specified index from the queue. If there is no item with
the specified index, .nil is returned and no item is deleted. All elements following the deleted item
will be moved up in the queue ordering and the item indexes will be adjusted for the deletion. The size
of the queue will be reduced by one element. The delete method and the remove method produce
the same result for the queue class.

Example 5.202. Queue class — delete method

a = .queue~of("Fred", "Mike", "Rick", "David")
a~delete(2) -- removes "Mike", resulting in the queue
-- ("Fred", "Rick", "David")

5.3.13.10. empty

Returns the receiving Queue with all items removed.

!

5.3.13.11. first

Returns the index of the first item in the queue or . nil if the queue is empty. The index will always be
1 for non-empty queues.

5.3.13.12. firstitem

Returns the first item in the queue or .nil if the queue is empty.

294

Queue Class

5.3.13.13. hasindex

bb—(hasIndex()— index)

Returns . true if the queue contains any item associated with index index, or . false.

5.3.13.14. hasltem

bb—(hasItem(item)

Returns . true if the queue contains the item at any index position or otherwise returns . false. ltem
equality is determined by using the == method of item.

5.3.13.15. index

bb—(index()— item)

Returns the index of the specified item within the queue. If the target item appears at more than one
index, the first located index will be returned. Returns .nil if the queue does not contain the specified
item. Iltem equality is determined by using the == method of item.

5.3.13.16. insert

>>—(insert(item J @—N

o index

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is .nil, item is inserted at the head of
the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index to
have their indexes modified by the queue object.

Example 5.203. Queue class — insert method

musketeers=.queue~of ("Porthos", "Athos", "Aramis) /* Creates queue MUSKETEERS */
/* consisting of: Porthos */
/* Athos */
/* Aramis */
index=musketeers~first /* Gives index of first item */
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */
/* List is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers~insert("D'Artagnan", .nil) /* Adds D'Artagnan before Porthos */
/* List is now: D'Artagnan */

/* Porthos */
/* Athos */
/* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */
/* List is now: Porthos */

295

Queue Class

/* Athos
/* Aramis
/* D'Artagnan

5.3.13.17. isEmpty

Returns . true if the queue is empty. Returns . false otherwise.

5.3.13.18. items

i

Returns the number of items in the queue.

See also method *NEW?* size , which is a synonym for items.

5.3.13.19. last

:

Returns the index of the last item in the queue or .nil if the queue is empty.

5.3.13.20. lastitem

Returns the last item in the queue or .nil if the queue is empty.

5.3.13.21. makeArray

*/
*/
*/

Returns a single-dimensional Array containing the receiver queue items. The array indexes range from
1 to the number of items. The order in which the queue items appear in the array is the same as their

gueuing order, with the head of the queue as index 1.

5.3.13.22. next

»—(next(index

Returns the index of the item that follows the queue item having index index or returns .nil if the item

having that index is last in the queue.

5.3.13.23. peek

296

Queue Class

Returns the item at the head of the queue. Returns . nil if the queue is empty. The collection remains
unchanged.

5.3.13.24. previous

bb—(previous(index)

Returns the index of the item that precedes the queue item having index index or . nil if the item
having that index is first in the queue.

5.3.13.25. puli

Returns and removes the item at the head of the queue. Returns .nil if the queue is empty.

5.3.13.26. push

»—(push(item —@—N

Adds the object item to the head of the queue.

5.3.13.27. put

>>—(put(item ' index —@—N

Replaces any existing item associated with the specified index with the new item. If the index does not
exist in the queue, an error is raised.

5.3.13.28. queue

»—(queue(item

Adds the object item to the tail of the queue.

5.3.13.29. remove

»—(remove(index —@—N

Returns and removes from a collection the member item with index index. Returns .nil if no item has
index index.

5.3.13.30. removeltem

»—(removeltem(item)

297

Relation Class

Removes an item from the queue. If the target item exists at more than one index, the first located
item is removed. The return value is the removed item. Iltem equality is determined by using the ==
method of item.

5.3.13.31. section

items

bb—(section(start < @—N

Returns a new queue (of the same class as the receiver) containing selected items from the receiver.
The first item in the new queue is the item corresponding to index start in the receiver. Subsequent
items in the new queue correspond to those in the receiver (in the same sequence). If you specify the
whole number jitems, the new queue contains only this number of items (or the number of subsequent
items in the receiver, if this is less than items). If you do not specify items, the new queue contains all
subsequent items from the receiver. The receiver queue remains unchanged.

5.3.13.32. *NEW* size

Returns the size, which is the number of items in the queue.

See also method items for which this method is a synonym.

5.3.13.33. supplier

Returns a Supplier object for the queue. The supplier allows you to iterate over the index/item pair
contained in the queue at the time the supplier was created. The supplier iterates the items in their
gueuing order, with the head of the queue first.

5.3.14. Relation Class

A Relation is a collection with indexes that can be any object. In a Relation, each item is associated
with a single index, but there can be more than one item with the same index (unlike a Table, which
can contain only one item for any index).

Table 5.24. Relation Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset
allindexes (Abstract Method) hasltem supplier

298

Relation Class

allltems (Abstract Method) index (Abstract Method) union
at (Abstract Method) intersection xor
difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
NEW? of (Class Method)

makeArray
putAll

Relation
CHG new (Class Method)
[l hasIndex removeAll
[~ hasltem removeltem
allAt index subset
alllndex intersection supplier
alllndexes ISEmpty union
allltems items uniquelndexes
at makeArray xor
difference put
empty remove

5.3.14.1. *CHG* new (Class Method)

new()

size

Returns an empty Relation object.

If you specify size, a hint how large the new Relation object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.14.2.]

>>—®— index 1

Returns an item associated with index. This method is the same as the at method.

5.3.14.3. []=

[index 1 = item >d

Adds item to the relation associated with index index. This method is the same as the put method.

5.3.14.4. allAt

299

Relation Class

bb—(aIIAt()— index)

Returns a single-dimensional Array containing all the items associated with index index. ltems in the
array appear in an unspecified order. Index equality is determined by using the == method of index.

5.3.14.5. allindex

bb—(alllndex(item

Returns a single-dimensional Array containing all indexes for item item, in an unspecified order. ltem
equality is determined by using the == method of item.

5.3.14.6. allindexes

Returns an array of all indexes contained in the Relation. The returned array will have one index for
every item stored in the relation, including duplicates. To retrieve the indexes without duplicates, use
the uniquelndexes method.

5.3.14.7. allitems

Returns an array of all items contained in the relation.

5.3.14.8. at

at(index)

Returns the item associated with index index. If the relation contains more than one item associated
with index index, the item returned is unspecified. (The program should not rely on any particular item
being returned.) Returns . nil if the relation has no item associated with index index. Index equality is
determined by using the == method of index.

5.3.14.9. difference

bb—(difference(argument)

Returns a new Relation containing only those items that the argument collection does not contain
(with the same associated index). The argument can be a Collection object or any other object that
supports a makeArray method.

5.3.14.10. empty

Returns the receiving Relation with all items removed.

300

Relation Class

5.3.14.11. hasindex

bb—(hasIndex()— index)

Returns . true if the Relation contains any item associated with index index, or . false. Index
equality is determined by using the == method of index.

5.3.14.12. hasltem

PP—(hasItem(item @—N

0 index

Returns . true if the relation contains the member item item, . false. If index is specified, hasItem
will only return . true if the relation contains the pairing of item associated with index index. Item and
index equality is determined by using the == method.

5.3.14.13. index

>>—(index(item —@—N

Returns the index for item jitem. If there is more than one index associated with item jitem, the one
returned is not defined. Item equality is determined by using the == method of item.

5.3.14.14. intersection

bb—(intersection()— argument)

Returns a new collection (of the same class as the receiver) containing only those items that are
in both the receiver collection and the argument collection with the same associated index. The
argument can be a Collection object or any other object that supports a makeArray method.

5.3.14.15. isEmpty

Returns . true if the relation is empty. Returns . false otherwise.

5.3.14.16. items

- J@*‘

index

Returns the number of relation items with index index. If you specify no index, this method returns the
total number of items associated with all indexes in the relation. Index equality is determined by using
the == method of index.

301

Relation Class

5.3.14.17. makeArray

Returns a single-dimensional Array containing the index objects. The collection items appear in the
array in an unspecified order.

5.3.14.18. put

bb—(put(item 0 index)

Makes the object item a member item of the relation and associates it with index index. If the relation
already contains any items with index index, this method adds a new member item item with the same
index, without removing any existing member items.

5.3.14.19. remove

)»—(remove(index —@—N

Returns and removes from a relation the member item with index index. If the relation contains more
than one item associated with index index, the item returned and removed is unspecified. Returns
.hil if no item has index index. Index equality is determined by using the == method of index.

5.3.14.20. removeAll

>>—(removeAll(index —@—N

Returns and removes from a relation all member items with index index. All removed items are
returned in an array containing each of the removed items. The order of the returned items is
unspecified. If no items have the specified index, an empty array is returned. Index equality is
determined by using the == method of index.

5.3.14.21. removeltem

index

bb—(removeltem(item @—N

If index is not specified, returns and removes from a relation the member item item. If the relation
contains item associated with more than one index, the item returned and removed is unspecified.

If index is specified, returns and removes the member item jtem associated with index index. If item is
the only member with index, then the index is also removed from the Relation.

Returns .nil if item is not a member item (associated with index index, if specified).

5.3.14.22. subset

bb—(subset(argument)

302

Relation Class

Returns . true if all items in the receiver Relation are also contained in the argument collection with
the same associated index; returns . false otherwise. The argument can be a Collection object or
any other object that supports a makeAr ray method.

5.3.14.23. supplier

»—{ supplier()‘ @—N

index

Returns a Supplier object for the relation. The supplier allows you to iterate over all index/item pairs in
the relation at the time the supplier was created. The supplier enumerates the items in an unspecified
order. If you specify index, the supplier contains all of the items with the specified index.

5.3.14.24. union

bb—(union()— argument)

Returns a new collection containing all items from the receiver collection and the argument collection.
The argument can be a Collection object or any other object that supports a makeArray method.

5.3.14.25. uniquelndexes

Returns an array of all indexes contained in the Relation, with no duplicates.

5.3.14.26. xor

bb—(xor(argument)

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection. All index-item pairs that appear in both collections are
removed. The argument can be a Collection object or any other object that supports a makeArray
method.

5.3.14.27. Examples

Example 5.204. Relation class — examples

/* Use a relation to express parent-child relationships */
family = .relation~new

family["Henry"] = "Peter" /* Peter is Henry's child */
family["Peter"] = "Bridget" /* Bridget is Peter's child */
family["Henry"] = "Jane" /* Jane is Henry's child */

/* Show all children of Henry recorded in the family relation */
henrys_kids = family~allAt("Henry")

Say "Here are all the listed children of Henry:"

Do kid Over henrys_kids

303

Say " "kid
End

/* Show all parents of Bridget recorded in the family relation */
bridgets_parents = family~allIndex("Bridget")
Say "Here are all the listed parents of Bridget:"
Do parent Over bridgets_parents
Say " "parent
End

/* Display all the grandparent relationships we know about. */

checked_for_grandkids = .set~new /* Records those we have checked
Do grandparent Over family /* Iterate for each index in family
If checked_for_grandkids~hasIndex(grandparent)
Then Iterate /* Already checked this one
kids = family~allat(grandparent) /* Current grandparent's children
Do kid Over kids /* Iterate for each item in kids
grandkids = family~allAt(kid) /* Current kid's children
Do grandkid Over grandkids /* Iterate for each item in grandkids
Say grandparent "has a grandchild named" grandkid"."
End
End
checked_for_grandkids~put(grandparent) /* Add to already-checked set
End

5.3.15. Set Class

A Set is a collection containing member items where the index is the same as the item (similar to a
Bag collection). Any object can be placed in a Set. There can be only one occurrence of any object in

a Set (unlike a Bag collection). Iltem equality is determined by using the == method.

Table 5.25. Set Class

*/
*/

*/
*/
*/
*/
*/

*/

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ SetCollection (Mixin Class)

Methods inherited from the SetCollection class
(no class or instance methods)

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection Xxor

difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
NEW? of (Class Method)

makeArray
putAll

304

Set Class

Set
CHG new (Class Method)
of (Class Method)
[hasltem putAll
[]= index remove
alllndexes intersection removeltem
allltems ISEmpty subset
at items supplier
empty makeArray union
hasIndex put xor

5.3.15.1. of (Class Method)

Returns a newly created set containing the specified item objects.

5.3.15.2. *CHG* new (Class Method)

new()

size

Returns an empty Set object.

If you specify size, a hint how large the new Set object is expected to grow, this is used to optimize the
initial allocation.

size must be a non-negative whole number.

5.3.15.3. []

[index 1

Returns the item associated with index. This method is the same as the at method.

5.3.15.4. []=

»—@ 1 = item <

index

Adds an item to the Set. If specified, index must be the same object as item.

This method is the same as the put method.

5.3.15.5. allindexes

305

Set Class

allIndexes

Returns an array of all indexes contained in the set.

i

5.3.15.6. allitems

Returns an array of all items contained in the set.

5.3.15.7. at

index)

Returns the item associated with index index. Returns .nil if the Set has no item associated with
index.

5.3.15.8. empty

Returns the receiving Set with all items removed.

5.3.15.9. hasindex

bb—(hasIndex()— index)

Returns . true if the Relation contains any item associated with index index, or . false.

5.3.15.10. hasltem

bb—(hasItem()— value)

Returns . true if the Relation contains the specified item at any index location. Returns . false
otherwise.

5.3.15.11. index

bb—(index(item —@—N

Returns the index of the specified item within the set. If the target item appears at more than one
index, the first located index will be returned. Returns . nil if the set does not contain the specified
item. Iltem equality is determined by using the == method of item.

5.3.15.12. intersection

»—(intersection(argument)

306

Set Class

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be a Collection object or any other object that supports a makeArray method. The argument
must also allow all of the index values in the receiver collection.

5.3.15.13. isEmpty

isEmpty

Returns . true if the set is empty. Returns . false otherwise.

!

5.3.15.14. items

i

Returns the number of items in the collection.

5.3.15.15. makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order.

5.3.15.16. put

index

vy W s O
-

Adds item to the Set. If there is an equivalent item in the Set, the exiting item will be replaced by the
new instance. ltem equality is determined by using the == method of item. If index is specified, it must
be the same as item.

5.3.15.17. putAll

bb—(putAli()— collection)

Returns the receiving Set with all items in collection added to it. The collection argument can be any
object that supports a supplier method. Items from collection are added using the item values
returned by the supplier. If duplicate items exist in collection, the last item provided by the supplier will
overwrite previous items with the same index.

5.3.15.18. remove

bb—(remove(index)

Returns and removes the set item with index index. Returns .nil if no item has index index.

307

Stem Class

5.3.15.19. removeltem

bb—(removeltem()— item)

Removes an item from the set. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.15.20. subset

bb—(subset()— argument)

Returns . true if all items in the receiver collection are also contained in the argument collection;
returns . false otherwise. The argument can be a Collection object or any other object that
supports a makeAr ray method. The argument must also allow all of the index values in the receiver
collection.

5.3.15.21. supplier

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

5.3.15.22. union

PP—(union(argument —@—N

Returns a new Set contains all the items from the receiver collection and selected items from the
argument collection. This method includes an item from argument in the new collection only if there is
no item already in the in the receiver collection and the method has not already included a matching
item. The order in which this method selects items in argument is unspecified. The argument can be a
Collection object or any other object that supports a makeArray method. The argument must also
allow all of the index values in the receiver collection.

5.3.15.23. xor

bb—(xor()— argument)

Returns a new Set that contains all items from the receiver collection and the argument collection; all
items that appear in both collections are removed. The argument can be a Collection object or any
other object that supports a makeArray method. The argument must also allow all of the index values
in the receiver collection.

5.3.16. Stem Class

A Stem object is a collection with unique indexes that are character strings.

308

Stem Class

Table 5.26. Stem Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class

NEW? of (Class Method)
makeArray
putAll

Stem
new (Class Method)
[] hasltem removeltem
[]= index request
alllndexes ISEmpty supplier
allltems items toDirectory
at makeArray unknown
empty put
hasindex remove

Stems are automatically created whenever a Rexx stem variable or Rexx compound variable is used.
For example:

Example 5.205. Stem class — examples

a.l1 =2

creates a new stem collection with the name A. and assigns it to the Rexx variable A.; it also assigns
the value 2 to entry 1 in the collection.

The value of an uninitialized stem index is the stem object NAME concatenated with the derived stem
index.

Example 5.206. Stem class — examples

say a.[1,2] -- implicitly creates stem object with name "A."
-- displays "A.1.2"

a = .stem~new("B.")

309

Stem Class

say a[1,2] -- displays "B.1.2"

In addition to the items explicitly assigned to the collection indexes, a value may be assigned to all
possible stem indexes. The []= method (with no index argument) will assign the target value to all
possible stem indexes. Following assignment, a reference to any index will return the new value until
another value is assigned or the index is dropped.

The [] method (with no index specified) will retrieve any globally assigned value. By default, this
returns the stem NAME value.

In addition to the methods defined in the following, the Stem class removes the methods =, ==, \=,
\==, <>, and >< using the DEFINE method.

5.3.16.1. new (Class Method)

clm)

name

Returns a new stem object. If you specify a string name, this value is used to create the derived name
of compound variables. The default stem name is a null string (™).

5.3.16.2. []

O -

Returns the item associated with the specified indexes. Each index is an expression; use commas
to separate the expressions. The Stem object concatenates the index string values, separating them
with a period (.), to create a derived index. A null string (") is used for any omitted expressions.

The resulting string is the index of the target stem item. If the stem has no item associated with the
specified final index, the stem default value is returned. If a default value has not been set, the stem
name concatenated with the final index string is returned.

If you do not specify index, the stem default value is returned. If no default value has been assigned,
the stem name is returned.

@roe

You cannot use the [] method in a DROP or PROCEDURE instruction.

5.3.16.3. []=

DP—(E) i j 1 = value >«

310

Stem Class

Makes value a member item of the stem collection and associates it with the specified index. The final

index is derived by concatenation of each of the index arguments together with a "." separator. If you
specify no index arguments, a new default stem value is assigned. Assigning a new default value will
re-initialize the stem and remove all existing assigned indexes.

5.3.16.4. allindexes

allIndexes

Returns an array of all the stem tail names used in the stem.

i

5.3.16.5. allitems

Returns an array of all items contained in the stem.

5.3.16.6. at

ai -0

Returns the item associated with the specified tail. .nil is returned if the stem has no item associated
with the specified tail.

5.3.16.7. empty

Returns the receiving Stem object with all items removed.

5.3.16.8. hasindex

bb—(hasIndex(tail)

Returns . true if the Stem contains any item associated with a stem tail tail, or . false.

5.3.16.9. hasltem

bb—(hasItem()— value)

Returns . true if the Stem contains the value at any tail position or otherwise returns . false. ltem
equality is determined by using the == method of item.

5.3.16.10. index

»—(index(item —@—N

311

Stem Class

Returns the index of the specified item within the stem. Returns .nil if the stem does not contain the
specified item. Item equality is determined by using the == method of item.

5.3.16.11. isEmpty

isEmpty

Returns . true if the stem is empty. Returns . false otherwise.

!

5.3.16.12. items

i

Returns the number of items in the collection.

5.3.16.13. makeArray

Returns an array of all stem indexes that currently have an associated value. The items appear in the
array in an unspecified order.

5.3.16.14. put

bb—(put()— item o tail)

Replaces any existing item associated with the specified tail with the new item item.

5.3.16.15. remove

»—(remove(tail —@—N

Returns and removes from the stem the member item with index tail. Returns .nil if no item has
index tail.

5.3.16.16. removeltem

bb—(removeltem()— item)

Removes an item from the stem. If the target item exists at more than one tail, the first located item is
removed. Item equality is determined by using the == method of item. The return value is the removed
item.

5.3.16.17. request

»—(request(classid

312

NEW? StringTable Class

This method requests conversion to a specific class. All conversion requests except Array are
forwarded to the stem's current stem default value. Returns the result of the Stem class makeArray
method, if the requested class is Array. For all other classes, request forwards the message to the
stem object's default value.

5.3.16.18. supplier

Returns a Supplier object for the stem. The supplier allows you to iterate though the index/item pairs
contained in the Stem object at the time the supplier was created. The supplier iterates the items in an
unspecified order.

5.3.16.19. toDirectory

toDirectory

Returns a Directory object for the stem. The directory will contain a name/value pair for each stem
index with a directly assigned value.

5.3.16.20. unknown

bb—(unknown(messagename P messageargs)

Reissues or forwards all unknown messages to the stem's current default value. For additional
information, see Section 4.2.6, “Defining an UNKNOWN Method”.

5.3.17. *NEW* StringTable Class

A StringTable is a MapCollection using unique character string indexes. The items of a StringTable
can be any valid Rexx object.

See also Directory Class, a MapCollection similar to StringTable, but with additional methods
setMethod and unsetMethod.

Table 5.27. StringTable Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasindex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

313

NEW? StringTable Class

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class

NEW? of (Class Method)
makeArray
putAll

StringTable
NEW new (Class Method)
NEW [] *NEW* hasEntry *NEW* put
NEW []= *NEW?* hasindex *NEW* remove
NEW allindexes *NEW* hasltem *NEW* removeEntry
NEW allltems *NEW?* index *NEW* removeltem
NEW at *NEW* isEmpty *NEW* setEntry
NEW empty *NEW* items *NEW* supplier
NEW entry *NEW* makeArray *NEW* unknown

In addition to the standard put, []=, at, and [] methods defined for Collections, StringTable provides
access to items using methods. For example:

sTable = .StringTable~new
sTable~name = "Mike" -- same as sTable~put("Mike", "NAME")
say sTable~name -- same as say sTable["NAME"]

Note that StringTable does not provide methods setMethod and unsetMethod as the Directory
class does.

5.3.17.1. *NEW* new (Class Method)

new()

size

Returns an empty StringTable object.

If you specify size, a hint how large the new StringTable object is expected to grow, this is used to
optimize the initial allocation.

size must be a non-negative whole number.

5.3.17.2. *NEW* []

[name —@—N

Returns the item corresponding to name. This method is the same as the *NEW* at method.

5.3.17.3. *NEW* []=

[name] = item

314

NEW? StringTable Class

Adds or replaces the entry at index name. This method is the same as the *NEW* put method.

5.3.17.4. *NEW* allindexes

Returns an array of all the StringTable indexes.

5.3.17.5. *NEW?* allltems

Returns an array of all items contained in the StringTable.

5.3.17.6. *NEW* at

name)

Returns the item associated with index name. If the StringTable has no item associated with index
name, .nil is returned.

Example 5.207. StringTable class — at method

say .environment~at("OBJECT") /* Produces: "The Object class" */

5.3.17.7. *\NEW* empty

Returns the receiving StringTable with all items removed.

5.3.17.8. *NEW* entry

»—(entry(name —@—N

Returns the StringTable entry with index name (translated to uppercase). If there is no entry for name,
.nilis returned.

5.3.17.9. *NEW* hasEntry

bb—(hasEntry()— name)

Returns . true if the StringTable has an entry for index name (translated to uppercase), or . false.

5.3.17.10. *NEW* hasIindex

315

NEW? StringTable Class

bb—(hasIndex()— name)

Returns . true if the StringTable contains any item associated with index name, or . false.

5.3.17.11. *NEW* hasltem

bb—(hasItem()— item)

Returns . true if the StringTable contains the item at any index position or otherwise returns . false.
Item equality is determined by using the == method of item.

5.3.17.12. *NEW* index

bb—(index(item —@—N

Returns the index of the specified item within the StringTable. If the target item appears at more than
one index, the first located index will be returned. If the StringTable does not contain the specified
item, .nil is returned. Item equality is determined by using the == method of item.

5.3.17.13. *NEW* isEmpty

Returns . true if the StringTable is empty. Returns . false otherwise.

5.3.17.14. *NEW?* items

i

Returns the number of items in the collection.

5.3.17.15. *NEW* makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order. (The program
should not rely on any order.)

5.3.17.16. *NEW* put

bb—(put()— item o name)

Makes the object item a member item of the collection and associates it with index name. The new
item replaces any existing item or method associated with index name.

5.3.17.17. *NEW* remove

316

NEW? StringTable Class

bb—(remove()— name)

Removes and returns the member item with index name from the StringTable. If there is no item with
index name, .nil is returned.

5.3.17.18. *NEW* removeEntry

»—(removeEntry(name —@—N

Removes and returns the member item with index name (translated to uppercase) from the
StringTable. If there is no item with index name, .nil is returned.

See also

» method *NEW* setEntry,

» method *NEW* hasEntry, and
« method *NEW?* entry.

5.3.17.19. *NEW* removeltem

bb—(removeltem(item

Removes an item from the StringTable. If the target item exists at more than one index, the first
located item is removed. The return value is the removed item. Iltem equality is determined by using
the == method of item.

5.3.17.20. *NEW?* setEntry

entry

bb—(setEntry(name < @—N

Sets the StringTable entry with index name (translated to uppercase) to the object entry, replacing any
existing entry or method for name. If you omit entry, this method removes any entry or method with
this name.

5.3.17.21. *NEW* supplier

Returns a Supplier object for the collection. The supplier allows you to iterate over the index/item
pairs in the StringTable at the time the supplier was created. The supplier iterates the items in an
unspecified order.

5.3.17.22. *NEW* unknown

bb—(unknown()— messagename ’ messageargs)

Runs either the *NEW* entry or *NEW* setEntry method, depending on whether messagename ends
with an equal sign.

317

Table Class

If messagename does not end with an equal sign, this method runs the entry method, passing
messagename as its argument. The messageargs argument is ignored. The entry method is the
return result.

If messagename does end with an equal sign, this method runs the setEntry method, passing the
first part of messagename (up to, but not including, the final equal sign) as its first argument, and the
first item in the array messageargs as its second argument. In this case, unknown returns no result.

5.3.18. Table Class

A Table is a collection with indexes that can be any object. In a Table, each item is associated with a
single index, and there can be only one item for each index (unlike a Relation, which can contain more
than one item with the same index). Index equality is determined by using the == method.

Table 5.28. Table Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

+ MapCollection (Mixin Class)

Methods inherited from the MapCollection class
NEW? of (Class Method)

makeArray
putAll
Table
NEW new (Class Method)
[hasindex put
[I= hasltem remove
alllndexes index removeltem
allltems ISEmpty supplier
at items
empty makeArray

5.3.18.1. *NEW* new (Class Method)

new()

size

318

Table Class

Returns an empty Table object.

If you specify size, a hint how large the new Table object is expected to grow, this is used to optimize
the initial allocation.

size must be a non-negative whole number.

5.3.18.2. []

[index —@—N

Returns the item associated with index. This method is the same as the at method.

5.3.18.3. []=

[index 1 = item p»<d

Adds item to the table at index index. This method is the same as the put method.

5.3.18.4. allindexes

allIndexes

j

Returns an array of all indexes contained in the table.

5.3.18.5. allitems

Returns an array of all items contained in the table.

5.3.18.6. at

at(index)

Returns the item associated with index index. Returns .nil if the Table has no item associated with
index.

5.3.18.7. empty

Returns the receiving Table with all items removed.

5.3.18.8. hasindex

»—(hasIndex(index)

319

Table Class

Returns . true if the Table contains any item associated with index index, or . false.

5.3.18.9. hasltem

»—(hasItem(value)

Returns . true if the Table contains the value at any index position or otherwise returns . false. ltem
equality is determined by using the == method of item.

5.3.18.10. index

bb—(index()— item)

Returns the index of the specified item within the table. If the target item appears at more than one
index, the first located index will be returned. Returns . nil if the table does not contain the specified
item. Iltem equality is determined by using the == method of item.

5.3.18.11. isEmpty

isEmpty

Returns . true if the table is empty. Returns . false otherwise.

!

5.3.18.12. items

i

Returns the number of items in the collection.

5.3.18.13. makeArray

Returns a single-dimensional Array containing the index objects. The array indexes range from 1 to
the number of items. The collection items appear in the array in an unspecified order.

5.3.18.14. put

bb—(put()— item o index)

Makes the object item a member item of the collection and associates it with index index. The new
item replaces any existing items associated with index index.

