Meta State Machine (MSM)
Christophe Henry

Meta State Machine (MSM)

Christophe Henry
Copyright © 2008-2024 Distributed under the Boost Software License, Version 1.0. (See accompanying file

LICENSE_1 0.txt or copy at http://www.boost.org/LICENSE_1 O.txt)

http://www.boost.org/LICENSE_1_0.txt

Table of Contents

(= = o1 PSPPSR Vii
L U= o 0 o[P 1
O o0 o 1 o o 1= 4
2. UML SNOt GUITE ...ttt e e et e e e e e e eanns 5
What are state machingS?oooiiiiiiii e 5
L0 o oK 5
State machine, state, transition, BVENtccovvvveiiiiiiiiiii e 5
Submachines, orthogonal regions, PSEUdOStALESvevvvveerieeiiieriiieeaies 5
[TS 1 P 6
Completion transitions / anonymous transitionSccoceveveviineviieiiiieeeieens 6
INternal tranSItiONS ..eovuiieiiii e 7
Conflicting tranSItioNSiivunieii e 7
P 0 [0 1= w0 g0t o £ 7
State MAChiNE GIOSSANY ...ccvuiiiiii e e 7
I 1 (o4 - PSP 9
3 1= o | P 9
BaSiC frONt-€N0evniiiiiii e e 9
A SIMPIE BXAMPIE .. e 9
Transition tADlEoceue e 9
Defining states with entry/exit aCtionScovevviieiiiiiiii e, 10
What do you actually do inside actions/ guards?cccoevevviveeiiievinnennnnn. 10
Defining a simple state Machingcccveviiiiiii e 12
Defining @ submMachingcoooviiiiii e 13
Orthogonal regions, terminate state, event deferringcoceeveviveiiineennns 14
[1S 1 16
Completion (anonymous) tranSitioNSvevvieviiieiiie e e 16
INtErN@l traNSITIONSieiieii e 17
Lol (0T Y o 18
Explicit entry / entry and exit pseudo-state / forkcccoveveiiiiiiiieiinennnnn, 19
o 22
EVENt HIEIarChy ...ooveii e e 23
Customizing a state machine / Getting more speedcccovvevviveviiieeinennnn. 23
Choosing the initial eventc.coiiiiii i 24
Containing state machine (deprecated)ccuvveviiieiiiiiiiii e, 24
FUNCEOr FrOME-BN0 ..eeie e 24
Transition Aliieii i 25
Defining states with entry/exit aCtionScovevviieiiiiiiiii e, 26
What do you actually do inside actions / guards (Part 2)?............ccccoevvveeennn. 26
Defining a simple state Machingc.cooviviiiiiii e 27
ANONYMOUS traNSITIONSvvviiiii e e e e e e eeens 27
INtErN@l traNSITIONSieiieii e 27
KIeene (BNY) EVENTcceviiii e 28
PUML (C++-20), eXperimentalcccoieiuieiiieiiii e eee e e e e e e e eanes 28
PlantUML DESICSvvuiiiiiiiicieie e 28
Composite State MaChiNeSccuuiiiiiiieie e 31
BUM L Lo e 32
Transition tADlE .. .coeue i 33
A simple example: rewriting only our transition tableccccoceeeeennnn. 33
Defining events, actions and states with entry/exit actions........................... 34
Wrapping up asimple state machine and first complete examples................. 36
Defining a submachingccooviiiiii e 37
Attributes / FUNCEON Calloviiiiiiiii e 37
Orthogonal regions, flags, event deferringcocooveviiiiiivii e, 39
Customizing a state machine / Getting more speedcceveveviviiiieennn, 40
Completion / ANONyMOUS tranSItioNSvvevieiieeii e e e 41

Meta State Machine (MSM)

INEErNEl TraNSITIONS ... cceieiiee e 41
Kleene(any) EVENL)coouuiiii e 41

Other SEALE TYPES ... eeeeti ettt et e e et e e e e 42

Helper fUNCLIONS ... 42

PhoeniX-1Tke STL SUPPOITiiiiitieieeii e e 44

Writing actions with Boost.Phoenix (in development)ccoeiviieiiinnees 45

BaCK-BN0 ... 45

100 1= 1o o H PSP UPPPTTRTPPPIN 45

Starting and stopping a state Machingoovvviiiiiiiiiiee e, 46

Event disPaiChingcc.uuiiiiiiiiiii e 46

ACHVE SEBEE(S) .. eeeetie ettt 46

Upper State MaChinNguuiiiiii e 46

SETATZALTON ... 46

BaSE St TYP8 .evuieeieiti e 48

RV] (o TP PP UPPPT 48

FLAOS e 49

GELLING @ SEALE ..eeven et 49

State machine constructor with argumentsccccoevviiiiiniiiiiiineeeee, 50

Trading run-time speed for better compile-time/ multi-TU compilation........... 50
Compile-time state machine analysiSccoeiiieiiiiiiiiiiiiie e 51
Enqueueing events for later proCesSiNgcccveveeieriiieeiiiiiieeeeiieeeeeiiee 52
Customizing the MESSAPE QUEUEScouureiiiiiieeiiiie et e et e et 52

Policy definition with Boost.Parameterccviiiiiiiiiiiiiiiiicciii e 52

Choosing when to switCh active StateSoveviiiiiieiiii s 53

4. Performance / COMPITEIScoeuuieieii et 54
S0 = o SRR 54
EXECULADIE SIZE ... 54
SUPPOrEd COMPITENSveee et 54
LIMITAEIONS .eeeeeeet et 55
COMPITEIS COMNMEE ..ttt ettt e e 55

5. QUESEIONS & ANSWELS, TIPS .. eeuiiteineiiee et e e e e e e e e et e e e e eanaeeeen 57
B. INEEINEIS ...t e 59
Backend: Run To COMPIEtioNcoouuiiiiiiiiiiei e 59

Frontend / Backend iNterfacecoouuuiiiiiiieiii e 60
Generated SEAE IUSoieerei et 61
Metaprogramming tO0ISc.uuuiiiiiie e 62

7. ACKNOWIEOAGEIMENS ...t e eeanens 63
SV R 2 ST 63
S R o RSP PUSTT 63

8. VEISION NISLOIY ...ttt ettt e e et e e e 64
BOOSE 1.85 ..ot 64
BOOSE 1.72 ..o 64
BOOSE L. 57 . 64
BOOSE 1.56 ...oeeiiiieiii et 64
BOOSE 1.55 ...t 64
BOOSE .54 ..ot 64
From V2.23 10 V2.24 (BOOSE 1.51) ...uuieiiiiiieeiiiie et 64
From V2.22 10 V2.23 (BOOSE 1.50)uueeiiiiieiiiiee et 65
From V2.21 10 V2.22 (BOOSE 1.48)oeeiiiiieeeiiie et 65
From V2.20 10 V2.21 (BOOSE L.47) .euueeeeiiieeee ettt 65
From V2.12 10 V2.20 (BOOSE 1.46)uoeeiiiiieeeiiiie ettt 66
From V2.10 10 V2.12 (BOOSE 1.45)uuieeiiiiieeeiii ettt 66
From V2.0 10 V2.12 (BOOSEt 1.44)uiiiiiiieeeeeiee et 66

[REFEIENCE ...t 68
9. External references t0 MSM ... 70
10. eUML operators and basic hElPers v 71
11. Functional ProgrammMingoeeeeeeeeeeti et e e e et e e et e eeeate e e eebe e e enaa e eeen 74
COMIMON NEBAENS ... et eaeas 82

Meta State Machine (MSM)

Back-end
Front-end

List of Tables

10.1.
11.1.
11.2.
11.3.
11.4.
11.5.
11.6.
11.7.
11.8.

Operators and state Maching NEIPErSvvvniiii e 71
Y 1 o o 11 2 74
Y 1 o o 11 2 74
Y 1 o o 11 2 74
STL container MEhOOScovuniiii e 76
Y I TS 1111 1 oL 76
STL associative container MEtNOASooiviiiiiiiiei e 77
S 1 o 77
S I 1 P 77

Vi

Preface

MSM isalibrary allowing you to easily and quickly define state machines of very high performance.
From this point, two main questions usually quickly arise, so please allow me to try answering them
upfront.

* When do | need a state machine?

More often that you think. Very often, one defined a state machineinformally without even noticing
it. For example, one declares inside a class some boolean attribute, say to remember that atask has
been completed. Later the boolean actually needs athird value, so it becomesan int. A few weeks,
asecond attribute is needed. Then athird. Soon, you find yourself writing:

voi d i ncom ng_dat a(dat a)

{

if (data == packet 3 && flagl == work_done && flag2 > step3)...

}

This starts to look like event processing (contained inside data) if some stage of the object life has
been achieved (but is ugly).

This could be a protocol definition and it is a common use case for state machines. Another
common one is a user interface. The stage of the user's interaction definesif some button is active,
afunctionality is available, etc.

But there are many more use casesif you start looking. Actually, awhole model -driven devel opment
method, Executable UML (http://en.wikipedia.org/wiki/Executable UML) specifies its complete
dynamic behavior using state machines. Class diagram, state machine diagrams, and an action
language are all you absolutely need in the Executable UML world.

» Another state machine library? What for?

True, there are many state machine libraries. This should already be an indication that if you're not
using any of them, you might be missing something. Why should you use this one? Unfortunately,
when looking for a good state machine library, you usually pretty fast hit one or severa of the
following snags:

 gpeed: "state machines are slow" is usualy the first criticism you might hear. While it is often
an excuse not to use any and instead resort to dirty, hand-written implementations (I mean, no,
yoursare not dirty of course, I'm talking about other developers). MSM removes this often feeble
excuse because it is blazingly fast. Most hand-written implementations will be beaten by MSM.

« ease of use: good argument. If you used ancther library, you are probably right. Many state
machine definitions will look similar to:

state s1 = new State; // a state

state s2 new State; // another state

event e = new Event; // event

sl->addTransition(e,s2); // transition sl -> s2
Themoretransitionsyou have, thelessreadableitis. A long time ago, there was not so much Java

yet, and many electronic systems were built with a state machine defined by a simple transition
table. Y ou could easily seethewholestructure and immediately seeif you forgot sometransitions.

Vi

Preface

Thanksto our new OO techniques, this ease of use was gone. MSM givesyou back the transition
table and reduces the noise to the minimum.

* expressiveness. MSM offers several front-ends and constantly tries to improve state machine
definition techniques. For example, you can define atransition with eUML (one of MSM's front-
ends) as:

statel == state2 + event [condition] / action

This is not simply syntactic sugar. Such a formalized, readable structure allows easy
communication with domain experts of a software to be constructed. Having domain experts
understand your code will greatly reduce the number of bugs.

* model-driven-development: a common difficulty of a model-driven development is the
complexity of making around-trip (generating code from model and then model from code). This
is due to the fact that if a state machine structure is hard for you to read, chances are that your
parsing tool will also have a hard time. MSM's syntax will hopefully help tool writers.

« features: most devel opers use only 20% of therichly defined UML standard. Unfortunately, these
are never the same 20% for al. And so, very likely, one will need something from the standard
which is not implemented. MSM offers avery large part of the standard, with more on the way.

Let us not wait any longer, | hope you will enjoy MSM and have fun with it!

viii

Part I. User' guide

Table of Contents

O o T o] g o 1= 4
2. UML ShOt GUITE ...ttt ettt e et n e et e e et e e e et e e e eaenns 5
What are state MaChinNeS?oiiiiii e e e e eens 5
L0 o oK 5
State machine, state, transition, BVENEooviiiiiiiiiii e 5
Submachines, orthogonal regions, PSEUdOSIALESccevuveviieiiiiieii e e 5
L TS 1P 6
Completion transitions / anoNymMOoUs tranSitioNSoceeveeeiiieiiiieciieeecreeeeeeies 6
INtErN@l traNSITIONS .eovvieiiii e et e e et eeeaa e e eees 7
Conflicting tranSItIONSiiiiiiii e e e e e e 7
P 0 (0 1= I wlo g0t o) £ 7
State MAChINE GIOSSANYvuiiii i e e e e e e aen 7
G 1 (o] - PSP 9
1= o | 9
BaSiC frONE-EN0eeiiiiii e e e e ae 9
A SIMPIE EXAMPIE ... 9
Transition tAD1Eoeeue e 9
Defining states with entry/exit aCtionScocevveiiiiiiiiiici e 10
What do you actually do inside actions / guards?cccoeveviiniviiniviii e, 10
Defining a simple state Machingccoovviiiii i 12
Defining @ sUBMAaChiNgc.uuiiiiii e 13
Orthogonal regions, terminate state, event deferringcoovevveveviiveiii e, 14
[TS 1 16
Completion (anonymous) tranSItioNSceeeuieeiierii e e e e e e 16
INEEINEl trANSITIONS ... e e s 17
10T 0T Y - 18
Explicit entry / entry and exit pseudo-state / forkcooevviiiiiiiiiiiiiineceeeen, 19
o P 22
YL B == 23
Customizing a state machine / Getting more speedcoeevviveviiiieeiiecii e, 23
Choosing the initial eventcccouiiiiiiii 24
Containing state machine (deprecated)oovvuieiiiiiiiiiei e 24
0o (o g 1001 T o o [PP 24
TranSition A1iiiee e 25
Defining states with entry/exit aCtionScccevveiiiiiiiii e, 26
What do you actually do inside actions / guards (Part 2)?........ccceeeveeieviiineiinennnnn. 26
Defining a simple state Machingccoovviiiii i 27
ANONYMOUS traNSITIONSiieiiiii e e e e e e e e e e e ean s 27
INEEINEl trANSITIONS ...t e 27
KIEENE (BNY) BVENLiieiiee e e e e 28
PUML (C++-20), €XPEMENLAlccuniieiiiiie e e e e e e e e 28
PlantUML DESICSvuniiiiiiecc e 28
Composite State MaChiNESccvuuieiiieii e e e e 31
BUM L Lo 32
TranSition tADIEceeve e 33
A simple example: rewriting only our transitiontablecccocoeiiiiiiiiiiinis 33
Defining events, actions and states with entry/exit actions..............ccoevevivevennennn. 34
Wrapping up a simple state machine and first complete examples................coocce... 36
Defining @ SUDMAaChiNguuiiiiii e 37
Attributes / FUNCLION Callooooeviiiii e 37
Orthogonal regions, flags, event deferringcooovvevivii i 39
Customizing a state machine / Getting more Speedccoevvvvviiieeiieciin e, 40
Completion / ANONYMOUS tranSItioNSoeveuieiiiieiiii e e e e 41
INEEINEl trANSITIONS ... e 41
KIEENE(ANY) BVENL) ...iciii et e e e e e 41

User' guide

Other SELE TYPES ... eeete ettt e e e e e eeee 42
HEIPEr FUNCLIONSiie e 42
PhoeniX-1TKe STL SUPPOITeiiiiiee et 44
Writing actions with Boost.Phoenix (in development)ccoovveveiiiniiiiiinneennen, 45
BaCK-ENO .. e 45
100 7= 1o o H TP UPPPTTRSPPPPN 45
Starting and stopping a state Machingcoouiiiiiiiii e 46
EVeNnt diSPaiChiNgccuuuiiiiii i 46
ACHVE SEAEE(S) .. eeeetiieee et 46
Upper State MaChINEuiiiiii e 46
SEMAITIZALTON ...t 46
BaSE SHAE 1Y .veeieiiiii et 48
RV A] (o PP PPPPI 48
A0S et 49
GELLING 8 ST .. eeveeee ettt 49
State machine constructor With argumMentsccoovveiiiiiiieiiiiinie e 50
Trading run-time speed for better compile-time/ multi-TU compilation 50
Compile-time state maching anNalySiScc.uviiiiiiiiiiiiii e 51
Enqueueing events for later ProCeSSINGveieeuiieieiiiieeeiii e 52
Customizing the MESSAJE QUEUESuuiiiiiiieeeiii e et e et e e eeeens 52
Policy definition with Boost.Parameterccooviiiiiiiiiiiiie e 52
Choosing when to switch active SLALESooceiiviiiiiiiiieii e 53
4. Performance / COMPITENSoouuiiiiii e e e 54
S0 = o PSPPSR 54
EXECULADIE SIZE ...t 54
SUPPOIEd COMPITENS ...t ettt e e e et e e e e e eees 54
LIMITAEIONS .eveee ettt et et e anaans 55
COMPITEIS COMMEE .ttt ettt ettt e e ettt e e et et e e e etb e e eenbaaeaees 55
5. QUESHIONS & ANSIWENS, TIPS ...eeniitieii ettt et e e e e e et e e et e e et e e e e eenaee 57
B. INEEINEIS ...ttt 59
Backend: RUN TO COMPIELIONuiiiiiiiiiiiii e e 59
Frontend / Backend INtEITaCecoeuuniiiiii e 60
Generated SEAE I0Soceeernieeiit e 61
Metaprogramming TO0IScuuuuiiiii e 62
7. ACKNOWIEGEIMENES ...ttt ettt e e e e eeaans 63
S Y Y 2 ST SUUPPPRPRTN 63
Y SV R o PRSPPI 63
8. VEISION NISLOMY ...ttt e et e et e e et e e e e aee 64
BOOSE 1.85 ..ot 64
BOOSE 1.72 ..ot 64
BOOSE L. 57 .t 64
BOOSE 1.56 ...oeiiiiii ittt 64
BOOSE 1.55 ...t 64
BOOSE 1,54 ..ot 64
From V2.23 10 V2.24 (BOOSE L.51)ciiiinieiiiiieeeeit ettt ettt e e e 64
From V2.22 10 V2.23 (BOOSE 1.50) ... cevvtneiiiiieeeeii ettt e e et e e e e e e 65
From V2.21 10 V2.22 (BOOSE 1.48)ceeuinieeiiii ettt et e 65
From V2.20 10 V2.21 (BOOSE L.A7) ...ttt ettt e e e e 65
From V2.12 10 V2.20 (BOOSE 1.46)ceerunieiiiii ettt ettt e e e e 66
From V2.10 10 V2.12 (BOOSE 1.45)ceeiineeiiitiee ettt et e e 66
From V2.0 10 V2.12 (BOOSE 1.44)ceeeiiieeeiii et 66

Chapter 1. Founding idea

Let's start with an example taken from the C++ Template M etaprogramming book:

cl ass player : public state_machi ne<pl ayer >

{
/1 The list of FSM states enum states { Enpty, Open, Stopped, Playing, Paused

/1 transition actions

void start_playback(play const& { std::cout << "player::start_playback\n"; }
voi d open_drawer (open_cl ose const&) { std::cout << "player::open_drawer\n"; }
/1 nore transition actions

typedef player p; // nakes transition table cleaner
struct transition_table : npl::vectorll<

/1 Start Event Tar get Acti on
/1 R Fomm - R T TP +
row< Stopped , play , Playing , &p::start_playback >,
row< Stopped , open_close , Open , & :open_drawer >,
/1 R Fomm - R T TP +
row< Qpen , open_close , Empty , &p::close_drawer >,
/1 R Fomm - R T TP +
row< Empty , open_close , (pen , &p::open_drawer >,
row< Empty , cd_detected, Stopped , &p::store_cd_info >,
/1 R Fomm - R T TP +
row< Playing , stop , Stopped , &p::stop_playback >,
row< Playing , pause , Paused , &p::pause_pl ayback >,
row< Playing , open_close , Open , &p::stop_and_open >,
/1 R Fomm - R T TP +
row< Paused , play , Playing , &p::resume_pl ayback >,
row< Paused , stop , Stopped , &p::stop_playback >,
row< Paused , open_close , Open , &p::stop_and_open >
/1 R Fomm - R T TP +
> {};

/! Replaces the default no-transition response.
tenpl ate <cl ass Event >
int no_transition(int state, Event consté& e)

{

std::cout << "no transition fromstate << state << on event

return state;

<< typeid

}
b

Thisexampleisthefoundation for theideadriving M SM: adescriptive and expressive language based
on atransition table with as little syntactic noise as possible, al this while offering as many features
from the UML 2.0 standard as possible. MSM also offers several expressive state machine definition
syntaxes with different trade-offs.