5.3.18.15. remove

»—(remove(index —@—N

320

Sorting Ordered Collections

Returns and removes the table item with index index. Returns .nil if no item has index index.

5.3.18.16. removeltem

bb—(removeltem(item)

Removes an item from the table. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item. Item equality is determined by using the == method
of item.

5.3.18.17. supplier

Returns a Supplier object for the collection. The supplier allows you iterate over the index/item pairs
contained in the table at the time the supplier was created. The supplier iterates over the items in an
unspecified order.

5.3.19. Sorting Ordered Collections

Any ordered collection, such as non-sparse Arrays or Lists can have its elements placed into sorted
order using the sort method. The simplest sort is sorting an array of strings.

Example 5.208. Array class — sorting

myArray = .array~of("Zoe", "Fred", "Xavier", "Andy")
myArray~sort

do name over myArray
say name
end

will display the names in the order "Andy", "Fred", "Xavier", "Zoe".

The sort method orders the strings by using the compareTo method of the String class. The
compareTo method knows how to compare one string to another, and returns the values -1 (less
than), O (equal), or 1 (greater than) to indicate the relative ordering of the two strings.

5.3.19.1. Sorting non-strings

Sorting is not limited to string values. Any object that inherits the Comparable MIXIN class and
implements a compareTo method can be sorted. The DateTime class and TimeSpan class are
examples of built-in Rexx classes that can be sorted. Any user-created class may also implement a
compareTo method to enable sorting. For example, consider the following simple class:

Example 5.209. Non-string sorting

::class Employee inherit Comparable

;rattribute id
r:attribute name

321

Sorting Ordered Collections

::method init
expose id name
use arg id, name

::method compareTo
expose id
use arg other
return id~compareTo(other~id) -- comparison performed using employee id

::method string
expose name
return "Employee" name

The Employee class implements its sort order using the employee identification number. When the
sort method needs to compare two Employee instances, it will call the compareTo method on one of
the instances, passing the second instance as an argument. The compareTo method tells the sort
method which of the two instances should be first.

Example 5.210. Comparison during sorting

a = .array-~new
a[1] = .Employee~new(654321, "Fred")

a[2] = .Employee~new(123456, "George")
a[3] = .Employee~new(333333, "william")
a~sort

do employee over a
say employee -- sorted order is "George", "wWilliam", "Fred"
end

5.3.19.2. Sorting with more than one order

The String class compareTo method only implements a sort ordering for an ascending sort using

a strict comparison. Frequently it is desirable to override a class-defined sort order or even to

sort items that do not implement a compareTo method. To change the sorting criteria, use the
sortwWith method. The sortWith method takes a single argument, which is a Comparator object
that implements a compare method. The compare method performs comparisons between pairs of
items. Different comparators can be customized for different comparison purposes. For example, the
Rexx language provides a DescendingComparator class that will sort items into descending order:

Example 5.211. Multi-order sorting

1 :CLASS 'DescendingComparator' MIXINCLASS Comparator
: :METHOD compare

use strict arg left, right

return -left~compareTo(right)

The DescendingComparator merely inverts the result returned by the item compareTo method. Our
previous example

Example 5.212. Descending compare sorting

myArray = .array~of("Zoe", "Fred", "Xavier", "Andy")
myArray~sortWith(.DescendingComparator~new)

322

Sorting Ordered Collections

do name over myArray
say name
end

now displays in the order "Zoe", "Xavier", "Fred", "Andy".

Custom Comparators are simple to create for any sorting purpose. The only requirement is
implementing a compare method that knows how to compare pairs of items in some particular
manner. For example, to sort our Employee class by name instead of the default employee id, we can
use the following simple comparator class:

Example 5.213. Custom compare sorting

1 :CLASS EmployeeNameSorter MIXINCLASS Comparator
: :METHOD compare
use strict arg left, right
return left~name~compareTo(right~name) -- do the comparison using the names

5.3.19.3. Builtin Comparators

Rexx includes a number of built-in Comparators for common sorting operations.

Compatrator Class
Base comparator. The Comparator class just uses the compareTo method of the first argument to
generate the result. Using sortWith and a Comparator instance is equivalent to using the sort
method and no comparator.

CaselessComparator Class
Like the base comparator, but uses the caselessCompareTo method to determine order. The
String class implements caselessCompareTo, so the CaselessComparator can be used to sort
arrays of strings independent of case.

ColumnComparator Class
The ColumnComparator will sort string items using specific substrings within each string
item. If sorting is performed on multiple column positions, the stableSortwWith method is
recommended to ensure the results of previous sort operations are retained.

CaselessColumnComparator Class
Like the ColumnComparator, but the substring comparisons are done independently of case.

DescendingComparator Class
The reverse of the Comparator class. The DescendingComparator can be used to sort items in
descending order.

CaselessDescendingComparator Class
The reverse of the CaselessComparator class. The CaselessDescendingComparator can be used
to sort items in descending order with comparisons done independently of case.

InvertingComparator Class
The InvertingComparator will invert the result returned by another Comparator instance. This
comparator can be combined with another comparator instance to reverse the sort order.

NumericComparator Class

Performs comparisons of strings using numeric comparison rules. Use the NumericComparator to
sort collections of numbers.

323

Concept of Set Operations

5.3.19.4. Stable and Unstable Sorts

@

The current implementation is using the same stable sort algorithm for both the sort and the
stableSort method of the Array class.

As such, below discussion of the difference between a stable and an unstable sort does not apply
currently.

The default sorting algorithm is an unstable sort. In an unstable sort, items are not guaranteed to
maintain their original positions if they compare equal during the sort. Consider the following simple
example:

Example 5.214. Unstable sort

a = .array~of("Fred", "George", "FRED", "Mike", "fred")
a~sortwith(.caselesscomparator~new)
do name over a
say name
end

This example displays the 3 occurrences of Fred in the order "Fred", "fred", "FRED", even though they
compare equal using a caseless comparison.

The Array class implements a second sort algorithm that is available using the stableSort and
stableSortWith methods. These methods use a Mergesort algorithm, which is less efficient
than the default Quicksort and requires additional memory. The Mergesort is a stable algorithm
that maintains the original relative ordering of equivalent items. Our example above, sorted with
stableSortwith, would display "Fred", "FRED", "fred".

5.3.20. Concept of Set Operations

The following sections describe the concept of set operations to help you work with set operators, in
particular if the receiver collection class differs from the argument collection class.

Rexx provides the following set-operator methods:

« difference

* intersection

* subset

* union

* Xor

These methods are available to instances of the following collection classes:

» The OrderedCollections Array, List, Queue, and CircularQueue

324

Concept of Set Operations

» The MapCollections Directory, Stem, Table, IdentityTable, and Relation

» The SetCollections Set and Bag.
result = receiver~setoperator(argument)

where:

receiver
is the collection object receiving the set-operator message.

setoperator
is the set-operator method used.

argument
is the argument collection supplier supplied to the method. It can be an instance of one of the
Rexx collection classes or any object that implements a makearray method or supplier
method, depending on class of receiver.

The result object is of the same class as the receiver collection object.

5.3.20.1. Principles of Operation

A set operation is performed by iterating over the elements of the receiver collection to compare each
element of the receiver with each element of the argument collection. The element is defined as the
tuple (index, item) (see Section 5.3.20.4, “Determining the Identity of an Item”). Depending on the
set-operator method and the result of the comparison, an element of the receiver collection is, or is
not, included in the resulting collection. A receiver collection that allows for duplicate elements can,
depending on the set-operator method, also accept elements of the argument collection after they
have been coerced to the type of the receiver collection.

The following examples are to help you understand the semantics of set operations. The collections
are represented as a list of elements enclosed in curly brackets. The list elements are separated by a
comma.

5.3.20.2. Set Operations on Collections without Duplicates

Assume that the example sets are A={a, b} and B={b, ¢, d}. Except for subset, equivalent, and
disjoint, the result of a set operation is another set. Using the collection A and B, the different set
operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first set except for those that also appear in
the second set. The system iterates over the elements of the second set and removes them from
the first set one by one.

A DIFFERENCE B = {a}

325

Concept of Set Operations

B DIFFERENCE A = {c,d}

XOR operation

The resulting collection contains all elements of the first set that are not in the second set and all
elements of the second set that are not in the first set:

A XOR B = {a,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both sets:

A INTERSECTION B = {b}

SUBSET operation

Returns . true if the first set contains only elements that also appear in the second set, otherwise
it returns . false:

A SUBSET B
B SUBSET A

.false
.false

EQUIVALENT operation

Returns . true if the first set contains only elements that also appear in the second set and the
two sets have the same number of elements, otherwise it returns . false:

A EQUIVALENT B
B EQUIVALENT A

.false
.false

DISJOINT operation
Returns . true if there are no elements that appear in both sets, otherwise it returns . false:

A DISJOINT B
B DISJOINT A

.false
.false

5.3.20.3. Set-Like Operations on Collections with Duplicates

Assume that the example bags are A={a, b, b} and B={b, b, c, ¢, d}. Except for subset,
equivalent, and disjoint, the result of any set-like operation is a collection, in this case a bag.
Using the collections A and B, the different set-like operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first bag except for those that also appear in
the second bag. The system iterates over the elements of the second bag and removes them from
the first bag one by one.

A DIFFERENCE B
B DIFFERENCE A

{a}
{c,c,d}

326

Concept of Set Operations

XOR operation
The resulting collection contains all elements of the first bag that are not in the second bag and all
elements of the second bag that are not in the second bag:

A XOR B = {a,c,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both bags:

A INTERSECTION B = {b, b}

SUBSET operation
Returns . true if the first set contains only elements that also appear in the second set, otherwise
it returns . false:

A SUBSET B
B SUBSET A

.false
.false

EQUIVALENT operation
Returns . true if the first set contains only elements that also appear in the second set and the
two sets have the same number of elements, otherwise it returns . false:

.false
.false

A EQUIVALENT B
B EQUIVALENT A

DISJOINT operation
Returns . true if there are no elements that appear in both sets, otherwise it returns . false:

A DISJOINT B
B DISJOINT A

.false
.false

5.3.20.4. Determining the Identity of an Item

Set operations require the definition of the identity of an element to determine whether a certain
element exists in the receiver collection. The element of a collection is conceived as the tuple (index,
item). The index is used as the identification tag associated with the item. Depending on the collection
class, the index is an instance of a particular class, for example, the string class for a directory
element, an integer for an array, or any arbitrary class for a relation. The Array class is an exception
because it can be multi-dimensional having more than one index. However, as a collection, it is
conceptionally linearized by the set operator.

For collection classes that require unique indexes, namely the Set, IdentityTable, Table, Directory, and
Stem, an item is identified by its index. For collections of collection classes that allow several items

to have the same index, namely the Relation class, an item is identified by both its index and its item.
For the Bag and the Set subclasses, where several items can have the same index but index and item
must be identical, the item is identified by its index. For Array, List, and Queue classes, the index is
derived from an object's position within the collection's order. Iltems are identified using only item.

When collections with different index semantics are used in set operations, the argument collection is
coerced into a collection of the same type as the receiver, and the operation is then performed using
the converted collection. The coercion process differs based on the types of both the receiver and
the argument collection. According to this concept, an item of a collection is identified for the different
receiver categories as follows:

327

Utility Classes

Map Collection

If argument is a MapCollection, then index values are used to determine membership, and items
are inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may
contain duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection.

Ordered Collection and Set Collection

If argument is an instance of Collection, the matching set is obtained from the al1lItems method.
For any other class of object, the makearray method is used. The hasItem method is used to
perform the matching operations between the two collections.

Relation

If argument is a MapCollection, then index values are used to determine membership, and items
are inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may
contain duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection. All tests for result membership are made using
both the index and item values.

5.4. Utility Classes

This section describes

MutableBuffer Class,

File Class,

Date-, time-, and timing-related classes DateTime, TimeSpan, Alarm, Ticker, and the notification
classes AlarmNotification and MessageNotification,

the synchronization classes EventSempahore and MutexSempahore,

Comparable class and Orderable class,

eight Comparator classes used for sorting (Caseless)Comparator, (Caseless)ColumnComparator,
(Caseless)DescendingComparator, InvertingComparator, and NumericComparator, and

other miscellaneous classes Buffer, Monitor, Pointer, RegularExpression, RexxContext,
RexxInfo, RexxQueue, StackFrame, StreamSupplier, Supplier, Validate, VariableReference, and
WeakReference.

5.4.1. Alarm Class

An Alarm object provides timing and notification capability by sending a notification message to a
notification target at the trigger time.

An Alarm can be cancelled before it triggers. If cancelled, an Alarm will also send a notification
message to the notification target.

Table 5.29. Alarm Class

Object

328

Alarm Class

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Alarm

NEW attachment *NEW?* canceled/cancelled *NEW* scheduledTime
cancel *CHG?* init *NEW* triggered

5.4.1.1. *NEW* attachment

Returns the object that has been attached to the Alarm instance upon creation. Returns .nil if no
object is attached.

See also method *CHG* init.
Example 5.215. Alarm class — attachment method

oneSecond = .Alarm~new(1, .Target~new, "a second has passed")
call SysSleep 1.5 -- give Alarm time to trigger
oneSecond~cancel

::class Target inherit AlarmNotification

::method triggered -- called when Alarm triggers
use arg alarm
say alarm~attachment -- displays "a second has passed"

5.4.1.2. cancel

Cancels the pending Alarm request represented by the receiver. Takes no action if the specified time
has already been reached.

5.4.1.3. *NEW* canceled/cancelled

l canceled '

cancelled

Returns . true if the alarm was cancelled before triggering. Returns . false otherwise.
See also method cancel.
Example 5.216. Alarm class — canceled/cancelled method

alarm = .Alarm~new(1 , .message~new(.stdout, "SAY", "I", "Alarm went off"))
call SysSleep 0.5
alarm~cancel

329

Alarm Class

say "Alarm" alarm~cancelled~?("cancelled", "not cancelled") -- Alarm cancelled

5.4.1.4. *CHG* init

bb—(init(atime o target < @—N

attachment

Sets up an Alarm for a future time atime. At this time, the Alarm sends message triggered to the
specified notification target.

The target must be an object that implements the AlarmNotification interface. It must inherit from

or be a subclass of the AlarmNotification class, or a Message object (as the Message class
inherits from AlarmNotification). If target is a Message object, the *NEW* triggered method of
the Message class will respond by simply sending the specified message.

The atime can be a DateTime, a TimeSpan, or a String object. If it is

- aDateTime object, it specifies the time when the alarm will be triggered. The specified time must
be in the future.

* aTimeSpan, the Alarm will be set to the current time plus the specified time span. The time span
must not be a negative interval.

* a String, you can specify this as a date and time (hh:mm: ss) or as a number of seconds starting
at the present time. If you use the date and time format, you can specify a date in the default format
(dd Mmm yyyy) after the time with a single blank separating the time and date. Leading and trailing
whitespace characters are not allowed in the atime. If you do not specify a date, the Alarm uses the
first future occurrence of the specified time.

If specified, attachment can be an arbitrary object that will be attached to the alarm instance, and can
later be retrieved in the event handler. See method *NEW?* attachment.

You can use the cancel method to cancel a pending alarm. If cancelled, the alarm sends message
cancel to the specified notification target.

The following code sets up an alarm at 5:10 p.m. on December 15, 2017. (Assume today's date/time is
prior to December 15, 2017.)

Example 5.217. Alarm class

/* Alarm Examples */

PersonalMessage = .MyMessageClass~new('"Call the Bank")
msg = .Message~new(PersonalMessage, "RemindMe")

time = .DateTime~fromIsoDate('"2017-12-15T17:10:00.000000")

a = .Alarm~new(time, msg)
exit

::class MyMessageClass public
::method init

expose inmsg

use arg inmsg

::method RemindMe
expose inmsg
say "It is now" time("C")". Please" inmsg

330

NEW? AlarmNotification Class

/* On the specified data and time, displays the following message: */
/* "It is now 5:10pm. Please Call the Bank" */

For the following example, the user uses the same code as in the preceding example to define msg,
a message object to run at the specified time. The following code sets up an alarm to run the msg
message object in 30 seconds from the current time:

Example 5.218. Alarm class

a = .Alarm~new(30, msg)

5.4.1.5. *NEW* scheduledTime

scheduledTime

Returns a DateTime object representing the time for which the alarm has initially been scheduled.

5.4.1.6. *NEW* triggered

Returns . true if the alarm has triggered. Returns . false if the alarm has been cancelled or hasn't
yet triggered.

5.4.2. *NEW* AlarmNotification Class

The AlarmNotification class implements the notification interface for the Alarm and the Ticker
class.

For any Alarm or Ticker object, notifications of alarm triggering and alarm cancellation are sent to the
notification target specified when creating the Alarm or Ticker instance. The notification target must
implement this alarm notification interface. Upon alarm triggering a triggered message is sent to the
notification target, and upon alarm cancellation a cancel message is sent to the notification target.

This class is defined as a MIXIN class.

Table 5.30. AlarmNotification Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

AlarmNotification (Mixin Class)

NEW cancel
NEW? triggered (Abstract method)

5.4.2.1. *NEW?* cancel

»—(cancel(source)

331

Buffer Class

Whenever an Alarm or Ticker is cancelled, this method of the alarm notification target will be called.
The Alarm or Ticker object that was cancelled will be provided as argument source.

It is defined as a no-op and doesn't necessarily have to be implemented by an inheriting class.

5.4.2.2. *NEW* triggered (Abstract method)

bb—(triggered()— source)

Whenever an Alarm or Ticker triggers, this method of the alarm notification target will be called. The
Alarm or Ticker object which triggered will be provided as argument source.

It is an abstract method and must be implemented by an inheriting class.

For an example see Alarm class attachment method example.

5.4.3. Buffer Class

A Buffer instance is a Rexx interpreter managed block of storage. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The new (Class Method) method will raise an error if invoked.

Table 5.31. Buffer Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Buffer

new (Class Method)

5.4.3.1. new (Class Method)

Creating Buffer object instances directly from Rexx code is not supported. Method new will raise an
error if invoked.

5.4.4. Comparable Class

This class is defined as a MIXIN class.

Table 5.32. Comparable Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Comparable (Mixin Class)

332

Comparator Classes

CHG compareTo

5.4.4.1. *CHG* compareTo

This method compares the receiving object to the object supplied in the other argument.

This is a default implementation which compares two items based on their identityHash.

>>—(compareTo(other)

This method returns -1 if the other is larger than the receiving object, 0 if the two objects are equal,
and 1 if other is smaller than the receiving object.

@

Classes inheriting from Comparable (like builtin classes File, DateTime, or TimeSpan) are
strongly encouraged to forward to this default implementation for comparison cases not covered
by their class-specific compareTo implementation.

5.4.5. Comparator Classes

This section describes eight Comparator classes used for sorting, (Caseless)Comparator,
(Caseless)ColumnComparator, (Caseless)DescendingComparator, InvertingComparator, and
NumericComparator.

5.4.5.1. Comparator Class

The Comparator class is the base class for implementing Comparator objects that can be used with
the sortWith or stableSortWith methods. The compare method implements some form of comparison
that determines the relative ordering of two objects. Many Comparator implementations are specific
to particular object types.

It is defined as a MIXIN class.

Table 5.33. Comparator Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Comparator (Mixin Class)

compare

5.4.5.1.1. compare

>>—(compare()— first o second)

Returns -1 if second is larger than first, © if the two objects are equal, and 1 if second is smaller than
first.

333

Comparator Classes

The default Comparator compare method assumes that first is an object that implements the
Comparable compareTo method. Subclasses may override this to implement more specific
comparisons.

Example 5.219. Comparator class

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortwith(.Comparator~new) -- Strawberries, angel's kiss, cherries

5.4.5.2. CaselessComparator Class

The CaselessComparator class performs caseless orderings of string objects.
It is defined as a MIXIN class.

Table 5.34. CaselessComparator Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

CaselessComparator (Mixin Class)

compare

5.4.5.2.1. compare

»—(compare(first ’ second —@—N

Returns -1 if second is larger than first, © if the two objects are equal, and 1 if second is smaller than
first.

The two strings are compared using a caseless comparison.

Example 5.220. CaselessComparator class

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortWith(.CaselessComparator~new) -- angel's kiss, cherries, Strawberries

5.4.5.3. ColumnComparator Class

The ColumnComparator class performs orderings based on specific substrings of string objects.
It is defined as a MIXIN class.

Table 5.35. ColumnComparator Class

Object

334

Comparator Classes

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

ColumnComparator (Mixin Class)

compare
init

5.4.5.3.1. compare

bb—(compare(first P second)

Returns -1 if second is larger than first, © if the two objects are equal, and 1 if second is smaller than
first.

Only the defined columns of the strings are compared.

5.4.5.3.2. init

>>—(init(start v length

Initializes a ColumnComparator to sort strings starting at position start for length characters.

Example 5.221. ColumnComparator class

wine = .Array~of("1. Strawberries", "2. cherries", "3. angel's kiss")
wine~sortWith(.ColumnComparator~new(3, 100))
-- 1. Strawberries, 3. angel's kiss, 2. cherries

5.4.5.4. CaselessColumnComparator Class

The CaselessColumnComparator class performs caseless orderings of specific substrings of string
objects.

It is defined as a MIXIN class.

Table 5.36. CaselessColumnComparator Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

CaselessColumnComparator (Mixin Class)

335

Comparator Classes

compare
init

5.4.5.4.1. compare

bb—(compare()— first ’ second)

Returns -1 if second is larger than first, 0 if the two objects are equal, and 1 if second is smaller than
first.

Only the defined columns of the strings are compared, using a caseless comparison.

5.4.5.4.2. init

bb—(init()— start o length)

Initializes a CaselessColumnComparator to sort strings starting at position start for length
characters.

Example 5.222. CaselessColumnComparator class

wine = .Array~of("1. Strawberries", "2. cherries", "3. angel's kiss")
wine~sortWith(.CaselessColumnComparator~new(3, 100))
-- 3. angel's kiss, 2. cherries, 1. Strawberries

5.4.5.5. DescendingComparator Class

The DescendingComparator class performs string sort orderings in descending order. This is the
inverse of a Comparator sort order.

This class is defined as a MIXIN class.

Table 5.37. DescendingComparator Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

DescendingComparator (Mixin Class)

compare

5.4.5.5.1. compare

bb—(compare(first ’ second —@—N

336

Comparator Classes

Returns 1 if second is larger than first, 0 if the two objects are equal, and -1 if second is smaller than
first, resulting in a descending sort sequence.

The DescendingComparator assumes the first object implements the Comparable compareTo
method.

Example 5.223. DescendingComparator class

wine = .Array~of("Strawberries", "cherries", "angel's kiss")
wine~sortWith(.DescendingComparator~new) -- cherries, angel's kiss, Strawberries

5.4.5.6. CaselessDescendingComparator Class

The CaselessDescendingComparator class performs caseless string sort orderings in descending
order. This is the inverse of a CaselessComparator sort order.

This class is defined as a MIXIN class.

Table 5.38. CaselessDescendingComparator Class
Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

CaselessDescendingComparator (Mixin Class)

compare

5.4.5.6.1. compare

bb—(compare()— first o second)

Returns 1 if second is larger than first, 0 if the two objects are equal, and -1 if second is smaller than
first, resulting in a descending sort sequence.

The two strings are compared using a caseless comparison.

Example 5.224. CaselessDescendingComparator class
wine = .Array~of("Strawberries", "cherries", "angel's kiss")

wine~sortWith(.CaselessDescendingComparator~new) -- Strawberries, cherries, angel's kiss

5.4.5.7. InvertingComparator Class

The InvertingComparator class inverts the comparison results of another Comparator object to
reverse the resulting sort order.

This class is defined as a MIXIN class.

337

Comparator Classes

Table 5.39. InvertingComparator Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

InvertingComparator (Mixin Class)

compare
init

5.4.5.7.1. compare

bb—(compare()— first o second)

The InvertingComparator will invert the ordering returned by the comparator it was initialized with.

5.4.5.7.2. init

bb—(init(comparator)

Initializes an InvertingComparator to sort strings using an inversion of the result from the
comparator compare method.

Example 5.225. InvertingComparator class

wine = .Array~of("1. Strawberries", "2. cherries", "3. angel's kiss")
wine~sortWith(.InvertingComparator~new(.LengthComparator~new))
-- 3. angel's kiss, 1. Strawberries, 2. cherries

-- compare 1. by length, 2. by standard comparison
::class LengthComparator mixinclass Comparator public
::method compare

use strict arg left, right

lengthDelta = left~length - right~length
if lengthDelta = O then
return left~compareTo(right)

else
return lengthDelta~sign

5.4.5.8. NumericComparator Class

The NumericComparator class compares strings using numeric comparison rules rather than string
comparison rules.

It is defined as a MIXIN class.

Table 5.40. NumericComparator Class

Object

338

DateTime Class

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparator (Mixin Class)

Methods inherited from the Comparator class
compare

NumericComparator (Mixin Class)

compare
init

5.4.5.8.1. compare

bb—(compare(first) second)

Returns -1 if second is larger than first, © if the two objects are equal, and 1 if second is smaller than
first.

Comparisons are performed using numeric comparison rules, so the collection strings must be valid
numeric values.

5.4.5.8.2. init
digits

Initializes a NumericComparator to sort strings using humeric comparison rules using the
Comparator compare method. If digits is specified, the comparisons will be performed using the
provided precision. The default precision is 9.

Example 5.226. NumericComparator class

primes = .Array~of(23, 19, 17, 13, 11, 7, 5, 3, 2)
primes~sortWith(.NumericComparator~new) -- 2, 3, 5, 7, 11, 13, 17, 19, 23

5.4.6. DateTime Class

A DateTime instance represents a timestamp between 1 January 0001 at 00:00.000000 and 31
December 9999 at 23:59:59.999999. It has methods to allow formatting a date or time in various
formats, as well as allowing arithmetic operations between timestamps.

@

DateTime does not support leap seconds like December 31, 2016 at 23:59:60 UTC.

339

DateTime Class

Table 5.41. DateTime Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Orderable (Mixin Class)

Methods inherited from the Orderable class
Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
CHG compareTo

+ Comparable (Mixin Class)

Methods inherited from the Comparable class
CHG compareTo

DateTime

NEW? fromQOrdinalDate (Class Method)
fromStandardDate (Class Method)

fromTicks (Class Method)

fromUsaDate (Class Method)

CHG fromUtclsoDate (Class Method)
NEW fromWeekNumberDate (Class Method)
maxDate (Class Method)

minDate (Class Method)

new (Inherited Class Method)
fromBaseDate (Class Method)
fromCivilTime (Class Method)
fromEuropeanDate (Class Method)
fromisoDate (Class Method)
fromLongTime (Class Method)
fromNormalDate (Class Method)
fromNormalTime (Class Method)

fromOrderedDate (Class Method) today (Class Method)

Arithmetic Methods + - elapsed *NEW?* ordinalDate
addDays europeanDate seconds

addHours fullDate standardDate
addMicroseconds hashCode string

addMinutes hours ticks

addSeconds init timeOfDay

addWeeks isLeapYear toLocalTime

addYears isoDate toTimezone

baseDate languageDate toUtcTime

civilTime longTime usaDate

compareTo *NEW* makeString utcDate

date microseconds *CHG* utclsoDate

day minutes weekDay
dayMicroseconds month *NEW* weekNumber
dayMinutes monthName *NEW* weekNumberDate
dayName normalDate *NEW* weekNumberYear
daySeconds normalTime *NEW* weeksinYear
daysinMonth offset year

daysinYear orderedDate yearDay

5.4.6.1. minDate (Class Method)

Returns a DateTime instance representing the minimum supported Rexx date, 1 January 0001 at

00:00:00.000000.

340

DateTime Class

5.4.6.2. maxDate (Class Method)

Returns a DateTime instance representing the maximum supported Rexx date, 31 December 9999 at
23:59:59.999999.