Chapter 2. UML Short Guide

What are state machines?

State machines are the description of athing'slifeline. They describethe different stages of thelifeline,
the events influencing it, and what it does when a particular event is detected at a particular stage.
They offer the complete specification of the dynamic behavior of the thing.

Concepts

Thinking in terms of state machines is a bit surprising at first, so let us have a quick glance at the
concepts.

State machine, state, transition, event

A state machine is a concrete model describing the behavior of a system. It is composed of a finite
number of states and transitions.

A simple state has no sub states. It can have data, entry and exit behaviors and deferred events. Onecan
provide entry and exit behaviors (also called actions) to states (or state machines), which are executed
whenever a state is entered or left, no matter how. A state can also have interna transitions which
cause no entry or exit behavior to be called. A state can mark events as deferred. This means the event
cannot be processed if this state is active, but it must be retained. Next time a state not deferring this
event is active, the event will be processed, asif it had just been fired.

A transition isthe switching between active states, triggered by an event. Actionsand guard conditions
can be attached to the transition. The action executes when the transition fires, the guard is a Boolean
operation executed first and which can prevent the transition from firing by returning false.

Aninitial state marks the first active state of a state machine. It has no real existence and neither has
the transition originating from it.

Submachines, orthogonal regions, pseudostates

A composite state is a state containing a region or decomposed in two or more regions. A composite
state contains its own set of states and regions.

A submachine is a state machine inserted as a state in another state machine. The same submachine
can be inserted more than once.

Orthogonal regions are parts of a composite state or submachine, each having its own set of mutually
exclusive set of states and transitions.

UML also defines a number of pseudo states, which are considered important concepts to model, but
not enough to make them first-class citizens. The terminate pseudo state terminates the execution of
a state machine (MSM handles this dightly differently. The state machine is not destroyed but no
further event processing occurs.).

UML Short Guide

An exit point pseudo state exits a composite state or a submachine and forces termination of execution
in all contained regions.

An entry point pseudo state allows akind of controlled entry inside acomposite. Precisely, it connects
atransition outside the composite to a transition inside the composite. An important point is that this
mechanism only allows asingle region to be entered. In the above diagram, in regionl, theinitial state
would become active.

There are also two more ways to enter a submachine (apart the obvious and more common case of a
transition terminating on the submachine as shown in the region case). An explicit entry means that
aninside state isthe target of atransition. Unlike with direct entry, no tentative encapsulation is made,
and only onetransition is executed. An explicit exit isatransition from an inner state to astate outside
the submachine (not supported by MSM). | would not recommend using explicit entry or exit.

The last entry possibility is using fork. A fork is an explicit entry into one or more regions. Other
regions are again activated using their initial state.

History

UML definestwo kinds of history, shallow history and deep history. Shallow history is apseudo state
representing the most recent substate of a submachine. A submachine can have at most one shallow
history. A transition with a history pseudo state as target is equivalent to a transition with the most
recent substate as target. And very importantly, only one transition may originate from the history.
Deep history is a shallow history recursively reactivating the substates of the most recent substate. It
is represented like the shallow history with astar (H* inside acircle).

History is not a completely satisfying concept. First of all, there can be just one history pseudo state
and only onetransition may originate from it. So they do not mix well with orthogonal regions as only
one region can be “remembered”. Deep history is even worse and looks like a last-minute addition.
History has to be activated by atransition and only one transition originates from it, so how to model
the transition originating from the deep history pseudo state and pointing to the most recent substate
of the substate? As abonus, it is also inflexible and does not accept new types of histories. Let's face
it, history sounds great and is useful in theory, but the UML version is not quite making the cut. And
therefore, MSM provides a different version of this useful concept.

Completion transitions / anonymous transitions

Completion events (or transitions), also called anonymoustransitions, are defined astransitionshaving
no defined event triggering them. This means that such transitions will immediately fire when a state
being the source of an anonymous transition becomes active, provided that aguard allowsit. They are
useful in modeling algorithms as an activity diagram would normally do. In the real-time world, they
have the advantage of making it easier to estimate how long a periodically executed action will last.
For example, consider the following diagram.

The designer now knows at any time that he will need a maximum of 4 transitions. Being able to
estimate how long atransition takes, he can estimate how much of atime frame hewill need to require

UML Short Guide

(real-time tasks are often executed at regular intervals). If he can a so estimate the duration of actions,
he can even use graph algorithms to better estimate his timing requirements.

Internal transitions

Internal transitions are transitions executing in the scope of the active state, being a simple state or a
submachine. One can see them as a self-transition of this state, without an entry or exit action called.

Conflicting transitions

If, for a given event, severa transitions are enabled, they are said to be in conflict. There are two
kinds of conflicts:

 For agiven source state, severa transitions are defined, triggered by the same event. Normally, the
guard condition in each transition defines which oneisfired.

» The source state is a submachine or simple state and the conflict is between atransition internal to
this state and a transition triggered by the same event and having as target another state.

The first one is simple; one only needs to define two or more rows in the transition table, with the
same source and trigger, with a different guard condition. Beware, however, that the UML standard
wants these conditions to be not overlapping. If they do, the standard says nothing except that this
isincorrect, so the implementer is free to implement it the way he sees fit. In the case of MSM, the
transition appearing last in the transition table gets selected first, if it returns false (meaning disabled),
the library tries with the previous one, and so on.

In the second case, UML defines that the most inner transition gets selected first, which makes sense,
otherwise no exit point pseudo state would be possible (the inner transition brings us to the exit point,
from where the containing state machine can take over).

MSM handles both cases itself, so the designer needs only concentrate on its state machine and the
UML subtleties (not overlapping conditions), not on implementing this behavior himself.

Added concepts

* Interrupt states: aterminate state which can be exited if a defined event is triggered.

» Kleene (any) event: a transition with a kleene event will accept any event as trigger. Unlike a
completion transition, an event must be triggered and the original event is kept accessible in the
kleene event.

State machine glossary

 state machine: the life cycle of a thing. It is made of states, regions, transitions and processes
incoming events.

» dtate: a stage in the life cycle of a state machine. A state (like a submachine) can have an entry
and exit behaviors.

* event: an incident provoking (or not) areaction of the state machine

* transition: a specification of how a state machine reacts to an event. It specifies a source state,
the event triggering the transition, the target state (which will become the newly active state if the
transition is triggered), guard and actions.

UML Short Guide

action: an operation executed during the triggering of the transition.

guard: aboolean operation being ableto prevent thetriggering of atransition which would otherwise
fire.

transition table: representation of a state machine. A state machine diagram is a graphical, but
incomplete representation of the same model. A transition table, on the other hand, is a complete
representation.

initial state: The state in which the state machine starts. Having several orthogonal regions means
having as many initial states.

submachine: A submachine is a state machine inserted as a state in another state machine and can
be found several times in a same state machine.

orthogonal regions: (logical) parallel flow of execution of a state machine. Every region of a state
machine gets a chance to process an incoming event.

terminate pseudo-state: when this state becomes active, it terminates the execution of the whole
state machine. MSM does not destroy the state machine as required by the UML standard, however,
which lets you keep all the state machine's data.

entry/exit pseudo state: defined for submachinesand are defined asaconnection between atransition
outside of the submachine and a transition inside the submachine. It is a way to enter or leave a
submachine through a predefined point.

fork: afork allows explicit entry into several orthogonal regions of a submachine.

history: ahistory isaway to remember the active state of a submachine so that the submachine can
proceed in itslast active state next time it becomes active.

completion events (also called compl etion/anonymous transitions): when atransition has no named
event triggering it, it automatically fires when the source state is active, unless aguard forbidsiit.

transition conflict: a conflict is present if for a given source state and incoming event, several
transitions are possible. UML specifies that guard conditions have to solve the conflict.

internal transitions: transition from astateto itself without having exit and entry actionsbeing called.

Chapter 3. Tutorial

Design

MSM is divided between front—ends and back-ends. At the moment, there is just one back-end. On
the front-end side, you will find three of them which are as many state machine description languages,
with many more possible. For potential language writers, this document contains a description of the
interface between front-end and back-end.

The first front-end is an adaptation of the example provided in the MPL book [http://boostpro.com/
mplbook] with actions defined as pointers to state or state machine methods. The second oneis based
on functors. Thethird, eUML (embedded UML) isan experimental language based on Boost.Proto and
Boost. Typeof and hiding most of the metaprogramming to increase readability. Both eUML and the
functor front-end also offer a functional library (a bit like Boost.Phoenix) for use as action language
(UML defining none).

Basic front-end

Thisis the historical front-end, inherited from the MPL book. It provides a transition table made of
rows of different names and functionality. Actions and guards are defined as methods and referenced
through a pointer in the transition. This front-end provides a smple interface making easy state
machines easy to define, but more complex state machines a bit harder.

A simple example

Let us have alook at a state machine diagram of the founding example:

We are now going to build it with MSM's basic front-end. An implementation [examples/
SimpleTutorial .cpp] is also provided.

Transition table

As previously stated, MSM is based on the transition table, so let us define one:

struct transition_table : npl::vector<

/1 Start Event Tar get Acti on Quard
!/ Fomme e - Fomm e - Fomm e - T T R
a_row< Stopped , play , Playing , &player_::start_playback
a_row< Stopped , open_close , Open , &player _::open_drawer
_row< Stopped , stop , Stopped
!/ Fomme e - Fomm e - Fomm e - T T R
a_row< Qpen , open_close , Enmpty , &player ::close_drawer
!/ Fomme e - Fomm e - Fomm e - T T R
a_row Empty , open_close , (Open , &player _::open_drawer
row< Enpty , cd_detected, Stopped , &player_::store_cd_info , &player _:
row< Enpty , cd_detected, Playing , &player_::store_cd_info , &player _:
!/ Fomme e - Fomm e - Fomm e - T T R
a row Playing , stop , Stopped , &player_::stop_playback
a_row Playing , pause , Paused , &player _::pause_pl ayback
a row Playing , open_close , Open , &player ::stop_and_open
!/ Fomme e - Fomm e - Fomm e - T T R
a_ row Paused , end_pause , Playing , &player_::resune_playback

http://boostpro.com/mplbook
http://boostpro.com/mplbook
http://boostpro.com/mplbook
examples/SimpleTutorial.cpp
examples/SimpleTutorial.cpp
examples/SimpleTutorial.cpp

Tutorial

a_row Paused , stop , Stopped , &player_::stop_playback

a row Paused , open_close , Open , &player ::stop_and_open

!/ S e e o m e e e e eeeeaaaaaa Fommmmm e,
>{}

You will notice that this is almost exactly our founding example. The only change in the transition
tableis the different types of transitions (rows). The founding example forces one to define an action
method and offers no guards. Y ou have 4 basic row types:

» rowtakes5 arguments: start state, event, target state, action and guard.

» a_row(“a’ for action) allows defining only the action and omit the guard condition.

* g_row(“g” for guard) alows omitting the action behavior and defining only the guard.
e _rowallows omitting action and guard.

The signature for an action methods is void method_name (event const&), for example:
voi d stop_pl ayback(stop const &)

Action methods return nothing and take the argument as const reference. Of course nothing forbids
you from using the same action for several events:

tenpl ate <cl ass Event> voi d stop_pl ayback(Event const &)
Guards have as only difference the return value, which is a boolean:

bool good_di sk_format(cd_detected consté& evt)

Defining states with entry/exit actions

While states were enums in the MPL book, they now are classes, which allows them to hold data,
provide entry, exit behaviors and be reusabl e (as they do not know anything about the containing state
machine). To define a state, inherit from the desired state type. Y ou will mainly use simple states:

struct Empty : public msm::front::state<> {};

They can optionally provide entry and exit behaviors:

struct Enpty : public mem:front::state<>
{
tenpl ate <cl ass Event, class Fsnp
void on_entry(Event consté& Fsm&)
{std::cout <<"entering: Enpty" << std::endl;}
tenpl ate <cl ass Event, class Fsnp
void on_exit(Event consté& Fsn&)
{std::cout <<"|eaving: Empty" << std::endl;}
b

Notice how the entry and exit behaviors are templatized on the event and state machine. Being generic
facilitates reuse. There are more state types (terminate, interrupt, pseudo states, etc.) corresponding to
the UML standard state types. These will be described in detailsin the next sections.

What do you actually do inside actions / guards?

State machines define a structure and important parts of the complete behavior, but not all. For
example if you need to send a rocket to Alpha Centauri, you can have a transition to a state

10

Tutorial

"SendRocketToAlphaCentauri” but no code actualy sending the rocket. This is where you need
actions. So asimple action could be:

tenpl ate <class Fire> void send_rocket (Fire const &)

{

fire_rocket();

}

Ok, this was simple. Now, we might want to give a direction. Let us suppose this information is
externally given when needed, it makes sense to use the event for this:

/1 Event
struct Fire {Direction direction;};
tenpl ate <class Fire> void send rocket(Fire consté& evt)

{

fire_rocket(evt.direction);

}

We might want to cal culate the direction based not only on external data but also on data accumulated
during previous work. In this case, you might want to have this data in the state machine itself. As
transition actions are members of the front-end, you can directly access the data:

/1 Event

struct Fire {Direction direction;};

[/front-end definition, see down

struct launcher_ : public msm:front::state_machi ne_def <l auncher _>{
Data current _cal cul ati on;

tenpl ate <class Fire> void send_rocket(Fire consté& evt)

{

fire_rocket (evt.direction, current_cal cul ation);

}

b

Entry and exit actions represent a behavior common to a state, no matter through which transition it
isentered or left. States being reusable, it might make sense to locate your data there instead of in the
state machine, to maximize reuse and make code more readable. Entry and exit actions have access

to the state data (being state members) but also to the event and state machine, like transition actions.
This happens through the Event and Fsm template parameters:

struct Launching : public msm:front::state<>

{
tenmpl ate <cl ass Event, class Fsnp
void on_entry(Event consté& evt, Fsm& fsn
{
fire_rocket(evt.direction, fsmcurrent_cal cul ati on);
}
1

Exit actions are also ideal for cleanup when the state becomes inactive.

Another possible use of the entry action is to pass data to substates / submachines. Launching is a
substate containing adat a attribute:

struct launcher_ : public msm:front::state_machi ne_def <l auncher _>{
Data current _cal cul ati on;

/1 state nmachines also have entry/exit actions

tenpl ate <cl ass Event, class Fsnp

voi d on_entry(Event consté& evt, Fsm& fsm

{

11

Tutorial

[auncher ::Launching& s = fsm get_state<launcher _::Launchi ng&>();
s.data = fsmcurrent_cal cul ati on;

}

b

The set_states back-end method allows you to replace a complete state.
The functor front-end and eUML offer more capabilities.

However, this basic front-end also has special capabilities using the row?2 / irow?2 transitions._row?2,
a rowz, row2, g row2, a_irow2, irow2, g_irow?2 let you call an action located in any state of the
current fsm or in the front-end itself, thus letting you place useful data anywhere you seefit.

It is sometimes desirable to generate new events for the state machine inside actions. Since the
process_event method belongs to the back end, you first need to gain areference to it. The back end
derives from the front end, so one way of doing thisisto use a cast:

struct launcher_ : public msm:front::state_machi ne_def <l auncher >{
tenpl ate <class Fire> void send_rocket(Fire consté& evt)
{

fire_rocket();
mem : back: : st at e_machi ne<l auncher_> & sm = static_cast<nmsm : back::state_machi
fsm process_event (rocket | aunched());

)
b

The same can be implemented inside entry/exit actions. Admittedly, this is a bit awkward. A more
natural mechanism is available using the functor front-end.

Defining a simple state machine

Declaring a state machineis straightforward and is done with ahigh signal / noise ratio. In our player
example, we declare the state machine as:

struct player_ : public msm:front::state_nachi ne_def <pl ayer_>{
/* see below */}

This declares a state machine using the basic front-end. We now declare inside the state machine
structure the initial state:

typedef Enpty initial_state;

And that is about all of what is absolutely needed. In the example, the states are declared inside the
state machine for readability but thisis not a requirements, states can be declared wherever you like.

All what isleft to do is to pick a back-end (which is quite simple as thereis only one at the moment):
typedef msm :backll::state_machi ne<pl ayer_> pl ayer;

You now have a ready-to-use state machine with entry/exit actions, guards, transition actions, a
message queue so that processing an event can generate another event. The state machine al so adapted
itself to your need and removed almost all features we didn't use in this simple example. Note that
thisis not per default the fastest possible state machine. See the section "getting more speed” to know
how to get the maximum speed. In anutshell, MSM cannot know about your usage of some features
so you will have to explicitly tell it.

State objects are built automatically with the state machine. They will exist until state machine
destruction.

12

Tutorial

When an unexpected event isfired, theno_transi ti on(event, state nmachine, state
i d) method of the state machineis called . By default, this method simply asserts when called. It is
possible to overwritetheno_t r ansi t i on method to define a different handling:

tenpl ate <cl ass Fsmcl ass Event >
void no_transition(Event const& e, Fsn& ,int state){...}

Note: you might have noticed that the tutorial callsst art () onthe state machine just after creation.
Thestart method will initiate the state machine, meaningit will activatetheinitial state, which meansin
turn that theinitial state's entry behavior will be called. The reason why we need thiswill be explained
in the back-end part. After acall to start, the state machine is ready to process events. The same way,
caling st op() will cause the last exit actions to be called.

Defining a submachine

We now want to extend our last state machine by making the Playing state a state machine itself (a
submachine).

Again, an example [examples/CompositeTutorial.cpp] is aso provided.

A submachine redlly is a state machine itself, so we declare Playing as such, choosing a front-end
and a back-end:

struct Playing_ : public mem:front::state_machi ne_def<Playing_>{...}
typedef msm : backll:: state_machi ne<Pl ayi ng_> Pl ayi ng;

Like for any state machine, one also needs atransition table and an initia state:

struct transition_table : npl::vector<

/1 Start Event Tar get Acti on Guard

!/ Fommm e R Fommm e T e Fommm - +
a_row Songl , NextSong , Song2 , &Playing_::start_next_song >,
a_row Song2 , PreviousSong, Songl , &Playing ::start_prev_song >,
a_row Song2 , NextSong , Song3 , &Playing_::start_next_song >,
a_row Song3 , PreviousSong, Song2 , &Playing ::start_prev_song >
!/ Fommm e R Fommm e T e Fommm - +
> {};

typedef Songl initial_state;

Thisisabout all you need to do. MSM will now automatically recognize Playing as a submachine and
all events handled by Playing (NextSong and PreviousSong) will now be automatically forwarded to
Playing whenever thisstateisactive. All other state machinefeaturesdescribed later area so available.
Y ou can even decide to use a state machine sometimes as submachine or sometimes as an independent
state machine.

There is, however, a limitation for submachines. If a submachine's substate has an entry action
which requires a special event property (like a given method), the compiler will require all events
entering this submachine to support this property. As this is not practicable, we will need to use
boost:: enabl e_if /boost: : di sabl e_i f tohelp, for example consider:

/1 define a property for use with enable if
BOOST_MPL_HAS XXX_TRAI T_DEF(sonme_event _property)

/1 this event supports some_event property and a correspondi ng required mnethod
struct eventl

13

examples/CompositeTutorial.cpp
examples/CompositeTutorial.cpp

Tutorial

{
/1 the property
typedef int sone_event_property;
/1 the method required by this property
voi d some_property(){...}
1

/1 this event does not supports sone_event property
struct event2

{
}s
struct sone_state : public nem:front::state<>
{
tenpl ate <cl ass Event,cl ass Fsnp
/1 enable this version for events supporting sone_event property
t ypenane boost::enabl e if<typenane has_sonme_event property<Event>::type, void
on_entry(Event const& evt, Fsn& fsn)
{
evt. sonme_property();
}
/1 for events not supporting some_event_property
tenpl ate <cl ass Event, cl ass Fsnp
t ypenane boost:: disable_if<typenanme has_sonme_event property<Event>::type, voi
on_entry(Event consté& ,Fsn&)
{ }
}s

Now this state can be used in your submachine.