5.4.6.3. today (Class Method)

offset

Returns a DateTime instance for the current day, with a time value of 00:00:00.000000.
If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number

between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.4. fromBaseDate (Class Method)

offset

»—(fromBaseDate(date |— @—N

Returns a new DateTime object, created from a string in the format returned by the Base option of
the *CHG* DATE built-in function (dddddd). The time component will be set to 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number

between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.5. fromEuropeanDate (Class Method)

bb—(fromEuropeanDate()— date o J

separator ’ offset

YA Je

Returns a new DateTime object, created from a string in the format returned by the European option
of the *CHG* DATE buiilt-in function (dd/mm/yy). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash (/") is the default separator. The time component will
be set to 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number

between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.6. fromNormalDate (Class Method)

341

DateTime Class

bb—(fromNormalDate()— date 0 e

U
separator o offset —f
Returns a new DateTime object, created from a string in the format returned by the Normal
option of the *CHG* DATE built-in function (dd mon yyyy). The time component will be set to
00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (). A blank (" ") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.7. fromOrderedDate (Class Method)

bb—(fromOrderedDate()— date 0 J

separator o offset

yalie

Returns a new DateTime object, created from a string in the format returned by the Ordered option
of the *CHG* DATE buiilt-in function (yy/mm/dd). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (™). A slash (/") is the default separator. The time component will
be set to 00:00:00.000000.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.8. *NEW* fromOrdinalDate (Class Method)

>>—(from0rdinalDate()— date J @—N

’ offset

Returns a new DateTime object, created from a string in ISO ordinal date format. The time
component will be set to 00:00:00.000000.

Both the basic format yyyyddd and the extended format yyyy-ddd are accepted, where ddd is the
ordinal number of a day within year yyyy. The allowed range for ddd is 1 through the number of days
in year yyyy, which is either 365 or 366. Leading zeros are required for both yyyy and ddd.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

See also method *NEW?* ordinalDate.

Example 5.227. DateTime class — fromOrdinalDate method

say .DateTime~fromOrdinalDate("2020-041") -- 2020-02-10T00:00:00.000000

342

DateTime Class

5.4.6.9. fromStandardDate (Class Method)

bb—(fromStandardDate()— date o @—N

separator o offset

Returns a new DateTime object, created from a string in the format returned by the Standard option
of the *CHG* DATE built-in function (yyyymmdd). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (). A null string (") is the default separator.
If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.10. fromUsaDate (Class Method)

bb—(fromUsaDate(date —O @—N
~— separator L@— offset

Returns a new DateTime object, created from a string in the format returned by the Usa option of the
CHG DATE built-in function (mm/dd/yy). The time component will be set to 00:00:00.000000.

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (). A slash ("/") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number

between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.11. *NEW* fromWeekNumberDate (Class Method)

bb—(fromWeekNumberDate(date @—N

0 offset

Returns a new DateTime object, created from a string in ISO week date format. The time component
will be set to 00:00:00.000000.

Both the basic format yyyyWwwd and the extended format yyyy-Www-d are accepted, where ww is
the ordinal number of an ISO week within year yyyy, and d is the ordinal number of the calender
day within the week. The allowed range for ww is 1 through the number of ISO weeks in year yyyy,
which is either 52 or 53. Leading zeros are required for both yyyy and ww. The allowed range for d is
1 through 7, where Monday is 1, Tuesday is 2, running through 7 for Sunday.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

See also methods *NEW* weekNumberDate, *NEW* weekNumberYear, and weekDay.

343

DateTime Class

Example 5.228. DateTime class — fromWeekNumberDate method

say .DateTime~fromwWeekNumberDate('"2020-wW07-1") -- 2020-02-10T00:00:00.000000

5.4.6.12. fromNormalTime (Class Method)

»—(fromNormaITime(time @—N

0 offset

Returns a new DateTime object, created from a string in the format returned by the Normal option of
the TIME built-in function (hh:mm: ss). The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.13. fromCivilTime (Class Method)

offset

»—(fromCivilTime(time f— @—N

Returns a new DateTime object, created from a string in the format returned by the Civil option of
the TIME built-in function (hh : mmxx). The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.14. fromLongTime (Class Method)

offset

»—(fromLongTime(time f— @—N

Returns a new DateTime object, created from a string in the format returned by the Long option of
the TIME built-in function (hh:mm: ss.uuuuuu). The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.15. fromTicks (Class Method)

offset

bb—(fromTicks(time < @—N

Returns a new DateTime object, created from a string in the format returned by the Ticks option of
the *CHG* DATE or TIME built-in functions (dddddddddddd).

344

DateTime Class

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.16. fromlsoDate (Class Method)

bb—(fromlsoDate()— date J @—N

o offset

Returns a new DateTime object, created from a string in extended 1SO format yyyy -mm-
ddThh:mm:ss.uuuuuu.

The isoDate and the string methods return a string in extended 1SO format as the string form of a
DateTime instance.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number

between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

5.4.6.17. *CHG* fromUtclsoDate (Class Method)

bb—(fromUtcIsoDate(date)

Returns a new DateTime object, created from a string in timezone-qualified extended ISO format
yyyy-mm-ddThh:mm:ss.uuuuuu+hh:mm.

5.4.6.18. init

bb—(init()— fulldate @—N

0 offset

offset

bb—(init(year o month) day b @—N

bb—(init(year o month p day) hours 7 minutes , =

seconds

g0 -

microseconds o offset

Initializes a new DateTime instance. If no arguments are specified, the instance is set to the current
date and time. If the single fulldate argument is used, the instance is initialized to the date and time
calculated by adding fulldate microseconds to 0001-01-01T00:00:00.000000. If the year, month,
day, form is used, the instance is initialized to 00:00:00.000000 on the indicated date. Otherwise,
the instance is initialized to the year, month, day, hours, minutes, seconds, and microseconds
components. Each of these components must be a valid whole number within the acceptable range

345

DateTime Class

for the given component. For example, year must be in the range 1-9999, while minutes must be in the
range 0-59.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number

between -900 and 900 or an equivalent TimeSpan instance. The default offset is the current system
timezone offset.

Example 5.229. DateTime class

today = .DateTime~new -- current date and time

day = .DateTime~new(date('F', "20170630", "S")) -- 2017-06-30T00:00:00.000000
day = .DateTime~new(2017, 6, 30) -- 2017-06-30T00:00:00.000000
day = .DateTime~new(2017, 6, 30, 11, 8, 50) -- 2017-06-30T11:08:50.000000

5.4.6.19. Arithmetic Methods

arithmetic_operator (argument

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver DateTime instance.
Depending on the operation, the argument may be either a TimeSpan object or a DateTime instance.
See the description of the individual operations for details. The arithmetic_operator can be:

+ Addition. Adds a TimeSpan to the DateTime object, returning a new DateTime
instance. The receiver DateTime object is not changed. The TimeSpan may be
either positive or negative.

- Subtraction. If argument is a DateTime object, the two times are subtracted, and
a TimeSpan object representing the interval between the two times is returned. If
the receiver DateTime is less than the argument argument DateTime, a negative
TimeSpan interval is returned. The receiver DateTime object is not changed.

If argument is a TimeSpan object, subtracts the TimeSpan from the DateTime
object, returning a new DateTime instance. The receiver DateTime object is not
changed. The TimeSpan may be either positive or negative.

Prefix - A prefix - operation on a DateTime object will raise a SYNTAX error condition.

Prefix + Returns a new DateTime object with the same time value.

346

DateTime Class

When adding or subtracting DateTime and TimeSpan objects, leap seconds (like the one which
happened on December 31, 2016 at 23:59:60 UTC) are not taken into account.

Example 5.230. DateTime class — arithmetic

t = .dateTime~new~timeOfDay -- returns TimeSpan for current time

say t -- displays "17:30:41.482000", perhaps

d = .dateTime~new(2016, 12, 31) -- creates new date

future = d + t -- adds timespan to d

say future -- displays "2016-12-31T17:30:41.482000"

-- does not take leap second into account
say d + .TimeSpan~new(24, 0, 1) -- 2017-01-01T00:00:01.000000

-- "real" start of next century
nextCentury = .dateTime~new(2101, 1, 1)
-- "The next century starts in 29547.07:15:42.721000 days", perhaps
say "The next century starts in" (nextCentury - .dateTime~new) "days"

5.4.6.20. compareTo

»—(compareTo(other —@—N

Returns -1 if the other is larger than the receiving object, 0 if the two objects are equal, and 1 if other
is smaller than the receiving object.

5.4.6.21. *NEW* weekNumber

Returns the timestamp's ISO week number.
Any given year will have week numbers either between 1 and 52, or between 1 and 53.

See also methods *NEW* weekNumberYear, *NEW* weekNumberDate, and *NEW* weeksInYear.

Example 5.231. DateTime class — weekNumber method

say weekNumber (2018, 12, 31) -- 1 2019-WO1-1

say weekNumber (2019, 1, 1) -- 1 2019-wWe1-2

say weekNumber (2020, 12, 31) -- 53 2020-W53-4
say weekNumber(2021, 1, 1) -- 53 2020-W53-5
return

weekNumber: procedure
date = .DateTime~new(arg(1), arg(2), arg(3))
return date~weekNumber date~weekNumberDate

347

DateTime Class

5.4.6.22. *NEW* weekNumberDate

bb—' weekNumberDate '—N

Returns the timestamp formatted as a string in extended ISO week number date format yyyy -Www-d
with leading zeros as required.

See also methods *NEW* fromWeekNumberDate (Class Method) and *NEW* weekNumberYear, and
weekDay .

Example 5.232. DateTime class — weekNumberDate method

say .DateTime~new(2018, 12, 31)~weekNumberDate -- 2019-w01-1
say .DateTime~new(2019, 1, 1)~weekNumberDate -- 2019-wWe1-2
say .DateTime~new(2020, 12, 31)~weekNumberDate -- 2020-W53-4
say .DateTime~new(2021, 1, 1)~weekNumberDate -- 2020-W53-5

5.4.6.23. *NEW* weekNumberYear

bb—' weekNumberYear '—N

Returns the year associated with this date's ISO week number. The returned year may be the next or
the previous year for dates at the beginning or end of the year.

See also methods *NEW* weekNumber, *NEW* weekNumberDate, and *NEW* weeksInYear.

Example 5.233. DateTime class — weekNumberYear method

say weekNumber (2018, 12, 31) -- 2019 2019-wWe1-1
say weekNumber (2019, 1, 1) -- 2019 2019-We1-2
say weekNumber (2020, 12, 31) -- 2020 2020-W53-4
say weekNumber (2021, 1, 1) -- 2020 2020-W53-5
return

weekNumber: procedure
date = .DateTime~new(arg(1), arg(2), arg(3))
return date~weekNumberYear date~weekNumberDate

5.4.6.24. *NEW* weeksIinYear

Returns the number of weeks in this date's year according to the ISO week number rules.
There are either 52 or 53 ISO weeks in any given year.

See also methods *NEW* weekNumber, *NEW* weekNumberYear, and *NEW* weekNumberDate.

348

DateTime Class

Example 5.234. DateTime class — weeksInYear method

do year = 2010 to 2030
d = .DateTime~new(year, 6, 30)
if d~weeksInYear \= 52 then
say year":" d~weeksinYear -- 2015: 53, 2020: 53, 2026: 53

4
P
N
L
<
1]
Q
=

Returns the timestamp year.

5.4.6.26. month

U

Returns the timestamp month.

o
oy
& 2
N
N
o
)
<

Returns the timestamp day.

5.4.6.28. hours

i

Returns number of whole hours in the timestamp since midnight.

5.4.6.29. minutes

!

Returns the minutes portion of the timestamp time-of-day.

5.4.6.30. *NEW* ordinalDate

ordinalDate

i

Returns the timestamp formatted as a string in extended ISO ordinal date format yyyy -ddd with
leading zeros as required.

See also methods *NEW?* fromOrdinalDate (Class Method) and yearDay.

349

DateTime Class

Example 5.235. DateTime class — ordinalDate method

say .DateTime~new(2020, 2, 10)~ordinalDate -- 2020-041

o
f;
o
W
=
7
®
o
o
S
o
)

Returns the seconds portion of the timestamp time-of-day.

5.4.6.32. *NEW* makeString

|

Returns the timestamp formatted as a string in extended ISO format yyyy -mm-
ddThh:mm: ss.uuuuuu. This is an alias of the string method.

microseconds

o
§>
9
w
@
3,
(2)
=
o
[72]
(1)
(2]
o
>
o
(7))

Returns the microseconds portion of the timestamp time-of-day.

5.4.6.34. dayMinutes

dayMinutes

i

Returns the number of minutes since midnight in the timestamp time-of-day.

5.4.6.35. daySeconds

daySeconds

|

Returns the number of seconds since midnight in the timestamp time-of-day.

5.4.6.36. dayMicroseconds

dayMicroseconds

Returns the number of microseconds since midnight in the timestamp time-of-day.

5.4.6.37. hashCode

hashCode

j

350

DateTime Class

Returns a string value for the timestamp that is used as a hash value for a MapCollection class.
5.4.6.38. addYears

bb—(addYears(years)

Returns a new DateTime instance with a number of years added to the timestamp. The receiving
instance is unchanged. The years value must be a valid whole number. Negative values result in years
being subtracted.

The addYears method will take leap years into account. If the addition result would fall on February
29th of a non-leap year, the day will be rolled back to the 28th.

Example 5.236. DateTime class — addYears method

date = .DateTime~new(2016, 6, 30)
say date -- displays "2016-06-30T00:00:00.000000"
say date~addYears(1) -- displays "2017-06-30T00:00:00.000000"

5.4.6.39. addWeeks

bb—(addWeeks(weeks —@—N

Returns a new DateTime instance with a number of weeks added to the timestamp. The receiving
instance is unchanged. The weeks value must be a valid number, including fractional values. Negative
values result in weeks being subtracted.

5.4.6.40. addDays

>>—(addDays()— days)

Returns a new DateTime instance with a number of days added to the timestamp. The receiving
instance is unchanged. The days value must be a valid number, including fractional values. Negative
values result in days being subtracted.

Example 5.237. DateTime class — addDays method

date = .DateTime~new(2016, 6, 30)
say date -- displays "2016-06-30T00:00:00.000000"
say date~addDays(1.5) -- displays "2016-07-01T12:00:00.000000"

5.4.6.41. addHours

bb—(addHours(hours —@—N

Returns a new DateTime instance with a number of hours added to the timestamp. The receiving
instance is unchanged. The hours value must be a valid number, including fractional values. Negative
values result in hours being subtracted.

351

DateTime Class

5.4.6.42. addMinutes

bb—(addMinutes()— minutes)

Returns a new DateTime instance with a number of minutes added to the timestamp. The receiving
instance is unchanged. The minutes value must be a valid number, including fractional values.
Negative values result in minutes being subtracted.

5.4.6.43. addSeconds

bb—(addSeconds()— seconds)

Returns a new DateTime instance with a number of seconds added to the timestamp. The receiving
instance is unchanged. The seconds value must be a valid number, including fractional values.
Negative values result in seconds being subtracted.

5.4.6.44. addMicroseconds

bb—(addMicroseconds()— microseconds)

Returns a new DateTime instance with a number of microseconds added to the timestamp. The
receiving instance is unchanged. The microseconds value must be a valid whole number. Negative
values result in microseconds being subtracted.

5.4.6.45. isoDate

Returns the timestamp formatted as a string in extended ISO format yyyy -mm-
ddThh:mm:ss.uuuuuu.

The string method will also return this value.

5.4.6.46. *CHG* utclsoDate

utcIsoDate

Returns the timestamp formatted as a string in extended timezone-qualified 1ISO format. If the
timezone offset is 0, the format is yyyy-mm-ddThh:mm: ss.uuuuuuZ. If the offset is positive, the
string is formatted as yyyy-mm-ddThh:mm: ss.uuuuuu+hh:mm. If the offset is negative, the result
will be in the format yyyy-mm-ddThh:mm: ss.uuuuuu-hh :mm.

5.4.6.47. baseDate

Returns the number of complete days (that is, not including the timestamp day) since and including the
base date, 1 January 0001, in the format dddddd (no leading zeros or whitespace characters).

352

DateTime Class

The base date of 1 January 0001 is determined by extending the current Gregorian calendar backward
(365 days each year, with an extra day every year that is divisible by 4 except century years that are
not divisible by 400). It does not take into account any errors in the calendar system that created the
Gregorian calendar originally.

5.4.6.48. yearDay

Returns the number of days, including the timestamp day, that have passed in the year the timestamp
represents in the format ddd (no leading zeros or blanks).

See also method *NEW?* ordinalDate.
Example 5.238. DateTime class — yearDay method

say .DateTime~new(2020, 2, 10)~yearDay -- 41

5.4.6.49. weekDay

Returns the timestamp weekday as an integer. The values returned use the 1ISO convention for day
numbering. Monday is 1, Tuesday is 2, running through 7 for Sunday.

5.4.6.50. europeanDate

>>—' europeanDate()‘ @—N

separator

Returns the timestamp date formatted as a string in the format dd/mm/yy. If specified, separator
identifies the field separator character used in the returned string. The separator must be a single
character or the null string (™). A slash ("/") is the default separator.

5.4.6.51. languageDate

Returns the timestamp date formatted as a string in an implementation- and language-dependent, or
local, date format. The format is dd month yyyy. The name of the month is according to the national
language installed on the system. If no local date format is available, the default format is returned.

353

DateTime Class

@e

This format is intended to be used as a whole. Rexx programs must not make any assumptions
about the form or content of the returned string.

5.4.6.52. monthName

Returns the name of the timestamp month, in English.

5.4.6.53. dayName

Returns the name of the timestamp weekday, in English.

5.4.6.54. normalDate

»—' normalDate(J @—N

separator

Returns the timestamp date formatted as a string in the format dd mon yyyy. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (""). A blank (" ") is the default separator.

5.4.6.55. orderedDate

»—' orderedDate(J L @—N

separator

Returns the timestamp date formatted as a string in the format yy/mm/dd. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (""). A slash ("/") is the default separator.

5.4.6.56. standardDate

»—' standardDate(Jl L @—N

separator

Returns the timestamp date formatted as a string in the format yyyymmdd. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (™). A null string (") is the default separator.

354

DateTime Class

5.4.6.57. usaDate

bb—' usaDate(J @—N

separator

Returns the timestamp date formatted as a string in the format mm/dd/yy. If specified, separator
identifies the field separator character used in the returned date. The separator must be a single
character or the null string (™). A slash ("/") is the default separator.

5.4.6.58. civilTime

Returns the timestamp time formatted as a string in Civil format hh:mmxx. The hours can take

the values 1 through 12, and the minutes the values 00 through 59. The minutes are followed
immediately by the letters am or pm. This distinguishes times in the morning (12 midnight through
11:59 a.m.—appearing as 12: 00am through 11 : 59am) from noon and afternoon (12 noon through
11:59 p.m.—appearing as 12 : 00pm through 11 :59pm). The hour has no leading zero. The minute
field shows the current minute (rather than the nearest minute) for consistency with other TIME results.

5.4.6.59. normalTime

Returns the timestamp time formatted as a string in the default format hh:mm: ss. The hours can have
the values 00 through 23, and minutes and seconds, 00 through 59. There are always two digits. Any
fractions of seconds are ignored (times are never rounded).

5.4.6.60. longTime

Returns the timestamp time formatted as a string in the format hh: mm: ss. uuuuuu (where uuuuuu
are microseconds).

5.4.6.61. fullDate

Returns the timestamp's number of microseconds since 00:00:00.000000 on 1 January 0001, in the
format dddddddddddddddddd (no leading zeros or blanks).

5.4.6.62. utcDate

Returns the timestamp converted to UTC time as the number of microseconds since 00:00:00.000000
on 1 January 0001, in the format dddddddddddddddddd (no leading zeros or blanks).

355

DateTime Class

5.4.6.63. toLocalTime

toLocalTime

Returns a new DateTime instance representing the time for the local timezone.

5.4.6.64. toUtcTime

toUtcTime

Returns a new DateTime instance representing the time for the UTC timezone (offset 0).

5.4.6.65. toTimezone

bb—' toTimeZone(J J @—N

offset

Returns a new DateTime instance representing the time for the timezone indicated by offset.

If specified, offset is the offset from UTC, in minutes. The offset must be a valid whole number
between -900 and 900 or an equivalent TimeSpan instance. The default offset is 0, which creates a
DateTime object for UTC.

5.4.6.66. ticks

Returns the timestamp's number of seconds since 00:00:00.000000 on 1 January 1970, in the format
dddddddddddd (no leading zeros or blanks). Times prior to 1 January 1970 are returned as a
negative value.

5.4.6.67. offset

Returns the timestamp timezone as an offset in minutes from UTC. Timezones east of UTC will return
a positive offset. Timezones west of UTC will return a negative offset.

5.4.6.68. date

Returns a new DateTime instance for the timestamp date, with the time component set to
00:00:00.000000.

5.4.6.69. timeOfDay

356

NEW EventSemaphore Class

timeOfDay

i

Returns the interval since 00:00:00.000000 of the timestamp day as a TimeSpan object.

elapsed

a
P
' 3
N
o
®
o
o
®
®
o

Returns the difference between the current date/time and the timestamp date/time as a TimeSpan
object. The time span will be negative if the receiving instance represents a time in the future.

5.4.6.71. isLeapYear

isLeapYear

i

Returns . true if the timestamp year is a leap year. Returns . false otherwise.

5.4.6.72. daysinMonth

daysInMonth

|

Returns the number of days in the timestamp month. For example, for dates in January, 31 is returned.
The daysInMonth method takes leap years into account, returning 28 for February in non-leap years,
and 29 for leap years.

5.4.6.73. daysinYear

daysInYear

i

Returns the number of days in the timestamp year. For leap years, 366 is returned, and 365 for non-
leap years.

5.4.6.74. string

:

Returns the timestamp formatted as a string in extended ISO format yyyy -mm-
ddThh:mm:ss.uuuuuu.

The isoDate method will also return this value.

5.4.7. *NEW* EventSemaphore Class

An event semaphore is a synchronization mechanism that can be used to indicate to activities when a
particular condition—the event—has become true.

An event can be set by posting the event semaphore, or cleared by resetting it. An activity, a
concurrent chain of execution, can choose to get suspended while waiting for the event to become
true, at which point the activity is released and continues to execute.

357

NEW EventSemaphore Class

Table 5.42. EventSemaphore Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

EventSemaphore
NEW new (Class Method)
NEW isPosted *NEW* reset *NEW* wait
NEW post *NEW* uninit

5.4.7.1. *NEW* new (Class Method)

Returns a new EventSemaphore instance. Initially the semaphore is in the cleared state.

5.4.7.2. *NEW* isPosted

Returns . true if the event semaphore is in the posted state, . false if it is currently cleared.

See also methods *NEW* post and *NEW* reset.

Example 5.239. EventSemaphore class — isPosted method

sem = .EventSemaphore~new
say sem~isPosted -- 0
sem~post

say sem~isPosted -- 1

5.4.7.3. *NEW* post

Sets the event semaphore to the posted state. All suspended activities waiting for this event are
released. Activities calling the wait method while the event semapahore is already in the posted state
will continue executing without getting suspended.

See also method *NEW* reset.

5.4.7.4. *NEW* reset

358

NEW EventSemaphore Class

Clears the event semaphore. During the time the semaphore is cleared, any activities starting a
blocking *NEW* wait get suspended.

See also method *NEW* post.

5.4.7.5. *NEW* uninit

This method cleans up the event semaphore when it is garbage collected.

uninit should not be invoked directly except via an uninit method of a subclass of the
EventSemaphore class. Any such subclassed uninit method must forward to the superclass uninit
method.

5.4.7.6. *NEW* wait

timeout

Returns . true if waiting for the event semaphore to get posted has been successful or the
semaphore is already in the posted state, and . false if a timeout occurred while waiting.

If timeout is specified it must be a TimeSpan instance or a valid Rexx number. If the value is negative
or if timeout is omitted, wait suspends the current activity until the semaphore gets posted.

If timeout is zero, wait immediately returns with a return value as if *NEW* isPosted had been called.

If the timeout period is positive, wait suspends the current activity for timeout seconds or until the
semaphore gets posted, whatever comes first.

Any number of activities can wait for an event semaphore. When the semaphore is posted, all waiting
activities are released. The exact order in which released activities resume execution is unspecified
and should not be relied upon.

Example 5.240. EventSemaphore class — wait method

event = .EventSemaphore~new

say "main starts tasks"

do nr =1 to 5
.task~new~waitFor(event, "task" nr)

end

call SysSleep 0.1

say "main posts"
event~post

say "main ends"

::class Task

359

File Class

::method waitFor
reply
use strict arg event, name
say name "waits"
event~wait
say name "runs"

may output

main starts tasks

task 2 waits
task 5 waits
task 1 waits
task 3 waits
task 4 waits
main posts

main ends

task 4 runs
task 3 runs
task 1 runs
task 2 runs
task 5 runs

5.4.8. File Class

The File class provides services which are common to all Rexx-supported filesystems. A File

object represents a path to a file or directory. The path can be relative or absolute.

If you create a File object with a relative path, the absolute path will be calculated using the current
default directory. This absolute path is memorized on the File object, and will not change if you

change the default directory.

Table 5.43. File Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Orderable (Mixin Class)

Methods inherited from the Orderable class
Comparison Methods = == < <= << <<= <> > >=>< >> >>= \= == \< << \> \>>
CHG compareTo

+ Comparable (Mixin Class)

Methods inherited from the Comparable class

CHG compareTo

File
isCaseSensitive (Class Method) *NEW?* searchPath (Class Method)
listRoots (Class Method) separator (Class Method)
pathSeparator (Class Method) *NEW* temporaryPath (Class Method)
absoluteFile isDirectory name
absolutePath isFile parent
canRead isHidden parentFile

360

File Class

canWrite *NEW?* lastAccessed (Attribute) path

compareTo lastModified (Attribute) pathSeparator
delete length renameTo

exists list separator

NEW extension listFiles setReadOnly
hashCode makeDir *NEW* setWritable
init makeDirs string
isCaseSensitive *NEW* makeString

5.4.8.1. isCaseSensitive (Class Method)

Returns the case-sensitivity, . true or . false, of root (/) on Unix-like systems. On Windows,
returns the case-sensitivity of the Windows system directory.

See also instance method isCaseSensitive.

5.4.8.2. listRoots (Class Method)

Returns the file system root elements, as an array of strings. On Windows, each of the drives is a root
element in the format d: \. On Unix, there is just one root (/).

Example 5.241. File class

say .File~listRoots~toString(, " ") -- C:\ D:\ E:\ R:\ (e. g. on Windows)
say .File~listRoots~toString(, " ") -- / (Unix)

5.4.8.3. pathSeparator (Class Method)

pathSeparator

Returns the separator used for file search paths, ;" on Windows and ":" on Unix.

See also instance method pathSeparator.

5.4.8.4. *NEW* searchPath (Class Method)

»—(searchPath(name 7)

path

Returns a new File instance of the file name, if it can be located along path. Returns .nil otherwise.

The name must be a valid file name without wildcard characters and may optionally include a relative
path. The path must be a String, a Collection, or any object that provides a makeArray method.
Specified path items must be valid directories separated by the platform's path separator. If omitted,
path defaults to the value of the PATH environment variable.

361

File Class

See also RexxUtil function SysSearchPath.
Example 5.242. File class — searchPath method

say .File~searchPath("rexx.exe") -- e. g. C:\Program Files\ooRexx\rexx.exe
say .File~searchPath("rexx") -- e. g. /usr/local/bin/rexx

5.4.8.5. separator (Class Method)

Returns the file name separator used by the file system ("\" on Windows, "/* on Unix).

This query method is available as both an instance and class method.
Example 5.243. File class — separator method

file = .File~new("dir1" || .File~separator || "dir2" || .File~separator || "file")
-- "dir1/dir2/file" on Unix, "diri\dir2\file" on Windows

5.4.8.6. *NEW* temporaryPath (Class Method)

temporaryPath

Returns the full path to the user's temporary directory as a new instance of File.

On Windows this method returns the value of the environment variable TMP, TEMP or USERPROFILE,
whichever is defined in this sequence. If none of them are defined it returns the current directory. On
Unix-like systems it returns the value of the environment variable TMPDIR, or returns /tmp if TMPDIR
is undefined.

See also RexxUtil function *CHG* SysTempFileName.
Example 5.244. File class — temporaryPath method

say .File~temporaryPath -- (Windows e.g.) C:\Users\USER~1\AppData\Local\Temp
say .File~temporaryPath -- (Unix e.g.) /tmp

5.4.8.7. absoluteFile
Returns the fully qualified path as a new instance of File.
Example 5.245. File class — absoluteFile method

/* On Windows */
'cd c:\program files\oorexx'
say .File~new("my file")~absoluteFile~class -- The File class

362

File Class

say .File~new("my file")~absoluteFile
say .File~new("..\my file")~absoluteFile

say .File~new("..\..\my file")~absoluteFile
say .File~new("..\..\my dir\my file")~absoluteFile --

/* On Linux */

'cd /opt/ooRexx'

say .File~new("my file")~absoluteFile
say .File~new("../my file")~absoluteFile

5.4.8.8. absolutePath

absolutePath

Returns the fully qualified path as a string.