Orthogonal regions, terminate state, event deferring

It is a very common problem in many state machines to have to handle errors. It usually involves
defining a transition from all the states to a special error state. Trandation: not fun. It is also not
practical to find from which state the error originated. The following diagram shows an example of
what clearly becomes not very readable:

Thisis neither very readable nor beautiful. And we do not even have any action on the transitions yet
to make it even less readable.

Luckily, UML providesahelpful concept, orthogonal regions. See them aslightweight state machines
running at the same time inside a common state machine and having the capability to influence one
another. The effect is that you have several active states at any time. We can therefore keep our state
machine from the previous example and just define a new region made of two states, AllOk and
ErrorMode. AllOk ismost of thetime active. But the error_found error event makes the second region
move to the new active state ErrorMode. This event does hot interest the main region so it will simply
be ignored. "no_t ransi ti on" will be called only if no region at all handles the event. Also, as
UML mandates, every region gets a chance of handling the event, in the order as declared by the
initial_state type

Adding an orthogonal region is easy, one only needsto declare more statesinthei niti al _state
typedef. So, adding a new region with AllOk asthe region'sinitia stateis:

typedef npl::vector<Empty, All Ok> initial_state;

Furthermore, when you detect an error, you usually do not want events to be further processed. To
achieve this, we use another UML feature, terminate states. When any region moves to a terminate

14

Tutorial

state, the state machine “terminates’ (the state machine and all its states stay alive) and all events are
ignored. This is of course not mandatory, one can use orthogonal regions without terminate states.
MSM also provides a small extension to UML, interrupt states. If you declare ErrorMode (or a
Boost.MPL sequence of events, like boost::mpl::vector<ErrorMode, AnotherEvent>) asinterrupt state
instead of terminate state, the state machine will not handle any event other than the one which ends
theinterrupt. So it's like aterminate state, with the difference that you are allowed to resume the state
machine when a condition (like handling of the original error) is met.

Last but not least, this example also shows here the handling of event deferring. Let's say someone
putsadisc and immediately presses play. The event cannot be handled, yet you'd want it to be handled
at alater point and not force the user to press play again. The solution is to define it as deferred in
the Empty and Open states and get it handled in the first state where the event is not to be deferred.
It can then be handled or rejected. In this example, when Stopped becomes active, the event will be
handled because only Empty and Open defer the event.

UML defines event deferring as a state property. To accommodate this, MSM lets you specify thisin
states by providing adef er r ed_event s type:

struct Enpty : public nmsm:front::state<>

{
/1 if the play event is fired while in this state, defer it until
/1 handles or rejects it
typedef npl::vector<play> deferred_events;

b

Please have alook at the complete exampl e [examples/Orthogonal -deferred.cpp].

While this is wanted by UML and is simple, it is not always practical because one could wish to
defer only in certain conditions. One could also want to make this be part of atransition action with
the added bonus of a guard for more sophisticated behaviors. It would aso be conform to the MSM
philosophy to get as much as possible in the transition table, where you have the whol e state machine
structure. Thisis aso possible but not practical with this front-end so we will need to pick a different
row from the functor front-end. For a compl ete description of the Rowtype, please have alook at the
functor front-end.

First, asthere is no state where MSM can automatically find out the usage of this feature, we need to
require deferred events capability explicitly, by adding a type in the state machine definition:

struct player_ : public nmsm:front::state_machi ne_def <pl ayer >

{

typedef int activate _deferred_events;
1

We can now defer an event in any transition of the transition table by using as action the predefined
nsm : front: : Def er functor, for example:

Row < Enpty , play , none , Defer , none >

Thisisan internal transition row(see internal transitions) but you can ignore this for the moment. It
just means that we are not leaving the Empty state. What mattersis that we use Defer as action. This
is roughly equivalent to the previous syntax but has the advantage of giving you all the information
in the transition table with the added power of transition behavior.

The second difference is that as we now have a transition defined, this transition can play in the
resolution of transition conflicts. For example, we could model an "if (condition2) move to Playing
elseif (conditionl) defer play event":

Row < Empty , play , none , Defer , conditionl >,

15

a state

examples/Orthogonal-deferred.cpp
examples/Orthogonal-deferred.cpp

Tutorial

g_row < Enpty , play , Playing , &player_::condition2 >

Please have alook at this possible implementation [examples/Orthogonal -deferred2.cpp] .

History

UML defines two types of history, Shallow History and Deep History. In the previous examples, if
the player was playing the second song and the user pressed pause, leaving Playing, at the next press
on the play button, the Playing state would become active and the first song would play again. Soon
would thefirst client complaints follow. They'd of course demand, that if the player was paused, then
it should remember which song was playing. But if the player was stopped, then it should restart from
the first song. How can it be done? Of course, you could add a bit of programming logic and generate
extra events to make the second song start if coming from Pause. Something like:

if (Event == end_pause)

{
}

Not much to like in this example, isn't it? To solve this problem, you define what is called a shallow
or a deep history. A shallow history reactivates the last active substate of a submachine when this
submachine becomes active again. The deep history does the same recursively, so if this last active
substate of the submachine was itself a submachine, its last active substate would become active and
this will continue recursively until an active state is a normal state. For example, let us have alook
at the following UML diagram:

for (int i=0;i< song nunber;++i) {player.process_event (NextSong()); }

Notice that the main difference compared to previous diagrams is that the initial state is gone and
replaced by aHistory symbol (the H inside acircle).

Asexplained in the small UML tutorial, History is a good concept with a not completely satisfying
specification. MSM kept the concept but not the specification and goes another way by making this
a policy and you can add your own history types (the reference explains what needs to be done).
Furthermore, History is abackend policy. This allows you to reuse the same state machine definition
with different history policiesin different contexts.

Concretely, your frontend stays unchanged:
struct Playing_ : public mem:front::state_nachi ne_def <Pl ayi ng_>
Y ou then add the policy to the backend as second parameter:

typedef msm :backll::state_nachi ne<Pl ayi ng_, msm : backll:: state_nachi ne<pl ayer >
msm : back: : Shal | owHi st ory<npl : : vect or <end_pause> > > P| ayi ng;

This states that a shallow history must be activated if the Playing state machine gets activated by the
end_pause event and only this one (or any other event added to the mpl::vector). If the state machine
was in the Stopped state and the event play was generated, the history would not be activated and the
normal initial state would become active. By default, history is disabled. For your convenience the
library providesin addition to ShallowHistory anon-UML standard AlwaysHistory policy (likely to be
your main choice) which always activates history, whatever event triggers the submachine activation.
Deep history is not available as a policy (but could be added). The reason is that it would conflict
with palicies which submachines could define. Of course, if for example, Songl were a state machine
itself, it could use the ShallowHistory policy itself thus creating Deep History for itself. An example
[examples/History.cpp] is also provided.

Completion (anonymous) transitions

The following diagram shows an example making use of this feature:

16

examples/Orthogonal-deferred2.cpp
examples/Orthogonal-deferred2.cpp
examples/History.cpp
examples/History.cpp

Tutorial

Anonymous transitions are transitions without a named event. This means that the transition
automatically fireswhen the predecessor stateisentered (to be exact, after the entry action). Otherwise
itisanormal transition with actions and guards. Why would you need something like that? A possible
casewould beif apart of your state machine implements some algorithm, where states are steps of the
algorithm implementation. Then, using several anonymoustransitionswith different guard conditions,
you are actually implementing some if/else statement. Another possible use would be a real-time
system called at regular intervals and always doing the same thing, meaning implementing the same
algorithm. The advantage is that once you know how long atransition takes to execute on the system,
by cal culating thelongest path (the number of transitions from start to end), you can pretty much know
how long your algorithm will take in the worst case, which in turns tells you how much of atime
frame you are to request from a scheduler.

If you are using Executable UML (a good book describing it is "Executable UML, a foundation for
Model-Driven Architecture"), you will notice that it is common for a state machine to generate an
event to itself only to force leaving a state. Anonymous transitions free you from this constraint.

If you do not use this feature in a concrete state machine, MSM will deactivate it and you will not pay
for it. If you useit, thereis however a small performance penalty asMSM will try to fire acompound
event (the other UML namefor anonymoustransitions) after every taken transition. Thiswill therefore
double the event processing cost, which is not as bad as it sounds as MSM’ s execution speed is very

high anyway.
To define such atransition, use “none” as event in the transition table, for example:
row < State3 , none , Stated4d , &p::State3ToStated , &p::always_true >

An implementation [examples/AnonymousTutorial.cpp] of the state machine diagram is also
provided.

Internal transitions

Internal transitions are transitions executing in the scope of the active state, a smple state or a
submachine. One can see them as a self-transition of this state, without an entry or exit action called.
Thisis useful when all you want is to execute some code for a given event in agiven state.

Internal transitions are specified as having a higher priority than normal transitions. While it makes
sense for a submachine with exit points, it is surprising for a simple state. MSM lets you define the
transition priority by setting the transition’s position inside the transition table (see internals). The
difference between "normal" and internal transitions is that internal transitions have no target state,
therefore we need new row types. We had a row, g_row, _row and row, we now add a_irow, g_irow,
_irow and irow which are like normal transitions but define no target state. For, example an internal
transition with a guard condition could be:

g_irow < Enmpty /*state*/,cd_detected/ *event*/, &p::internal _guard/* guard */>

These new row types can be placed anywherein the transition table so that you can still have your state
machine structure grouped together. The only difference of behavior with the UML standard is the
missing notion of higher priority for internal transitions. Please have alook at the example [examples/
SimpleTutorial Internal .cpp].

It is also possible to do it the UML-conform way by declaring a transition table called i nt er nal
transition_t abl e insidethe state itself and using internal row types. For example:

struct Enpty : public msm:front::state<>

{

struct internal _transition_table : npl::vector<
a_internal < cd _detected , Enpty, &Enpty::internal_action >

17

examples/AnonymousTutorial.cpp
examples/AnonymousTutorial.cpp
examples/SimpleTutorialInternal.cpp
examples/SimpleTutorialInternal.cpp
examples/SimpleTutorialInternal.cpp

Tutorial

more

>{}
b

This declares an internal transition table called internal_transition_table and reacting on the event
cd_detected by calling internal_action on Empty. Let us note afew points:

* internal tables are NOT called transition_table but internal_transition_table
« they use different but similar row types: a_internal, g_internal, _internal and internal.

e These types take as first template argument the triggering event and then the action and guard
method. Notethat the only real differenceto classical rowsisthe extraargument before the function
pointer. Thisisthe type on which the function will be called.

» Thisasoalowsyou, if you wish, to use actions and guards from another state of the state machine
or in the state machine itself.

» submachines can have an internal transition table and a classical transition table.

The following example [examples/TestInternal .cpp] makes use of an a_internal. It also uses functor-
based internal transitionswhich will be explained in thefunctor front-end, pleaseignore themfor the
moment. Also note that the state-defined internal transitions, having the highest priority (as mandated
by the UML standard), are tried before those defined inside the state machine transition table.

Which method should you use? It depends on what you need:

* the first version (using irow) is simpler and likely to compile faster. It also lets you choose the
priority of your internal transition.

« the second version is more logical from a UML perspective and lets you make states more useful
and reusable. It also allows you to call actions and guards on any state of the state machine.

Note: There is an added possbility coming from this feature. The

i nternal transition_tabl e transitions being added directly inside the main state machine's
transition table, itispossible, if itismoreto your state, to distribute your state machine definition a bit
like Boost.Statechart, leaving to the state machine itself the only task of declaring the states it wants
touseusing theexpl i ci t _creat i on typedefinition. While thisis not the author's favorite way,
itisstill possible. A simplified example using only two states will show this possibility:

« state machine definition [examples/distributed_table/DistributedTable.cpp]

 Empty header [examples/distributed table/Empty.hpp] and cpp [examples/distributed table/
Empty.cpp]

* Open header [examples/distributed table/Open.hpp] and cpp [examples/distributed table/
Open.cpp]

* events definition [examples/distributed_table/Events.hpp]

There is an added bonus offered for submachines, which can have both the standard transition_table
and an internal_transition_table (which has a higher priority). This makes it easier if you decide to
make a full submachine from a state. It is also dightly faster than the standard alternative, adding
orthogonal regions, because event dispatching will, if accepted by the internal table, not continue to
the subregions. This gives you a O(1) dispatch instead of O(number of regions). While the example
iswith eUML, the same is a so possible with any front-end.

row types

It isalso possible to write transitions using actions and guards not just from the state machine but also
from its contained states. In this case, one must specify not just a method pointer but also the object

18

examples/TestInternal.cpp
examples/TestInternal.cpp
examples/distributed_table/DistributedTable.cpp
examples/distributed_table/DistributedTable.cpp
examples/distributed_table/Empty.hpp
examples/distributed_table/Empty.hpp
examples/distributed_table/Empty.cpp
examples/distributed_table/Empty.cpp
examples/distributed_table/Empty.cpp
examples/distributed_table/Open.hpp
examples/distributed_table/Open.hpp
examples/distributed_table/Open.cpp
examples/distributed_table/Open.cpp
examples/distributed_table/Open.cpp
examples/distributed_table/Events.hpp
examples/distributed_table/Events.hpp

Tutorial

on which to call it. This transition row is called, not very originally, r ow2. They come, like normal
transitions in four flavors: a_row2, g_row2, _row2 and row2. For example, atransition
calling an action from the state Empty could be:

a_r ow2<St opped, open_cl ose, Open, Enpty
/*action source*/, &npty: :open_drawer/*acti on*/ >

The same capabilities are aso available for interna transitions so that we have:
airow2, g_.irow2, _irow2 and row2. For transitions defined as part of the
internal _transition_tabl e, you can use the a_internal, g_internal, _internal, internal
row types from the previous sections.

These row types alow us to distribute the state machine code among states, making them reusable
and more useful. Using transition tables inside states also contributes to this possibility. An example
[examples/SimpleT utorial 2.cpp] of these new rows is also provided.

Explicit entry / entry and exit pseudo-state / fork

MSM (almost) fully supports these features, described in the small UML tutorial. Almost because
there are currently two limitations:

« itisonly possible to explicitly enter a sub- state of the target but not a sub-sub state.
* itisnot possibleto explicitly exit. Exit points must be used.

Let us see a concrete example:

Wefind in this diagram:

e A*“normal” activation of SubFsm2, triggered by eventl. In each region, theinitial stateis activated,
i.e. SubStatel and SubStatelb.

* An explicit entry into SubFsm2::SubState2 for region “1” with event2 as trigger, meaning that in
region “2” theinitial state, SubStatelb, activated.

» Aforkintoregions“1” and“2” totheexplicit entries SubState2 and SubState2b, triggered by event3.
Both states become active so no region is default activated (if we had athird one, it would be).

» A connection of two transitions through an entry pseudo state, SubFsm2::PseudoEntry1, triggered
by event4 and triggering aso the second transition on the same event (both transitions must be
triggered by the same event). Region “2" is default-activated and SubStatelb becomes active.

» Anexit from SubFsm2 using an exit pseudo-state, PseudoEXxit1, triggered by event5 and connecting
two transitions using the same event. Again, the event is forwarded to the second transition and
both regions are exited, as SubFsm2 becomes inactive. Note that if no transition is defined from
PseudoExit1, an error (as defined in the UML standard) will be detected and no_transition called.

The example is also fully implemented [examples/DirectEntry Tutorial.cpp] .

This sounds complicated but the syntax is simple.

Explicit entry

First, to define that a state is an explicit entry, you have to make it a state and mark it as explicit,
giving as template parameters the region id (the region id starts with O and corresponds to the first
initial state of theinitial_state type sequence).

struct SubFsn2_ : public mem:front::state_machi ne_def <SubFsn2_>

19

examples/SimpleTutorial2.cpp
examples/SimpleTutorial2.cpp
examples/DirectEntryTutorial.cpp
examples/DirectEntryTutorial.cpp

Tutorial

struct SubState2 : public msm:front::state<> ,
public nem:front::explicit_entry<0>

{... 5
b
And define the submachine as:
typedef msm : backll:: state_machi ne<SubFsn2_> SubFsn®;
You can then useit astarget in atransition with Statel as source:
row < Statel, Event2, SubFsn®::direct< SubFsn2::SubState2> > //SubFsn2_:: SubS

The syntax deserves some explanation. SubFsm2_isafront end. SubState? is anested state, therefore
the SubFsm2_::SubState? syntax. The containing machine (containing Statel and SubFsm2) refersto
the backend instance (SubFsm2). SubFsm2::direct states that an explicit entry is desired.

Thanks to the mpl_graph library you can aso omit to provide the region index and let MSM find out
for you. The are however two pointsto note:

* MSM canonly find out theregion index if the explicit entry stateis somehow connected to an initial
state through a transition, no matter the direction.

» Thereisacompile-time cost for this feature.

Note (also valid for forks): in order to make compile time more bearable for the more standard cases,
and unlike initial states, explicit entry states which are also not found in the transition table of the
entered submachine (arare case) do NOT get automatically created. To explicitly create such states,
you need to add in the state machine containing the explicit states a simple typedef giving a sequence
of statesto be explicitly created like:

typedef npl::vector<SubState2, SubState2b> explicit_creation;

Note (also valid for forks): At the moment, it is not possible to use a submachine as the target of an
explicit entry. Please use entry pseudo states for an almost identical effect.

Fork

Need afork instead of an explicit entry? Asafork is an explicit entry into states of different regions,
we do not change the state definition compared to the explicit entry and specify as target a list of
explicit entry states:

_row < Statel, Event3,
npl : : vect or <SubFsn®: : di r ect <SubFsnP_:: SubSt at e2>,
SubFsn®: : direct <SubFsn2_:: SubStat e2b>
>

With SubState? defined as before and SubState2b defined as being in the second region (Caution:
MSM does not check that the region is correct):

struct SubState2b : public nmem:front::state<> ,
public nmem:front::explicit_entry<l>

Entry pseudo states

To define an entry pseudo state, you need derive from the corresponding class and give the region id:

struct PseudoEntryl : public nsm:front::entry_pseudo_stat e<0>

20

Tutorial

And add the corresponding transition in the top-level state machine's transition table:
row < Statel, Event4, SubFsn®::entry pt<SubFsnR ::PseudoEntryl> >

And another in the SubFsm2_ submachine definition (remember that UML defines an entry point as
a connection between two transitions), for example this time with an action method:

_row < PseudoEntryl, Event4, SubState3, &SubFsn2 ::entry_action >

Exit pseudo states

And finally, exit pseudo states are to be used almost the same way, but defined differently: it takes as
template argument the event to be forwarded (no region id is necessary):

struct PseudoExitl : public exit_pseudo_stat e<event 6>
And you need, like for entry pseudo states, two transitions, one in the submachine:
_row < SubState3, Event5, PseudoExitl >

And onein the containing state machine:

_row < SubFsn®::exit_pt<SubFsn2_ ::PseudoExitl> Event6, State2 >

Important note 1: UML defines transiting to an entry pseudo state and having either no second
transition or onewith aguard asan error but definesno error handling. MSM will tolerate thisbehavior;
the entry pseudo state will simply be the newly active state.

Important note 2: UML defines transiting to an exit pseudo state and having no second transition as
an error, and aso defines no error handling. Therefore, it was decided to implement exit pseudo state
as terminate states and the containing composite not properly exited will stay terminated as it was
technically “exited”.

Important note 3: UML states that for the exit point, the same event must be used in both transitions.
MSM relaxes this rule and only wants the event on the inside transition to be convertible to the one of
the outside transition. In our case, event6 is convertible from event5. Notice that the forwarded event
must be named in the exit point definition. For example, we could define event6 as simply as:

struct event

event () {}
tenpl ate <cl ass Event >
event (Event const &) {}

}; //lconvertible fromany event

Note: Thereisacurrent limitation if you need not only convert but al so get some datafrom the original
event. Consider:

struct eventl
{
event1(int val):val (val_) {}
int val;
}; /1 forwarded fromexit point
struct event2
{
templ ate <cl ass Event >
event 2(Event const& e):val (e.val){} // conpiler will conplain about another
int val;
}; /1 what the higher-level fsmwants to get

The solution is to provide two constructors:

21

Tutorial

struct event?2

{
tenpl ate <cl ass Event >
event 2(Event const&):val (0){} // will not be used
event 2(event1l const& e)):val (e.val){} // the conversion constructor
int val;

}; /1 what the higher-level fsmwants to get

Flags

Thistutorial [examples/Flags.cpp] isdevoted to aconcept not defined in UML: flags. It has been added
into MSM after proving itself useful on many occasions. Please, do not be frightened as we are not
talking about ugly shortcuts made of an improbable collusion of Booleans.

If you look into the Boost.Statechart documentation you'll find this code:

if ((state_downcast< const NuniLockOf * >() I=0) &&
(state_downcast< const CapsLockOf * >() '=0) &&
(state_downcast< const ScrollLockOf * >() '=0))

While correct and found in many UML books, this can be error-prone and a potential time-bomb when
your state machine grows and you add new states or orthogonal regions.

Andmost of all, it hidesthereal question, which would be " doesmy state machine's current state define
aspecial property” ? In this special case “are my keysin alock state”? So let's apply the Fundamental

Theorem of Software Engineering and move one level of abstraction higher.

In our player example, let's say we need to know if the player hasaloaded CD. We could do the same:

if ((state_downcast< const Stopped * >() !'=0) &&
(state_downcast< const Qpen * >() !'=0) &&
(state_downcast< const Paused * >() !'=0) &&
(state_downcast< const Playing * >() !=0))

Or flag these 4 states as CDL oaded-able. Y ou add aflag_list type into each flagged state:
typedef npl::vector1l<CDLoaded> flag |ist;

Y ou can even define alist of flags, for examplein Playing:

t ypedef npl::vector2<Pl ayi ngPaused, CDLoaded> flag |i st;

This means that Playing supports both properties. To check if your player has aloaded CD, check if
your flag is active in the current state;

player p; if (p.is_flag_active<CDLoaded>())
And what if you have orthogonal regions? How to decide if a state machine isin aflagged state? By
default, you keep the same code and the current states will be OR'ed, meaning if one of the active

states has the flag, then is_flag_active returns true. Of course, in some cases, you might want that all
of the active states are flagged for the state to be active. Y ou can also AND the active states:

if (p.is_flag_active<CDLoaded, pl ayer:: Fl ag_AND>())
Note. Due to arcane C++ rules, when called inside an action, the correct call is:
if (p.tenplate is_flag active<CDLoaded>())

The following diagram displays the flag situation in the tutorial.

22

examples/Flags.cpp
examples/Flags.cpp

Tutorial

Event Hierarchy

There are cases where one needs transitions based on categories of events. An exampleistext parsing.
Let's say you want to parse a string and use a state machine to manage your parsing state. Y ou want
to parse 4 digits and decide to use a state for every matched digit. Y our state machine could ook like:

But how to detect the digit event? We would like to avoid defining 10 transitionson char_0, char_1...
between two states as it would force us to write 4 x 10 transitions and the compile-time would suffer.
To solve this problem, MSM supports the triggering of atransition on a subclass event. For example,
if we define digits as:

struct digit {};
struct char_O : public digit {};

And to the samefor other digits, we can now firechar_0, char_1 eventsand thiswill cause atransition
with "digit" astrigger to be taken.

An example [examples/ParsingDigits.cpp] with performance measurement, taken from the
documentation of Boost.Xpressive illustrates this example. Y ou might notice that the performance is
actually very good (in this case even better).

Customizing a state machine / Getting more speed

MSM is offering many UML features at a high-speed, but sometimes, you just need more speed and
are ready to give up some features in exchange. A process_event is handling several tasks:

* checking for terminate/interrupt states

« handling the message queue (for entry/exit/transition actions generating themselves events)
 handling deferred events

* catching exceptions (or not)

« handling the state switching and action calls

Of these tasks, only the last one is absolutely necessary to a state machine (its core job), the other ones
are nice-to-haveswhich cost CPU time. In many cases, it isnot so important, but in embedded systems,
this can lead to ad-hoc state machine implementations. MSM detects by itself if a concrete state
machine makes use of terminate/interrupt states and deferred events and deactivates them if not used.
For the other two, if you do not need them, you need to help by indicating it in your implementation.
Thisis done with two simple typedefs:

* no_exception_t hr own indicates that behaviors will never throw and MSM does not need to
catch anything

* no_nessage_queue indicatesthat no action will itself generate a new event and MSM can save
us the message queue.

The third configuration possibility, explained here, is to manually activate deferred events,
using acti vate_deferred_events. For example, the following state machine sets all three
configuration types:

struct player_ : public msm:front::state_machi ne_def <pl ayer_>

{

/1 no need for exception handling or nessage queue

23

examples/ParsingDigits.cpp
examples/ParsingDigits.cpp

Tutorial

typedef int no_exception_thrown;

typedef int no_nessage_queue;

/1 also manual |y enabl e deferred events
typedef int activate_deferred_events
...11 rest of inplenentation

};

Important note: As exit pseudo states are using the message queue to forward events out of a
submachine, theno_nessage_queue option cannot be used with state machines containing an exit
pseudo state.

Choosing the initial event

A state machine is started using the st art method. This causes the initial state's entry behavior
to be executed. Like every entry behavior, it becomes as parameter the event causing the state to
be entered. But when the machine starts, there was no event triggered. In this case, MSM sends
mem : backll::state_machi ne<...>::InitEvent,which might not bethe default you'd
want. For this special case, MSM provides a configuration mechanism in the form of atypedef. If the
state machine's front-end definition provides an initial_event typedef set to another event, this event
will be used. For example:

struct my_initial _event{};
struct player_ : public nmem:front::state_nachi ne_def <pl ayer_>{

typedef ny_initial _event initial_event;

b
Containing state machine (deprecated)

Thisfeature is still supported in MSM for backward compatibility but made obsolete by the fact that
every guard/action/entry action/exit action get the state machine passed as argument and might be
removed at alater time.

All of the states defined in the state machine are created upon state machine construction. This has
the huge advantage of areduced syntactic noise. The cost isasmall loss of control for the user on the
state creation and access. But sometimes you needed away for a state to get access to its containing
state machine. Basically, a state needs to change its declaration to:

struct Stopped : public mem:front::state<smptr>
And to provideaset_sm_ptr function: voi d set_sm ptr (pl ayer* pl)

to get a pointer to the containing state machine. The same applies to terminate_state/ interrupt_state
and entry_pseudo_state/ exit_pseudo_state.

Functor front-end

The functor front-end is the preferred front-end at the moment. It is more powerful than the standard
front-end and has a more readable transition table. It also makes it easier to reuse parts of state
machines. LikeeUML, it also comeswith agood deal of predefined actions. Actually, eUML generates
afunctor front-end through Boost. Typeof and Boost.Proto so both offer the same functionality.

Therowswhich MSM offered in the previous front-end come in different flavors. We saw the a_row,
g_row, _row, row, not counting internal rows. Thisisalready much to know, so why define new rows?
These types have some disadvantages:

* They are more typing and information than we would wish. This means syntactic noise and more
to learn.

24

Tutorial

» Function pointers are weird in C++.

» Theaction/guard signatureis limited and does not allow for more variations of parameters (source
state, target state, current state machine, etc.)

* Itisnot easy to reuse action code from a state machine to another.

Transition table

We can change the definition of the simple tutoria's transition table to:

struct transition_table : npl::vector<

/1 Start Event Tar get Action Guard

/1 Fomm - Fomm e a Fomm - P Fomm -
Row < Stopped , play , Playing , start_pl ayback , hone

Row < Stopped , open_close , Open , open_drawer , hone

Row < Stopped , stop , Stopped , none , hone

/1 Fomm - Fomm e a Fomm - P Fomm -
Row < Open , open_close , Enmpty , close_drawer , hone

/1 Fomm - Fomm e a Fomm - P Fomm -
Row < Empty , open_close , (Open , open_drawer , hone

Row < Empty , cd_detected, Stopped , store_cd_info , good_di sk
g_row Empty , cd_detected, Playing , &player_::store_cd_info , &player _:
/1 Fomm - Fomm e a Fomm - P Fomm -
Row < Playing , stop , Stopped , stop_playback , hone

Row < Playing , pause , Paused , pause_pl ayback , hone

Row < Playing , open_close , Open , Stop_and_open , hone

/1 Fomm - Fomm e a Fomm - P Fomm -
Row < Paused , end_pause , Playing , resunme_pl ayback , hone

Row < Paused , stop , Stopped , stop_playback , hone

Row < Paused , open_close , Open , Stop_and_open , hone

/1 Fomm - Fomm e a Fomm - P Fomm -
> {};

Transitions are now of type "Row" with exactly 5 template arguments. source state, event, target
state, action and guard. Wherever there is nothing (for example actions and guards), write "none".
Actions and guards are no more methods but functors getting as arguments the detected event, the
state machine, source and target state:

struct store_cd info

{
tenpl ate <class Fsmcl ass Evt, class SourceState,class Target State>
voi d operator()(Evt const& Fsm& fsm SourceState&, TargetState&)
{
cout << "player::store_cd_info" << endl;
fsm process_event (play());
}
s

The advantage of functors compared to functions are that functors are generic and reusable. They
aso alow passing more parameters than just events. The guard functors are the same but have an
operator() returning a bool.

It is also possible to mix rows from different front-ends. To show this, a g_row has been left in the
transition table. Note: in case the action functor is used in the transition table of a state machine
contained inside atop-level state machine, the*fsm” parameter refersto thelowest-level state machine
(referencing this action), not the top-level one.

25

Tutorial

To illustrate the reusable point, MSM comes with awhole set of predefined functors. Please refer to
eUML for thefull list. For example, we are now going to replace thefirst action by an action sequence
and the guard by a more complex functor.

We decide we now want to execute two actions in the first transition (Stopped -> Playing). We only
need to change the action start_playback to

Acti onSequence_< npl ::vector<sone_action, start_pl ayback> >

and now will execute some action and start playback every time the transition is taken.
ActionSequence _isafunctor calling each action of the mpl::vector in sequence.

We also want to replace good disk format by a condition of the type: “good disk_format &&
(some_condition || some_other_condition)”. We can achieve thisusing And_and Or_ functors:

And_<good_di sk_format, O _< sone_condition , some_other_condition> >

It even starts looking like functional programming. MSM ships with functors for operators, state
machine usage, STL agorithms or container methods.

Defining states with entry/exit actions

You probably noticed that we just showed a different transition table and that we even mixed
rows from different front-ends. This means that you can do this and leave the definitions for states
unchanged. Most examples are doing this as it is the simplest solution. Y ou still enjoy the simplicity
of the first front-end with the extended power of the new transition types. This tutorial [examples/
SimpleWithFunctors.cpp], adapted from the earlier example does just this.

Of coursg, it is aso possible to define states where entry and exit actions are also provided as functors
as these are generated by eUML and both front-ends are equivalent. For example, we can define a
State as:

struct Enmpty_Entry

{
tenpl ate <cl ass Event,class Fsmclass State>
voi d operator()(Event const &, Fsn®&, St at e&)

{

}
}; /1 same for Enpty_Exit

struct Enpty tag {}:
struct Enpty : public msm:front::eum::func_state<Enpty_tag, Enpty_Entry, Enpty_

This aso means that you can, like in the transition table, write entry / exit actions made of
more complicated action combinations. The previous example can therefore be rewritten [examples/
SimpleWithFunctors2.cpp].

Usually, however, one will probably use the standard state definition as it provides the same
capabilities asthisfront-end state definition, unless one needs some of the shipped predefined functors
or isafan of functional programming.

What do you actually do inside actions / guards (Part
2)7?

Using the basic front-end, we saw how to pass data to actions through the event, that data common
to all states could be stored in the state machine, state relevant data could be stored in the state and
access astemplate parameter in the entry / exit actions. What was however missing was the capability
to accessrelevant state datain the transition action. Thisis possible with this front-end. A transition's

26

examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp

Tutorial

source and target state are also given as arguments. If the current calculation's state was to be found
in the transition's source state (whatever it is), we could accessiit:

struct send_rocket

{
tenpl ate <class Fsmcl ass Evt, class SourceState, class Target State>
voi d operator()(Evt const& Fsm& fsm SourceState& src, TargetState&)
{
fire_rocket(evt.direction, src.current_cal cul ation);
}
1

It was alittle awkward to generate new eventsinside actionswith the basic front-end. With the functor
front-end it is much cleaner:

struct send_rocket

{
tenpl ate <class Fsmcl ass Evt,class SourceState, class Target State>
void operator()(Evt const& evt, Fsn& fsm SourceState& src, Target St at e&)
{
fire_rocket(evt.direction, src.current_cal culation);
fsm process_event (rocket | aunched());
}
1

Defining a simple state machine

Like states, state machines can be defined using the previous front-end, as the previous example
showed, or with the functor front-end, which alows you to define a state machine entry and exit
functions as functors, as in this example [examples/SimpleWithFunctors2.cpp].

Anonymous transitions

Anonymous (completion) transitions are transitions without a named event. We saw how this front-
end uses hone when no action or guard is required. We can aso use none instead of an event to
mark an anonymous transition. For example, the following transition makes an immediate transition
from Statel to State2:

Row < Statel , none , State2 >
The following transition does the same but calling an action in the process:
Row < Statel , none , State2 , StatelToState2, none >

The following diagram shows an example and its implementation [examples/
AnonymousT utorial WithFunctors.cpp]:

Internal transitions

The following example [examples/SimpleT utorial | nternal Functors.cpp] usesinternal transitions with
the functor front-end. As for the simple standard front-end, both methods of defining internal
transitions are supported:

 providing aRowin the state machine's transition table with none astarget state defines an internal
transition.

» providing an i nternal _transition_tabl e made of | nternal rows inside a state or
submachine defines UML-conform internal transitions with higher priority.

27

examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp
examples/AnonymousTutorialWithFunctors.cpp
examples/AnonymousTutorialWithFunctors.cpp
examples/AnonymousTutorialWithFunctors.cpp
examples/SimpleTutorialInternalFunctors.cpp
examples/SimpleTutorialInternalFunctors.cpp

Tutorial

« transitionsdefined insidei nt er nal _transi ti on_t abl e require no source or target state as
the source state isknown (I nt er nal really are Row without a source or target state) .

Likefor thestandard front-end inter nal tr ansitions, internal transition tables are added into themain
state machine's table, thus allowing you to distribute the transition table definition and reuse states.

There is an added bonus offered for submachines, which can have both the standard transition_table
and an internal_transition_table (which hashigher priority). Thismakesit easier if you decideto make
a full submachine from a state later. It is also dightly faster than the standard alternative, adding
orthogonal regions, because event dispatching will, if accepted by the internal table, not continue to
the subregions. This gives you a O(1) dispatch instead of O(number of regions). While the example
iswith eUML, the same is a so possible with this front-end.

Kleene (any) event

Normally, MSM requires an event to fire atransition. But there are cases, where any event, no matter
which one would do:

* If you want to reduce the number of transitions: any event would do, possibly will guards decide
what happens

 Pseudo entry states do not necessarily want to know the event which caused their activation, or they
might want to know only a property of it.

MSM supports aboost::any as an acceptable event. This event will match any event, meaning that if a
transition with boost::any as event originates from the current state, thistransition wouldfire (provided
no guards or transition with a higher priority firesfirst). This event is named Kleene, as reference top
the Kleene star used in aregex.

For example, this transition on a state machine instance named fsm:
Row < Statel, boost::any, State2>

will fireif Statel is active and an event is processed:

fsm process_event (what ever _event());

At thispoint, you can usethisany event in transition actionsto get back to the original event by calling
for example boost::any: :type().

Itisalso possibleto support your own Kleene events by specializing boost::msm::is_kleene event for
agiven event, for example:

nanespace boost { nanmespace nmsn{
t enpl at e<>
struct is_kleene_event< ny_event >

{
t ypedef boost::npl::true_ type;
b
1}

The only requirement is that this event must have a copy constructor from the event originally
processed on the state machine.

PUML (C++-20), experimental
PlantUML basics

PlantUML [https://plantuml.com/] is a modelling tool with a nice extension for state machine
diagrams. The result can then be viewed, for example V SCode has add-ons for previewing the result.

28

https://plantuml.com/
https://plantuml.com/

Tutorial

Our usual player example could look like thisin PlantUML syntax:

@tartum Pl ayer

ski nparam | i netype pol yline
state Pl ayer{

pl ay
open_cl ose
st op

open_cl ose
open_cl ose
cd_detected
st op

pause
open_cl ose
end_pause
st op
open_cl ose

~ O~~~

~ O~~~

open_dr awner

cl ose_drawer
open_dr awner
store_cd_info
st op_pl ayback

st op_pl ayback,
resume_pl ayback
st op_pl ayback
st op_pl ayback,

entry start_playback [al ways_true]

[*]-> Enmpty
St opped -> Pl ayi ng
St opped -> Open
St opped -> St opped
Open -> Enpty
Enpty --> Open :
Enmpty ---> Stopped :
Pl ayi ng --> St opped
Pl ayi ng -> Paused
Pl ayi ng --> (Open
Paused -> Pl ayi ng
Paused --> St opped
Paused --> (Open
Playing : flag CDLoaded
Pl ayi ng :
Paused : entry pause_pl ayback
Paused : flag CDLoaded
St opped : flag CDLoaded
}
@ndum
A few key points of the syntax:

* Initial states are marked with [*] -> State

We a'so want to add these non-standard PlantUML features:

Terminal states are marked with Terminal -> [*]

Transitions floow the syntax: Source State -> Target State : event / Actionl,Action2 [guard

conditions]

Varying the number of "-" will make the layouter use longe arrows for transitions

"--" will make orthogonal regions clearer

Supported guard conditions are guard names & &... ||... !... (), for example !G1 & & (G2 || G3)

Flags. State Name : [keyword] flag flag-name. Add aflag per line.

entry / exit actions. State name: [keyword] entry-or-exit comma-separated-actions-sequence [guard

conditions]

An anonymous transition has an empty event name

An any event is defined using the Kleene syntax "*" as the event name.

adefer function is already provided for conditional event deferring

an interna transition is implemented using an equal source and target state and a "-" before the

event name

Open

-> Open

-play

| defer

29

open_

open_

Tutorial

* Aninternal Kleen would then be:
Enpty -> Enpty Do-F | defer [is_play_eve

Before PUML one had to convert this syntax in the classical MSM transition table, states with entry/
exit/flags, events, etc. which takeslong and is error-prone.

Good news: Thisis no more necessary. Now we can copy-paste our PlantUML and directly useit in
the code, which gives us:

// front-end: define the FSM structure
struct player_ : public msm:front::state_machi ne_def <pl ayer >
{
/! here is the whole FSM structure defi ned:
/1 Initial states [*]
/1 Transitions with actions starting with / and separated by ,

/1 and guards between []. Supported are !, &&, || and ()
/] State Entry / Exit with guards
/1 Flags

/1 -> can have different lengths for nicer PlantUVML Viewer preview

BOOST_MSM PUML_DECLARE TABLE(
R'(
@tartum Pl ayer
ski nparam | i netype polyline
state Pl ayer{

[*]-> Enpty

St opped -> Pl aying : play

St opped -> Open . open_cl ose / open_drawer

St opped -> St opped . stop

Open -> Enpty . open_cl ose / cl ose_drawer

Enmpty --> Open . open_cl ose / open_drawer

Enmpty ---> Stopped : cd_detected / store_cd_info

Pl ayi ng --> Stopped : stop / stop_pl ayback

Pl ayi ng -> Paused . pause

Pl ayi ng --> Qpen . open_cl ose / stop_pl ayback, open_
Paused -> Pl ayi ng . end_pause / resune_pl ayback
Paused --> Stopped : stop / stop_pl ayback

Paused --> Open . open_cl ose / stop_pl ayback, open_

Playing : flag CDLoaded
Playing : entry start_playback [al ways_true]
Paused : entry pause_pl ayback
Paused : flag CDLoaded
St opped : flag CDLoaded
}
@ndum
)"
)

/'l Replaces the default no-transition response.
tenpl ate <class FSM cl ass Event>
void no_transition(Event consté& FSMg, int)

{

}
1
/1 Pick a back-end
typedef msm :backll::state_ nachi ne<pl ayer > pl ayer;

30

Tutorial

The PlantUML string is parsed at compile-time and generates a classical Functor front-end.