Example 5.246. File class — absolutePath method

/* On Windows

*/
'cd c:\program files\oorexx'

say .File~new("my file")~absolutePath~class

say .File~new("my file")~absolutePath
say .File~new("..\my file")~absolutePath

say .File~new("..\..\my file")~absolutePath
say .File~new("..\..\my dir\my file")~absolutePath --

/* On Linux */

'cd /opt/ooRexx'

say .File~new("my file")~absolutePath
say .File~new("../my file")~absolutePath

5.4.8.9. canRead

:\program files\oorexx\my file
:\program files\my file

\my file

:\my dir\my file

O 000

/opt/ooRexx/my file
/opt/my file

The String class

c:\program files\oorexx\my file
c:\program files\my file

c:\my file

c:\my dir\my file

/opt/ooRexx/my file
/opt/my file

Returns . true if the file exists and is readable. Otherwise returns . false.

See also methods canWrite. setReadOnly. *NEW* setWritable.

5.4.8.10. canWrite

Returns . true if the file exists and is writable. Otherwise returns . false.

See also methods canRead, and setReadOnly. *NEW* setWritable.

5.4.8.11. compareTo

bb—(compareTo()—

other

)

Performs a sorting comparison of the target File object to the other File object. The comparison is
made on the absolute paths (strings) of both File objects. If the filesystem is case-sensitive then the

363

File Class

paths comparison is case-sensitive, otherwise the comparison is caseless. If the two paths are equal,
0 is returned. If the target path is larger, 1 is returned. -1 if the other argument is the larger path.

Example 5.247. File class — compareTo method

call directory .File~listRoots[1]

filel = .File~new("file", "dir")

file2 = .File~new("FILE", "DIR")

filel~compareTo(file2) -- 0 on Windows (both Files denote the same path)
filel~compareTo(file2) -- 1 on Unix ("/dir/file" is greater than "/DIR/FILE")

5.4.8.12. delete

Deletes the file or directory denoted by the absolute path of the target File object. Only empty
directories can be deleted.

Returns . true if the deletion was successful, otherwise returns . false.

5.4.8.13. exists

Returns . true if the file or directory (denoted by the absolute path of the target File object) exists.
Otherwise returns . false.

5.4.8.14. *NEW?* extension

Returns the file's extension, the portion of the file name after the last dot.

See also method name.

Example 5.248. File class — extension method

say .File~new("/usr/local/lib/rexx.img")~extension -- img
say .File~new("/")~name __ nun

5.4.8.15. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory.

5.4.8.16. init

364

File Class

@ -

o dir

Initializes a new File instance with the path path (after normalization).

If specified, dir is a parent path that is prepended to path. If dir is a File object then the absolute path
of dir is prepended, otherwise dir is prepended as-is (after normalization). The normalization consists
in adjusting the separators to the platform's convention and removing the final separator (if any).

Example 5.249. File class — init method

/* Windows */

file = .File~new("file") -- file

file = .File~new("c:\program files\") -- c:\program files

file = .File~new("file", "c:/program files") -- c:\program files\file
'cd c:\program files\oorexx'

samples = .File~new("samples") -- samples

file = .File~new("file", "samples") -- samples\file

file = .File~new("file", samples) -- c:\program files\oorexx\samples\file
/* Unix */

file = .File~new("/opt/ooRexx/") -- /opt/ooRexx

'cd /opt/ooRexx'

samples = .File~new("samples") -- samples

file = .File~new("file", "samples") -- samples/file

file = .File~new("file", samples) -- /opt/ooRexx/samples/file

5.4.8.17. isCaseSensitive

Returns the case-sensitivity, . true or . false, of the file or directory represented by the absolute
path of the target File object. If the referenced file or directory does not exist, the case-sensitivity of the
final existing folder along the referenced absolute path is returned.

See also class method isCaseSensitive (Class Method).

5.4.8.18. isDirectory

Returns . true if the absolute path of the target File object references a directory. Otherwise returns
.false.

5.4.8.19. isFile

Returns . true if the absolute path of the target File object references a file. Otherwise returns
.false.

5.4.8.20. isHidden

365

File Class

Returns . true if the absolute path of the target File object references an existing file or directory
which is hidden. Otherwise returns . false.

On Windows, a file or directory is hidden when its attribute FILE_ATTRIBUTE_HIDDEN is set.

On Unix, a file or directory is hidden when its name starts with a period character (".") or when one of
its parent directories has a hame starting with a period character.

Example 5.250. File class — isHidden method

/* Unix, when file exists */
say .File~new("/tmp/file")~isHidden --
say .File~new("/tmp/.file")~isHidden
say .File~new("/tmp/.dir/file")~isHidden --

:
PR o

5.4.8.21. *NEW* lastAccessed (Attribute)

lastAccessed

lastAccessed = date

lastAccessed get:
Returns the last access date of the file or directory denoted by the absolute path of the receiver
object. The result is a DateTime object, or . nil if the file or directory doesn't exist or the last
access time stamp cannot be retrieved.

lastAccessed set:
If the file or directory denoted by the absolute path of the receiver object exists, this sets the last
access date of the file or directory. Otherwise it does nothing.

The date parameter must be a DateTime object.

See also method /astModified (Attribute).

@

File last access time stamps may not be available on all file systems. Also, on Windows last
access time is not updated for NTFS volumes by default.

Example 5.251. File class — lastAccessed attribute

say .File~new(".")~lastAccessed -- e. g. 2020-02-06T13:03:42.143095

5.4.8.22. lastModified (Attribute)

366

File Class

lastModified

lastModified = date

lastModified get:

Returns the last modified date of the file or directory denoted by the absolute path of the receiver
object. The result is a DateTime object, or . nil if the file or directory doesn't exist or the last
modified time stamp cannot be retrieved.

lastModified set:

If the file or directory denoted by the absolute path of the receiver object exists, this sets the last
modified date of the file or directory. Otherwise it does nothing.

The date parameter must be a DateTime object.

See also method *NEW?* lastAccessed (Attribute).
Example 5.252. File class — lastModified attribute

/* On Windows */

say .File~new("C:\Program Files")~lastModified~class -- The DateTime class
say .File~new("C:\Program Files")~lastModified -- €.¢g. 2018-06-18T11:20:17.000000
say .File~new("dummy")~lastModified -- e.g. The NIL object

/* A possible implementation of : touch -c -m -r referenceFile file

-c, --no-create do not create any files
-m change only the modification time
-r, --reference=FILE use this file's time instead of current time

*/

parse arg referenceFilePath filePath .
file = .File~new(filePath)

if \file~exists then

return 0 -- OK, not an error
referenceFile = .File~new(referenceFilePath)
referenceDate = referenceFile~lastModified
if referenceDate == .nil then

return 1 -- KO
file~lastModified = referenceDate
return 0 -- 0K

5.4.8.23. length

Returns the size in bytes of the file/directory denoted by the absolute path of the receiver object.

5.4.8.24. list

Returns an array of files/directories names which are immediate children of the directory denoted by
the absolute path of the receiver object. The order in which the names are returned is dependent on
the file system (not necessarily alphabetic order). The special names "." and ".." are not returned.

The result is an array of strings. If the receiver object is not a directory then the result is . nil.

367

File Class

Example 5.253. File class — list method

names = .File~new("c:\program files\oorexx\samples")~list
say names~toString

/* Possible output */

api

ccreply.rex

complex.rex

drives.rex

factor.rex

(etc...)

5.4.8.25. listFiles

Returns an array of files/directories which are immediate children of the directory denoted by the
absolute path of the receiver object. The order in which the names are returned is dependent on the

file system (not necessarily alphabetic order). The special names "." and ".." are not returned.

The result is an array of File objects. If the receiver object is not a directory then the result is .nil.
Example 5.254. File class — listFiles method

do file over deepListFiles("c:\program files\oorexx\samples")
say file
end

-- Depth first iteration
::routine deepListFiles
use strict arg directory, accumulator=(.List~new)
files = .File~new(directory)~listFiles
if files == .nil then return accumulator
do file over files
accumulator~append(file)
if file~isDirectory then call deepListFiles file~absolutePath, accumulator
end
return accumulator

/* Possible output */

c:\program files\oorexx\samples\api

c:\program files\oorexx\samples\apilcallrxnt

c:\program files\oorexx\samples\api\callrxnt\backward.fnc
c:\program files\oorexx\samples\apilcallrxnt\callrxnt.c
c:\program files\oorexx\samples\apilcallrxnt\callrxnt.exe
c:\program files\oorexx\samples\apilcallrxnt\callrxnt.ico
c:\program files\oorexx\samples\apilcallrxnt\callrxnt.mak
c:\program files\oorexx\samples\api\callrxwn

c:\program files\oorexx\samples\api\callrxwn\backward.fnc
(etc...)

5.4.8.26. makeDir

368

File Class

Makes just the directory represented by the last name portion of the receiver object's absolute path.
Does not create any parent directories, which must all exist for a successful creation of the leaf
directory.

Returns . true if the creation was successful, otherwise returns . false. If the directory already
exists then the resultis . false.

5.4.8.27. makeDirs

Creates the entire directory hierarchy represented by the absolute path of the receiver object.

Returns . true if the creation was successful, otherwise returns . false. If the directory already
exists then the resultis . false.

5.4.8.28. *NEW* makeString

Returns the fully qualified path as a string. This is an alias of the absolutePath method.

5.4.8.29. name

Returns the name portion of the receiver object's absolute path. This is everything after the last path
separator. The file's extension is part of the name.

See also method *NEW* extension.

Example 5.255. File class — name method

/* 0On Windows */

say .File~new("c:\program files\oorexx\rexx.exe'")~name -- rexx.exe

say .File~new("c:\")~name -- empty string
/* 0On Unix */

say .File~new("/usr/local/lib/rexx.img")~name -- rexx.img

say .File~new("/")~name -- empty string

5.4.8.30. parent

Returns the parent directory portion of the receiver object's absolute path. If no separator is found or
the absolute path ends with a separator (which means this is a root path) then returns .nil.

Example 5.256. File class — parent method

/* On Windows */

369

File Class

say .File~new("c:\program files\oorexx\rexx.exe")~parent -- c:\program files\oorexx
say .File~new("c:\")~parent -- The NIL object
say .File~new("c:")~parent -- The NIL object

/* 0On Unix */
say .File~new("/opt/ooRexx/bin/rexx.img")~parent -- /opt/ooRexx/bin
say .File~new("/")~parent -- The NIL object

5.4.8.31. parentFile

Returns the parent directory portion as a File object. If no separator is found or the absolute path ends
with a separator (which means this is a root path) then returns . nil.

5.4.8.32. path

Returns the original path (after normalization) used to create the File object. The normalization
consists in adjusting the separators to the platform's convention and removing the final separator (if

any).

5.4.8.33. pathSeparator

pathSeparator
n n

Returns the separator used for file search paths, ";" on Windows and ":" on Unix.

See also class method pathSeparator (Class Method).

5.4.8.34. renameTo

)»—(renameTo(dest)

Changes the name of the file/directory denoted by the absolute path of the target object. The new
name is dest.

Returns . true if the renaming was successful, otherwise returns . false.
On Windows, this method calls the MoveFile API to perform the action.

On Unix, this method calls the rename API to perform the action.

5.4.8.35. separator

Returns the file name separator used by the file system ("\" on Windows, "/" on Unix).

This query method is available as both an instance and class method.

370

NEW MessageNotification Class

5.4.8.36. setReadOnly

setReadOnly

Sets the read-only flag of the file or directory denoted by the absolute path of the target object.

See also methods *NEW* setWritable, canRead, and canWrite.

5.4.8.37. *NEW* setWritable

setWritable

Clears the read-only flag of the file or directory denoted by the absolute path of the target object.

See also methods setReadOnly. canRead, and canWrite.

5.4.8.38. string

Returns a string that indicates the path used to create the File object.

5.4.9. *NEW* MessageNotification Class

The MessageNotification class implements the notification interface for the Message class.

For any message, notification of completion of the message can be requested by using the *CHG*
notify method of the Message class. This method requires as its argument a notification target,
that implements this message notification interface. If notification was requested, upon message
completion a messageComplete message is sent to the notification target.

This class is defined as a MIXIN class.

Table 5.44. MessageNoatification Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

MessageNotification (Mixin Class)

NEW messageComplete (Abstract Method)

5.4.9.1. *NEW* messageComplete (Abstract Method)

»—(messageComplete(source)

Whenever a message completes processing, for which notification was requested by using the *CHG*
notify method of the Message class, this method of the message notification target will be called. The
Message object which completed processing will be provided as argument source.

371

Monitor Class

It is an abstract method and must be implemented in a subclass.

5.4.10. Monitor Class

The Monitor class acts as a proxy for other objects. Messages sent to the Monitor object are
forwarded to a different target object. The message target can be changed dynamically.

Table 5.45. Monitor Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Monitor

current
destination
init
unknown

5.4.10.1. current

Returns the current destination object.

5.4.10.2. destination

destination

Returns a new destination object. If you specify destination, this becomes the new destination for
any forwarded messages. If you omit destination, the previous destination object becomes the new
destination for any forwarded messages.

5.4.10.3. init
destination

Initializes the newly created monitor object.

5.4.10.4. unknown

bb—(unknown()— messagename ’ messageargs)

Reissues or forwards to the current monitor destination all unknown messages sent to a monitor
object. For additional information, see Section 4.2.6, “Defining an UNKNOWN Method”.

372

MutableBuffer Class

5.4.10.5. Examples

Example 5.257. Class MONITOR

.local~setentry("output", .monitor~new(.stream~new("my.new")~~command("open nobuffer")))

/* The following sets the destination */
previous_destination=.output~destination(.stream~new("my.out")~~command("open write"))
/* The following resets the destination */

.output~destination

.output~destination(.Stdout)
current_output_destination_stream_object=.output~current

5.4.11. MutableBuffer Class

The MutableBuffer class is a buffer on which certain string operations such as concatenation can
be performed very efficiently. Unlike String objects, MutableBuffers can be altered without requiring

a new object allocation. A MutableBuffer object can provide better performance for algorithms that
involve frequent concatenations to build up longer string objects because it creates fewer intermediate
objects.

Table 5.46. MutableBuffer Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

MutableBuffer

new (Class Method)

NEW [] countStr *NEW?* setText
NEW []= delete / delStr space

CHG append delWord *NEW?* startsWith
caselessChangeStr *NEW* endsWith string

NEW? caselessContains getBufferSize subChar
NEW caselessContainsWord insert substr
caselessCountStr lastPos subWord
NEW? caselessEndsWith length subWords
caselessLastPos lower translate
caselessMatch makeArray upper
caselessMatchChar *NEW* makeString verify
caselessPos match word

NEW caselessStartsWith matchChar wordIndex
caselessWordPos overlay wordLength
changeStr pos wordPos
NEW contains replaceAt words

NEW? containsWord setBufferSize

5.4.11.1. new (Class Method)

373

MutableBuffer Class

) R

string v buffersize

T

Initialize the buffer, optionally assign a buffer content and a starting buffer size. The default size is 256;
the buffer size increases to the length of string if the string does not fit into the buffer.

5.4.11.2. *NEW* []

@])

o length

Returns a substring of the receiving buffer that begins at the n'th character and is of length length. The
n must be a positive whole number. If length is omitted, it defaults to 1. If n is greater than the length of
the receiving string, a null string is returned.

See also methods substr and subChar.

Example 5.258. MutableBuffer class — [| method

s = .MutableBuffer~new(xrange("a", "z"))
say s[5] -- Me"

say s[18, 3] -- "rst"

say s[25,10] -- Myz"

say s[30] --

5.4.11.3. *NEW* []=

Pb—@—m 1 = new [—»<d

0 length

Returns the receiving buffer with the characters from the nth character for length characters replaced
with new. The replacement position and length can extend beyond the end of the receiving string. The
starting position, n, is required and must be a positive whole number. The length is optional and must
be a positive whole number or zero. If length is omitted, it defaults to the length of new.

If n is greater than the length of the receiving string, blanks are added before the new string.

See also the similar MutableBuffer method replaceAt.

Example 5.259. MutableBuffer class — [|= method

S = .MutableBuffer~new(xrange("a", "z"))

s[5] = "E" -- "abcdEfghijklmnopgrstuvwxyz"
s[5] = "XXXX" -- "abcdXXXXijklmnopgrstuvwxyz"
s[5] = "" -- "abcdXXXXijklmnopqrstuvwxyz"
s[5, 1] = "=" -- "abcd=XXXijklmnopgrstuvwxyz"
s[5, 4] = "=" -- "abcd=ijklmnopgrstuvwxyz"
s[10, 2] = "REPLACE" -- "abcd=ijk1lREPLACEopqrstuvwxyz"
3[4, 99] — nun -- "abc"

374

MutableBuffer Class

5.4.11.4. *CHG* append

bb—(append(string

Returns the receiving buffer with all strings appended to the buffer content. The buffer size is
increased if necessary.

5.4.11.5. caselessChangeStr

count

»—(caselessChangeStr(needle 0 newneedle < @—N

Returns the receiver MutableBuffer with newneedle replacing occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced. The needle searches
are performed using caseless comparisons.

5.4.11.6. *NEW* caselessContains

bb—(caselessContains()— other 0 J

start o length

YA Je

Returns . true if the receiving buffer contains the other string. It returns . false if other is the null
string or is not found within the receiving buffer. The search is performed using caseless comparisons.

By default, the search starts at the first character of the receiving buffer and continues to the end of
the buffer. You can override this by specifying start, the point at which the search starts, and length,
the bounding limit for the search. If specified, start must be a positive whole number and length must
be a non-negative whole number.

See also methods *NEW?* contains, *NEW?* caselessStarts\With, *NEW* caselessEndsWith, and
caselessPos.

Example 5.260. MutableBuffer class — caselessContains method

say .mutablebuffer~new('-abcdef-')~caselessContains('EF") -- 1
say .mutablebuffer~new('-abcdef-')~caselessContains('-', 2, 6) -- 0

5.4.11.7. *NEW* caselessContainsWord

bb—(caselessContainsWord(phrase @—N

; start

Returns . true if phrase is found in the receiving buffer. Returns . false if phrase contains no
words or if phrase is not found. Word matches are made independent of case. Multiple whitespace
characters between words in either phrase or the receiving buffer are treated as a single blank for the
comparison, but, otherwise, the words must match, except for case.

375

MutableBuffer Class

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be a positive whole number), the word at which the search is to be started.

See also methods *NEW* containsWord and caselessWordPos (caselessContainsWord returns
.false exactly if caselessWordPos would have returned 0.)

Example 5.261. MutableBuffer class — caselessContainsWord method

good = .MutableBuffer~new("Now is the time for all good men")
good~caselessContainsWord("the") -- .true
good~caselessContainsWord("The") -- .true
good~caselessContainsWord("is the") -- .true
good~caselessContainsWord("is the ") -- .true
good~caselessContainsWord("is time") -- .false
good~caselessContainsWord("time") -- .true
good~caselessContainsWord("time", 5) -- .false

5.4.11.8. caselessCountStr

PP—(caselessCountStr(needle —@—N

Returns a count of the occurrences of needle in the receiving MutableBuffer that do not overlap. All
matches are made using caseless comparisons.

5.4.11.9. *NEW* caselessEndsWith

bb—(caselessEndsWith(other)

Returns . true if the characters of the other match the characters at the end of the target buffer.
Returns . false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessEndsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target buffer.

See also methods *NEW* caselessStartsWith, *NEW* endsWith, and caselessMatch.

5.4.11.10. caselessLastPos

bb—(caselessLastPos()— needle 7 e

start 9 length

el

Returns the position of the last occurrence of a string, needle, in the receiving buffer. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
buffer and scans backward to the beginning of the string. You can override this by specifying start,

the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_buffer~length if larger than that
value or omitted. The length must be a non-negative whole number and defaults to start. The search is
performed using caseless comparisons.

See also methods /astPos and caselessPos.

376

MutableBuffer Class

5.4.11.11. caselessMatch

length

bb—(caselessMatch()— start 7 other) @—N
'

Returns . true if the characters of the other match the characters of the target buffer beginning at
position start. Returns . false if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

5.4.11.12. caselessMatchChar

bb—(caselessMatchChar(n 7 chars)

Returns . true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The match is made
using caseless comparisons. The argument n must be a positive whole number.

5.4.11.13. caselessPos

PP—(caselessPos(needle —O @—N

start o length

Returns the position in the receiving buffer of a needle string. It returns 0 if needle is the null string or
is not found or if start is greater than the length of the receiving buffer. The search is performed using
caseless comparisons. By default, the search starts at the first character of the receiving buffer (that
is, the value of start is 1), and continues to the end of the buffer. You can override this by specifying
start, the point at which the search starts, and length, the bounding limit for the search. If specified,
Start must be a positive whole number and length must be a non-negative whole number.

See also method /astPos.

5.4.11.14. *NEW* caselessStartsWith

bb—(caselessStartsWith()— other)

Returns . true if the characters of the other match the characters at the start of the target buffer.
Returns . false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessStartsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target buffer.

377

MutableBuffer Class

See also methods *NEW?* startsWith, *NEW?* caselessEndsWith, and caselessMatch.

5.4.11.15. caselessWordPos

start

bb—(caselessWordPos(phrase < @—N

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Multiple
whitespace characters between words in either phrase or the receiving buffer are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.11.16. changeStr

bb—(changeStr(needle ' newneedle ' @—N

o count

Returns the receiver MutableBuffer with newneedle replacing occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a non-
negative, whole number that gives the maximum number of occurrences to be replaced.

5.4.11.17. *NEW* contains

bb—(contains(other 7 e

start o length

yalJe

Returns . true if the receiving buffer contains the other string. It returns . false if other is the null
string or is not found within the receiving buffer.

By default, the search starts at the first character of the receiving buffer and continues to the end of
the buffer. You can override this by specifying start, the point at which the search starts, and length,
the bounding limit for the search. If specified, start must be a positive whole number and length must
be a non-negative whole number.

See also methods *NEW* caselessContains, *NEW* startsWith, *NEW* endsWith, and pos.
Example 5.262. MutableBuffer class — caselessContains method

say .mutablebuffer~new('-abcdef-')~contains('ef') -- 1
say .mutablebuffer~new('-abcdef-')~contains('-', 2, 6) -- 0

5.4.11.18. *NEW* containsWord

378

MutableBuffer Class

bb—(containsWord()— phrase J @—N

’ start

Returns . true if phrase is found in the receiving buffer. Returns . false if phrase contains no

words or if phrase is not found. Multiple whitespace characters between words in either phrase or the
receiving buffer are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be positive whole number), the word at which the search is to be started.

See also methods *NEW* caselessContainsWord and wordPos (containsWord returns . false
exactly if wordPos would have returned 0.)

Example 5.263. MutableBuffer class — containsWord method

good = .MutableBuffer~new("Now is the time for all good men")
good~containsWord("the") -- .true
good~containsWord("The") -- .false
good~containsWord("is the") -- .true
good~containsWord("is the ") -- .true
good~containsWord("is time") -- .false
good~containsWord("time") -- .true
good~containsWord("time", 5) -- .false

5.4.11.19. countStr

bb—(countStr()— needle)

Returns a count of the occurrences of needle in the receiving buffer that do not overlap.

5.4.11.20. delete | delStr
delete(

O

Returns the receiver MutableBuffer with length characters deleted from the buffer beginning at the n'th
character. If n is omitted, it defaults to 1. If length is omitted, or if length is greater than the number of

characters from n to the end of the buffer, the method deletes the remaining buffer contents (including
the n'th character). The length must be a positive integer or zero. The n must be a positive integer. If n
is greater than the length of the buffer or length is zero, the method does not modify the buffer content.

@roe

The delete method and the delStr method are identical. delStr is provided for
polymorphism with the String class.

379

MutableBuffer Class

5.4.11.21. delWord

:)

7 length

Deletes a substring from the MutableBuffer that starts at the nth word and is of length whitespace-
delimited words. If you omit length, or if length is greater than the number of words from n to the end of
the receiving buffer, the method deletes the remaining words in the receiving buffer (including the nth
word). The length must be a positive whole number or zero. The n must be a positive whole number.

If n is greater than the number of words in the receiving buffer, the method returns the receiving buffer
unchanged. The portion deleted includes any whitespace characters following the final word involved
but none of the whitespace characters preceding the first word involved.

5.4.11.22. *NEW* endsWith

bb—(endsWith(other

Returns . true if the characters of the other match the characters at the end of the target buffer.
Returns . false if the characters are not a match, or if other is the null string.

The endsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

See also methods *NEW* startsWith, *NEW* caselessEndsWith, and match.

5.4.11.23. getBufferSize

getBufferSize

Retrieves the current buffer size.

See also method setBufferSize.

5.4.11.24. insert

bb—(insert()— new , m) '—N
U length —f pad —f

I

Returns the receiving buffer with the string new, padded or truncated to length length, inserted into
the MutableBuffer after the n'th character. The default value for n is 0, which means insertion at the
beginning of the string. If specified, n and length must be positive integers or zeros. If n is greater

than the length of the buffer contents, the string new is padded at the beginning. The default value for
length is the length of new. If length is less than the length of string new, insert truncates new to length
length. The default pad character is a blank.

5.4.11.25. lastPos

380

MutableBuffer Class

bb—(lastPos()— needle 0 J

U
start ’ length
Returns the position of the last occurrence of a string, needle, in the receiving buffer. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
buffer and scans backward to the beginning of the string. You can override this by specifying start, the
point at which the backward scan starts and length, the range of characters to scan. The start must
be a positive whole number and defaults to receiving_buffer~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start.

See also methods caselessLastPos and pos.

Example 5.264. MutableBuffer class — lastPos method

x1 = .mutablebuffer~new("abc def ghi")
x1l~lastPos(" ") -> 8

x1 = .mutablebuffer~new("abcdefghi")
x1l~lastPos(" ") -> @

x1 = .mutablebuffer~new("efgxyz")
x1~lastPos("xy") -> 4

x1 = .mutablebuffer~new("abc def ghi")
x1l~lastPos(" ",7) -> 4

5.4.11.26. length

Returns length of data in buffer.

5.4.11.27. lower

lower(@—N
g o=

Returns the receiving buffer with the characters of the target string beginning with character n for
length characters converted to lowercase. If n is specified, it must be a positive whole number. If n is
not specified, the case conversion will start with the first character. If length is specified, it must be a
non-negative whole number. If length is not specified, the default is to convert the remainder of the
buffer.

5.4.11.28. makeArray

| makearrav() J@*‘

separator

This method returns an Array of the receiving MutableBuffer's substrings that were separated by the
separator string. separator may be any string, including the null string. If the null string is used, an
Array containing each character of the MutableBuffer is returned. If the target MutableBuffer starts with

381

MutableBuffer Class

the separator, the first Array item will be a null string. If the MutableBuffer ends with a separator, no
extra null string item will be added. If separator isn't specified, any line-end indicator is honored.

5.4.11.29. *NEW* makeString

Returns the content of the buffer as the string representation of the receiving buffer.

See also method string.

5.4.11.30. match

bb—(match()— start o other " @—N

Returns . true if the characters of the other match the characters of the target buffer beginning
at position start. Returns . false if the characters are not a match. start must be a positive whole
number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be

extracted from the target buffer.

5.4.11.31. matchChar

matchChar(n 7 chars)

Returns . true if the character at position n matches any character of the string chars. Returns
. false if the character does not match any of the characters in the reference set. The argument n
must be a positive whole number.

5.4.11.32. overlay

bb—(overlay()— new , m) '—N
u length —f pad —f

I

Returns the receiving buffer after overlaying it, starting at the n'th character, with the string new,
padded or truncated to length length. The overlay can extend beyond the end of the buffer. In this case
the buffer size will be increased. If you specify length, it must be a positive integer or zero. The default
value for length is the length of new. If n is greater than the length of the buffer content, padding is
added before the new string. The default pad character is a blank, and the default value for nis 1. If
you specify n, it must be a positive integer.

382

MutableBuffer Class

5.4.11.33. pos

bb—(pos()— needle ’ @—N

start 7 length

Returns the position in the receiving buffer of another string, needle. It returns 0 if needle is the null
string or is not found or if start is greater than the length of the receiving buffer. By default, the search
starts at the first character of the receiving buffer (that is, the value of start is 1), and continues to the
end of the string. You can override this by specifying start, the point at which the search starts, and
length, the bounding limit for the search. If specified, start must be a positive whole number and length
must be a non-negative whole number.

See also method /astPos.

Example 5.265. MutableBuffer class — pos method

x1 = .mutablebuffer~new("Saturday")

x1~pos("day") -> 6
x1 = .mutablebuffer~new("abc def ghi")
x1~pos("x") -> (0]
x1~pos(" ") -> 4
x1~pos(" ",5) -> 8

5.4.11.34. replaceAt

bb—(replaceAt(new @—N

length 7 pad

Returns the receiving buffer with the characters from the nth character for length characters replaced
with new. The replacement position and length can extend beyond the end of the receiving string. The
starting position, n, is required and must be a positive whole number. The length is optional and must
be a positive whole number or zero. If length is omitted, it defaults to the length of new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

See also the similar MutableBuffer method *NEW* []=.

5.4.11.35. setBufferSize

setBufferSize(o

Returns the receiving buffer with buffer size set to n. If n is less than the length of buffer content, the
content is truncated. If n is 0, the entire content is erased and the new buffer size is the value given in
the init method.

See also method getBufferSize.

5.4.11.36. *NEW* setText

383

MutableBuffer Class

bb—(setText()— string)

Returns the receiving buffer, with the buffer contents set to string.

5.4.11.37. space

pad

Returns the target MutableBuffer, with n pad characters between each whitespace-delimited word.

If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for nis 1, and
the default pad character is a blank.

5.4.11.38. *NEW* startsWith

bb—(startsWith()— other)

Returns . true if the characters of the other match the characters at the start of the target buffer.
Returns . false if the characters are not a match, or if other is the null string.

The startsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

See also methods *NEW?* caselessStartsWith, *NEW* endsWith, and match.

5.4.11.39. string

Retrieves the content of the buffer as a string.

See also method *NEW* makeString .

5.4.11.40. subChar

Returns the n'th character of the receiving buffer. n must be a positive whole number. If n is greater
than the length of the receiving buffer then a zero-length string is returned.

5.4.11.41. substr

O
L length L@— pad

Returns a substring from the buffer content that begins at the n'th character and is of length length,
padded with pad if necessary. The n must be a positive integer. If n is greater than the length of the

384

MutableBuffer Class

receiving buffer, only pad characters are returned. If you omit length, the remaining buffer content is
returned. The default pad character is a blank.

5.4.11.42. subWord

()

7 length

Returns the substring of the receiving buffer that starts at the nth word and is up to length whitespace-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving buffer. The returned string never has leading or trailing whitespace
characters, but includes all whitespace characters between the selected words.

5.4.11.43. subWords

7O
0 length

Returns an array containing all words within the substring of the receiving mutablebuffer that starts at
the nth word and is up to length whitespace-delimited words. The n must be a positive whole number.
If you omit n, it defaults to 1. If you omit length, it defaults to the number of remaining words in the
receiving mutablebuffer. The strings in the returned array never have leading or trailing whitespace.

bb—' subWords(; < e

5.4.11.44. translate

translate(O O m
> J) J J

tableo tablei pad pos

O
L@— length

Returns the receiving buffer with each character translated to another character or unchanged.

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving buffer. If the character is found, the corresponding character in tableo is
replaces the character in the buffer. If there are duplicates in tablei, the first (leftmost) occurrence is
used. If the character is not found, the original character in the receiving buffer is unchanged.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the
buffer translates the entire string to pad characters. tablei defaults to XRANGE('00'x, 'ff'x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is
a blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If length is omitted, the remainder of the buffer from the
starting position to the end is used.

385

MutableBuffer Class

5.4.11.45. upper

length

Returns the receiving buffer with the characters of the target string beginning with character n for
length characters converted to uppercase. If n is specified, it must be a positive whole number. If n
is not specified, the case conversion will start with the first character. If length is specified, it must be
a non-negative whole number. If length is not specified, the default is to convert the remainder of the
buffer.

5.4.11.46. verify

>>—(verify(reference ’ m' W @‘N
"N" start \—' '— length

option

Returns a number that, by default, indicates whether the receiving buffer is composed only of
characters from reference. It returns 0 if all characters in the receiving buffer are in reference or
returns the position of the first character in the receiving buffer not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored, which can be
in uppercase or lowercase.)

If you specify Match, the method returns the position of the first character in the receiving buffer that is
in reference, or returns 0 if none of the characters are found.

The default for start is 1. Thus, the search starts at the first character of the receiving buffer. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the buffer from start to the end of the buffer. Thus, the search
proceeds to the end of the receiving buffer. You can override this by specifying a different length,
which must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if

start is greater than receiving_buffer~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

Example 5.266. MutableBuffer class — verify method

.mutablebuffer~new('123"')~verify('1234567890") -> 0]
.mutablebuffer~new('1z3"')~verify('1234567890") -> 2
.mutablebuffer~new('AB4T')~verify('1234567890"') -> 1
.mutablebuffer~new('AB4T')~verify('1234567890','M") -> 3
.mutablebuffer~new('AB4T')~verify('1234567890', 'N") -> 1
.mutablebuffer~new('1P3Q4')~verify('1234567890"', ,3) -> 4
.mutablebuffer~new('123"')~verify("",N,2) -> 2
.mutablebuffer~new('ABCDE"')~verify("", ,3) -> 3
.mutablebuffer~new('AB3CD5"')~verify('1234567890', 'M',4) -> 6
.mutablebuffer~new('ABCDEF')~verify('ABC',"N",62,3) -> 4

386

NEW MutexSemaphore Class

.mutablebuffer~new('ABCDEF')~verify('ADEF', "M",2,3) -> 4

5.4.11.47. word

Returns the nth whitespace-delimited word in the receiving buffer or the null string if the receiving
buffer has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to receiving_buffer~subwWord(n, 1).

5.4.11.48. wordindex

wordIndex(o

Returns the position of the first character in the nth whitespace-delimited word in the receiving buffer. It
returns 0 if the receiving buffer has fewer than n words. The n must be a positive whole number.

5.4.11.49. wordLength

wordLength(o

Returns the length of the nth whitespace-delimited word in the receiving buffer or 0 if the receiving
buffer has fewer than n words. The n must be a positive whole number.

5.4.11.50. wordPos

bb—(wordPos()— phrase J @—N

, start

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase
contains no words or if phrase is not found. Multiple whitespace characters between words in either
phrase or the receiving buffer are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.11.51. words

Returns the number of whitespace-delimited words in the receiving buffer.

5.4.12. *NEW* MutexSemaphore Class

A mutex, or mutual exclusion semaphore is a synchronization mechanism which concurrent activities
can use to control access to a common resource.

387

NEW MutexSemaphore Class

Mutual exclusion is the requirement that one activity, a concurrent chain of execution, never enters its
critical section at the same time that another concurrent activity enters its own critical section.

An activity acquires the mutex semaphore before entering its critical section, and releases it after the
critical section.

See also keyword instructions GUARD ON and GUARD OFF.

Table 5.47. MutexSemaphore Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

MutexSemaphore

NEW new (Class Method)

NEW acquire
NEW? release
NEW? uninit

5.4.12.1. *NEW* new (Class Method)

Returns a new MutexSemaphore instance. Initially the mutex semaphore is in the released state.

5.4.12.2. *NEW* acquire

bb—' acquire(J @—N

timeout

Returns . true if the current activity has already owned or has just acquired the mutex semaphore.
Returns . false if the mutex is owned by a different activity, or a timeout has occurred.

Nested acquires, from an activity already owning the mutex semaphore, are allowed, with each
acquire increasing the mutex nesting level by one. An equivalent number of calls to *NEW* release
are needed to make the mutex available again to another activity.

If timeout is specified it must be a TimeSpan instance or a valid Rexx number. If the value is negative
or if timeout is omitted, acquire suspends the current activity until it can get ownership of the mutex.

If timeout is zero, acquire immediately returns . true if the mutex was acquired, or . false
otherwise.

If the timeout period is positive, acquire suspends the current activity for timeout seconds or until the
current activity can acquire the mutex, whatever comes first.

If an activity still owns mutex semaphores when it ends, these semaphores will be automatically
released by the interpreter.

388

NEW MutexSemaphore Class

See also method *NEW* release.

Example 5.267. MutexSemaphore class — acquire method

mutex = .MutexSemaphore~new
.Task~new~startWork(mutex, "work 1")
.Task~new~startWork(mutex, "work 2")
say "work tasks started"

::class Task

::method startWork unguarded

expose mutex name

use strict arg mutex, name
reply

self~dowork(1)

::method dowWork unguarded

expose mutex name
use strict arg level
-- five levels of nested acquires
if level > 5 then
return
mutex~acquire
say name level
self~dowork(level + 1)

may output

work tasks started
work 2 1
work 2 2
work 2 3
work 2 4
work 2 5
work 1 1
work 1 2
work 1 3
work 1 4
15

work

5.4.12.3. *NEW* release

Returns . true if the mutex semaphore had been owned by the current activity, returns . false
otherwise.

A successful release decreases the mutex nesting level. If the nesting level has reached zero, one of
the activities, if any, waiting to acquire the mutex gets released and becomes the new owner of the
mutex.

See also method *NEW* acquire.

5.4.12.4. *NEW* uninit

389

Orderable Class

This method cleans up the mutex semaphore when it is garbage collected.

@

uninit should not be invoked directly except via an uninit method of a subclass of the
MutexSemaphore class. Any such subclassed uninit method must forward to the superclass
uninit method.

5.4.13. Orderable Class

The Orderable class can be inherited by classes which wish to provide each of the comparison
operator methods without needing to implement each of the individual methods. The inheriting class
need only implement the Comparable compareTo method.

The Orderable class is defined as a MIXIN class.

Table 5.48. Orderable Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class
Orderable (Mixin Class)

Comparison Methods = == < <= << <<= <> > >= ><>> >>= = == < \<< > \>>
CHG compareTo

5.4.13.1. *CHG* compareTo

This method compares the receiving object to the object supplied in the other argument.

This is a default implementation which compares two items based on their identityHash.

bb—[compareTo()— other —@—N

This method returns -1 if the other is larger than the receiving object, 0 if the two objects are equal,
and 1 if other is smaller than the receiving object.

@e

Classes inheriting from Orderable (like builtin classes File, DateTime, or TimeSpan) are
strongly encouraged to forward to this default implementation for comparison cases not covered
by their class-specific compareTo implementation.

390

Pointer Class

5.4.13.2. Comparison Methods

bb—(comparison_operator()— argument)

Returns . true or . false, the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared.

The comparison operators you can use in a message are:

= . true if the terms are equal

\=, ><, <> . true if the terms are not equal (inverse of =)
> Greater than

< Less than

>= Greater than or equal to

\< Not less than

<= Less than or equal to

\> Not greater than

All strict comparison operations have one of the characters doubled that define the operator. The
Orderable strict comparison operators produce the same results as the non-strict comparisons.

The strict comparison operators you can use in a message are:

== . true if terms are strictly equal

== . true if the terms are NOT strictly equal (inverse of ==

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to
\<< Strictly NOT less than

<<= Strictly less than or equal to
\>> Strictly NOT greater than

5.4.14. Pointer Class

A Pointer instance is a wrapper around a native pointer value. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The Pointer class new method will raise an error if invoked.

Table 5.49. Pointer Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Pointer

new (Class Method)

Comparison Methods = ==\=\==
isNull

391

CHG RegularExpression Class

5.4.14.1. new (Class Method)

Creating Pointer object instances directly from Rexx code is not supported. The Pointer class new
method will raise an error if invoked.

5.4.14.2. Comparison Methods

bb—[comparison_operator(argument)

Returns . true or . false, the result of performing a specified comparison operation.

For the Pointer class, the argument object must be a pointer object instance and the wrappered
pointer value must be the same.

The comparison operators you can use in a message are:

=, == . true if the wrappered pointer values are the same.
\=, ><, <>, \== . true if the wrappered pointer values are not the same.

5.4.14.3. isNull

Returns . true if the wrappered pointer value is a NULL pointer (0) value. Returns . false if the
pointer value is non-zero.

5.4.15. *CHG* RegularExpression Class

This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

@e

The RegularExpression class is not a built-in class and is not preloaded. Use : :requires
"rxregexp.cls" to activate its functionality.

Table 5.50. RegularExpression Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RegularExpression

new (Class Method)

392

CHG RegularExpression Class

match pos
parse position

Here is a description of the syntax:

| OR operator between the left and right expression

? Matches any single character

* Matches the previous expression zero or more times
Matches the previous expression one or more times
"Escape" symbol: use the next character literally

(...) Expression in parenthesis (use where needed)
{n} Matches previous expression n times (n > 1)
[-.-] Set definition: matches any single character out of the defined set.

A "N right after the opening bracket means that none of the following characters
should be matched.

A "-" (if not used with "\") defines a range between the last specified character and
the one following "-". If it is the first character in the set definition, it is used literally.

The following symbolic names (they must start and end with ":") can be used to abbreviate common
sets:

:alpha: Characters in the range A-Z and a-z
:lower: Characters in the range a-z

:upper: Characters in the range A-Z

:digit: Characters in the range 0-9

:alnum: Characters in :digit: and :alpha:
:xdigit: Charactersin :digit:, A-F and a-f
:blank: Space and tab characters

:space: Characters '09'x to '0d'x and space
:cntrl: Characters '00'xto '1f'xand '7f'x
:print: Characters in the range '20'xto '7e'x
:graph: Characters in :print: without space
:punct: All :print: characters without space and notin :alnum:

Example 5.268. RegularExpression class

rirequires '"rxregexp.cls"

"(Hi|Hello) World" Matches "Hi World" and
"Hello World".

"file.???" Matches any file with three
characters after "."

"file.?{3}" Same as above.

"a *b" Matches all strings that begin with

"a" and end with "b" and have an
arbitrary number of spaces in between

393

CHG RegularExpression Class

both.
"a +b" Same as above, but at least one space
must be present.
"file.[bd]at" Matches "file.bat" and "file.dat".
"[A-Za-z]+" Matches any string containing only
letters.
:alpha:]+ ame as above, using symbolic names.
" 1ph " S b i boli
"[rO-9]*" Matches any string containing no
numbers, including the empty string.
:digit::lower: A single character, either a digit or
"[:digit::1 " ingle ch t ith digit

a lower case character.

"This is (very)+nice." Matches all strings with one or more
occurrences of "very " between
"This is " and "nice.".

5.4.15.1. new (Class Method)
»—(m F,\)
" U .' e
&=

Instantiates a RegularExpression instance. Use the optional parameter pattern to define a regular
expression pattern that will be used to match strings. You can select the type of regular expression
matching to be “greedy” by specifying option MAXIMAL, or to be “lazy” by specifying option MINIMAL.
Option MAXIMAL is the default.

Both pattern and match type can be changed with the parse method.

M

RegularExpression defines its own init method. Any subclass which also defines its own
init method, must forward to its superclass to complete object initialization. For details see
Section 4.2.9, “Initialization”.

Example 5.269. RegularExpression class — new method

rel
re2

.RegularExpression~new
.RegularExpression~new("Hello?*")

5.4.15.2. match

»—(match(string

This method tries to match string to the regular expression set by calls to the new or parse method.

With option MAXIMAL in effect, it will successfully match only if the whole string matches. With option
MINIMAL in effect, any successful match will always start at the first character of string, but doesn't
necessarily have to cover the full string. Thus a match will always be a leading part of string.

Method match returns 0 for an unsuccessful match and 1 for a successful match.

394

CHG RegularExpression Class

Example 5.270. RegularExpression class — match method

str "<p>Paragraph 1</p><p>Paragraph 2</p>"

rel .RegularExpression~new("<p>?*</p>", "MINIMAL")
rel~match(str)

re2 = .RegularExpression~new("<p>?*</p>", "MAXIMAL")
re2~match(str)

say "rel (minimal) matched" str~substr(1, rel~position)
say "re2 (maximal) matched" str~substr(1, re2~position)

rirequires "rxregexp.cls"

Output:

rel (minimal) matched <p>Paragraph 1</p>
re2 (maximal) matched <p>Paragraph 1</p><p>Paragraph 2</p>

5.4.15.3. parse

bb—(parse(pattern 0

O

l "CURRENT" '
I "MINIMAL" l

Returns 0 after setting and successfully parsing the regular expression pattern. The new pattern will
be used to match strings specified with methods match or pos. Returns an error code otherwise.

The type of regular expression matching can be set to “greedy” by specifying option MAXIMAL, or to
“lazy” by specifying option MINIMAL. The default is to use the current matching type.

Return values:

0

Regular expression was parsed successfully.
1

An unexpected symbol was met during parsing.
2

A missing)" was found.
3

An illegal set was defined.
4

The regular expression ended unexpectedly.
5

An illegal number was specified.

395

CHG RegularExpression Class

An undefined symbolic set name was specified.

Example 5.271. RegularExpression class — parse method

patterns = "A [:alpha:]{4} fl?*.",
"?*[1]|e]?*e?*[r|g]?*",

"[invalid"
texts = "A nice flower.", -
"A yellow flower.", -
"A blue flag."
re = .RegularExpression~new

do pattern over patterns
code = re~parse(pattern)
if code == 0 then
do text over texts
say text~left(16) -
re~match(text)~?("matches", "doesn't match") "regex" pattern
end
else
say "error" code "parsing pattern" pattern
say
end

jirequires rxregexp.cls

Output:

A nice flower. matches regex A [:alpha:]{4} fl?*.
A yellow flower. doesn't match regex A [:alpha:]{4} fl?*.

A blue flag. matches regex A [:alpha:]{4} fl?*.
A nice flower. matches regex ?*[1l|e]?*e?*[r|g]?*
A yellow flower. matches regex ?*[1l|e]?*e?*[r|g]?*
A blue flag. matches regex ?*[1l|e]?*e?*[r|g]?*

error 3 parsing pattern [invalid

Example 5.272. RegularExpression class — parse method

nrs = 1, 42, 0, 5436412, "1A", "f43g"
re = .RegularExpression~new("[1-9][0-9]*")
do nr over nrs
say nr "is" re-~match(nr)~?("a valid", "an invalid") "number"
end
say

-- allow hexadecimal numbers and a single 0
re~parse("0|([1-9a-fA-F][:xdigit:]*)")
do nr over nrs

say nr "is" re~match(nr)~?("a valid", "an invalid") "number"
end

jirequires rxregexp.cls

396

CHG RegularExpression Class

Output:

1 is a valid number

42 is a valid number

0 is an invalid number
5436412 is a valid number
1A is an invalid number
f43g is an invalid number

1 is a valid number

42 is a valid number

0 is a valid number
5436412 is a valid number
1A is a valid number

f43g is an invalid number

5.4.15.4. pos

>>—(pos(haystack —@—N

This method tries to locate the regular expression set by calls to the new or parse method in the given
haystack string.

Method pos returns 0 for an unsuccessful match, or the starting position for a successful match. The
end position of the match can be retrieved with the position method.

Example 5.273. RegularExpression class — haystack method

text = "It's the year 2016!"
re = .RegularExpression~new("[1-9][0-9]*")
begin = re~pos(text)
if begin > 0 then
do
year = text~substr(begin, re~position - begin + 1)
say "Found the number" year "in this sentence."
end

r:requires rxregexp.cls

Output:

Found the number 2016 in this sentence.

5.4.15.5. position
Returns the character position at which the last parse, pos, or match method ended.

Example 5.274. RegularExpression class — position method

re = .RegularExpression~new
re~parse("[abc") -- illegal set definition
say re~position -- will be 4

397

RexxContext Class

re = .RegularExpression~new("[abc]12")

re~match("c12")

say re~position -- will be 3

re~match("a13") -- unsuccessful match

say re~position -- will be 2 (failure to match)

rirequires "rxregexp.cls"

5.4.16. RexxContext Class

The RexxContext class gives access to context information about the currently executing Rexx
code. Instances of the RexxContext class can only be obtained via the .CONTEXT environment
symbol. They cannot be directly created by the user. It is a subclass of the Object class.

Table 5.51. RexxContext Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RexxContext
args form package
condition fuzz rs
digits line stackFrames
executable name variables

5.4.16.1. args

Returns the arguments used to invoke the current context as an array. This is equivalent to using the
ARG(1, 'A') built-in function.

5.4.16.2. condition

Returns the current context condition object, or . nil if the context does not currently have a trapped
condition. This is equivalent to using the *CHG* CONDITION('0") built-in function.

5.4.16.3. digits

Returns the current context digits setting. This is equivalent to using the DIGITS built-in function.

5.4.16.4. executable

398

RexxContext Class

executable

i

Returns the current executable object for the current context. The executable will be either a Routine
object or a Method object, depending on the type of the active context.

5.4.16.5. form

g

Returns the current context form setting. This is equivalent to using the FORM built-in function.

5.4.16.6. fuzz

¢

Returns the current context fuzz setting. This is equivalent to using the FUZZ built-in function.

5.4.16.7. line

¢

Returns the context current execution line. This is equivalent to using the .L/NE environment symbol.

ut
P
=
B .m
®
=
b}
3
®

Returns the name used to invoke the current context. If the current context is a method, name is the
message name used to invoke the method. If the current context is a routine invoked as an external
call, name is the name used to call the routine. If the current context is an internal routine call, name is
the name of the label used to invoke the call. If the context is the main part of the program, name will
be the package name.

5.4.16.9. package

#

package

Returns the Package object associated with the current executable object.

5.4.16.10.rs

.

Returns the context current return status value. If no host commands have been issued in the current
context, .nil is returned. This is equivalent to using the .RS environment symbol.

5.4.16.11. stackFrames

399

RexxContext Class

Returns an Array of StackFrame objects representing the current call stack. The first item will
represent the current Rexx context and subsequent elements are earlier elements in the call stack.

5.4.16.12. variables

Returns a directory object containing all of the variables in the current execution context. The directory
keys will be the variable names and the mapped values are the values of the variables. The directory
will only contain simple variables and stem variables, but no compound variables. Compound variable
values may be accessed by using the stem objects that are returned for the stem variable names.

See also Rexx Utility function SysDumpVariables.

Example 5.275. RexxContext class — variables method

Ll
n N

a

. = .stem~new

1 =1

.["one"] = 11

dir = .Directory~new

dir["item"] = "index"

array = .Array~of("a", "e", "i")

a
b.
c
c

(9]

say "SysDumpVariables:"
call SysDumpVariables
drop result

say ".context~variables:"
variables = .context~variables
do name over variables
say "Name="name"," "Value='"variables[name]"'"
if name~right(1) = ".", variables[name]~isA(.Stem) then
do tail over variables[name]
say "Name="name]||tail"," "Value='"variables[name][tail]"'"
end
end

will output

SysDumpVariables:

Name=C.one, Value='11'
Name=DIR, Value='a Directory'
Name=B.1, Value='2'
Name=ARRAY, Value='an Array'
Name=A, Value='2'
.context~variables:
Name=ARRAY, Value='an Array'
Name=B., Value='B.'

Name=B.1, Value='2'

Name=A, Value='2'

Name=DIR, Value='a Directory'
Name=C., Value='1'
Name=C.one, Value='11'

400

NEW RexxInfo Class

5.4.17. *NEW* RexxInfo Class

The RexxInfo class gives access to Rexx language information and other platform-specific
information in a single place. Only one instance of the RexxInfo class can be obtained via the
.REXXINFO environment symbol, other instances cannot be created or copied.

RexxInfo provides read-only attribute methods to get

the default settings for NUMERIC *NEW* digits, *NEW* fuzz, and *NEW* form,

NEW? internalMaxNumber, *NEW?* internalMinNumber, and *NEW?* internalDigits, the allowed
maximum, minimum, and the number of digits of internal whole numbers used e. g. as arguments to
built-in functions, as the right-hand operand of the power (**) operator, or as the values of exprr and
exprfin a DO or LOOP instruction,

NEW maxExponent and *NEW* minExponent, the maximum and minimum allowed exponent
values of numbers in scientific notation,

the language processor *NEW* version and its sub-components *NEW* majorVersion, *NEW*
release, and *NEW* modification, and supplemental to that, the source code version control
system's *NEW* revision,

the language processor's descriptive *NEW* name, its *NEW* languageLevel, and release *NEW*
date,

the interpreter's *NEW* debug, *NEW?* platform, addressing mode of its *NEW* architecture, full
NEW? executable path, shared/dynamic *NEW?* libraryPath, and whether the interpreter is a *NEW*
debug version,

and the platform-specific values for *NEW* endofline, *NEW* pathSeparator, *NEW*
directorySeparator, *NEW* caseSensitiveFiles, *NEW* maxPathLength, and *NEW* maxArraySize.

Table 5.52. RexxInfo Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RexxInfo
NEW? architecture *NEW?* internalDigits *NEW* modification
NEW caseSensitiveFiles *NEW?* internalMaxNumber *NEW* name
NEW date *NEW?* internalMinNumber *NEW* package
NEW debug *NEW* languagelLevel *NEW* pathSeparator
NEW? digits *NEW?* libraryPath *NEW?* platform
NEW? directorySeparator *NEW* majorVersion *NEW* release
NEW endofline *NEW* maxArraySize *NEW?* revision
NEW? executable *NEW* maxExponent *NEW?* version
NEW form *NEW* maxPathLength
NEW fuzz *NEW* minExponent

5.4.17.1. *NEW?* architecture

Returns the interpreter's addressing mode, specified as a number in bits.

See also method *NEW* name.

401

NEW? RexxInfo Class

Example 5.276. RexxInfo class — architecture method

say .RexxInfo~architecture -- 32 /* ooRexx 32-bit */
say .RexxInfo~architecture -- 64 /* ooRexx 64-bit */

5.4.17.2. *NEW* caseSensitiveFiles

bb—(caseSensitiveFiles)—N

Returns . true if the file system is case-sensitive. Otherwise returns . false.

On Unix-like systems where both case-sensitive and case-insensitive file systems may be mounted,
this method returns . true if the file system root "/" is case-sensitive, and otherwise . false.

See also File class method isCaseSensitive which returns the same information.

Example 5.277. RexxInfo class — caseSensitiveFiles method

say .RexxInfo~caseSensitiveFiles -- 0 /* e. g. Windows */
say .RexxInfo~caseSensitiveFiles --1/* e. g. Unix */

5.4.17.3. *NEW* date

Returns the language processor release date as a string in the default format of the DATE built-in
function.

See also
* method *NEW* name and
» keyword instruction PARSE VERSION,

which both also return this date as the third to fifth token of their result.

Example 5.278. RexxInfo class — date method

say .RexxInfo~date -- 9 Dec 2016 /* e. g. */

5.4.17.4. *NEW* debug

Returns .true if the interpreter is a debug version, .false if it is a release version.

Example 5.279. RexxInfo class — debug method

say .RexxInfo~debug -- 0 /* release version */, 1 /* debug version */

402

NEW? RexxInfo Class

5.4.17.5. *NEW* digits

Returns the language processor default for the NUMERIC DIGITS setting.

See also

» Package method digits,

* RexxContext method digits, and
* built-in function DIGITS.

Example 5.280. RexxInfo class — digits method

say .RexxInfo~digits -- 9

5.4.17.6. *\NEW* directorySeparator

»—(directorySeparator)—N

Returns the platform-specific directory separator used by the file system, "\" on Windows, and "/" on
Unix platforms.

See also File method separator, which provides the same information.

Example 5.281. RexxInfo class — directorySeparator method

say .RexxInfo~directorySeparator -- "\" /* wWindows */
say .RexxInfo~directorySeparator -- "/" /* Unix */

5.4.17.7. *NEW* endofline

Returns a platform-specific string representing the line-end characters. It returns '0d 0a'x (carriage-
return, line-feed) on Windows, and '0a'x (line-feed) on Unix-like systems.

See also the environment symbol .ENDOFLINE, which provides the same information.

Example 5.282. RexxInfo class — endofline method

say .RexxInfo~endofline -- '0d @a'x /* Windows */
say .RexxInfo~endofline -- '@a'x /* Unix */

5.4.17.8. *NEW* executable

Returns a new File instance of the full path of the currently executing interpreter.