States and event do not need to be defined any more, unless one needsto provide them with attributes,
or if the state are submachines. Actionsand Guards do need to beimplemented to reduced bugs because
of typos:

nanmespace boost::msm:front::punm {
t enpl at e<>
struct Action<by nane("cl ose_drawer")>

{
tenpl ate <class EVT, class FSM class SourceState, class Target State>
voi d operator () (EVT const& FSM&, SourceState& TargetState&)
{
}
1

t enpl at e<>
struct Guard<by_ nane("al ways_true")>

{
tenpl ate <class EVT, class FSM class SourceState, class Target State>
bool operator()(EVT const& FSM., SourceState& TargetState&)
{
return true;
}
1
}

The events are also referenced by name:
p. process_event (Event <by_name(" open_cl ose")>{});

Please note that C++-20 is required. A complete implementation [examples/SimplePuml.cpp] of the
player is provided.

Composite State Machines

At the moment, the PUML front-end does not support submachinesin asingle text string, so we need
to split. First we define the submachine:

struct playing_ : public mem:front::state_machi ne_def <pl ayi ng_>
{
t ypedef boost::fusion::vector<Pl ayi ngPaused, CDLoaded> flag |ist
/1 optional
tenpl ate <cl ass Event, class FSM>
void on_entry(Event const& FSM&) { }
tenpl ate <cl ass Event, class FSM>
void on_exit(Event const& FSM&) { }

BOOST_MSM_PUM._ DECLARE_TABLE(
R'(
@tartum Pl ayer
ski nparam | i netype polyline
state Pl ayer{

[*]-> Songl

Song1l -> Song2 : Next Song

Song2 -> Songl : PreviousSong / start_prev_song [start_
Song2 -> Song3 : Next Song / start_next_song

31

examples/SimplePuml.cpp
examples/SimplePuml.cpp

Tutorial

Song3 -> Song2 . Previ ousSong [start |
}
@ndum
)ll
)

/! Replaces the default no-transition response.
tenpl ate <class FSM cl ass Event>
void no_transition(Event consté& FSMg, int)
{
}
1
namespace boost::msm:front::pum {
/1 define submachine with desired back-end
t enpl at e<>
struct State<by name("Playi ngFsm')> : public nem: backll:: state_machi ne<pl a
{
1

We can the reference the submachine within the upper state machine:
Pl ayi ngFsm --> Stopped . stop [stop_pl ayback

Again, acompleteimplementation [examples/Orthogonal DeferredPuml .cpp] of the player isprovided.
Interesting are the orthogonal regions delimited with "--", comments and the possibility to declare
terminate or interrupt state using the standard MSM states.

eUML

Important note: eJML is not further under devel opment and will be gradually replaced by Puml with
PlantUML syntax.

Important note: eUML requires a compiler supporting Boost. Typeof. Full eUML has experimental
status (but not if only the transition table is written using eUML) because some compilers will start
crashing when a state machine becomes too big (usually when you write huge actions).

The previous front-ends are simple to write but still force an amount of noise, mostly MPL types,
so it would be nice to write code looking like C++ (with a C++ action language) directly inside the
transition table, like UML designers like to do on their state machine diagrams. If it were functional
programming, it would be even better. Thisiswhat eUML isfor.

eUML is aBoost.Proto and Boost. Typeof-based compile-time domain specific embedded language.
It provides grammars which allow the definition of actions/guards directly inside the transition table
or entry/exit in the state definition. There are grammars for actions, guards, flags, attributes, deferred
events, initial states.

It also relies on Boost.Typeof as a wrapper around the new decltype C++0x feature to provide a
compile-time evaluation of all the grammars. Unfortunately, all the underlying Boost libraries are
not Typeof-enabled, so for the moment, you will need a compiler where Typeof is supported (like
VC9-10, g++ >=4.3).

Examples will be provided in the next paragraphs. Y ou need to include eUML basic features:
#i nclude <msm front/eum /eun . hpp>
To add STL support (at possible cost of longer compilation times), include:

#i ncl ude <msm front/eum /stl. hpp>

32

examples/OrthogonalDeferredPuml.cpp
examples/OrthogonalDeferredPuml.cpp

Tutorial

eUML isdefined in the namespacensm : front : : euni .

Transition table

A transition can be defined using eUML as:

source + event [guard] / action == target
or as
target == source + event [guard] / action

The first version looks like a drawn transition in a diagram, the second one seems natural to a C++
developer.

The simple transition table written with the functor front-end can now be written as:

BOOST_MSM_EUM._TRANSI TI ON_TABLE((

St opped + play [some_guard] / (sone_action , start_playback) == Playing,
St opped + open_cl ose/ open_drawer == (Open ,
St opped + stop == Stopped ,
Open + open_cl ose / cl ose_drawer == Empty
Empty + open_cl ose / open_drawer == (Open ,
Empty + cd_detected [good_disk format] / store_cd_info == St opped
),transition_table)

Or, using the alternative notation, it can be:

BOOST_MBM_EUML_TRANSI TI ON_TABLE((

Playing == Stopped + play [some_guard] / (sone_action , start_pl ayback)
Open == Stopped + open_cl ose/ open_drawer

St opped == Stopped + stop

Enpty == (Qpen + open_cl ose / cl ose_drawer

Open == Enpty + open_cl ose / open_drawer

St opped == Enpty + cd_detected [good disk format] / store cd_info

),transition_table)
The transition table now looks like alist of (readable) rules with little noise.

UML definesguardsbetween“[]” and actionsafter a“/”, so the chosen syntax isalready morereadable
for UML designers. UML aso allows designers to define several actions sequentialy (our previous
ActionSequence) separated by a comma. The first transition does just this: two actions separated by
acomma and enclosed inside parenthesis to respect C++ operator precedence.

If this seemsto you like it will cost you run-time performance, don't worry, eUML is based on typeof
(or decltype) which only evaluatesthe parameterstoBOOST MSM_EUML_TRANSITION_TABLE
and no run-time cost occurs. Actually, eUML is only a metaprogramming layer on top of "standard"
MSM metaprogramming and this first layer generates the previously-introduced functor front-end.

UML aso alows designers to define more complicated guards, like [good disk format &&
(some_condition || some_other_condition)]. This was possible with our previously defined functors,
but using a complicated template syntax. This syntax is now possible exactly as written, which means
without any syntactic noise at all.

A simple example: rewriting only our transition table

As an introduction to eUML, we will rewrite our tutorial's transition table using eUML. This will
require two or three changes, depending on the compiler:

* events must inherit from msm::front::euml::euml_event< event_name >

33

Tutorial

o states must inherit from msm::front::euml::euml_state< state name >

» with VC, states must be declared before the front-end

We now can write the transition table like just shown, using
BOOST_MSM_EUML_DECLARE_TRANSITION_TABLE instead of
BOOST_MSM_EUML_TRANSITION_TABLE. The implementation [examples/

SimpleTutoria WithEumlTable.cpp] is pretty straightforward. The only required addition is the need
to declare avariable for each state or add parenses (a default-constructor call) in the transition table.

The composite [examples/CompositeT utorial WithEuml Table.cpp] implementation is also natural:

/1 front-end |ike al ways
struct sub_front_end : public boost::nmsm:front::state_machi ne_def<sub_front_en

{
b

/'l back-end like al ways
typedef boost::msm : backll::state_machi ne<sub_front_end> sub_back_end;

sub_back_end const sub; // sub can be used in a transition table.

Unfortunately, thereisabug with VC, which appears from timeto time and causesin astack overflow.
If you get a warning that the program is recursive on all paths, revert to either standard eUML or
another front-end as Microsoft doesn't seem to intend to fix it.

We now have a new, more readable transition table with few changes to our example. eUML can do
much more so please follow the guide.

Defining events, actions and states with entry/exit
actions

Events

Events must be proto-enabled. To achieve this, they must inherit from a proto terminal
(euml_event<event-name>). eUML also provides a macro to make this easier:

BOOST_MBM_EUML_EVENT(pl ay)

This declares an event type and an instance of this type called pl ay, which is how ready to usein
state or transition behaviors.

There is a second macro, BOOST_MSM_EUML_EVENT _WITH_ATTRIBUTES, which takes as
second parameter the attributes an event will contain, using the attribute syntax.

Note: as we now have events defined as instances instead of just types, can we still process an
event by creating one on thefly, like: f sm process_event (pl ay()); or dowe haveto write:
fsm process_event (pl ay);

The answer is you can do both. The second oneis easier but unlike other front-ends, the second uses
adefined operator(), which creates an event on the fly.

Actions

Actions (returning void) and guards (returning a bool) are defined like previous functors, with the
difference that they also must be proto-enabled. This can be done by inheriting from euml_action<
functor-name >. eUML also provides a macro:

BOOST_MSM EUML_ACTI ON(somre_condi ti on)

examples/SimpleTutorialWithEumlTable.cpp
examples/SimpleTutorialWithEumlTable.cpp
examples/SimpleTutorialWithEumlTable.cpp
examples/CompositeTutorialWithEumlTable.cpp
examples/CompositeTutorialWithEumlTable.cpp

Tutorial

tenpl ate <class Fsmcl ass Evt, class SourceState, class Target State>
bool operator()(Evt const& , Fsm& , Sour ceSt at e&, Target St at e&)
{ return true; }

b

Like for events, this macro declares a functor type and an instance for use in transition or state
behaviors.

It is possible to use the same action grammar from the transition table to define state entry and exit
behaviors. So(acti onl, acti on2) isavalid entry or exit behavior executing both actionsin turn.

The state functors have a dlightly different signature as there is no source and target state but only a
current state (entry/exit actions are transition-independent), for example:

BOOST_MSM _EUML_ACTI ON(Enpty_Ent ry)

{
tenpl ate <cl ass Evt,class Fsmclass State>
voi d operator()(Evt const& ,Fsm& ,State&) { ... }
b

It isalso possible to reuse the functors from the functor front-end. The syntax is however dlightly less
comfortable as we need to pretend creating one on the fly for typeof. For example:

struct start_pl ayback

{
tenpl ate <class Fsmcl ass Evt, cl ass SourceState, cl ass Target St at e>
voi d operator()(Evt const& , Fsm& SourceState& , Target State&)
{
}
b
BOOST_MSM_EUM._TRANSI TI ON_TABLE((
Pl ayi ng == Stopped + play / start_playback() ,

5 t ransition_tabl e)
States

There is also a macro for states. This macro has 2 arguments, first the expression defining the state,
then the state (instance) name:

BOOST_MSM_EUML_STATE((), Paused)

This defines a simple state without entry or exit action. Y ou can provide in the expression parameter
the state behaviors (entry and exit) using the action grammar, like in the transition table:

BOOST_MSM EUML_STATE(((Enpty_Entry, Dummy_Entry)/*2 entryacti ons*/,
Enpty Exit/*1 exit action*/),
Enpt y)

Thismeansthat Empty is defined asastate with an entry action made of two sub-actions, Empty_Entry
and Dummy_Entry (enclosed inside parenthesis), and an exit action, Empty_Exit.

There are several possibilitites for the expression syntax:
e (): state without entry or exit action.
» (Exprl): state with entry but no exit action.

* (Exprl,Expr2): state with entry and exit action.

35

Tutorial

» (Exprl,Expr2,Attributes): statewith entry and exit action, defining some attributes (read further on).

» (Exprl,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes (read
further on) and flags (standard MSM flags) or deferred events (standard MSM deferred events).

» (Exprl,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes
(read further on), flags and deferred events (plain msm deferred events) and a non-default base state
(as defined in standard MSM).

no_action is also defined, which does, well, nothing except being a placeholder (needed for example
as entry action if we have no entry but an exit). Exprl and Expr2 are a sequence of actions, obeying
the same action grammar as in the transition table (following the “/” symboal).

The BOOST_MSM_EUML_STATE macro will allow you to define most common states, but
sometimes you will need more, for example providein your states some special behavior. In this case,
you will have to do the macro's job by hand, which is not very complicated. The state will need to
inheritfrommsm : front : : st at e<>, likeany state, andfromeuni _st at e<st at e- nane>to
be proto-enabled. Y ou will then need to declare an instance for usein thetransition table. For example:

struct Enpty_inpl : public mem:front::state<> , public eum _state<Enpty_inpl>

{
void activate_empty() {std::cout << "switching to Enpty " << std::endl;}
tenpl ate <cl ass Event, cl ass Fsnp
voi d on_entry(Event consté& evt, Fsn&fsm{...}
tenpl ate <cl ass Event, cl ass Fsnp
voi d on_exit(Event const& evt, Fsm&fsm{...}
i

//instance for use in the transition table
Empty_i npl const Enpty;

Notice also that we defined amethod named activate_empty. Wewould liketo call it insideabehavior.
This can be done using the BOOST_MSM_EUML_METHOD macro.

BOOST_MSM EUML_METHOD(Acti vat eEnpty_, activate_enpty, activate_enpty_, voi d, voi d)

Thefirst parameter isthe name of the underlying functor, which you could use with the functor front-
end, the second is the state method name, the third is the eUML-generated function, the fourth and
fifth the return value when used inside a transition or a state behavior. You can now use this inside
atransition:

Enpty == Open + open_close / (close_drawer,activate enpty (target))

Wrapping up a simple state machine and first
complete examples

Y ou can reuse the state machine definition method from the standard front-end and simply replace the
transition table by this new one. Y ou can also use eUML to define a state machine "on the fly" (if, for
example, you need to provide an on_entry/on_exit for this state machine as afunctor). For this, there
is aso a macro, BOOST_MSM_EUML_DECLARE_STATE_MACHINE, which has 2 arguments,
an expression describing the state machine and the state machine name. The expression has up to 8
arguments:

o (Stt, Init): simplest state machine where only the transition table and initial state(s) are defined.
e (Stt, Init, Exprl): state machine where the transition table, initial state and entry action are defined.

o (Stt, Init, Exprl, Expr2): state machine wherethetransition table, initial state, entry and exit actions
are defined.

36

Tutorial

o (Stt, Init, Exprl, Expr2, Attributes): state machine where the transition table, initial state, entry and
exit actions are defined. Furthermore, some attributes are added (read further on).

o (Stt, Init, Exprl, Expr2, Attributes, Configure): state machinewherethetransitiontable, initial state,
entry and exit actions are defined. Furthermore, some attributes (read further on), flags, deferred
events and configuration capabilities (no message queue / no exception catching) are added.

o (Stt, Init, Exprl, Expr2, Attributes, Flags, Deferred , Base): state machinewherethetransition table,
initial state, entry and exit actions are defined. Furthermore, attributes (read further on), flags ,
deferred eventsand configuration capabilities (no message queue/ no exception catching) are added
and a non-default base state (see the back-end description) is defined.

For example, a minimum state machine could be defined as:

BOOST_MSM _EUM__TRANSI TI ON_TABLE((
),transition_table)

BOOST_MSM EUML_DECLARE _STATE MACHI NE((transition_table,init_ << Enpty),
pl ayer)

Please have a look a the player tutoriadd written using eUML's first syntax
[examples/SimpleTutorial Eumi2.cpp] and second syntax [examples/SimpleTutorial Euml.cpp]. The
BOOST_MSM_EUML_DECLARE_ATTRIBUTE macro, to which wewill get back shortly, declares
attributes given to an eUML type (state or event) using the attribute syntax.

Defining a submachine

Defining a submachine (see tutorial [examples/CompositeTutorial Euml.cpp]) with other front-ends
simply means using a state which is a state machine in the transition table of another state machine.
This is the same with eUML. One only needs define a second state machine and reference it in the
transition table of the containing state machine.

Unlikethe state or event definition macros, BOOST MSM_EUML_ DECLARE_STATE _MACHINE
defines a type, not an instance because a type is what the back-end requires. This means that you
will need to declare yourself an instance to reference your submachine into another state machine,
for example:

BOOST_MSM_EUM._DECLARE_STATE_MACHI NE(. . ., Pl ayi ng_)
typedef msm : backll::state nachi ne<Pl aying > Pl ayi ng_type;
Pl ayi ng_type const Pl ayi ng;

We can now use this instance inside the transition table of the containing state machine:

Paused == Pl aying + pause / pause_pl ayback

Attributes / Function call

We now want to make our grammar more useful. Very often, one needs only very simple action
methods, for example ++Counter or Counter > 5 where Counter is usually defined as some attribute
of the class containing the state machine. It seems like a waste to write a functor for such a ssmple
action. Furthermore, states within MSM are also classes so they can have attributes, and we would
also like to provide them with attributes.

If you look back a our examples using the first [examples/SimpleTutorial Euml2.cpp]
and second [examples/SimpleTutorial Euml.cpp] syntaxes, you will find a
BOOST_MSM_EUML_DECLARE_ATTRIBUTE and a BOOST_MSM_EUML_ATTRIBUTES
macro. The first one declares possible attributes:

BOOST_MSM _EUML_DECLARE_ATTRI BUTE(std: : stri ng, cd_nane)
BOOST_MSM EUM._DECLARE_ATTRI BUTE(Di skTypeEnum cd_t ype)

37

examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml.cpp
examples/SimpleTutorialEuml.cpp
examples/CompositeTutorialEuml.cpp
examples/CompositeTutorialEuml.cpp
examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml.cpp
examples/SimpleTutorialEuml.cpp

Tutorial

This declares two attributes: cd_name of type std::string and cd_type of type DiskTypeEnum. These
attributes are not part of any event or state in particular, we just declared a name and atype. Now, we
can add attributes to our cd_detected event using the second one:

BOOST_MSM EUML_ATTRI BUTES((attri butes_ << cd_nane << cd_type),
cd detected _attributes)

This declares an attribute list which is not linked to anything in particular yet. It can be attached to
a state or an event. For example, if we want the event cd_detected to have these defined attributes
we write:

BOOST_MSM EUML_EVENT W TH_ATTRI BUTES(cd_det ect ed, cd_det ected_attri but es)

For states, we use the BOOST _MSM_EUML_STATE macro, which has an expression form where
one can provide attributes. For example:

BOOST_MSM EUML_STATE((no_action /*entry*/,no_action/*exit*/,
attributes_ << cd_detected_ attributes),
sone_st at e)

OK, great, we now have away to add attributesto a class, which we could have done more easily, so
what isthe point? The point is that we can now reference these attributes directly, at compile-time, in
the transition table. For example, in the example, you will find this transition:

St opped==Enpt y+cd_det ect ed[good_di sk_f or mat &&(event (cd _type)==Int_<DI SK CD>())

Read event_(cd_type) asevent_->cd_typewith event_atype generic for events, whatever the concrete
event is (in this particular case, it happensto be acd_detected as the transition shows).

The main advantage of thisfeatureisthat you do not need to define a new functor and you do not need
to look inside the functor to know what it does, you have all at hand.

MSM provides more generic objects for state machine types:

e event_: usedinside any action, the event triggering the transition
 dtate : used inside entry and exit actions, the entered / exited state
 source : used inside atransition action, the source state

* target_: used inside atransition action, the target state

» fsm_: used inside any action, the (lowest-level) state machine processing the transition
* Int_<int value>: afunctor representing an int

» Char_<value>: afunctor representing a char

e Size t <value>: afunctor representing asize t
 String_<mpl::string> (boost >= 1.40): afunctor representing a string.
These helpers can be used in two different ways:

* helper(attribute_name) returns the attribute with name attribute_name
 helper returnsthe state / event type itself.