403

NEW? RexxInfo Class

See also method *NEW?* libraryPath.

Example 5.283. RexxInfo class — executable method

say .RexxInfo~executable -- (Windows e.g.) C:\Program Files\ooRexx\rexx.exe
say .RexxInfo~executable -- (Unix e.g.) /usr/local/bin/rexx

5.4.17.9. *NEW* form

Returns the language processor default for the NUMERIC FORM setting.

See also

» Package method form,

* RexxContext method form, and
* built-in function FORM.

Example 5.284. RexxInfo class — form method

say .RexxInfo~form -- SCIENTIFIC

5.4.17.10. *NEW* fuzz

> {f) >

Returns the language processor default for the NUMERIC FUZZ setting.

See also

» Package method fuzz,

* RexxContext method fuzz, and
* built-in function FUZZ.

Example 5.285. RexxInfo class — fuzz method

say .RexxInfo~fuzz -- 0

5.4.17.11. *NEW* internalDigits

internalDigits

Returns the NUMERIC DIGITS setting that the built-in functions use internally, which is 9 digits, when
running in 32-bit addressing mode, and 18 digits, when running in a 64-bit addressing mode.

See also method *NEW* name.

Example 5.286. RexxInfo class — internalDigits method

say .RexxInfo~internalDigits -- 9 /* 32-bit addressing mode */

404

NEW? RexxInfo Class

say .RexxInfo~internalDigits -- 18 /* 64-bit addressing mode */

5.4.17.12. *NEW?* internalMaxNumber

bb—(internaIMaxNumber)—N

Returns the maximum allowed value for internal whole numbers used e. g. as arguments to built-in
functions, as the right-hand operand of the power (**) operator, or as the values of exprr and exprf in
a DO or LOORP instruction.

See also methods *NEW* internalMinNumber and *NEW* internalDigits.
Example 5.287. RexxInfo class — internalMaxNumber method

say .RexxInfo~internalMaxNumber -- 999999999 /* 32-bit addressing mode */
say .RexxInfo~internalMaxNumber -- 999999999999999999 /* 64-bit addressing mode */

5.4.17.13. *NEW?* internalMinNumber

bb—(internalMinNumber)—N

Returns the minimum allowed value for internal whole numbers used e. g. as arguments to built-in
functions, as the right-hand operand of the power (**) operator, or as the values of exprr, and exprf, in
a DO or LOOP instruction.

See also methods *NEW* internalMaxNumber and *NEW* internalDigits.
Example 5.288. RexxInfo class — internalMinNumber method

say .RexxInfo~internalMinNumber -- -999999999 /* 32-bit addressing mode */
say .RexxInfo~internalMinNumber -- -999999999999999999 /* 64-bit addressing mode */

5.4.17.14. *NEW* languageLevel

languagelevel

Returns the language processor's language level as a decimal number.

See also
* method *NEW* name and

» keyword instruction PARSE VERSION,

which both also return the language level as the second token of their result.
Example 5.289. RexxInfo class — languagelLevel method

say .RexxInfo~languagelLevel -- 6.05 /* e. g. OORexx 5.0.0 */

405

NEW RexxInfo Class

5.4.17.15. *NEW?* libraryPath

libraryPath

Returns a new File instance of the path of the shared or dynamic libraries for the currently running
Rexx interpreter.

See also method *NEW* executable.

Example 5.290. RexxInfo class — libraryPath method

say .RexxInfo~libraryPath -- (Windows e.g.) C:\Program Files\ooRexx
say .RexxInfo~libraryPath -- (Unix e.g.) /usr/local/lib/

5.4.17.16. *NEW* majorVersion

Returns the major version number of the language processor. The major version number is the first
part of the language processor *NEW* version.

See also
* methods *NEW?* release and *NEW* modification, and
» keyword instruction PARSE VERSION.

Example 5.291. RexxInfo class — majorVersion method

say .RexxInfo~majorVersion -- 5 /* e. g. ooRexx 5.0.0 */

5.4.17.17. *NEW* maxArraySize

Returns the implementation-defined maximum allocation size allowed for Array and Queue.

Example 5.292. RexxInfo class — maxArraySize method

say .RexxInfo~maxArraySize -- 100000000 /* 32-bit addressing mode */
say .RexxInfo~maxArraySize -- 100000000000000000 /* 64-bit addressing mode */

5.4.17.18. *NEW* maxExponent

Returns the maximum allowed exponent value of a number in scientific notation.

See also method *NEW* minExponent.

406

NEW RexxInfo Class

Example 5.293. RexxInfo class — maxExponent method

say .RexxInfo~maxExponent -- 999999999

5.4.17.19. *NEW* maxPathLength

maxPathLength

Returns the maximum allowed file system path length of a fully qualified path including any filename
portion.

Example 5.294. RexxInfo class — maxPathLength method

say .RexxInfo~maxPathLength -- 259 /* e. g. on Windows */
say .RexxInfo~maxPathLength -- 4096 /* e. g. on Linux */

5.4.17.20. *NEW* minExponent

Returns the minimum allowed exponent value of a number in scientific notation.

See also method *NEW* maxExponent.

Example 5.295. RexxInfo class — minExponent method

say .RexxInfo~minExponent -- -999999999

5.4.17.21. *NEW* modification

Returns the modification number of the language processor. The modification number is the third part
of the language processor *NEW* version string.

See also
» methods *NEW* majorVersion and *NEW* release, and
» keyword instruction PARSE VERSION.

Example 5.296. RexxInfo class — modification method

say .RexxInfo~modification -- @ /* e. g. OoORexx 5.0.0 */

5.4.17.22. *NEW* name

407

NEW? RexxInfo Class

Returns the language processor's descriptive name in the format that is also returned by PARSE
VERSION, which is

 an interpreter identification string (that includes *NEW* version and *NEW* architecture),

* the interpreter *NEW* languagelLevel and

* the interpreter build *NEW* date.

See also methods *NEW* version and *NEW* languageLevel, and keyword instruction PARSE
VERSION.

Example 5.297. RexxInfo class — name method

say .RexxInfo~name -- REXX-00Rexx_5.0.0(MT)_64-bit 6.05 22 Dec 2018 /* e. g. */

5.4.17.23. *NEW?* package

Returns a Package instance of all Rexx-defined (namespace "REXX") classes.

See Package class.

Example 5.298. RexxInfo class — package method

say .RexxInfo~package~publicClasses~items -
"Rexx-defined public classes" -- 56 Rexx-defined public classes /* e. g. */

5.4.17.24. *NEW?* pathSeparator

pathSeparator

Returns the platform-specific path separator used used for file search paths, ";" on Windows, and ":"
on Unix platforms.

See also File method pathSeparator.

Example 5.299. RexxInfo class — pathSeparator method

say .RexxInfo~pathSeparator -- ";" /* Windows */
say .RexxInfo~pathSeparator -- """ /* Unix */

5.4.17.25. *NEW* platform

Returns the name of the interpreter operating system as a string, e. g. WindowsNT for a Windows, or
LINUX for a Linux system.

408

NEW? RexxInfo Class

See also keyword instruction PARSE SOURCE, which returns the same information as its first token.
Example 5.300. RexxInfo class — platform method

say .RexxInfo~platform -- WindowsNT
say .RexxInfo~platform -- LINUX

5.4.17.26. *NEW?* release

release

Returns the release number of the language processor. The release number is the second part of the
language processor *NEW* version string.

See also
* methods *NEW* majorVersion and *NEW* modification, and
» keyword instruction PARSE VERSION.

Example 5.301. RexxInfo class — release method

say .RexxInfo~release -- 0 /* e. g. OoORexx 5.0.0 */

5.4.17.27. *NEW?* revision

Returns the source code version control system's revision from which this language processor was
built. Rexx code should not rely on the format returned.

See also keyword instruction PARSE VERSION.
Example 5.302. RexxInfo class — revision method

say .RexxInfo~revision -- 11636 /* e. g. */

5.4.17.28. *NEW* version

Returns the version number of the language processor. The version number consists of the *NEW*
major\Version, followed by a decimal point, the *NEW?* release, followed by another decimal point, and
the *NEW* modification.

Example 5.303. RexxInfo class — version method

say .RexxInfo~version -- 5.0.0 /* e. g. */

409

RexxQueue Class

5.4.18. RexxQueue Class

The RexxQueue class provides object-style access to Rexx external data queues.

Table 5.53. RexxQueue Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

RexxQueue
new (Inherited Class Method)
create (Class Method)
delete (Class Method)
exists (Class Method)
open (Class Method)
delete lineOut queued
empty makeArray say
get pull set
init push
lineln queue

5.4.18.1. new

S RO

name

Returns a new RexxQueue instance associated with the Rexx external data queue named name.

If name is omitted, the SESSION queue is used. If name is specified as .nil the new RexxQueue
instance is associated with a newly created Rexx external data queue with a system-generated name.
If name is specified and an external data queue named name exists, it is opened. If such a data queue
does not exist, it is created.

Example 5.304. RexxQueue class — new method

q = .RexxQueue~new

g~queue("line")

g~push("header")

say gq~queued g~pull -- 2 header
g~delete

5.4.18.2. create (Class Method)

() D

name

Returns the name of a newly created Rexx external data queue, which will be either name if no
external data queue named name already exists, or, a system-generated name if name is omitted or
the external data queue name already exists.

410

RexxQueue Class

See also method open (Class Method).
Example 5.305. RexxQueue class — create method

-- no MYQUEUE queue exists

say .RexxQueue~create("myqueue") -- MYQUEUE
-- MYQUEUE queue already exists
say .RexxQueue~create('"myqueue") -- SOOOEEOEEEEEEEE4B48QOOOOO1EIBEE6G6F20 (e. g.)

5.4.18.3. delete (Class Method)

»—(delete(name —@—N

Returns 0 if the external Rexx named queue named name was successfully deleted. Non-zero results
are the error codes from the RexxDeleteQueue() programming interface.

5.4.18.4. exists (Class Method)

»—(exists(name —@—N

Returns . true if the external data queue name currently exists, otherwise returns . false.

Example 5.306. RexxQueue class — exists method

say .RexxQueue~exists("SESSION") -- 1

5.4.18.5. open (Class Method)

»—(open(name)

Returns 0 if the external Rexx named queue name exists, or, if it doesn't exist, can be successfully
created. Non-zero results are the error codes from the RexxOpenQueue() programming interface.

5.4.18.6. delete

Returns 0 if the external Rexx named queue associated with this RexxQueue instance was
successfully deleted. Non-zero results are the error codes from the RexxDeleteQueue() programming
interface.

Calling the lineOut, pull, push, queue, or say method of a RexxQueue instance with a deleted external
data queue will result in an error.

5.4.18.7. empty

411

RexxQueue Class

Removes all items from the Rexx external queue associated with this RexxQueue instance. Returns
0 upon success, non-zero results are the error codes from the RexxClearQueue() programming
interface.

5.4.18.8. get

Returns the name of the Rexx external queue associated with this instance.

5.4.18.9. init

S A==—yaUle

M

RexxQueue defines its own init method. Any subclass which also defines its own init
method, must forward to its superclass to complete object initialization. For details see
Section 4.2.9, “Initialization”.

5.4.18.10. lineln

Reads a single line from the Rexx external queue. If the queue is empty, 1ineIn will wait until a line is
added to the queue.

5.4.18.11. lineOut

lineOut(

line

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string (") is added.

5.4.18.12. makeArray

Returns a single-index array with the same number of items as the receiver object. Items in the new
array will have the same order as the items in the external queue. The external queue is emptied.

412

NEW? Singleton Class (Metaclass)

5.4.18.13. pull

Reads a line from the Rexx external queue. If the queue is currently empty, this method will
immediately return . nil without waiting for lines to be added to the queue.

5.4.18.14. push

push()

line

Adds a line to the Rexx external queue in last-in-last-out (LIFO) order. If line is not specified, a null
string (") is added.

5.4.18.15. queue

queue()

line

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string (") is added.

5.4.18.16. queued

Returns the count of lines currently in the Rexx external queue.
5.4.18.17. say

say()

line

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string (") is added.

5.4.18.18. set

»—(set(name —@—N

Switches the Rexx external queue associated with the RexxQueue instance. The new queue must
have been previously created. The method return value is the name of current queue being used by
the instance.

5.4.19. *NEW* Singleton Class (Metaclass)

413

NEW? Singleton Class (Metaclass)

The Singleton class is a metaclass (a subclass of the ooRexx metaclass Class) which can be used
for any ooRexx class, if the programmer wishes only a single instance of a class to be created. In this
case the class directive needs to denote Singleton in its METACLASS option.

This class is defined as a MXIN class.

Table 5.54. Singleton Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Singleton

new (Class Method)

5.4.19.1. new (Class Method)

This metaclass makes sure that only a single instance of a class can be created, a singleton. After a
singleton got created each time a NEW message gets sent to the class will cause that singleton to be
returned. The metaclass Sihgleton makes also sure that the singleton object will return itself upon
receiving the COPY message by defining a proper COPY method for the singleton.

Example 5.307. Employing the Singleton (meta)class

The following program defines a class TEST which makes sure that each instance has a unique
number in its instance attribute nr. The TESTSINGLETON subclass uses the METACLASS
Singleton option to make sure that it only creates a single instance, a singleton. The program will
loop over the classes TEST and TESTSINGLETON, creates three instances of each and displays the
value of the instance attribute nr and the identityHash value of each instance, which uniquely
identifies each each instance of a class (cf. the MAKESTRING definition).

#!/usr/bin/env rexx
do clz over .test, .testSingleton -- iterate over the two classes
rounds=3
say "creating" rounds "objects of type:" clz
do i=1 to rounds
say " round #" i":" clz~new -- create new instance
end
say
end

/* */
/** This Test class counts the number of instances that get created for it. */
::class Test

A class method and class attribute definitions -------------- */
::method init class -- class constructor
expose counter
counter=0 -- make sure attribute is initialized to @
::attribute counter get private class -- getter method that increases counter
expose counter -- access attribute
counter+=1 -- increase counter by 1
return counter -- return new counter value
A instance method and instance attribute definitions -------- */
::attribute nr get -- getter method
::method init -- constructor that sets the value of attribute nr
expose nr -- expose attribute

414

StackFrame Class

nr=self~class~counter -- new instance: fetch new counter from class and save it
::method makestring -- a string representation of the object
expose nr -- expose attribute

-- return a string representation
return "a" self~class~id"[nr="nr", identityHash="self~identityHash"]"

/* */
/** This class makes sure that only a single instance of it gets created by

* using Singleton as its metaclass.

*/

::class TestSingleton subclass Test metaclass Singleton

Output of running the above program (the hash values may differ on each run):

creating 3 objects of type: The TEST class
round # 1: a TEST[nr=1,identityHash=-49085937]
round # 2: a TEST[nr=2,identityHash=-49089489]
round # 3: a TEST[nr=3,identityHash=-49093009]
creating objects of type: The TESTSINGLETON class
round 1: a TESTSINGLETON[nr=1, identityHash=-49114993]

3

#
round # 2: a TESTSINGLETON[nr=1,identityHash=-49114993]
round # 3: a TESTSINGLETON[nr=1,identityHash=-49114993]

As can be seen from the output there are three distinct instances of the class TEST, however the three
instances of the class TESTSINGLETON are identical (cf. the values of nr and identityHash).

5.4.20. StackFrame Class

The StackFrame class gives access to execution information about an executing Rexx activity.
Instances of the StackFrame class can be obtained via the .CONTEXT environment symbol or from a
condition object created for a trapped condition. A StackFrame instance represents an instance of an
execution unit on the current activity's call stack. It provides information on code location, arguments,
etc. that are useful for debugging and problem determination. StackFrame instances cannot be directly
created by the user.

Table 5.55. StackFrame Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

StackFrame
arguments makeString target
executable name tracelLine
line string type

5.4.20.1. arguments

Returns the arguments used to invoke the execution frame represented by the StackFrame instance.

415

StackFrame Class

5.4.20.2. executable

Returns the executable object for the StackFrame context. The executable will be either a Routine
object or a Method object, depending on the type of the StackFrame element.

5.4.20.3. line

Returns the current line number of the StackFrame context. If the frame instance is not Rexx code (e.
g. compiled native code), .nil is returned.

5.4.20.4. makeString

Returns the frame fraceLine value as the object's string value.

5.4.20.5. name

Returns the name associated with the stack frame context. The name meaning depends on the type of

context.

« If the stack frame context is a method invocation, name is the message name used to invoke the
method.

« |f the stack frame context is a routine invocation, name is the routine.

If the stack frame context is an internal routine invocation, name is the label name used to invoke
the internal routine.

If the stack frame context is the initial main part of a Rexx program, name is the name of the file
containing the program.

If the stack frame context is an INTERPRET instruction, a zero-length string is returned.

5.4.20.6. string

Returns the frame traceLine value as the object's string value.

5.4.20.7. target

416

StackFrame Class

Returns the object the method was invoked against, if the StackFrame type is METHOD. Returns .nil
for all other StackFrame types.

5.4.20.8. traceLine

Returns the trace back line that would be displayed for error message trace. When possible, this will
be the source line of the Rexx code in the call stack. If source is not available, the trace back will
identify the method or routine belonging to the stack frame.

5.4.20.9. type

Returns the type of invocation for this stack frame. Possible values are:
PROGRAM
The stack frame is the top level of a program.

METHOD
The stack frame is a method invocation.

ROUTINE
The stack frame is a routine invocation.

INTERPRET
The stack frame is code created by an INTERPRET instruction.

INTERNALCALL
The stack frame is a subroutine or function call to an internal label.

COMPILE
The stack frame for compiling Rexx code for execution. Many syntax errors will be reported by a
COMPILE frame.

Example 5.308. StackFrame class — type method

interpret "call level2" 21

r:routine level2
call level3 31, 32
return

level3: procedure
signal on syntax

.Method~new("", "~~")

return

syntax:

do f over condition("o")["STACKFRAMES"]
say (f~type f~name"("f~arguments~makeString(, ",")")")~left(27) f~line":" -
f~traceLine~strip

end

may output

417

StreamSupplier Class

COMPILE () 1: 1 *-* ~~

METHOD NEW(,~~) The NIL object: *-* Compiled method "NEW" with scope "Method".
INTERNALCALL LEVEL3(31,32) 9: 9 *-* .Method~new("", "~~")

ROUTINE LEVEL2(21) 4: 4 *-* call level3 31, 32

INTERPRET () 1: 1 *-* call level2 21

PROGRAM C:\stackFrame.rex() 1: 1 *-* interpret "call level2" 21

5.4.21. StreamSupplier Class

A subclass of the Supplier Class that provides stream lines using supplier semantics. This allows the
programmer to iterate over the remaining lines in a stream. A StreamSupplier object provides a
snapshot of the stream at the point in time it is created, including the current line read position. In
general, the iteration is not affected by later changes to the read and write positioning of the stream.
However, forces external to the iteration may change the content of the remaining lines as the iteration
progresses.

Table 5.56. StreamSupplier Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Supplier

Methods inherited from the Supplier class
new (Class Method)
alllndexes index supplier
allltems item
available next

StreamSupplier
available init next
index item

5.4.21.1. available

Returns . true if an item is available from the supplier (that is, if the item method would return a
value). It returns . false if the collection is empty or the supplier has already enumerated the entire
collection.

5.4.21.2. index

Returns the index of the current item in the collection. If no item is available, that is, if available
would return . false, the supplier raises an error.

418

Supplier Class

5.4.21.3. init

Initializes the object instance.

5.4.21.4. item

:

Returns the current item in the collection. If no item is available, that is, if available would return
.false, the supplier raises an error.

5.4.21.5. next

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as
available returns . true), you can enumerate all items in the collection. If no item is available, that
is, if available would return . false, the supplier raises an error.

5.4.22. Supplier Class

A Supplier object is an iterator that allows the enumeration of an items Collection together with an
indexes Collection. All objects inheriting from Collection Class provide a supplier method, that returns
a snapshot of the Collection as a Supplier object, which allows iteration using the DO/LOOP WITH
instruction. The iteration results are not affected by later changes to the source Collection object.

Table 5.57. Supplier Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Supplier
new (Class Method)
allindexes index supplier
allltems item
available next

5.4.22.1. new (Class Method)

bb—(new(items) indexes)

Returns a new supplier object. The items argument must be an array of objects over which the
supplier iterates. The indexes argument is an array of index values with a one-to-one correspondence
to the objects contained in the items array. The created supplier iterates over the arrays, returning
elements of the values array in response to items messages, and elements of the indexes array in

419

Supplier Class

response to index messages. The supplier iterates for the number of items contained in the values
array, returning . nil for any nonexistent items in either array.

5.4.22.2. allindexes

Returns an array of all index values from the current supplier position to the end of the supplier. Once
allIndexes is called, no additional items can be retrieved from the supplier. Calls to available will
return . false.

5.4.22.3. allitems

Returns an array of all items from the current supplier position to the end of the supplier. Once
allItems is called, no additional items can be retrieved from the supplier. Calls to available will
return . false.

5.4.22.4. available

Returns . true if an item is available from the supplier (that is, if the item method would return a
value). It returns . false if the collection is empty or the supplier has already enumerated the entire
collection.

5.4.22.5. index

Returns the index of the current item in the collection. If no item is available, that is, if available
would return . false, the supplier raises an error.

5.4.22.6. item

Returns the current item in the collection. If no item is available, that is, if available would return
.false, the supplier raises an error.

5.4.22.7. next

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as
available returns . true), you can enumerate all items in the collection. If no item is available, that
is, if available would return . false, the supplier raises an error.

420

NEW? Ticker Class

5.4.22.8. Examples

Example 5.309. Supplier class

desserts=.array~of (apples, peaches, pumpkins, 3.14159) /* Creates array */

say "The desserts we have are:"

baker=desserts~supplier /* Creates supplier object named BAKER */
do while baker~available /* Array suppliers are sequenced */

if baker~index=4
then say baker~item "is pi, not pie!!!"
else say baker~item
baker~next
end

/* Produces: */
/* The desserts we have are: */

/* APPLES */
/* PEACHES */
/* PUMPKINS */

/* 3.14159 is pi, not pie!!! */

5.4.22.9. supplier

Returns the target supplier as a result. This method allows an existing supplier to be passed to
methods that expect an object that implements a supplier method as an argument.

5.4.23. *NEW?* Ticker Class

The Ticker class provides a repeating notification capability by sending a notification message to a

notification target each trigger interval.

A Ticker object can be cancelled any time. If cancelled, a cancel naotification message will be sent to

the notification target.

Table 5.58. Ticker Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Ticker

NEW? attachment *NEW?* canceled/cancelled
NEW? cancel *NEW?* init

NEW? interval

5.4.23.1. *NEW* attachment

Returns the object that has been attached to the Ticker instance upon creation. Returns .nil if no

object is attached.

421

NEW? Ticker Class

See method *NEW* init .

Example 5.310. Ticker class — attachment method

eachSecond = .Ticker~new(1, .Target~new, "once each second")
call SysSleep 1.5 -- will trigger once
eachSecond~cancel

::class Target inherit AlarmNotification

::method triggered -- called each interval
use arg ticker
say ticker~attachment -- displays "once each second"

5.4.23.2. *NEW* cancel

Cancels the Ticker represented by the receiver.

See also method *NEW* canceled/cancelled .

Example 5.311. Ticker class — cancel method

twiceASecond = .Ticker~new(0.5, .Target~new)
call SysSleep 0.25 -- too short for Ticker
twiceASecond~cancel -- "ticker cancelled"

::class Target inherit AlarmNotification

::method triggered -- called each interval
say "ticker triggered"
::method cancel -- called when cancelled

say "ticker cancelled"

5.4.23.3. *NEW* canceled/cancelled

canceled

ancelled

Ci

Returns . true if the ticker has been cancelled. Returns . false otherwise.

See also method *NEW* cancel .

Example 5.312. Ticker class — canceled/cancelled method

tick = .Ticker~new(0.5 , .message~new(.stdout, "SAY", "I", "knock, knock"))

call SysSleep 0.75 -- knock, knock

say "Ticker" tick~cancelled~?("cancelled", "not cancelled") -- Ticker not cancelled
call SysSleep 0.5 -- knock, knock
tick~cancel

say "Ticker" tick~cancelled~?("cancelled", "not cancelled") -- Ticker cancelled

422

NEW? Ticker Class

5.4.23.4. *NEW* init

bb—(init(interval o target < @—N

attachment

Sets up a Ticker with a specified interval. After each interval, the Ticker sends a message triggered
to the specified notification target.

The target must be an object that implements the AlarmNotification interface. It must inherit from or
be a subclass of the AlarmNotification class, or a Message object (as the Message class inherits from
AlarmNotification). If target is a Message object, the *NEW* triggered method of the Message class
will respond by simply sending the specified message.

The interval can be a TimeSpan or a String object. If it is
» a TimeSpan, it must be of a non-negative length, which specifies the interval time length.
» a String, it must be a non-negative number which specifies the interval time length in seconds.

If specified, attachment can be an arbitrary object that will be attached to the Ticker instance, and can
later be retrieved in the event handler. See method *NEW* attachment .

You can use the *NEW* cancel method at any time to cancel a Ticker. If cancelled, the Ticker sends
message cancel to the specified notification target.

The following code uses a Ticker to display progress information during a long-running task.
Example 5.313. Ticker class — init method

.Progress~new(0.5)~monitor(.Task~new, "tenSeconds")

-- defines tasks together with their "progress" methods
::class Task

-- long-running task
::method tenSeconds unguarded
expose m n
n = 1000
dom=1ton -- long-running task
call SysSleep 0.01
end
return

-- returns running value to be displayed as progress
::method "tenSeconds-progress" unguarded

expose m n

return m"/"n "steps done"

-- runs task while displaying progress text at each interval
::class Progress inherit AlarmNotification

-- set progress interval
::method init unguarded
expose interval
use strict arg interval = 1

-- starts ticker, runs task, and returns task result

-- (requires names of task and progress methods)

::method monitor
expose interval object progress
use strict arg object, task, progress = (task"-progress")
tick = .Ticker~new(interval, self)

423

TimeSpan Class

object~send(task)
tick~cancel

-- displays progress text at each ticker interval
::method triggered unguarded

expose object progress
.stdout~charOut(object~send(progress) '0d'x)

5.4.23.5. *NEW?* interval

Returns a TimeSpan object representing the interval to which the Ticker has been set.

See also method *NEW?* init .

Example 5.314. Ticker class — interval method

say .Ticker~new(.TimeSpan~fromSeconds(60), -
.Message~new(.stdout, "say", "i", -
"another minute has passed"))~interval -- 00:01:00.000000

5.4.24. TimeSpan Class

A TimeSpan object represents a time interval with microsecond resolution. The interval may be
positive or negative, with a maximum duration of 3652059 days less one microsecond (which
approximately equals 9999 years less one microsecond). A TimeSpan object has methods to allow
retrieving components like days or seconds, adding to components, as well as allowing arithmetic
operations between TimeSpan objects.

Table 5.59. TimeSpan Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Orderable (Mixin Class)

Methods inherited from the Orderable class
Comparison Methods = == < <= << <<= <> > >=>< >> >>= \= \== \< << \> \>>
CHG compareTo

+ Comparable (Mixin Class)

Methods inherited from the Comparable class

CHG compareTo

TimeSpan
new (Inherited Class Method) fromMicroseconds (Class Method)
fromCivilTime (Class Method) fromMinutes (Class Method)
fromDays (Class Method) fromNormalTime (Class Method)
fromHours (Class Method) fromSeconds (Class Method)
fromLongTime (Class Method) fromStringFormat (Class Method)
Arithmetic Methods +-*//[% days seconds

424

TimeSpan Class

addDays duration sign

addHours hashCode string
addMicroseconds hours totalDays
addMinutes init totalHours
addSeconds *NEW* makeString totalMicroseconds
addWeeks microseconds totalMinutes
compareTo minutes totalSeconds

5.4.24.1. fromDays (Class Method)

>>—(fromDays()— days)

Creates a TimeSpan object from a number of days. The days argument must be a valid Rexx number.

5.4.24.2. fromHours (Class Method)

»—(fromHours(hours

Creates a TimeSpan object from a number of hours. The hours argument must be a valid Rexx
number.

5.4.24.3. fromMinutes (Class Method)

>>—(fromMinutes(minutes)

Creates a TimeSpan object from a number of minutes. The minutes argument must be a valid Rexx
number.

5.4.24.4. fromSeconds (Class Method)

>>—(fromSeconds(seconds —@—N

Creates a TimeSpan object from a number of seconds. The seconds argument must be a valid Rexx
number.

5.4.24.5. fromMicroseconds (Class Method)

bb—(fromMicroseconds(microseconds)

Creates a TimeSpan object from a number of microseconds. The microseconds argument must be a
valid Rexx number.

5.4.24.6. fromNormalTime (Class Method)

>>—(fromNormaITime()— time)

Creates a TimeSpan object from a string returned by the Normal option of the TIME built-in function
(hh:mm:ss). The TimeSpan will contain an interval equal to the time of day represented by the string.

425

TimeSpan Class

5.4.24.7. fromCivilTime (Class Method)

bb—(fromcivilTime()— time)

Creates a TimeSpan object from a string returned by the Civil option of the TIME built-in function
(hh:mmxx). The TimeSpan will contain an interval equal to the time of day represented by the string.

5.4.24.8. fromLongTime (Class Method)

»—(fromLongTime(time —@—N

Creates a TimeSpan object from a string returned by the Long option of the TIME built-in function
(hh:mm:ss.uuuuuu). The TimeSpan will contain an interval equal to the time of day represented by the
string.

5.4.24.9. fromStringFormat (Class Method)

bb—(fromStringFormat()— time)

Creates a TimeSpan object from a string in the format returned by the TimeSpan string method.

5.4.24.10. init

init(fullDate —@ ><
init(hours o minutes G\'

’ seconds
init(days 0 hours 0 minutes 0 seconds)

0 microseconds

Initializes a new TimeSpan instance. If the single fulldate argument is used, the TimeSpan argument
is initialized to the time span fulldate microseconds. Otherwise, the TimeSpan instance is initialized
to either the hours, minutes, and seconds or the days, hours, minutes, seconds, and microseconds
components. Each of these components must be a valid whole number within the acceptable range
for the given component. For example, hours must be in the range 0-23, while minutes must be in the
range 0-59.

Example 5.315. TimeSpan class

span = .TimeSpan~new(time('F', "15:37:30", "N")) -- 15:37:30.000000
span = .TimeSpan~new(15, 37, 30) -- 15:37:30.000000
span = .TimeSpan~new(6, 4, 33, 15, 100) -- 6.04:33:15.000100

5.4.24.11. Arithmetic Methods

arithmetic_operator (argument)

426

TimeSpan Class

@e

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver TimeSpan object.
Depending on the operation, the argument be either a TimeSpan object, a DateTime object, or a
number. See the description of the individual operations for details. The arithmetic_operator can be:

+ Addition. If argument is a DateTime object, the TimeSpan is added to the DateTime
object, returning a new DateTime instance. Neither the receiver TimeSpan or the
argument DateTime object is altered by this operation. The TimeSpan may be
either positive or negative.

If argument is a TimeSpan object, the two TimeSpans are added together, and a
new TimeSpan instance is returned. Neither the TimeSpan object is altered by this
operation.

- Subtraction. The argument must be a TimeSpan object. The argument TimeSpan is
subtracted from the receiver TimeSpan and a new TimeSpan instance is returned.
Neither the TimeSpan object is altered by this operation.

* Multiplication. The argument must be a valid Rexx number. The TimeSpan is
multiplied by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation.

/ Division. The argument must be a valid Rexx number. The TimeSpan is divided
by the argument value, and a new TimeSpan instance is returned. The receiver
TimeSpan object is not altered by this operation. The / operator and % produce the
same result.

% Integer Division. The argument must be a valid Rexx number. The TimeSpan is
divided by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation. The / operator and %
produce the same result.

1 Remainder Division. The argument must be a valid Rexx number. The TimeSpan
is divided by the argument value and the division remainder is returned as a new
TimeSpan instance. The receiver TimeSpan object is not altered by this operation.

Prefix - The TimeSpan is negated, returning a new TimeSpan instance. The receiver
TimeSpan is not altered by this operation.

Prefix + Returns a new instance of the TimeSpan object with the same time value.

Example 5.316. TimeSpan class

tl1 = .timespan~fromHours(1)

t2 = t1 * 2

-- displays "01:00:00.000000 02:00:00.000000 03:00:00.000000"
say t1 t2 (t1 + t2)

427

TimeSpan Class

5.4.24.12. compareTo

compareTo()— other)

This method returns -1 if the other is larger than the receiving object, 0 if the two objects are equal,
and 1 if other is smaller than the receiving object.

1

5.4.24.13. duration

$

Returns a new TimeSpan object containing the absolute value of the receiver TimeSpan object.

o
P
N
. P
[
P
Q.
<1}
<
7

days

Returns the number of whole days in the TimeSpan, as a positive number.

5.4.24.15. hours

i

Returns the hours component of the TimeSpan, as a positive number.

5.4.24.16. minutes

$

Returns the minutes component of the TimeSpan, as a positive number.

5.4.24.17. seconds

3

Returns the seconds component of the TimeSpan, as a positive number.

5.4.24.18. *NEW* makeString

|

Returns the time span formatted as a string in the format -dddddddd . hh:mm: ss.uuuuuu. This is an
alias of the string method.

5.4.24.19. microseconds

428

TimeSpan Class

microseconds

I

Returns the microseconds component of the TimeSpan, as a positive number.

5.4.24.20. totalDays

i

totalDays

Returns the time span expressed as a number of days. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.21. totalHours

i

Returns the time span expressed as a number of hours. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.22. totalMinutes

totalMinutes

|

Returns the time span expressed as a number of minutes. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.23. totalSeconds

totalSeconds

I

Returns the time span expressed as a number of seconds. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.24.24. totalMicroseconds

|

totalMicroseconds

Returns the time span expressed as a number of microseconds. The result retains the sign of the
receiver TimeSpan.

5.4.24.25. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory.

i

5.4.24.26. addWeeks

429

TimeSpan Class

bb—(addWeeks()— weeks)

Adds weeks to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The weeks value must be a valid number, including fractional values. Negative
values result in week being subtracted from the TimeSpan value.

5.4.24.27. addDays

>>—(addDays(days

Adds days to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan object
is unchanged. The days value must be a valid number, including fractional values. Negative values
result in days being subtracted from the TimeSpan value.

5.4.24.28. addHours

bb—(addHours(hours —@—N

Adds hours to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The hours value must be a valid number, including fractional values. Negative
values result in hours being subtracted from the TimeSpan value.

5.4.24.29. addMinutes

bb—(addMinutes(minutes)

Adds minutes to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The minutes value must be a valid number, including fractional values. Negative
values result in minutes being subtracted from the TimeSpan value.

5.4.24.30. addSeconds

bb—(addSeconds(seconds)

Adds seconds to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The seconds value must be a valid number, including fractional values. Negative
values result in seconds being subtracted from the TimeSpan value.

5.4.24.31. addMicroseconds

bb—(addMicroseconds()— microseconds)

Adds microseconds to the TimeSpan object, returning a new TimeSpan instance. The receiver
TimeSpan object is unchanged. The microseconds value must be a valid whole number. Negative
values result in microseconds being subtracted from the TimeSpan value.

5.4.24.32. sign

430

NEW? Validate Class

Returns -1 if the TimeSpan duration is negative, 1 if it is positive, and 0 if it is zero.

See also method duration.

5.4.24.33. string

Returns TimeSpan formatted as a string. The string value is in the format -

dddddddd . hh:mm: ss. uuuuuu. If the TimeSpan is positive or zero, the sign is omitted. The days
field will be formatted without leading zeros or blanks. If the TimeSpan duration is less than a day, the
days field and the period separator will be omitted.

5.4.25. *NEW* Validate Class

The Validate class provides class methods helping with validating arguments being of correct class,
logical or numeric type, or within a numeric range.

Table 5.60. Validate Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Validate
NEW? classType (Class Method) *NEW?* position (Class Method)
NEW length (Class Method) *NEW* positiveNumber (Class Method)
NEW logical (Class Method) *NEW* positiveWholeNumber (Class Method)
NEW nonNegativeNumber (Class Method) *NEW* requestClassType (Class Method)
NEW nonNegativeWholeNumber (Class *NEW* wholeNumber (Class Method)
Method)
NEW number (Class Method) *NEW* wholeNumberRange (Class Method)

NEW numberRange (Class Method)

5.4.25.1. *NEW* classType (Class Method)

»—(classType(name 7 object 0 class —@—N

Validates that object is an instance of class class.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method *NEW?* requestClassType (Class Method).

5.4.25.2. *NEW* length (Class Method)

431

NEW? Validate Class

bb—(length()— name o number o J @—N

digits

Validates that number is zero or a positive whole number under NUMERIC DIGITS digits. If digits is
not specfied, it defaults to *NEW?* internalDigits.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods position and nonNegative\WholeNumber.

5.4.25.3. *NEW* logical (Class Method)

bb—(logical()— name o number)

Validates that number is either . true or . false.

Raises a syntax error for argument name if the validation fails, else returns with no result.

5.4.25.4. *NEW* nonNegativeNumber (Class Method)

»—(nonNegativeNumber(name ’ number —O @—N

digits

Validates that number is zero or a positive Rexx number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods positiveNumber and nonNegativeWholeNumber.

5.4.25.5. *NEW* nonNegativeWholeNumber (Class Method)

»—(nonNegativeWholeNumber(name o number —O @—N

digits

Validates that number is zero or a positive whole number under NUMERIC DIGITS digits. If digits is
not specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods positiveWholeNumber and nonNegativeNumber.

5.4.25.6. *NEW* number (Class Method)

»—(number(name 0 number —@—N

Validates that number is a valid Rexx number.

432

NEW? Validate Class

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method wholeNumber.

5.4.25.7. *NEW* humberRange (Class Method)

bb—(numberRange()— name o number - min - max - e @—N

digits

Validates that number is a valid Rexx number in the range min to max, with comparisons done under
NUMERIC DIGITS digits. If digits is not specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method wholeNumberRange.

5.4.25.8. *NEW* position (Class Method)

bb—(position()— name o number o J @—N

digits

Validates that number is a positive whole number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to *NEW* internalDigits.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods length and positiveWholeNumber.

5.4.25.9. *NEW?* positiveNumber (Class Method)

>>—(positiveNumber()— name ’ number ' J @—N

digits

Validates that number is a positive Rexx number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods nonNegativeNumber and positiveWholeNumber.

5.4.25.10. *NEW* requestClassType (Class Method)

bb—(requestClassType(name ’ object P class)

Validates that object can be converted to an instance of class class by sending it a request
message.

If successful, it returns the converted object, otherwise it raises a syntax error for argument name.

433

NEW? VariableReference Class

See also method *NEW?* classType (Class Method).

5.4.25.11. *NEW* positiveWholeNumber (Class Method)

bb—(positiveWholeNumber(name ’ number —O @—N

digits

Validates that number is a positive whole number under NUMERIC DIGITS digits. If digits is not
specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also methods nonNegativeWholeNumber and positiveNumber.

5.4.25.12. *NEW* wholeNumber (Class Method)

bb—(wholeNumber(name o number —O @—N

digits

Validates that number is a whole number under NUMERIC DIGITS digits. If digits is not specfied, it
defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method number.

5.4.25.13. *NEW* wholeNumberRange (Class Method)

bb—(wholeNumberRange(name o number 0 min 0 max —O @—N

digits

Validates that number is a valid whole number in the range min to max, with comparisons done under
NUMERIC DIGITS digits. If digits is not specfied, it defaults to 9.

Raises a syntax error for argument name if the validation fails, else returns with no result.

See also method numberRange.

5.4.26. *NEW* VariableReference Class

A VariableReference instance maintains a reference to another object. It can only be created
using a *NEW* Variable Reference Term. Calling the new method to create a VariableReference
instance is not allowed.

Table 5.61. VariableReference Class

Object

Methods inherited from the Object class

Class (Metaclass)

434

NEW? VariableReference Class

Methods inherited from the Class class

VariableReference

NEW name *NEW* unknown
NEW? request *NEW?* value (Attribute)

5.4.26.1. *NEW* name

Returns the name of the variable referenced.

See also method *NEW?* value (Attribute).

Example 5.317. VariableReference class — name method

variable = 123
say >variable~name -- VARIABLE

5.4.26.2. *NEW* request

>>—(request()— classid)

Forwards to the request method of the referenced variable.

5.4.26.3. *NEW* unknown

Forwards to the unknown method of the referenced variable.

5.4.26.4. *NEW* value (Attribute)

value

value = object

value get:
Returns the current value of the referenced variable.

value set:
Sets the value of the referenced variable to object.

See also method *NEW* name.

Example 5.318. VariableReference class — value method

array = 1, 2, 3

435

WeakReference Class

say >array~class~id -- VariableReference
say >array~value~class~id -- Array

say >array~value~toString(, ", ") --1, 2, 3

-- this also works because we have an UNKNOWN method

say >array~toString(, ", ") --1, 2, 3

5.4.27. WeakReference Class

A WeakReference instance maintains a non-pinning reference to another object. A non-pinning
reference does not prevent an object from getting garbage collected or having its uninit method run
when there are no longer normal references maintained to the object. Once the referenced object is
eligible for garbage collection, the reference inside the WeakReference instance will be cleared and
the value method will return .nil on all subsequent calls. WeakReferences are useful for maintaining
caches of objects without preventing the objects from being reclaimed by the garbage collector when
needed.

Table 5.62. WeakReference Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

WeakReference

new (Class Method)

value

5.4.27.1. new (Class Method)

bb—(new(object —@—N

Returns a new WeakReference instance containing a reference to object.

5.4.27.2. value

Returns the referenced object. If the object has been garbage collected, .nil is returned.

436

Chapter 6.

Rexx Runtime Objects

In addition to the class objects described in the previous chapter, the Rexx runtime environment also
provides objects that are accessible via environment symbols.

6.1. The Environment Directory (.ENVIRONMENT)

The Environment object is a directory of public objects that are always accessible. The Environment
object is automatically searched when environment symbols are used, or the Environment object may
be directly accessed using the .ENVIRONMENT symbol. Entries stored in the Environment use the
same name as the corresponding environment symbol, but without a leading period. For example:

say .true -- Displays "1"

say .environment~true -- Also displays "1"
say .environment["TRUE"] - "

say .environment["true"] -- The NIL object

The Environment object directory contains all of the Rexx built-in classes (Array, etc.), the special
Rexx constants .NIL, .TRUE, .FALSE, .ENDOFLINE, and the .RexxInfo object.

6.1.1. The ENDOFLINE Constant (.ENDOFLINE)

The ENDOFLINE object is a string constant representing the line-end characters. Itis '0d 0a'x
(carriage-return, line-feed) on Windows, and '0a'x (line-feed) on Unix-like systems.

6.1.2. The FALSE Constant (.FALSE)

The FALSE object is the constant "0" representing a FALSE result for logical and comparison
operations.

6.1.3. The NIL Object (.NIL)

The Nil object is a special object that does not contain data. It usually represents the absence of an
object, as a null string represents a string with no characters. It has only the methods of the Object
class. Note that you use the Nil object (rather than the null string (")) to test for the absence of data in
an array or other Collection class entry:

if .nil = board[row, col] /* .NIL rather than "" */
then ...

6.1.4. The RexxIinfo Object (.RexxInfo)

The RexxInfo object returns the only instance of the RexxiInfo class and gives access to Rexx
language information and other platform-specific information in a single place.

say .RexxInfo~name -- REXX-00Rexx_5.0.0(MT)_64-bit 6.05 1 Sep 2016 /* e. g. */

437

The TRUE Constant (.TRUE)

6.1.5. The TRUE Constant (.TRUE)

The TRUE object is the constant "1", representing a true result for logical and comparison operations.

6.2. The Local Directory (.LOCAL)

The Local environment object is a directory of interpreter instance objects that are always accessible.

You can access objects in the Local environment object in the same way as objects in the

Environment object. The Local object contains

e the .INPUT, .OUTPUT, .ERROR, .DEBUGINPUT, and .TRACEOUTPUT Monitor objects used for
console /0,

» the .STDIN, .STDOUT, and .STDERR output streams that are the default I/O targets,
» the .STDQUE RexxQueue instance used for Rexx external queue operations,
* and the .SYSCARGS array of program command line options.

Because both .ENVIRONMENT and .LOCAL are Directory objects, you can place objects into, or
retrieve objects from, these environments by using any of the Directory methods [], []=, put, at,
setEntry, entry, or setMethod). To avoid potential name clashes with built-in objects and public
objects that Rexx provides, each object that your programs add to these environments should have a
period in its index.

Example 6.1. .LOCAL

/* .LOCAL example--places something in the Local environment directory */
.local~my.alarm = theAlarm

/* To retrieve it */
say .local~my.alarm

/* Another .LOCAL example (Windows) */
.environment["MYAPP.PASSWORD"] = "topsecret"
.environment["MYAPP.UID"] = 200

/* Create a local directory for my stuff */
.local["MYAPP.LOCAL"] = .directory~new

/* Add log file for my local directory */
.myapp.local["LOG"] = .stream~new("myapp.log")

say .myapp.password /* Displays "topsecret" */
say .myapp.uid /* Displays "200" */

/* Write a line to the log file */
.myapp.local~log~lineout("Logon at "time()" on "date())

/* Redirect SAY lines into a file: */
.output~destination(.stream~new("SAY_REDIRECT.TXT"))
say "This goes into a file, and not onto the screen!"

/* .LOCAL example--get the individual command line arguments */
cmdargs = .local~syscargs
do carg over cmdargs
say carg
end

438

The Debug Input Monitor (DEBUGINPUT)

6.3. The Debug Input Monitor (.DEBUGINPUT)

This Monitor object holds the default interactive debug input stream object (see Chapter 14, Input and
Output Streams). This input stream is the source for all input for interactive debug mode.

The default for this object's initial source is the .INPUT monitor.

6.4. The Error Monitor (.ERROR)

This Monitor object holds the error stream object. You can redirect the trace output in the same way as
with the output object in the Monitor class example.

The default for this object's initial destination is the .STDERR stream.

6.5. The Input Monitor (.INPUT)

This Monitor object holds the default input stream object (see Chapter 14, Input and Output Streams).
This input stream is the source for the PARSE LINEIN instruction, the LINEIN method of the Stream
class, and, if you specify no stream name, the LINEIN built-in function. It is also the source for the
PULL and PARSE PULL instructions if the external data queue is empty.

The default for this object's initial source is the .STDIN stream.

6.6. The Output Monitor (.OUTPUT)

This Monitor object holds the default output stream object (see Chapter 14, Input and Output
Streams). This is the destination for output from the SAY instruction, the LINEOUT method
(.OUTPUT~LINEOUT), and, if you specify no stream name, the LINEOUT built-in function. You can
replace this object in the environment to direct such output elsewhere (for example, to a transcript
window).

The default for this object's initial destination is the .STDOUT stream.

6.7. The Trace Output Monitor (TRACEOUTPUT)

This Monitor object holds the trace output target object. You can redirect the trace output in the same
way as with the output object in the Monitor class example.

The default for this object's initial destination is the .ERROR monitor.

6.8. The STDERR Stream (.STDERR)

This Stream object is the default stream used for trace and error message output.

6.9. The STDIN Stream (.STDIN)

This Stream object is representing the standard input file of a process. It is the startup default stream
for the .INPUT object.

439

The STDOUT Stream (.STDOUT)

6.10. The STDOUT Stream (.STDOUT)

This Stream object is representing the standard output file of a process. It is the startup default stream
for the .OUTPUT object.

6.11. The STDQUE Queue (.STDQUE)

This RexxQueue object is the destination for the PUSH and QUEUE instruction, and the source for
queue lines for the PULL and PARSE PULL instructions.

6.12. *NEW* The SYSCARGS Array (.SYSCARGS)

The .SysCArgs object is an Array of all command-line arguments supplied to the program. Normally
all command-line arguments are combined into a single string and passed to the Rexx program as an
argument retrievable via the ARG (Argument) built-in function. .SYSCARGS is a direct collection of the
individual C arguments passed to the program.

Example:
Example 6.2. SysCArgs Array

say .SysCArgs~items "SysCArgs" .SysCArgs~makeString(, ",")
say arg() "ARGs" arg(1, "A")~makeString(, ",")

/* when called with command line parameters 1 "2 3" 4, displays:
3 SysCArgs 1,2 3,4

1 ARGs 1 "2 3" 4

*/

@oe

.SysCArgs may not be available in all situations, e. g. in program code that gets run via "rexx -e".

6.13. The Rexx Context (.CONTEXT)

The .CONTEXT environment symbol accesses a RexxContext instance for the currently active Rexx
execution environment. The returned context object is only active until the current method call, routine
call, or program terminates. Once the context object is deactivated, an error will be raised if any of the
RexxContext methods are called.

6.14. The Line Number (.LINE)

.LINE is set to the line number of the instruction currently being executed. If the current instruction is
defined within an INTERPRET instruction, the line number of INTERPRET instruction is returned.

440

The METHODS StringTable (METHODS)

6.15. The METHODS StringTable ((METHODS)

The .METHODS environment symbol identifies a StringTable of methods that *CHG* ::ATTRIBUTE,
CHG ::CONSTANT, or :XMETHOD directives in the currently running program define. The StringTable
indexes are the method names. The StringTable values are the method objects.

Only methods or attributes that are not preceded by a ::CLASS directive are in the .METHODS
StringTable. These are known as floating methods. If there are no such methods, the .METHODS
symbol has the default value of . METHODS.

Example 6.3. .METHODS

/* .methods contains one entry with the index (method name) "TALK" */
o=.0object~enhanced(.methods) /* create object, enhance it with methods */
o~talk("echo this text") /* test "TALK" method */
::method talk /* floating method by the name of "TALK" */

use arg text /* retrieve the argument */

say text /* display received argument */

6.16. The ROUTINES StringTable (.ROUTINES)

The .ROUTINES environment symbol identifies a StringTable of routines that ::ROUTINE directives in
the currently running program define. The StringTable indexes are the routine names. The StringTable
values are the routine objects.

If there are no ::ROUTINE directives, the .ROUTINES symbol has the default value of . ROUTINES.

Example 6.4. .ROUTINES

/* .routines contains one entry with the index (routine name) "TALK" */
.routines~talk~call("echo this text") /* test talk routine */
::routine talk /* floating routine by the name of "TALK" */

use arg text /* retrieve the argument */

say text /* display received argument */

6.17. *NEW* The RESOURCES StringTable (.RESOURCES)

The .RESOURCES environment symbol identifies a StringTable of data resources that
NEW ::RESOURCE directives in the currently running program define. The StringTable indexes are
the resource names, the StringTable values are arrays of individual resource data lines.

If there are no ::RESOURCE directives, the .RESOURCES symbol has the default value of
.RESOURCES.

Example 6.5. . RESOURCE

do name over .resources

say name":" .resources[name]~items "lines"
say .resources[name]~makeString
end

::resource greyCat end "-"
La nuit, tous les chats sont gris

441

The Return Status (.RS)

::resource "brown fox"
The quick brown fox jumps over the lazy dog
1 tEND

::resource nollop end ANONYMOUS
The wicked peon quivered,
then gazed balefully at the judges
who examined him.

ANONYMOUS TYPESETTER

/* Displays:
GREYCAT: 1 lines
La nuit, tous les chats sont gris
BROWN FOX: 1 lines
The quick brown fox jumps over the lazy dog
NOLLOP: 3 lines

The wicked peon quivered,
then gazed balefully at the judges

who examined him.

*/

6.18. The Return Status (.RS)

.RS is set to the return status from any executed command (including those submitted with the
ADDRESS instruction). The .RS environment symbol has a value of -1 when a command returns a
FAILURE condition, a value of 1 when a command returns an ERROR condition, and a value of @
when a command indicates successful completion. The value of .RS is also available after trapping the
ERROR or FAILURE condition.

Commands executed manually during interactive tracing do not change the value of .RS. The
initial value of .RS is .RS.

442

Chapter 7.

Functions

A function is an internal, built-in, or external routine that returns a single result object. (A subroutine is
a function that is an internal, built-in, or external routine that might return a result and is called with the
CALL instruction.)

7.1. Syntax

A function call is a term in an expression calling a routine that carries out some procedures and
returns an object. This object replaces the function call in the continuing evaluation of the expression.
You can include function calls to internal and external routines in an expression anywhere that a data
term (such as a string) would be valid, using the following notation:

»»— function_name (z : @—N

expression

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be any number of expressions, separated by commas, between the parentheses. These
expressions are called the arguments to the function. Each argument expression can include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no whitespace
characters in between. (A blank operator would be assumed at this point instead.) Only a comment
can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting objects are then all passed
to the function. This function then runs some operation (usually dependent on the argument objects
passed, though arguments are not mandatory) and eventually returns a single object. This object is
then included in the original expression as though the entire function reference had been replaced by
the name of a variable whose value is the returned object.

For example, the function SUBSTR is built into the language processor and could be used as:

N1="abcdefghijk"
Zi="Part of N1 is: "substr(N1,2,7)
/* Sets Z1 to "Part of N1 is: bcdefgh" */

A function can have a variable number of arguments. You need to specify only those required. For
example, SUBSTR("ABCDEF", 4) would return DEF.

7.2. Functions and Subroutines

Functions and subroutines are called in the same way. The only difference between functions and
subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

Internal
If the routine name exists as a label in the program, the current processing status is saved for a
later return to the point of invocation to resume execution. Control is then passed to the first label
in the program that matches the name. As with a routine called by the CALL instruction, status

443

Search Order

information, such as TRACE and NUMERIC settings, is saved too. See the CALL instruction for
details.

If you call an internal routine as a function, you must specify an expression in any RETURN
instruction so that the routine can return. This is not necessary if it is called as a subroutine.

Example 7.1. Recursive internal function execution

arg x

say x"! =" factorial(x)

exit

factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */

if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE
instruction ensures that a new variable n is created for each invocation.

Built-in
These functions are always available and are defined in Section 7.4, “Built-in Functions”.

External
You can write or use functions that are external to your program and to the language processor.
An external routine can be written in any language, including Rexx, that supports the system-
dependent interfaces the language processor uses to call it. You can call a Rexx program as a
function and, in this case, pass more than one argument string. The ARG, PARSE ARG, or USE
ARG instruction or the ARG built-in function can retrieve these argument strings. When called as a
function, a program must return data to the caller.

Notes:

1. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden. To leave the called Rexx program,
you can use either EXIT or RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a function with a variable function name.
However, avoid this if possible because it reduces the clarity of the program.

7.2.1. Search Order

Functions are searched in the following sequence: internal routines, built-in functions, external
functions.

Function calls or subroutines may use a name that is specified as a symbol or a literal string. For
example, these calls are equivalent:

call MyProcedure
call 'MYPROCEDURE'

Note that the name value when specified as a symbol is the symbol name translated to upper case.
Both of the calls above will search for a routine named "MYPROCEDURE". When the name is
specified as a literal string, then the literal string value is used as-is. Thus the following two calls are
not equivalent:

444

Search Order

call MyProcedure -- calls "MYPROCEDURE"
call 'MyProcedure' -- calls "MyProcedure"

Some steps of the function and subroutine search order are case sensitive, so some care may need to
be exercised that the correct name form is used:

« Internal routines. Normally, labels are specified as a symbol followed by a ":". These labels have
a name value that's all uppercase. Since unquoted (symbol) names also have uppercase values,
these will match easily. It is also possible to use literal strings for label names. If these labels contain
lowercase characters, they will not be located using normal call mechanisms

* Built-in functions. The built-in function names are all uppercase, so using a mixed-case literal string
built-in function name will fail to locate the function.

X
1

wordPos(needle, haystack) -- calls "WORDPOS", which works
= "wordPos" (needle, haystack) -- calls "wordPos", which will fail

x
1

» External routines. Some steps of the external function search order may be case sensitive,
depending on the system. This may occasionally require a function or subroutine name to be
specified as a mixed case literal string to be located.

If the call or function invocation uses a literal string, then the search for internal label is bypassed. This
bypass mechanism allows you to extend the capabilities of an existing internal function, for example,
and call it as a built-in function or external routine under the same name as the existing internal
function. To call the target built-in or external routine from inside your internal routine, you must use a
literal string for the function name.