The second form is helpful if you want to provide your states with their own methods, which you
also want to use inside the transition table. In the above tutorial [examples/SimpleTutorial Euml.cpp],
we provide Empty with an activate empty method. We would like to create a eUML functor
and cal it from inside the transition table. This is done using the MSM_EUML_METHOD /
MSM_EUML_FUNCTION macros. The first creates a functor to a method, the second to a free
function. In the tutorial, we write:

38

examples/SimpleTutorialEuml.cpp
examples/SimpleTutorialEuml.cpp

Tutorial

MSM EUML_METHOD(Act i vat eEnpty_, activate_enpty, activate_enpty_, voi d, voi d)

The first parameter is the functor name, for use with the functor front-end. The second is the name
of the method to call. The third is the function name for use with eUML, the fourth is the return type
of the function if used in the context of a transition action, the fifth is the result type if used in the
context of astate entry / exit action (usually fourth and fifth are the same). We now have anew eUML
function calling a method of "something”, and this "something" is one of the five previously shown
generic helpers. We can now use thisin atransition, for example:

Enpty == Open + open_close / (close_drawer,activate enpty (target))

The action is now defined as a sequence of two actions: close drawer and activate_empty, which
is called on the target itself. The target being Empty (the state defined |eft), this really will call
Empty::activate_empty(). This method could also have an (or several) argument(s), for example the
event, we could then call activate empty (target_, event).

More examples can be found in the terrible compiler stress test [examples
CompilerStressTestEuml.cpp], the timer example [examples/SimpleTimer.cpp] or in the iPodSearch
with eUML [examples/iPodSearchEuml.cpp] (for String_ and more).

Orthogonal regions, flags, event deferring

Defining orthogonal regions really means providing more initia states. To add more initial states,
“shift left” some, for example, if we had another initial state named AllIOK :

BOOST_MSM _EUML_DECLARE_STATE_MACHI NE((transition_tabl e,
init_ << Enmpty << Al &),
pl ayer)

You remember from the BOOST MSM_EUML_STATE and
BOOST_MSM_EUML_DECLARE_STATE_MACHINE signatures that just after attributes, we
can define flags, like in the basic MSM front-end. To do this, we have another "shift-left" grammar,
for example:

BOOST_MSM EUML_STATE((no_action, no_action, attributes_ <<no_attributes_,
/* flags */ configure_<< PlayingPaused << CDLoaded),
Paused)

We now defined that Paused will get two flags, PlayingPaused and CDL oaded, defined, with another
macro:

BOOST_MSM _EUM._FLAG(CDLoaded)
This corresponds to the following basic front-end definition of Paused:

struct Paused : public msm:front::state<>

{
b

Under the hood, what you get really is a mpl::vector2.

typedef npl::vector2<Pl ayi ngPaused, CDLoaded> flag_|i st;

Note: As we use the version of BOOST_MSM_EUML_STATE's expression with 4 arguments,
we need to tell eUML that we need no attributes. Similarly to a cout << endl, we need a
attributes_ << no_attributes_ syntax.

Y ou can usethe flag with theis flag_active method of a state machine. Y ou can also use the provided
helper function is _flag_ (returning abool) for state and transition behaviors. For example, in theiPod
implementation with eUML [examples/iPodEuml.cpp], you find the following transition:

39

examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp
examples/SimpleTimer.cpp
examples/SimpleTimer.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodEuml.cpp
examples/iPodEuml.cpp
examples/iPodEuml.cpp

Tutorial

Forwar dPressed == NoForward + EastPressed[!is_flag (NoFast Fwd)]

The function also has an optional second parameter which is the state machine on which the function
iscaled. By default, fsm_isused (the current state machine) but you could provide afunctor returning
areference to another state machine.

eUML also supports defining deferred events in the state (state machine) definition. To thisaim, we
can reuse the flag grammar. For example:

BOOST_MSM EUML_STATE((Enpty_Entry, Enpty_Exit, attributes_ << no_attributes_,
/* deferred */ configure_<< play), Enpty)

The configure _ left shift is also responsible for deferring events. Shift inside configure a flag and
the state will get aflag, shift an event and it will get a deferred event. This replaces the basic front-
end definition:

typedef npl::vector<play> deferred_events;

In this tutoria [examples/Orthogona DeferredEuml.cpp], player is defining a second orthogonal
region with AllOk as initial state. The Enpt y and Open states also defer the event pl ay. Open,
St opped and Pause also support the flag CDLoaded using the same left shiftintoconf i gure_.

In the functor front-end, we also had the possibility to defer an event inside a transition, which
makes possible conditional deferring. Thisis also possible with eUML through the use of the defer_
order, as shown in thistutorial [examples/Orthogonal DeferredEuml.cpp]. Y ou will find the following
transition:

Open + play / defer_

Thisisan internal transition. Ignore it for the moment. Interesting is, that when the event pl ay is
fired and Open isactive, the event will be deferred. Now add a guard and you can conditionally defer
the event, for example:

Open + play [sonme_condition] / defer_

Thisissimilar towhat we did with the functor front-end. Thismeansthat we have the same constraints.
Using defer_instead of a state declaration, we need to tell MSM that we have deferred eventsin this
state machine. We do this (again) using a configure _ declaration in the state machine definition in
which we shift the deferred_events configuration flag:

BOOST_MSM EUML_DECLARE STATE MACHI NE((transition_tabl e,
init_ << Enpty << Al Ck,
Entry Action,
Exit_Action,
attributes << no_attributes_,
configure << deferred events),

pl ayer)
A tutorial [examples/Orthogonal DeferredEuml2.cpp] illustrates this possibility.

Customizing a state machine / Getting more speed

We just saw how to use configure _to define deferred events or flags. We can also use it to configure
our state machine like we did with the other front-ends:

e configure_ << no_excepti on: disables exception handling
e configure_ << no_msg_queue deactivates the message queue

» configure_ << deferred_events manualy enables event deferring

40

examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml2.cpp
examples/OrthogonalDeferredEuml2.cpp

Tutorial

Deactivating the first two features and not activating the third if not needed greatly improvesthe event
dispatching speed of your state machine. Our speed testing [examples/EumlSimple.cpp] examplewith
eUML does thisfor the best performance.

Important note: As exit pseudo states are using the message queue to forward events out of a
submachine, theno_nmessage_queue option cannot be used with state machines containing an exit
pseudo state.

Completion / Anonymous transitions

Anonymoustransitions (See UML tutorial) aretransitionswithout anamed event, which aretherefore
triggered immediately when the source state becomes active, provided aguard allowsit. Asthereisno
event, to define such atransition, simply omit the “+” part of the transition (the event), for example:

State3 == Stated4 [always_true] / State3ToState4d
Stated [always_true] / State3ToStated == State3

Please have alook at this example [examples/AnonymousT utorial Euml.cpp], which implements the
previoudly defined state machine with eUML.

Internal transitions

Like both other front-ends, eUML supports two ways of defining internal transitions:

* inthe state machine's transition table. In this case, you need to specify a source state, event, actions
and guards but no target state, which eUML will interpret as an internal transition, for example this
defines atransition internal to Open, on the event open_close:

Qpen + open_close [internal _guardl] / internal _actionl
A full example [examples/Eumlinternal.cpp] is aso provided.
* inastate'si nternal _transition_tabl e. For example:

BOOST_MSM_EUM._DECLARE_STATE((Open_Ent ry, Open_Exi t), Open_def)
struct Open_inpl : public Open_def
{
BOOST_MSM_EUM._DECLARE | NTERNAL_TRANSI TI ON_TABLE((
open_cl ose [internal _guardl] / internal _actionl
))
3

Notice how we do not need to repeat that the transition originates from Open as we aready arein
Open's context.

The implementation [examples/EumlInternal Distributed.cpp] aso shows the added bonus offered
for submachines, which can have both the standard transition_table and an internal _transition_table
(which has higher priority). This makes it easier if you decide to make a full submachine from a
state. It isalso slightly faster than the standard alternative, adding orthogonal regions, because event
dispatching will, if accepted by the internal table, not continue to the subregions. This givesyou a
O(1) dispatch instead of O(number of regions).

Kleene(any) event)

As for the functor front-end, eUML supports the concept of an any event, but boost::any is not an
acceptable eUML terminal. If you need an any event, use msm::front::euml::kleene, which inherits
boost::any. The same transition as with boost:any would be:

Statel + kl eene == State2

41

examples/EumlSimple.cpp
examples/EumlSimple.cpp
examples/AnonymousTutorialEuml.cpp
examples/AnonymousTutorialEuml.cpp
examples/EumlInternal.cpp
examples/EumlInternal.cpp
examples/EumlInternalDistributed.cpp
examples/EumlInternalDistributed.cpp

Tutorial

Other state types

We saw the build_state function, which creates asimple state. Likewise, eUML provides other state-
building macros for other types of states:

BOOST_MSM_EUML_TERMINATE_STATE tekes the same arguments as
BOOST_MSM_EUML_STATE and defines, well, a terminate state.

BOOST_MSM_EUML_INTERRUPT_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines an interrupt state. However, the expression
argument must contain as first element the event ending the interruption, for example:
BOOST_MSM EUML_ | NTERRUPT _STATE((end_error /*end i nterrupt

event*/, Error Mode_Entry, Error Mode_Exit), Error Mode)

BOOST _MSM_EUML_EXIT_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines an exit pseudo state. However, the
expression argument must contain as first element the event propagated from
the exit point: BOOST_MSM EUML_EXI T_STATE((event 6 / *pr opagat ed
event*/, PseudoExit1_Entry, PseudoExit1l_Exit), PseudoExit1)

BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE defines an entry pseudo state. It takes
3 parameters. the region index to be entered is defined as an int argument, followed
by the configuration expression like BOOST MSM_EUML_STATE and the state name,
so that BOOST_MSM EUML_EXPLI Cl T_ENTRY_STATE(O /*regi on i ndex*/,
(SubState2 Entry, SubState2 Exit), SubStat e2) definesan entry state into the
first region of a submachine.

BOOST _MSM_EUML_ENTRY_STATE defines an entry pseudo state. It takes
3 parameters. the region index to be entered is defined as an int
argument, followed by the configuration expression like BOOST _MSM_EUML_STATE
and the state name, so that BOOST_MSM EUML_ENTRY_STATE(O,
(PseudoEntryl Entry, PseudoEntryl Exit), PseudoEntryl) definesa pseudo
entry state into the first region of a submachine.

To use these states in the transition table, eUML offersthe functionsexplicit ,exit_pt_and
entry_pt _. For example, adirect entry into the substate SubState? from SubFsm2 could be:

explicit_(SubFsn2, SubState2) == Statel + event2

Forks being alist on direct entries, eUML supports alogical syntax (statel, state2, ...), for example:

(

explicit_(SubFsn?2, SubSt at e2),
explicit_(SubFsn?2, SubSt at e2b),
explicit_(SubFsn?2, SubState2c)) == Statel + event3

An entry point is entered using the same syntax as explicit entries:

entry pt_ (SubFsn2, PseudoEntryl) == Statel + event4

For exit points, it is again the same syntax except that exit points are used as source of the transition:

State2 == exit_pt_(SubFsnR, PseudoExitl) + event6

The entry tutorial [examples/DirectEntryEuml.cpp] is also available with eUML.

Helper functions

We saw afew helpers but there are more, so let us have a more complete description:

event_ : used inside any action, the event triggering the transition

42

examples/DirectEntryEuml.cpp
examples/DirectEntryEuml.cpp

Tutorial

» state : used inside entry and exit actions, the entered / exited state

 source_: used inside atransition action, the source state

« target : used inside atransition action, the target state

» fsm_: used inside any action, the (deepest-level) state machine processing the transition
» These objects can also be used as a function and return an attribute, for example event_(cd_name)
* Int_<int value>: afunctor representing an int

» Char_<value>: afunctor representing a char

» Size t <value>: afunctor representing asize t

e True_ and False functors returning true and fal se respectively

 String_<mpl::string> (boost >= 1.40): a functor representing a string.

« if_then else (guard, action, action) where action can be an action sequence

« if_then (guard, action) where action can be an action sequence

» while_(guard, action) where action can be an action sequence

» do_while (guard, action) where action can be an action sequence

« for_(action, guard, action, action) where action can be an action sequence

* process_(some_event [, some state machine] [, some state machine] [, some state machine] [, some
state machine]) will call process_event (some_event) on the current state machine or on the one(s)
passed as 2nd , 3rd, 4th, 5th argument. This allow sending events to several external machines

* process_(event): reprocesses the event which triggered the transition
* reprocess (): same as above but shorter to write

» process2_(some_event,Value[, some state maching] [, some state machine] [, some state machine])
will call process event (some_event(Vaue)) on the current state machine or on the one(s) passed
as 3rd, 4th, 5th argument

* is_flag_(some flag[, some state machine]) will call is flag_active on the current state machine or
on the one passed as 2nd argument

» Predicate <some predicate>: Used in STL agorithms. Wraps unary/binary functionsto make them
eUML-compatible so that they can be used in STL agorithms

This can be quite fun. For example,

[(if_then_else_(--fsm(mSonglndex) > Int_<0>(),/*if clause*/
show pl ayi ng_song, /*then cl ause*/
(fsm_(m _Songl ndex) =I nt _<1>(), process_(EndPl ay))/ *el se cl ause*/
)
)

means: if (fsm.Songlndex > 0, call show_playing_song else { fsm.Songlndex=1; process EndPlay on
fsm;}

A few examples are using these features:

* theiPod example introduced at the BoostCon09 has been rewritten [examples/iPodEuml.cpp] with
eUML (weak compilers please move on...)

43

examples/iPodEuml.cpp
examples/iPodEuml.cpp

Tutorial

* the iPodSearch example also introduced at the BoostCon09 has been rewritten [examples/
iPodSearchEuml.cpp] with eUML. In this example, you will aso find some examples of STL
functor usage.

» A simpler timer [examples/SimpleTimer.cpp] exampleisagood starting point.

There is unfortunately a small catch. Defining a functor ussing MSM_EUML_METHOD or
MSM_EUML_FUNCTION will create a correct functor. Your own eUML functors written as
described at the beginning of this section will also work well, except, for the moment, with thewhile_,
if_then_,if _then else functions.

Phoenix-like STL support

eUML supports most C++ operators (except address-of). For example it is possible to write
event_(some_attribute)++ or [source_(some_bool) & & fsm_(some_other_bool)]. But a programmer
needsmorethan operatorsin hisdaily programming. The STL isclearly amust have. Therefore, eUML
comes in with a lot of functors to further reduce the need for your own functors for the transition
table. For almost every algorithm or container method of the STL, a corresponding eUML function is
defined. Like Boost.Phoenix, “.” And*->" of call on objectsarereplaced by afunctional programming
paradigm, for example:

 begin_(container), end (container): return iterators of a container.
* empty_(container): returns container.empty()

* clear_(container): container.clear()

e transform_: std::transform

In anutshell, almost every STL method or algorithm is matched by a corresponding functor, which
can then be used in the transition table or state actions. Thereferencelistsall eUML functions and the
underlying functor (so that this possibility isnot reserved to eJML but also to the functor-based front-
end). Thefile structure of this Phoenix-like library matches the one of Boost.Phoenix. All functorsfor
STL agorithms areto be found in:

#i nclude <msm front/eun /al gorithm hpp>
The algorithms are also divided into sub-headers, matching the phoenix structure for simplicity:

#include < msm front/eum /iteration. hpp>
#include < nmsnifront/eum/transformation. hpp>
#i nclude < msnifront/eum /querying. hpp>

Container methods can be found in:

#i ncl ude < nmsnifront/eumn /contai ner. hpp>

Or one can simply include the whole STL support (you will also need to include euml.hpp):
#include < msnifront/eum /stl. hpp>

A few examples (to be found in this tutorial [examples/iPodSearchEuml.cpp]):

e push_back (fsm (mtgt _container), event (m song)) : the state machine has an
attribute m_tgt_container of type std::vector<OneSong> and the event has an attribute m_song of
type OneSong. The line therefore pushes m_song at the end of m_tgt_container

o« if_then_(state_(msrc_it) I = end_(fsm (m.src_container)),
process2_(OneSong(), *(state_(msrc_it)++))):thecurrent state hasan attribute
m_src_it (aniterator). If thisiterator !=fsm.m_src_container.end(), process OneSong on fsm, copy-
constructed from state.m_src_it which we post-increment

examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/SimpleTimer.cpp
examples/SimpleTimer.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp

Tutorial

Writing actions with Boost.Phoenix (in development)

It is adso possible to write actions, guards, state entry and exit actions using a reduced set of
Boost.Phoenix capahilities. Thisfeatureis still in development stage, so you might get here and there
some surprise. Simple cases, however, should work well. What will not work will be mixing of eUML
and Phoenix functors. Writing guards in one language and actions in another is ok though.

Phoenix also supportsalarger syntax than what will ever be possible with eUML, so you can only use
areduced set of phoenix's grammar. This is due to the nature of eUML. The run-time transition table
definition is trandlated to a type using Boost. Typeof. The result is a "normal” MSM transition table
made of functor types. As C++ does not allow mixing run-time and compile-time constructs, there
will be some limit (trying to instantiate a template class MyTemplateClass<i> where i is an int will
give you an idea). This means following valid Phoenix constructs will not work:

o literals

« function pointers

* bind

° >*

MSM also provides placeholders which make more sensein its context than argl.. argn:
» _event: the event triggering the transition

» _fsm: the state machine processing the event

» _source: the source state of the transition

o _target: the target state of the transition

» _dtate: for state entry/exit actions, the entry/exit state

Future versions of MSM will support Phoenix better. Y ou can contribute by finding out cases which
do not work but should, so that they can be added.

Phoenix support is not activated by default. To activate it, add before any MSM header: #define
BOOST_MSM_EUML_PHOENIX_SUPPORT.

A simple example [examples/SimplePhoenix.cpp] shows some basic capabilities.

Back-end

There is, at the moment, one back-end. This back-end contains the library engine and defines the
performance and functionality trade-offs. The currently available back-end implements most of
the functionality defined by the UML 2.0 standard at very high runtime speed, in exchange for
longer compile-time. The runtime speed is due to a constant-time double-dispatch and self-adapting
capabilities alowing the framework to adapt itself to the features used by a given concrete state
machine. All unneeded features either disable themselves or can be manually disabled. See section
5.1 for a complete description of the run-to-completion algorithm.

Creation

MSM being divided between front and back-end, one needsto first define afront-end. Then, to create
ared state machine, the back-end must be declared:

typedef msm : backll::state_machi ne<my_front_end> ny_fsm

We now have afully functional state machine type. The next sections will describe what can be done
withit.

45

examples/SimplePhoenix.cpp
examples/SimplePhoenix.cpp

Tutorial

Starting and stopping a state machine

Thest art () method starts the state machine, meaning it will activate theinitial state, which means
inturn that theinitial state's entry behavior will be called. We need the start method because you do not
always want the entry behavior of the initial state to be called immediately but only when your state
machine is ready to process events. A good example of thisis when you use a state machine to write
an algorithm and each loop back to the initial state is an agorithm call. Each call to start will make
the algorithm run once. The iPodSearch [exampl es/iPodSearch.cpp] example uses this possibility.

Thest op() method worksthe sameway. It will causethe exit actions of the currently active states(s)
to be called.

Both methods are actually not an absolute need. Not calling them will simply cause your first entry
or your last exit action not to be called.

Event dispatching

The main reason to exist for a state machine is to dispatch events. For MSM, events are objects of a
given event type. The object itself can contain data, but the event type iswhat decides of the transition
to be taken. For MSM, if some_event is a given type (a simple struct for example) and el and e2
concrete instances of some_event, el and €2 are equivalent, from atransition perspective. Of course,
el and e2 can have different values and you can use them inside actions. Events are dispatched as
const reference, so actions cannot modify events for obvious side-effect reasons. To dispatch an event
of type some_event, you can simply create one on the fly or instantiate if before processing:

ny_ fsmfsm fsmprocess_event(sonme_event());
sone_event el; fsm process_event(el)

Creating an event on the fly will be optimized by the compiler so the performance will not degrade.