Example 7.2. DATE function — overriding

/* This internal DATE function modifies the */

/* default for the DATE function to standard date. */

date: procedure
arg in
if in="" then in="Standard"
-- This calls the DATE built-in function rather than recursively
-- calling the DATE: internal routine. Note that the name needs to
-- be all uppercase because built-in functions have uppercase names.
return "DATE"(in)

Since built-in functions have uppercase names the literal string must also be in uppercase for the
search to succeed.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

1. Functions defined on ::ROUTINE directives within the program.

2. Public functions defined on ::ROUTINE directives of programs referenced with ::REQUIRES.

3. Functions that have been loaded into the macrospace for preorder execution. (See the Open
Object Rexx: Application Programming Interfaces for details.)

4. Functions that are part of a function package or library package. (See the Open Object Rexx:
Application Programming Interfaces for details.)

5. Rexx functions located in an external file. See below for how these external files are located.

445

Search Order

6. Functions that have been loaded into the macrospace for postorder execution.

7.2.1.1. *CHG* Locating External Rexx Files

Rexx uses an extensive search procedure for locating program files. The first element of the search
procedure is the locations that will be checked for files. The locations, in order of checking, are:

1. The same directory the program invoking the external routine is located. If this is an initial program
execution or the calling program was loaded from the macrospace, this location is skipped.
Checking in this directory allows related program files to be called without requiring the directory
be added to the search path.

2. The current filesystem directory.

3. Some applications using Rexx as a scripting language may define an extension path used to
locate called programs. If the Rexx program was invoked directly from the system command line,
then no extension path is defined.

4. Any directories specified via the REXX_PATH environment variable.
5. Any directories specified via the PATH environment variable.

The second element of the search process is the file extension. If the routine name contains at least
one period, then this routine is extension qualified. The search locations above will be checked for

the target file unchanged, and no additional steps will be taken. If the routine name is not extension
qualified, then additional searches will be performed by adding file extensions to the name. All
directory locations will be checked for a given extension before moving to the next potential extension.
The following extensions may be used:

1. *NEW?* If the searched file is requested by a ::REQUIRES directive without a LIBRARY option,
or the Package methods new and loadPackage when only the name argument is specified, an
attempt to locate a file using the extension . cls is made.

2. If the calling program has a file extension, then the interpreter will attempt to locate a file using the
same extension as the caller.

3. Some applications using Rexx as a scripting language may define additional extension types. For
example, an editor might define a preferred extension that should be used for editor macros. This
extension would be searched next.

4. The default system extension, which is . REX on Windows, and both . rex and .REX on Unix-
based systems.

5. If the target file has not been located using any of the above extensions, the file name is tried
without an added extension.

There are some file system considerations involved when searching for files. Windows file systems
typically are case insensitive, so files can be located regardless of how the call is specified. Unix-
based systems typically have a case sensitive file system, so files must be exact case matches in
order to be located. For these systems, each time a file name probe is attempted, the name will be
tried in the case specified and also as a lower case name. The check is not performed on the very last
step that uses the file name without an extension to avoid unintentional conflicts with other executable
files.

Note that for function or subroutine calls using an unquoted name, the target name is the string
value of the name symbol, which will be an uppercase value. Thus calls to myfunc(), MyFunc(), and

446

Search Order

myFUNC() all trigger a search for a function named "MYFUNC". Calls specified as a quoted string will
maintain the original string case. Thus 'myfunc'() and 'MyFunc'() would search for different names.

yes

Start

!

Is name in quotation marks?

¢no

An internal function (a label)?

yes

"‘; no

A built-in function?

yes

‘no

Function defined on ::ROUTINE?

yes

‘no

Public function defined on ::ROUTINE
in program referenced with ::REQUIRES?

yes

‘no

Macrospace pre-order?

yes

&no

Part of external function package?

yes

¢n0

External Rexx file?

yes

&no

Macrospace post-order?

yes

¢n0

Error

Execute

Figure 7.1. Function and Routine Resolution and Execution

447

Errors during Execution

Start

v

Initial call or call from Macrospace?

¥ho

Located in same directory as caller?
>
+ ho

Name have an extension?

yyes
Located on search path with caller's yes
extension?

Yy no

Located on search path with application yes >
extension?

y no

Located on search path with default system | Y€S

yes

yes

no

. AL
extension?
>yno
Located on search path with original routine | Y€S »
name?

yho

Proceed to next search step

Execute

Figure 7.2. Function and Routine External File Resolution

7.2.2. Errors during Execution

If an external or built-in function detects an error, the language processor is informed, and a syntax
error results. Syntax errors can be trapped in the caller using SIGNAL ON SYNTAX and recovery
might be possible. If the error is not trapped, the program is ended.

7.3. Return Values

A function usually returns a value that is substituted for the function call when the expression is
evaluated.

How the value returned by a function (or any Rexx routine) is handled depends on whether it is called
by a function call or as a subroutine with the CALL instruction.

« Aroutine called as a subroutine: If the routine returns a value, that value is stored in the special
variable named RESULT. Otherwise, the RESULT variable is dropped, and its value is the string
RESULT.

» Arroutine called as a function: If the function returns a value, that value is substituted in the
expression at the position where the function was called. Otherwise, the language processor stops
with an error message.

Here are some examples of how to call a Rexx procedure:

448

Built-in Functions

Example 7.3. How to call Rexx procedures

call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a Rexx subroutine. The return value from BEEP is placed in
the Rexx special variable RESULT.

bc = Beep(500, 100) /* Example 2: a function call */

BEEP is called as a Rexx function. The return value from the function is substituted for the function
call. The clause itself is an assignment instruction; the return value from the BEEP function is
placed in the variable bc.

Beep (500, 100) /* Example 3: result passed as */
/* a command */

The BEEP function is processed and its return value is substituted in the expression for the function
call, like in the preceding example. In this case, however, the clause as a whole evaluates to a
single expression. Therefore, the evaluated expression is passed to the current default environment
as a command.

@e

Many other languages, such as C, throw away the return value of a function if it is not assigned
to a variable. In Rexx, however, a value returned like in the third example is passed on to the
current environment or subcommand handler. If that environment is the default, the operating
system performs a disk search for what seems to be a command.

7.4. Built-in Functions

Rexx provides a set of built-in functions, including character manipulation, conversion, and
information functions. The following are general notes on the built-in functions:

The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no whitespace in between.

The built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems, and NUMERIC FUZZ 0 and are unaffected by changes to the
NUMERIC settings, except where stated. Any argument named as a number is rounded, if
necessary, according to the current setting of NUMERIC DIGITS (as though the number had
been added to 0) and checked for validity before use. This occurs in the following functions: ABS,
FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE.

Any argument named as a string can be a null string.

If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start
character or word in a string, it must be a positive whole number, unless otherwise stated.

449

ABBREV (Abbreviation)

If the last argument is optional, you can always include a comma to indicate that you have omitted it.
For example, DATATYPE(1,), like DATATYPE (1), would return NUM. You can include any number
of trailing commas; they are ignored. If there are actual parameters, the default values apply.

If you specify a pad character, it must be exactly one character long. A pad character extends a
string, usually on the right. For an example, see the LEFT built-in function.

If a function has an option that you can select by specifying the first character of a string, that
character can be in uppercase or lowercase.

Many of the built-in functions invoke methods of the String class. For the functions ABBREYV,

ABS, BITAND, BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR, COMPARE, COPIES,
COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C, D2X, FORMAT, LEFT,
LENGTH, LOWER, MAX, MIN, REVERSE, RIGHT, SIGN, SPACE, STRIP, SUBSTR, SUBWORD,
TRANSLATE, TRUNC, UPPER, VERIFY, WORD, WORDINDEX, WORDLENGTH, WORDS,

X2B, X2C, and X2D, the first argument to the built-in function is used as the receiver object for

the message sent, and the remaining arguments are used in the same order as the message
arguments. For example, SUBSTR("abcde", 3, 2) is equivalentto "abcde"~substr (3, 2).

For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the second argument to
the built-in functions is used as the receiver object for the message sent, and the other arguments
are used in the same order as the message arguments. For example, POS("a", "Haystack", 3)
is equivalent to "Haystack"~pos("a", 3).

The language processor evaluates all built-in function arguments to produce character strings.

7.4.1. ABBREYV (Abbreviation)

PP—(ABBREV(information ' info @—N

P length

Returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. It returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number

of characters in info.

Here are some examples:

Example 7.4. Builtin function ABBREV examples

ABBREV("Print","Pri") -> 1
ABBREV("PRINT", "Pri") -> 0
ABBREV("PRINT", "PRI", 4) -> 0
ABBREV("PRINT", "PRY") -> 0
ABBREV("PRINT","") -> 1
ABBREV("PRINT","", 1) -> 0

450

ABS (Absolute Value)

@e

A null string always matches if a length of @, or the default, is used. This allows a default keyword
to be selected automatically if desired; for example:

Example 7.5. Builtin function ABBREV example

say "Enter option:"; pull option .

select /* keywordl is to be the default */
when abbrev("keywordl1",option) then ...
when abbrev("keyword2",option) then ...

otherwise nop;
end;

7.4.2. ABS (Absolute Value)

DP—[ABS()— number —@—N

Returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

Example 7.6. Builtin function ABS

ABS("12.3") > 12.3
ABS(" -0.307") -> 0.307

7.4.3. ADDRESS

Returns the name of the environment to which commands are currently submitted. Trailing
whitespace characters are removed from the result.

Here is an example:

Example 7.7. Builtin function ADDRESS

ADDRESS () -> "CMD" // default for Windows

ADDRESS () -> "sh" // default for Unix

7.4.4. ARG (Argument)

451

ARG (Argument)

ARG())

-)

o option

Returns one or more arguments, or information about the arguments to a program, internal routine, or
method.

If you do not specify any argument, the number of arguments passed to the program or internal routine
is returned.

If you specify only n, the nth argument object is returned. If the argument object does not exist, the null
string is returned. n must be a positive whole number.

If you specify option, the value returned depends on the value of option. The following are valid
options. (Only the capitalized letter is needed; all characters following it are ignored.)

Array
returns a single-index array containing the arguments, starting with the nth argument. The array
indexes correspond to the argument positions, so that the nth argument is at index 1, the following
argument at index 2, and so on. If any arguments are omitted, their corresponding indexes are
absent.

Exists
returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was
called. Otherwise, it returns 0.

Normal
returns the nth argument, if it exists, or a null string.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Otherwise, it returns 0.

Here are some examples:

Example 7.8. Builtin function ARG

/* following "Call name;" (no arguments) */

ARG() -> 0

ARG(l) -> nn

ARG(2) -> T

ARG(1,"e") -> 0

ARG(1,"0") -> 1

ARG(1,"a") -> .array~of()

/* following "Call name 'a', ,'b';" */
ARG () -> 3

ARG (1) -> "a"

ARG(Z) -> nn

ARG(3) -> "b"

ARG(n) -> " /* for n>=4 */
ARG(1,"e") -> 1

ARG(2,"E") -> 0

ARG(2,"0") -> 1

ARG(3,"0") -> 0

ARG(4,"0") -> 1

ARG(1,"A") -> .array~of(a, ,b)

ARG(3,"a") ->

.array~of(b)

452

B2X (Binary to Hexadecimal)

Notes:

1. The number of argument strings is the largest number n for which ARG(n, "e") returns 1 or ©
if there are no explicit argument strings. That is, it is the position of the last explicitly specified
argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0
argument strings if it is called with the name only and has 1 argument string if anything else
(including whitespace characters) is included in the command.

3. Programs called by the RexxStart entry point can have several argument strings. (See the Open
Object Rexx: Application Programming Interfaces for information about RexxStart.)

4. You can access the argument objects of a program with the *CHG* USE instruction.

5. You can retrieve and directly parse the argument strings of a program or internal routine with the
ARG or PARSE ARG instructions.

7.4.5. B2X (Binary to Hexadecimal)

bb—(B2X(binary_string)

Returns a string, in character format, that represents binary_string converted to hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
whitespace characters in binary_string (at 4-digit boundaries only, not leading or trailing) to improve
readability; they are ignored.

The returned string uses uppercase alphabetical characters for the values A-F, and does not include
blanks or horizontal tabs.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string
is not a multiple of 4, then up to three 0 digits are added on the left before the conversion to make a
total that is a multiple of 4.

Here are some examples:

Example 7.9. Builtin function B2X

B2X("11000011") -> "c3"
B2X("10111") -> M7
B2X(Il101ll) _> Il5|l

B2X("1 1111 0000") -> "1FE"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms.
For example:

Example 7.10. Builtin function B2X combined with X2D function

X2D(B2X("10111")) -> "23" /* decimal 23 */

7.4.6. BEEP

453

BITAND (Bit by Bit AND)

»—(BEEP()— frequency , duration)

Sounds the speaker at frequency Hertz for duration milliseconds. The frequency can be any whole
number in the range 37 to 32767 Hertz. The duration can be any whole number in the range 0 to
60000 milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

@roes

On Unix-like systems, to sound the speaker at a specified frequency, a console with ioctl
KDMKTONE support must be available, which typically requires root access. If there is no
console with KDMKTONE support (e. g. on BSD or Darwin), a bell character is sent to the
console instead.

On Windows beeps may have been deactivated. To check the status of the Windows beep
service, use the Service Control Manager command sc ¢c beep. To permanently enable the

system beep service, run the command sc config beep start= autoin a Command
window with Administrator rights, and then reboot your system.

Here is an example for Windows:

Example 7.11. Builtin function BEEP

-- C scale

note.1l = 262 -- Do, middle C
note.2 = 294 -- Re, D

note.3 = 330 -- Mi, E

note.4 = 349 -- Fa, F

note.5 = 392 -- Sol, G

note.6 = 440 -- La, A

note.7 = 494 -- Si, B, H
note.8 = 523 -- bo, C

doi=1+to38
call beep note.i, 250 -- hold each note for 1/4 second
end

7.4.7. BITAND (Bit by Bit AND)

»—(BITAND(string1 —O @—N

string2 0 pad

Returns a string composed of the two input strings logically ANDed, bit by bit. (The encodings of the
strings are used in the logical operation.) The length of the result is the length of the longer of the two
strings. If no pad character is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string2 is the zero-length (null) string.

Here are some examples:

454

BITOR (Bit by Bit OR)

Example 7.12. Builtin function BITAND

BITAND("12"x) -> "12Mx

BITAND("73"x, "27"X) -> "23"x

BITAND("13"x, "5555"X) -> "1155"x

BITAND("13"x, "5555"X, "74"x) -> "1154"x

BITAND("pQrs", ,"DF"x) -> "PQRS" /* ASCII */

7.4.8. BITOR (Bit by Bit OR)

»—(BITOR()— string1 , @—N

string2 o pad

Returns a string composed of the two input strings logically inclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of
the two strings. If no pad character is provided, the OR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to the partial result.
If pad is provided, it extends the shorter of the two strings on the right before carrying out the logical
operation. The default for string2 is the zero-length (null) string.

Here are some examples:

Example 7.13. Builtin function BITOR

BITOR("12"x) o "12"x

BITOR("15"x, "24"x) -> "35"x

BITOR("15"x, "2456"x) -> "3556"x

BITOR("15"x, "2456"x, "FO"X) -> "35F6"X
BITOR("1111"x, ,"4D"x) -> "5D5D" x
BITOR("pQrs", ,"20"x) -> "pgrs" /* ASCII */

7.4.9. BITXOR (Bit by Bit Exclusive OR)

Ok
string2 L@— pad

Returns a string composed of the two input strings logically eXclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of
the two strings. If no pad character is provided, the XOR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to the partial result.
If pad is provided, it extends the shorter of the two strings on the right before carrying out the logical
operation. The default for string2 is the zero-length (null) string.

PP—(BITXOR(string1 r =

Here are some examples:

Example 7.14. Builtin function BITXOR

BITXOR("12"x) -> "12'x
BITXOR("12"x, "22"x) -> "30"x
BITXOR("1211"x, "22"X) -> "3011"x
BITXOR("1111"x, "444444"x) -> "555544"x

455

C2D (Character to Decimal)

BITXOR("1111"x, "444444"x,"40"x) -> "555504"x
BITXOR("1111"x, ,"4D"x) -> "BC5C"x
BITXOR("C711"x, "222222"x," ") -> "E53302"x /* ASCII */

7.4.10. C2D (Character to Decimal)

»—(c2D(string @—N

Returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do not specify n, string
is processed as an unsigned binary number.

If string is null, © is returned.

Here are some examples:

Example 7.15. Builtin function C2D

C2D("09"X) -> 9
C2D("81"X) -> 129
C2D("FF81"X) -> 65409
CZD("") _> 0
c2p("a") -> 97 /* ASCII */

If you specify n, the string is taken as a signed number expressed in n characters. The number is
positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to
a whole number, which can be negative. The string is padded on the left with "00"x characters (not
"sign-extended"), or truncated on the left to n characters. This padding or truncation is as though
RIGHT(string, n,"00"x) had been processed. If nis 0, C2D always returns 0.

Here are some examples:

Example 7.16. Builtin function C2D

c2D("81"X, 1) -> -127
c2D("81"X, 2) -> 129
C2D("FF81"X, 2) -> -127
C2D("FF81"X,1) -> -127
C2D("FF7F"X,1) -> 127
C2D("FO81"X, 2) -> -3967
C2D("FO81"X,1) -> -127
C2D("0031"X,0) -> 0

7.4.11. C2X (Character to Hexadecimal)

bb—(C2X()— string)

Returns a string, in character format, that represents string converted to hexadecimal. The returned
string contains twice as many bytes as the input string. On an ASCII system, C2X(1) returns 31
because the ASCII representation of the character 1 is "31"X.

456

CENTER (or CENTRE)

The string returned uses uppercase alphabetical characters for the values A-F and does not include
whitespace characters. The string can be of any length. If string is null, a null string is returned.

Here are some examples:
Example 7.17. Builtin function C2X

C2X("0123"X) -> "0123" /* "30313233"X in ASCII */
C2X("zD8") -> "5A4438" /* "354134343338"X in ASCII */

7.4.12. CENTER (or CENTRE)

string) length @—N
L@ -

Returns a string of length length with string centered in it and with pad characters added as necessary
to make up length. The length must be a positive whole number or zero. The default pad character

is blank. If the string is longer than length, it is truncated at both ends to fit. If an odd number of
characters is truncated or added, the right-hand end loses or gains one more character than the left-
hand end.

CENTER(

CENTRE(

Here are some examples:

Example 7.18. Builtin function CENTER

CENTER(abc, 7) -> " ABC "
CENTER(abc,8,"-") -> "_-ABC---"
CENTRE("The blue sky",8) -> "e blue s"
CENTRE("The blue sky",7) -> "e blue "

@

To avoid errors because of the difference between British and American spellings, this function
can be called either CENTRE or CENTER.

7.4.13. CHANGESTR

»—(CHANGESTR(needle 0 haystack 0 newneedle @—N

;. count

Returns a copy of haystack in which newneedle replaces occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:

457

CHARIN (Character Input)

Example 7.19. Builtin function CHANGESTR

CHANGESTR("1", "101100","") -> "000"
CHANGESTR("1", "101100", "X") -> "XOXX00"
CHANGESTR("1", "101100","X", 1) -> "'X01100"

7.4.14. CHARIN (Character Input)

>>—{CHARIN(' (7\)
) —f U start —f length J O—N

name

’

Returns a string of up to length characters read from the character input stream name. (To understand
the input and output functions, see Chapter 14, Input and Output Streams.) If you omit name,
characters are read from STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream
starts at the current read position by default. When the language processor completes reading, the
read position is increased by the number of characters read. You can give a start value to specify an
explicit read position. This read position must be a positive whole number and within the bounds of
the stream, and must not be specified for a transient stream. A value of 1 for start refers to the first
character in the stream. If start is not a positive whole number the appropriate syntax condition is
raised. When the read position is past the bounds of the stream, the empty string is returned and the
NOTREADY condition is raised.

If you specify a length of 0, then the read position is set to the value of start, but no characters are
read and the null string is returned.

In a transient stream, if there are fewer than length characters available, the execution of the program
generally stops until sufficient characters become available. If, however, it is impossible for those
characters to become available because of an error or another problem, the NOTREADY condition is
raised (see Section 14.5, “Errors during Input and Output”) and CHARIN returns with fewer than the
requested number of characters.

Here are some examples:

Example 7.20. Builtin function CHARIN

CHARIN(myfile, 1, 3) -> "MFC" /* the first 3 */

/* characters */
CHARIN(myfile,1,0) -> o /* now at start */
CHARIN(myfile) -> "M" /* after last call */
CHARIN(myfile, ,2) -> "FC" /* after last call */

/* Reading from the default input (here, the keyboard) */

/* User types "abcd efg" */
CHARIN() -> "a" /* default is */
/* 1 character */
CHARIN(, ,5) -> "pcd e"
Notes:

1. CHARIN returns all characters that appear in the stream, including control characters such as line-
end and end-of-file.

458

CHAROUT (Character Output)

2. When CHARIN reads from the keyboard, program execution stops until you press the Enter key.

7.4.15. CHAROUT (Character Output)

»—{ CHAROUT()‘ @ @—N

name string o start

Returns the count of characters remaining after attempting to write string to the character output
stream name. (To understand the input and output functions, see Chapter 14, Input and Output
Streams.) If you omit name, characters in string are written to STDOUT (generally the display), which
is the default output stream. The string can be a null string, in which case no characters are written to
the stream, and 0 is always returned.

For persistent streams, a write position is maintained for each stream. Any write to the stream starts
at the current write position by default. When the language processor completes writing, the write
position is increased by the number of characters written. When the stream is first opened, the write
position is at the end of the stream so that calls to CHAROUT append characters to the end of the
stream.

You can give a start value to specify an explicit write position for a persistent stream. This write
position must be a positive whole number. A value of 1 for start refers to the first character in the
stream.

You can omit the string for persistent streams. In this case, the write position is set to the value of start
that was given, no characters are written to the stream, and 0 is returned. If you do not specify start or
string, the stream is closed and 0 is returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and returns control to
Rexx, even though the output data might not have been printed. Rexx considers this to be complete,
even though the data has not been printed. If, however, it is impossible for all the characters to be
written, the NOTREADY condition is raised (see Section 14.5, “Errors during Input and Output”) and
CHAROUT returns with the number of characters that could not be written (the residual count).

Here are some examples:

Example 7.21. Builtin function CHAROUT

CHAROUT (myfile, "Hi") -> 0 /* typically */
CHAROUT (myfile, "Hi",5) -> 0 /* typically */
CHAROUT (myfile, ,6) -> 0 /* now at char 6 */
CHAROUT (myfile) -> 0 /* at end of stream */
CHAROUT (, "Hi") -> 0 /* typically */
CHAROUT(, "Hello") -> 2 /* maybe */

This routine is often best called as a subroutine. The residual count is then available in the
variable RESULT.

459

CHARS (Characters Remaining)

For example:

Example 7.22. Builtin function CHAROUT

Call CHAROUT myfile, "Hello"
Call CHAROUT myfile, "Hi", 6
Call CHAROUT myfile

7.4.16. CHARS (Characters Remaining)

- (o) D

name

Returns the total number of characters remaining in the character input stream name. The count
includes any line separator characters, if these are defined for the stream. In the case of persistent
streams, it is the count of characters from the current read position. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.) If you omit name, the number of characters
available in the default input stream (STDIN) is returned.

The total number of characters remaining cannot be determined for some streams (for example,
STDIN or Windows/Unix devices). For these streams, the CHARS function returns 1 to indicate that
data is present, or 0 if no data is present.

Example 7.23. Builtin function CHARS

CHARS (myfile) -> 42 /* perhaps */
CHARS(nonfile) -> 0]
CHARS () -> 1 /* perhaps */

7.4.17. COMPARE

pad

»—(COMPARE(string1 , string2 @—N

Returns 0 if the strings string1 and string2 are identical. Otherwise, it returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The
default pad character is a blank.

Example 7.24. Builtin function COMPARE

COMPARE ("abc", "abc") > 0
COMPARE ("abc", "ak™) -> 2
COMPARE("ab ", "ab") -> 0
COMPARE("ab ", "ab"," ") -> 0
COMPARE("ab ", "ab", "x") -> 3
COMPARE("ab-- ", "ab","-") -> 5

7.4.18. *CHG* CONDITION

460

CHG CONDITION

»—| CONDITION()‘ J @—N

option

Returns the condition information associated with the current trapped condition. (See Chapter 11,
Conditions and Condition Traps for a description of condition traps.) You can request the following
pieces of information:

» The name of the current trapped condition

» Any descriptive string associated with that condition

» Any condition-specific information associated with the current trapped condition
» The instruction processed as a result of the condition trap (CALL or SIGNAL)

e The status of the trapped condition

In addition, you can request a condition object containing all of the preceding information.

To select the information to be returned, use the following options. (Only the capitalized letter is

needed; all characters following it are ignored.)

Additional
returns any additional object information associated with the current trapped condition. See
Section 11.3.2, "Additional Object Information” for a list of possible values. If no additional object
information is available or no condition has been trapped, the language processor returns .nil.

Condition name
returns the name of the current trapped condition. For user conditions, the returned string is
a concatenation of the word USER and the user condition name, separated by a whitespace
character.

Description
returns any descriptive string associated with the current trapped condition. See Section 11.3.1,
“Descriptive Strings” for the list of possible values. If no description is available or no condition has
been trapped, it returns a null string.

NEW Extra
returns the Rexx error subcode associated with a trapped SYNTAX condition. If no SYNTAX
condition has been trapped, it returns a null string.

Instruction

returns either CALL or SIGNAL, the keyword for the instruction processed when the current
condition was trapped. This is the default if you omit option. If no condition has been trapped, it
returns a null string.

Object
returns an object that contains all the information about the current trapped condition. See
Section 11.3.5, “Condition Object” for more information. If no condition has been trapped, it returns
.nil.

NEW Reset

resets any currently trapped condition and returns the null string. After a reset, all CONDITION
options will return their default values, as if no condition has been trapped.

461

COPIES

Status
returns the status of the current trapped condition. This can change during processing, and is one
of the following:

* ON - the condition is enabled
* OFF - the condition is disabled
» DELAY - any new occurrence of the condition is delayed or ignored

If no condition has been trapped, a null string is returned.

Example 7.25. Builtin function CONDITION

CONDITION() -> "CALL" /* perhaps */
CONDITION("C") -> "FAILURE"

CONDITION("I") -> "CALL"

CONDITION("D") -> "FailureTest"
CONDITION("S") -> "OFF" /* perhaps */

@

The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine
called with CALL ON trapname has returned, the current trapped condition reverts to the
condition that was current before the CALL took place (which can be none). CONDITION returns
the values it returned before the condition was trapped.

7.4.19. COPIES

DP—(COPIES(string 0 n)

Returns n concatenated copies of string. The n must be a positive whole number or zero.

Example 7.26. Builtin function COPIES

COPIES("abc", 3) -> "abcabcabc"
COPIES("abc",0) -> e

7.4.20. COUNTSTR

»—(COUNTSTR(needle o haystack —@—N

Returns a count of the occurrences of needle in haystack that do not overlap.

Example 7.27. Builtin function COUNTSTR

COUNTSTR("1","101101") -> 4

462

D2C (Decimal to Character)

COUNTSTR("KK", " JOKKKO") -> 1

7.4.21. D2C (Decimal to Character)

bb—(D2C()— wholenumber @—N

Returns a string, in character format, that is the ASCII representation of the decimal number. If you
specify n, it is the length of the final result in characters; leading "00"x (for a positive wholenumber) or
"FF"x (for a negative wholenumber) characters are added to the result string as necessary. n must be
a positive whole number or zero.

Wholenumber must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Example 7.28. Builtin function D2C

D2C(65) -> "A" /* "41"x is an ASCII "A" */
D2C(65,1) > A

D2C(65,2) -> "A" /* the leading character is a "00"x */
D2C(65,5) -> " A" /* the leading characters are "00"x */
D2C(109) -> "m" /* "éD"x 1is an ASCII "m" */
D2C(-109,1) -> "o" /* "93"x is an ASCII "o" */

D2C(76,2) = 0 D /* "4C"x is an ASCII "L" Y
D2C(-180,2) -> "ot /* the leading character is a "FF"x */

7.4.22. D2X (Decimal to Hexadecimal)

bb—(D2X()— wholenumber @—N

Returns a string, in character format, that represents