Active state(s)

The backend also offers away to know which state is active, though you will normally only need this
for debugging purposes. If what you need simply is doing something with the active state, internal
transitions or visitors are a better aternative. If you need to know what state is active, const int*
current_state() will return an array of stateids. Please refer to the inter nals section to know how state
ids are generated.

Upper State Machine

The FSM templ ate argument passed to functorsor entry/exit actionsisthe current state machine, which
might not be what is wanted as th upper state machine makes more sense. The back-end provides a
get_upper() function returning a pointer to the upper state machine, which is usualy what you want
to call process _event on.

Serialization

A common need isthe ability to save a state machine and restore it at adifferent time. MSM supports
this feature for the basic and functor front-ends, and in a more limited manner for eUML. MSM
supports boost::serialization out of the box (by offeringaseri al i ze function). Actually, for basic
seriaization, you need not do much, aMSM state machine is serializable amost like any other type.
Without any specia work, you can make a state machine remember its state, for example:

MyFsm fsm
/1 wite to archive
std::of streamofs("fsmtxt");

46

examples/iPodSearch.cpp
examples/iPodSearch.cpp

Tutorial

// save fsmto archive

{
boost : : archive: :text_oarchive oa(ofs);
/l wite class instance to archive
oa << fsm

}

Loading back is very similar:

MyFsm f sm

{

/1 create and open an archive for input
std::ifstreamifs("fsmtxt");
boost::archive::text_iarchive ia(ifs);
/1 read class state from archive

ia >> fsm

}

This will (de)serialize the state machine itself but not the concrete states' data. This can be done on
a per-state basis to reduce the amount of typing necessary. To allow serialization of a concrete state,
provide ado_serialize typedef and implement the serialize function:

struct Enpty : public nmem:front::state<>
{
/1 we want Enpty to be serialized. First provide the typedef
typedef int do_serialize;
/1 then inplenent serialize
t enpl at e<cl ass Archi ve>
void serialize(Archive & ar, const unsigned int /* version */)

{

}
Enpty() : sone_dumry_dat a(0) {}
i nt some_dummy_dat a;

ar & sone_dunmy_dat a;

b

You can aso serialize data contained in the front-end class. Again, you need to provide the typedef
and implement seridize:

struct player_ : public msm:front::state_machi ne_def <pl ayer_>
{
//we mght want to serialize sonme data contained by the front-end
int front_end_dat a;
player ():front_end_data(0){}
/1 to achieve this, provide the typedef
typedef int do_serialize;
/1 and inplenment serialize
t enpl at e<cl ass Archi ve>
voi d serialize(Archive & ar, const unsigned int)

{
}

ar & front_end_dat a;

b
The saving of the back-end data (the current state(s)) is valid for all front-ends, so a front-end
written using eUML can be seridlized. However, to serialize a concrete state, the macros like

BOOST_MSM _EUM__ STATE cannot be used, so the state will have to be implemented by directly
inheriting fromfront: : eum : : eum _state.

47

Tutorial

Theonly limitiation isthat the event queues cannot be serialized so serializing must be donein astable
state, when no event is being processed. Y ou can serialize during event processing only if using no
gueue (deferred or event queue).

This example [examples/Serialize.cpp] shows a state machine which we serialize after processing an
event. The Enpt y state also has some data to serialize.

Base state type

Sometimes, one needs to customize statesto avoid repetition and provide acommon functionality, for
example in the form of avirtual method. Y ou might also want to make your states polymorphic so
that you can call typeid on them for logging or debugging. It is also useful if you need avisitor, like
the next section will show. Y ou will notice that all front-ends offer the possibility of adding a base
type. Note that all states and state machines must have the same base state, so this could reduce reuse.
For example, using the basic front end, you need to:

» Add the non-default base state in your msm::front::state<> definition, as first template argument
(except for interrupt_states for which it isthe second argument, the first one being the event ending
the interrupt), for example, my_base_state being your new base state for all statesin a given state
machine;

struct Enpty : public nem:front::state<ny base state>

Now, my base state is your new base sate. If it has a virtua function, your
states become polymorphic. MSM aso provides a default polymorphic base type,
mem : front:: pol ynorphic_state

» Add the user-defined base state in the state machine frontend definition, as a second template
argument, for example:

struct player_: public nmem:front::state_machi ne<pl ayer , ny base_ state>

You can also ask for a state with agiven id (which you might have gotten from current_state()) using
const base_state* get _state by id(int id) const wherebase state isthe one
you just defined. Y ou can now do something polymorphically.

Visitor

In some cases, having a pointer-to-base of the currently active states is not enough. Y ou might want
to call non-virtually a method of the currently active states. It will not be said that MSM forces the
virtual keyword down your throat!

Toachievethisgoal, MSM providesitsown variation of avisitor pattern using the previously described
user-defined state technique. If you add to your user-defined base state an accept _si g typedef
giving the return value (unused for the moment) and parameters and provide an accept method with
this signature, calling visit_current_states will cause accept to be called on the currently active states.
Typically, you will also want to provide an empty default accept in your base state in order in order
not to force all your states to implement accept. For example your base state could be:

struct my_visitable_state
{
/1 signature of the accept function
t ypedef args<voi d> accept_si g;
/1 we al so want pol ynorphic states
virtual ~my_visitable_state() {}
/1 default inplenentation for states who do not need to be visited
voi d accept() const {}

48

examples/Serialize.cpp
examples/Serialize.cpp

Tutorial

This makes your states polymorphic and visitable. In this case, accept is made const and takes no
argument. It could also be:

struct SoneVisitor {.};
struct my_visitable_state
{
/1 signature of the accept function
t ypedef args<voi d, SomeVi sitor &> accept_sig;
/1 we al so want pol ynorphic states
virtual ~my_visitable_state() {}
/1 default inplenentation for states who do not need to be visited
voi d accept (SoneVisitor&) const {}

b

And now, accept will take one argument (it could also be non-const). By default, accept takes
up to 2 arguments. To get more, set #define BOOST_MSM_VISITOR_ARG_SIZE to another value
before including state_machine.hpp. For example:

#defi ne BOOST_MSM VI SI TOR_ARG S| ZE 3
#i ncl ude <boost/ nmsm back/ st ate_machi ne. hpp>

Note that accept will be called on ALL active states and also automatically on sub-states of a
submachine.

Important warning: The method visit_current_statestakesits parameter by value, so if the signature of
the accept function isto contain a parameter passed by reference, pass this parameter with aboost:ref/
cref to avoid undesired copies or sicing. So, for example, in the above case, call:

SoneVisitor vis; smvisit_current_states(boost::ref(vis));

This example [examples/SM-2Arg.cpp] uses avisiting function with 2 arguments.

Flags
Flagsis aMSM-only concept, supported by all front-ends, which base themselves on the functions:

tenpl ate <cl ass Flag> bool is_flag active()
tenmpl ate <cl ass Fl ag, cl ass Bi naryQp> bool is_flag active()

These functions return true if the currently active state(s) support the Flag property. The first variant
ORstheresultif thereare several orthogonal regions, the second one expects OR or AND, for example:

ny fsmis flag active<MyFl ag>()
ny fsmis flag active<MyFlag, ny_fsmtype::Flag OR>()

Please refer to the front-ends sections for usage examples.

Getting a state

It is sometimes necessary to have the client code get access to the states data. After all, the states
are created once for good and hang around as long as the state machine does so why not use it? You
simply just need sometimes to get information about any state, even inactive ones. An exampleiisiif
you want to write a coverage tool and know how many times a state was visited. To get a state, use
the get_state method giving the state name, for example:

pl ayer:: Stopped* tenpstate = p.get_state<player:: Stopped*>();
or

pl ayer:: St opped& tenpstate2 = p.get_state<player:: Stopped&>();

49

examples/SM-2Arg.cpp
examples/SM-2Arg.cpp

Tutorial

depending on your personal taste.

State machine constructor with arguments

You might want to define a state machine with a non-default constructor. For example, you might

want to write:
struct player_ : public msm:front::state_machi ne_def <pl ayer >
{

pl ayer (int some_value){.}

b

Thisis possible, using the back-end as forwarding object:

typedef nsm :backll:: state_nachi ne<pl ayer > player; player p(3);
The back-end will call the corresponding front-end constructor upon creation.

Y ou can pass arguments up to the value of the BOOST _MSM_CONSTRUCTOR_ARG_SIZE macro
(currently 5) arguments. Change this value before including any header if you need to overwrite the
default.

Y ou can also pass arguments by reference (or const-reference) using boost::ref (or boost::cref):

struct player_ : public msm:front::state_machi ne_def <pl ayer_>

{
b

pl ayer _(SonmeType& t, int sone_value){.}

typedef msm : backll::state_machi ne<pl ayer _ > pl ayer;
SoneType dat a;
pl ayer p(boost::ref(data), 3);

Normally, MSM default-constructs all its states or submachines. There are however cases where you
might not want this. An exampleiswhen you use a state machine as submachine, and this submachine
used the above defined constructors. You can add as first argument of the state machine constructor
an expression where existing states are passed and copied:

pl ayer p(back::states << state 1 << ... << state_n , boost::ref(data), 3);

Where state_1..n are instances of some or al of the states of the state machine. Submachines being
state machines, this can recurse, for example, if Playing is a submachine containing a state Songl
having itself a constructor where some datais passed:

pl ayer p(back::states << Playing(back::states_ << Songl(sone_Songl data)) ,
boost::ref(data), 3);

It is also possible to replace a given state by a new instance at any timeusing set _st at es() and
the same syntax, for example:

p.set _states(back::states_ << state_ 1 << ... << state_n);

An example [examples/Constructor.cpp] making intensive use of this capability is provided.

Trading run-time speed for better compile-time / multi-
TU compilation

MSM is optimized for run-time speed at the cost of longer compile-time. This can become a problem
with older compilers and big state machines, especialy if you don't really care about run-time speed

50

examples/Constructor.cpp
examples/Constructor.cpp

Tutorial

that much and would be satisfied by a performance roughly the same as most state machine libraries.
MSM offers a back-end policy to help there. But before you try it, if you are using a VC compiler,
deactivate the /Gm compiler option (default for debug builds). This option can cause builds to be 3
times longer... If the compile-time still is a problem, read further. MSM offers a policy which will
speed up compiling in two main cases:

e many transition conflicts
» submachines

The back-end nsm : backll::state _nmchine has a policy argument (first is the
front-end, then the history policy) defaulting to favor _runti nme_speed. To switch to
favor_conpil e_ti nme, which is declared in <nsm back/favor _conpil e_ti ne. hpp>,
you need to:

» switch the policy to favor_conpile_time for the main state machine (and possibly
submachines)

» move the submachine declarations into their own header which includes <msni back/
favor_conpil e_ti me. hpp>

» add for each submachine a cpp file including your header and calling a macro, which generates
helper code, for example:

#i ncl ude "nysubmachi ne. hpp"
BOOST_MSM _BACK_CGENERATE_PROCESS_EVENT(mysubnmachi ne)

» configure your compiler for multi-core compilation

You will now compile your state machine on as many cores as you have submachines, which will
greatly speed up the compilation if you factor your state machine into smaller submachines.

Independently, transition conflicts resolution will also be much faster.

This policy uses boost.any behind the hood, which means that we will lose a feature which MSM
offers with the default policy, event hierarchy. The following example takes our iPod example and
speeds up compile-time by using this technique. We have:

* our main state machine and main function [examples/iPod_distributed/iPod.cpp]

» PlayingMode moved to a separate header [examples/iPod_distributed/PlayingM ode.hpp]
» acpp for PlayingMode [exampl es/iPod_distributed/PlayingM ode.cpp]

» MenuMode moved to a separate header [examples/iPod_distributed/MenuM ode.hpp]

» acpp for MenuM ode [examples/iPod_distributed/M enuM ode.cpp]

» events move to a separate header as all machines use it [examples/iPod_distributed/Events.hpp]

Compile-time state machine analysis

A MSM state machine being a metaprogram, it is only logical that cheking for the validity of a
concrete state machine happens compile-time. To this aim, using the compile-time graph library
mpl_graph [http://www.dynagraph.org/mpl_graph/] (delivered at the moment with MSM) from
Gordon Woodhull, MSM provides several compile-time checks:

» Check that orthogonal regions ar truly orthogonal.

» Check that all states are either reachable from the initial states or are explicit entries/ pseudo-entry
states.

51

examples/iPod_distributed/iPod.cpp
examples/iPod_distributed/iPod.cpp
examples/iPod_distributed/PlayingMode.hpp
examples/iPod_distributed/PlayingMode.hpp
examples/iPod_distributed/PlayingMode.cpp
examples/iPod_distributed/PlayingMode.cpp
examples/iPod_distributed/MenuMode.hpp
examples/iPod_distributed/MenuMode.hpp
examples/iPod_distributed/MenuMode.cpp
examples/iPod_distributed/MenuMode.cpp
examples/iPod_distributed/Events.hpp
examples/iPod_distributed/Events.hpp
http://www.dynagraph.org/mpl_graph/
http://www.dynagraph.org/mpl_graph/

Tutorial

To make use of this feature, the back-end provides a policy (default is no analysis),
mem : back: : mpl _graph_f sm check. For example:

typedef msm :backll::state_nachi ne< player_, msm : back: : npl _graph_fsm check> pl

As MSM is now using Boost.Parameter to declare policies, the policy choice can be made at any
position after the front-end type (in thiscase pl ayer _).

In case an error is detected, a compile-time assertion is provoked.

This feature is not enabled by default because it has a non-neglectable compile-time cost. The
algorithm is linear if no explicit or pseudo entry states are found in the state machine, unfortunately
still O(number of states* number of entry states) otherwise. Thiswill beimproved in future versions
of MSM.

The same algorithm is also used in case you want to omit providing the region index in the explicit
entry / pseudo entry state declaration.

The author's advice is to enable the checks after any state machine structure change and disable it
again after sucessful analysis.

The following example [examples/TestErrorOrthogonality.cpp] provokes an assertion if one of the
first two lines of the transition table is used.

Enqueueing events for later processing

Calling process_event (Event const & will immediately process the event with run-to-
completion semantics. You can also enqueue the events and delay their processing by calling
enqueue_event (Event const &) instead. Callingexecut e_queued_event s() will then
process all enqueued events (in FIFO order). Calling execut e_si ngl e_queued_event () will
execute the oldest enqueued event.

You can query the queue size by calling get _nmessage_queue_si ze().

Customizing the message queues

MSM uses by default a std::deque for its queues (one message queue for events generated
during run-to-completion or with enqueue_event , one for deferred events). Unfortunately, on
some STL implementations, it is a very expensive container in size and copying time. Should
this be a problem, MSM offers an alternative based on boost::circular_buffer. The policy is
msm::back::queue_container_circular. To useit, you need to provide it to the back-end definition:

typedef msm :backll::state_nachi ne< player_, msm : back: : queue_contai ner_circul a

You can access the queues with get message queue and get_deferred_queue, both returning a
reference or a const reference to the queues themselves. Boost::circular_buffer is outside of the scope
of this documentation. What you will however need to define is the queue capacity (initially is0) to
what you think your queue will at most grow, for example (size 1 is common):

fsm get _message_queue().set_capacity(1);

Policy definition with Boost.Parameter

MSM uses Boost.Parameter to allow easier definition of back11::state machine<> policy arguments
(al except the front-end). This allows you to define policy arguments (history, compile-time / run-
time, state machine analysis, container for the queues) at any position, in any humber. For example:

typedef msm : backll::state_machi ne< player_, msm : back: : nmpl _graph_fsm check> pl
typedef msm :backll::state_ nachi ne< player_, msm : back:: Al waysHi st ory> pl ayer;

52

examples/TestErrorOrthogonality.cpp
examples/TestErrorOrthogonality.cpp

Tutorial

typedef msm : backll::state_machi ne< player_, msm: back: : npl _graph_f sm check, msm
typedef msm :backll::state_nachi ne< player_ , msm : back:: Al waysHi story, nem : back

Choosing when to switch active states

The UML Standard is silent about a very important question: when a transition fires, at which exact
point is the target state the new active state of a state machine? At the end of the transition? After
the source state has been left? What if an exception is thrown? The Standard considers that run-to-
completion means a transition completesin almost no time. But even this can be in some conditions a
very very long time. Consider the following example. We have a state machine representing a network
connection. WecanbeConnect ed and Di sconnect ed. When we movefrom one state to another,
we send a (Boost) Signal to another entity. By default, MSM makes the target state as the new state
after the transition is completed. We want to send a signal based on aflag is_connected which istrue
when in state Connected.

We arein state Di sconnect ed and receive an event connect . The transition action will ask the
state machinei s_fl ag_acti ve<i s_connect ed> and will get... false because we are till in
Di sconnect ed. Hmm, what to do? We could queue the action and execute it later, but it means an
extra queue, more work and higher run-time.

MSM provides the possibility (in form of a policy) for a front-end to decide when the target state
becomes active. It can be:

» before the transition fires, if the guard will alow the transition to fire
active _state switch _before transition

« after calling the exit action of the source state: acti ve_state_switch_after _exit

o after the transition action is executed:
active _state switch_after _transition_action

o after the entry action of the target state is executed (default):
active_state _switch_after_entry

The problem and the solution is shown for the functor-
front-end [examples/ActiveStateSetBeforeTransition.cpp] and eUML [examples/
ActivateStateBeforeTransitionEuml.cpp]. Removing

active _state_switch_before_transition will show the default state.

53

examples/ActiveStateSetBeforeTransition.cpp
examples/ActiveStateSetBeforeTransition.cpp
examples/ActiveStateSetBeforeTransition.cpp
examples/ActivateStateBeforeTransitionEuml.cpp
examples/ActivateStateBeforeTransitionEuml.cpp
examples/ActivateStateBeforeTransitionEuml.cpp

Chapter 4. Performance / Compilers

Tests were made on different PCs running Windows XP and Vista and compiled with VC9 SP1
or Ubuntu and compiled with g++ 4.2 and 4.3. For these tests, the same player state machine was
written using Boost.Statechart, as a state machine with only simple states [examples/SCSimple.cpp]
and as a state machine with a composite state [examples/SCComposite.cpp]. The same simple and
composite state machines are implemented with MSM with a standard frontend (simple) [examples/
MsmSimple.cpp](composite) [examples/MsmComposite.cpp], the simple one also with functors
[examples/MsmSimpleFunctors.cpp] and with eUML [examples/EumlSimple.cpp]. As these simple
machines need no terminate/interrupt states, no message queue and have no-throw guarantee on their
actions, the MSM state machines are defined with minimum functionality. Test machine is a Q6600
2.4GHz, Vista 64.

Speed
VCo:
» The simple test completes 90 times faster with MSM than with Boost.Statechart
» The composite test completes 25 times faster with MSM
gcc 4.2.3 (Ubuntu 8.04 in VMWare, same PC):
e The simple test completes 46 times faster with MSM

e The composite test completes 19 times faster with Msm

Executable size

There are some worries that MSM generates huge code. Is it true? The 2 compilers | tested disagree
with thisclaim. On V C9, the test state machines used in the performance section produce executables
of 14kB (for smple and eUML) and 21kB (for the composite). This includes the test code and
iostreams. By comparison, an empty executable with iostreams generated by VC9 has a size of 7kB.
Boost.Statechart generates executables of 43kB and 54kB. As a bonus, eUML comes for “free” in
terms of executable size. Y ou even get aspeed gain. With g++ 4.3, it strongly depends on the compiler
options (much more than VC). A good size state machine with —O3 can generate an executable of
600kB, and with eUML you can get to 1.5MB. Trying with—Os—s| come down to 18kB and 30kB for
the test state machines, while eUML will go down to IMB (which is till big), so in this case eUML
does not come for free.

Supported compilers

For acurrent status, have alook at the regression tests [http://www.boost.org/devel opment/tests/trunk/
developer/msm.html].

MSM was successfully tested with:
» VCB8 (partly), VC9, VC10

» gt++4.0.1 and higher

Intel 10.1 and higher
* Clang2.9

» Green Hills Software MULTI for ARM v5.0.5 patch 4416 (Simple and Composite tutorials)

examples/SCSimple.cpp
examples/SCSimple.cpp
examples/SCComposite.cpp
examples/SCComposite.cpp
examples/MsmSimple.cpp
examples/MsmSimple.cpp
examples/MsmSimple.cpp
examples/MsmComposite.cpp
examples/MsmComposite.cpp
examples/MsmSimpleFunctors.cpp
examples/MsmSimpleFunctors.cpp
examples/EumlSimple.cpp
examples/EumlSimple.cpp
http://www.boost.org/development/tests/trunk/developer/msm.html
http://www.boost.org/development/tests/trunk/developer/msm.html
http://www.boost.org/development/tests/trunk/developer/msm.html

Performance / Compilers

* Partial support for IBM compiler

VC8 and to some lesser extent VC9 suffer from a bug. Enabling the option "Enable Minimal
Rebuild" (/Gm) will cause much higher compile-time (up to threetimeswith VC8!). Thisoption being
activated per default in Debug mode, this can be a big problem.

Limitations

» Compilation times of state machines with > 80 transitions that are going to make you storm the
CFO's office and make sure you get a shiny octocore with 12GB RAM by next week, unless he's
interested in paying you watch the compiler agonize for hours... (Make sure you ask for dual 24"
aswell, it doesn't hurt).

» eUML alows very long constructs but will aso quickly increase your compile time on some
compilers (VC9, VC10) with buggy decltype support (I suspect some at |east quadratic algorithms
there). Even g++ 4.4 shows some regression compared to 4.3 and will crash if the constructs become
too big.

» Need to overwrite the mpl::vector/list default-size-limit of 20 and fusion default vector size of 10
if more than 10 states found in a state machine

» Limitation for submachines and entry actions requiring an event property.

Compilers corner

Compilers are sometimes full of surprises and such strange errors happened in the course of the
development that | wanted to list the most fun for readers’ entertainment.

VCS:

tenpl ate <cl ass StateType>
typenane ::boost::enable if<
typenane ::boost::npl::and <
typenane ::boost::npl::not_<
typenane has_exit pseudo_st at es<St at eType>::type
> i type,
typenane ::boost::npl::not_<
typenane is_pseudo_exit<StateType>::type
> itype
> type,
BaseSt at e*>: : type

| get the following error:
error C2770: invalid explicit template argument(s) for "global namespace’::boost::enable _if<...>::...

If I now remove thefirst “::” in ::boost::mpl , the compiler shuts up. So in this case, it is not possible
to follow Boost’s guidelines.

VCo:

» Thisoneismy all times favorite. Do you know why the exit pseudo states are referenced in the
transition table with a*“ submachine::exit_pt” ? Because “exit” will crash the compiler. “Exit” isnot
possible either because it will crash the compiler on one machine, but not on another (the compiler
was installed from the same disk).

» Sometimes, removing apolicy crashesthe compiler, so some versions are defining adummy policy
called WorkaroundV C9.

55

Performance / Compilers

* Typeof: Whileg++ and VC9 compile“ standard” state machinesin comparabletimes, Typeof (while
in both ways natively supported) seems to behave in a quadratic complexity with VC9 and VC10.

» eUML: in case of acompiler crash, changing the order of state definitions (first states without entry
or exit) sometimes solves the problem.

g++ 4.x: Boring compiler, aimost all is working almost as expected. Being not a language lawyer |
am unsure about the following “ Typeof problem”. VC9 and g++ disagree on the question if you can
derive from the BOOST_TY PEOF generated type without first defining a typedef. | will be thankful
for an answer on this. | only found two ways to break the compiler:

* Add more eUML constructs until something explodes (especially with g++-4.4)

» The build_terminate function uses 2 mpl::push_back instead of mpl::insert_range because g++
would not accept insert_range.

You can test your compiler's decltype implementation with the following stress test [examples/
CompilerStressTestEuml.cpp] and reactivate the commented-out code until the compiler crashes.

56

examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp

Chapter 5. Questions & Answers, tips

Where should | define a state machine?: The tutorials are implemented in a simple cpp source file
for simplicity. | want to model dynamic behavior of a class as a state machine, how should | define
the state machine?

Answer: Usually you'll want to implement the state machine as an attribute of the class. Unfortunately,
a concrete state machine is a typedef, which cannot be forward-declared. This leaves you with two
possibilities:

» Provide the state machine definition inside the header class and contain an instance as attribute.
Simple, but with several drawbacks. using namespace directives are not advised, and compile-time
cost for all modules including the header.

» Keep the state machine as (shared) pointer to void inside the class definition [examples/
FsmAsPtr.hpp], and implement the state machine in the cpp file [examples/FsmAsPtr.cpp].
Minimum compile-time, using directives are okay, but the state machine is now located inside the

heap.

Question: on_entry gets as argument, the sent event. What event do | get when the state becomes
default-activated (because it isan initial state)?

Answer: To allow you to know that the state was default-activated, MSM generates a
boost::msm::InitEvent default event.

Question: Why do | see no call to no_transition in my submachine?

Answer: Because of the priority rule defined by UML. It says that in case of transition conflict, the
most inner state has a higher priority. So after asking the inner state, the containing composite has to
be also asked to handle the transition and could find a possible transition.

Question: Why do | get a compile error saying the compiler cannot convert to a
function ...Fsm::* (some_event)?

Answer: Y ou probably defined atransition triggered by the event some_event, but used aguard/action
method taking another event.

Question: Why do | get a compile error saying something like “too few” or “too many” template
arguments?

Answer: Y ou probably defined atransition in form of aa_row or g_row where you wanted just a_row
or the other way around. With Row, it could mean that you forgot a"none".

Question: Why do | get a very long compile error when | define more than 20 rows in the transition
table?

Answer: MSM uses Boost. MPL under the hood and this is the default maximum size. Please define
the following 3 macros before including any MSM headers:

#defi ne BOOST_MPL_CFG_NO PREPROCESSED HEADERS
#define BOOST_MPL_LIMT_VECTOR SI ZE 30 // or whatever you need
#define BOOST_MPL_LIMT_NMAP_SIZE 30 // or whatever you need

Question: Why do | get thiserror: " error C2977: 'boost::mpl::vector' : too many template arguments’?

Answer: Thefirst possibility isthat you defined atransition table as, say, vector17 and have 18 entries.
The second is that you have 17 entries and have a composite state. Under the hood, MSM adds a row
for every event in the composite transition table. The third one isthat you used a mpl::vector without
the number of entries but are close to the MPL default of 50 and have a composite, thus pushing you
above 50. Then you need mpl/vector60/70....hpp and a mpl/map60/70....hpp

57

examples/FsmAsPtr.hpp
examples/FsmAsPtr.hpp
examples/FsmAsPtr.hpp
examples/FsmAsPtr.cpp
examples/FsmAsPtr.cpp

Questions & Answers, tips

Question: Why do | get avery long compile error when | define morethan 10 statesin astate machine?

Answer: MSM uses Boost.Fusion under the hood and thisis the default maximum size. Please define
the following macro before including any MSM headers:

#defi ne FUSI ON_MAX VECTOR SI ZE 20 // or whatever you need

58

Chapter 6. Internals

This chapter describes the internal machinery of the back-end, which can be useful for UML experts
but can be safely ignored for most users. For implementers, the interface between front- and back-
end is also described in detail.

Backend: Run To Completion

The back-end implements the following run-to compl etion algorithm:

Check if one region of the concrete state machine isin a terminate or interrupt state. If yes, event
processing is disabled while the condition lasts (forever for a terminate pseudo-state, while active
for an interrupt pseudo-state).

If the message queue feature is enabled and if the state machineisaready processing an event, push
the currently processed event into the queue and end processing. Otherwise, remember that the state
machine is now processing an event and continue.

If the state machine detected that no deferred event is used, skip this step. Otherwise, mark the first
deferred event from the deferred queue as active.

Now start the core of event dispatching. If exception handling is activated, this will happen inside
atry/catch block and the front-end except i on_caught iscalled if an exception occurs.

The event is now dispatched in turn to every region, in the order defined by the initial state front-
end definition. Thiswill, for every region, call the corresponding front-end transition definition (the
"row" or "Row" of the transition table).

Without transition conflict, if for a given region a transition is possible, the guard condition is
checked. If it returnst r ue, the transition processing continues and the current state's exit actionis
called, followed by the transition action behavior and the new active state's entry behavior.

With transition conflicts (several possible transitions, disambiguated by mutually exclusive guard
conditions), the guard conditions are tried in reverse order of their transition definition in the
transitiontable. Thefirst onereturningt r ue selectsitstransition. Notethat thisisnot defined by the
UML standard, which simply specifies that if the guard conditions are not mutually exclusive, the
state machine isill-formed and the behaviour undefined. Relying on this implementation-specific
behaviour will make it harder for the devel oper to support another state machine framework.

If at least one region processes the event, this event is seen as having been accepted. If not, the
library callsno_t ransi t i on on the state machine for every contained region.

If the currently active state is a submachine, the behaviour is dlightly different. The UML standard
specifies that internal transitions have to be tried first, so the event is first dispatched to the
submachine. Only if the submachine does not accept the event are other (non internal) transitions
tried.

This back-end supports simple states' and submachines' internal transitions. These are provided in
thestate'si nt er nal _t ransi ti on_t abl e type. Transitions defined in this table are added at
the end of the main state machine's transition table, but with alesser priority than the submachine's
transitions (definedint r ansi ti on_t abl e). Thismeans, for simple states, that these transitions
have higher priority than non-internal transitions, conform to the UML standard which gives higher
priority to deeper-level transitions. For submachines, thisis anon-standard addition which can help
make event processing faster by giving a chance to bypass subregion processing. With standard
UML, one would need to add a subregion only to process these internal transitions, which would
be slower.

After the dispatching itself, the deferred event marked in step 3 (if any) now gets a chance of
processing.

59

Internals

» Then, events queued in the message queue also get a dispatching chance

 Finally, completion / anonymous transitions, if to be found in the transition table, also get their
dispatching chance.

This algorithm illustrates how the back-end configures itself at compile-time as much as possible.
Every feature not found in agiven state machine definition is deactivated and has therefore no runtime
cost. Completion events, deferred events, terminate states, dispatching to several regions, internal
transitions are al deactivated if not used. User configuration is only for exception handling and
message queue necessary.

Frontend / Backend interface

Thedesign of MSM triesto make front-ends and back-ends (later) to be asinterchangeable aspossible.
Of course, no back-end will ever implement every feature defined by any possible front-end and
inversely, but the goal isto make it as easy as possible to extend the current state of the library.

To achieve this, MSM divides the functionality between both sides: the front-end is a sort of user
interface and is descriptive, the back-end implements the state machine engine.

MSM being based on atransition table, a concrete state machine (or a given front-end) must provide
atransition_table. This transition table must be made of rows. And each row must tell what kind of
transition it is and implement the calls to the actions and guards. A state machine must also define its
regions (marked by initial states) And that is about the only constraints for front-ends. How the rows
are described isimplementer's choice.

Every row must provide:
» A Sour ce typedef indicating, well, the type of the source state.

» A Tar get typedef indicating, well, the type of the target state.

A Evt typedef indicating the type of the event triggering the transition.
* Arow_type_t ag typedef indicating the type of the transition.

» Rows having a type requiring transition actions must provide a static function acti on_cal |
with the following signature: tenpl ate <class Fsmcl ass SourceState, cl ass
Target State,class Al States>

static void action_call (Fsm& fsm Event const& evt, SourceStateg&,
Target State&, Al States&)

The function gets as parameters the (back-end) state machine, the event, source and target states
and a container (in the current back-end, afusion::set) of all the states defined in the state machine.
For example, as the back-end has the front-end as basic class, acti on_cal | issimply defined
as(fsm*action)(evt).

* Rows having a type requiring a guard must provide a static function guard_cal | with the
following signature:

tenplate <class Fsmclass SourceState,class TargetState,class
Al'l St at es>

static bool guard_cal | (Fsm&, Event const &, Sour ceSt at e&,
Target State&, Al States&)

» The possible transition (row) types are:

e a row_tag: atransition with actions and no guard

60

Internals

e g_row_type: atransition with aguard and no actions

e _row_tag: atransition without actions or guard

* row_tag: atransition with guard and actions

e a irow_tag: aninternal transition (defined insidethet r ansi ti on_t abl e) with actions
e g irow_tag: aninternal transition (defined insidethet r ansi t i on_t abl e) with guard

e irow_tag: an interna transition (defined inside the t r ansi ti on_t abl e) with actions and
guards

e _irow_tag: an internal transition (defined inside the t r ansi ti on_t abl e) without action or
guard. Due to higher priority for internal transitions, thisis equivalent to a"ignore event"

e sm a i_row_tag: aninternal transition (definedinsidethei nt ernal _transiti on_t abl e)
with actions

e sm_g_i_row_tag: aninternal transition (definedinsidethei nt ernal _transi ti on_t abl e)
with guard

e sm_i_row_tag: an internal transition (defined inside thei nt ernal _transiti on_t abl e)
with actions and guards

e sm__i_row_tag: aninterna transition (defined insidethei nt ernal _transiti on_t abl e)

without action or guard. Dueto higher priority for internal transitions, thisisquivalent to a"ignore
event"

Furthermore, a front-end must provide the definition of states and state machines. State machine
definitions must provide (the implementer isfreeto provideit or let it be done by every concrete state
machine. Different MSM front-ends took one or the other approach):

* initial_state: Thistypedef can be a single state or a mpl container and provides the initial
states defining one or several orthogonal regions.

e transition_table: Thistypedef isaMPL sequence of transition rows.

» configurati on:thistypedef isaMPL sequence of known types triggering special behavior in
the back-end, for example if aconcrete fsm reguires a message queue or exception catching.

States and state machines must both provide a (possibly empty) definition of:

o flag_li st: theflags being active when this state or state machine become the current state of
the fsm.

» def erred_event s: events being automatically deferred when the state is the current state of
the fsm.

e internal _transition_tabl e:theinterna transitions of this state.

e on_entry andon_exit methods.

Generated state ids

Normally, one does not need to know the ids are generated for all the states of a state machine, unless
for debugging purposes, like the pstate function does in the tutorials in order to display the name of
the current state. This section will show how to automatically display typeid-generated names, but
these are not very readable on all platforms, so it can help to know how the ids are generated. The ids

61

Internals

are generated using the transition table, from the “ Start” column up to down, then from the “Next”
column, up to down, as shown in the next image:

Stopped will getid 0, Openid 1, ErrorMode id 6 and SleepMode (seen only in the “Next” column) id
7. If you have some implicitly created states, like transition-less initial states or states created using
the explicit_creation typedef, these will be added as a source at the end of the transition table. If you
have submachine states, arow will be added for them at the end of the table, after the automatically or
explicitly created states, which can change their id. The next help you will need for debugging would
beto call the current_state method of the state_machine class, then the display _type helper to generate
a readable name from the id. If you do not want to go through the transition table to fill an array of
names, the library provides another helper, fill_state_names, which, given an array of sufficient size
(please see next section to know how many states are defined in the state machine), will fill it with
typeid-generated names.

Metaprogramming tools

We can find for the transition table more uses than what we have seen so far. Let's suppose you heed
towrite acoveragetool. A state machine would be perfect for such ajob, if only it could provide some
information about its structure. Thanks to the transition table and Boost.MPL, it does.

What is needed for a coverage tool? You need to know how many states are defined in the state
machine, and how many events can be fired. This way you can log the fired events and the states
visited in the life of a concrete machine and be able to perform some coverage analysis, like “fired
65% of all possible events and visited 80% of the states defined in the state machine”. To achievethis,
MSM provides afew useful tools:

* generate state set<transition table>: returns ampl::set of all the states defined in the table.

e generate_event_set<transition table>: returns ampl::set of al the events defined in the table.
 using mpl::size<>::value you can get the number of elementsin the set.

« display_type defines an operator() sending typeid(Type).name() to cout.

« fill_state namesfillsan array of char const* with names of all states (found by typeid)

» usingmpl::for_eachontheresult of generate state set and generate event set passingdisplay_type
as argument will display al the states of the state machine.

* let's suppose you need to recursively find the states and events defined in the composite states and
thus also having a transition table. Calling recursive_get_transition_table<Composite> will return
you thetransition table of the composite state, recursively adding thetransition tables of all sub-state
machines and sub-sub...-sub-state machines. Then call generate _state set or generate_event_set on
the result to get the full list of states and events.

An example [examples/BoostCon09Full.cpp] shows the toolsin action.

62

examples/BoostCon09Full.cpp
examples/BoostCon09Full.cpp

Chapter 7. Acknowledgements

| am in debt to the following people who helped MSM aong the way.

MSM v2

» Thanksto Dave Abrahams for managing the review
» Thanksto Eric Niebler for his patience correcting my grammar errors

 Specia thanks to Joel de Guzman who gave me very good ideas at the BoostCon09. These ideas
were the starting point of the redesign. Any time again, Joel #

» Thanksto Richard O'Hara for making Green Hills bring a patch in less than 1 week, thus adding
one more compiler to the supported list.

» Bigthanksto those who took thetimeto write areview: Franz Alt, David Bergman, Michael Caisse,
Barend Gehrels, Darryl Greene, Jurgj Ivancic, Erik Nelson, Kenny Riddile.

e Thanksto Matt Calabrese, Jurgj Ivancic, Adam Merz and Joseph Wu for reporting bugs.

» Thanksto ThomasMistrettafor providing an addition to the section "What do you actually doinside
actions/ guards”.

MSM v1

» The original version of this framework is based on the brilliant work of David Abrahams and
Aleksey Gurtovoy who laid down the base and the principles of the framework in their excellent
book, “C++ template Metaprogramming”. The implementation also makes heavy use of the
boost::mpl.

» Thanksto Jeff Flinn for hisidea of the user-defined base state and his review which allowed MSM
to be presented at the BoostCon09.

e Thanksto my MSM v1 beta testers, Christoph Woskowski and Franz Alt for using the framework
with little documentation and to my private reviewer, Edouard Alligand

63

Chapter 8. Version history
Boost 1.85

» Backend update (back11). Requires C++ 11. The documentation now usesit as default.
* New front-end (PlantUML). Requires C++ 20

 Div. bugfixes

Boost 1.72

» Merged from develop new implementation of deferred events

* Div. bugfixes

Boost 1.57

» Fixed BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES (broken in 1.56).
 Fixed execute_queued events, added execute single queued event

* Fixed warnings for unused variables

Boost 1.56

* Budfix: no_transition in case of an exception.
» Bugfix: Trac 9280

» Bugfix: incomplete namespace namesin eUML

Boost 1.55

» New feature: interrupt states now support a sequence of events to end the interruption

» Bugfix: Trac 8686.

Boost 1.54

» Bugfix: Exit points broken for the favor_compile _time policy.
» Bugfix: copy breaks exit points of subsubmachines.

» Bugfix: Trac 8046.

From V2.23 to V2.24 (Boost 1.51)

» Support for boost::any or kleene as an acceptable event.
» Bugfix: compiler error with fsm internal table and none(compound) event.

* Bugfix: eum : : def er _ leading to stack overflow.

Version history

From

V2.22 to V2.23 (Boost 1.50)

eUML : better syntax for front-ends defined with eUML astransititon table only. Caution: Breaking
Changel!

Bugfix: graph building was only working if i ni ti al _st at e defined as a sequence

Bugfix: flags defined for a Terminate or Interrupt state do not break the blocking function of these
states any more.

Bugfix: multiple deferred events from several regions were not working in every case.
Bugfix: visitor was passed by value to submachines.
Bugfix: no_t ransi ti on wasnot caled for submachines who send an event to themselves.

Fixed warnings with gcc

V2.21to V2.22 (Boost 1.48)

eUML: added easier event reprocessing: pr ocess(event _) andr eprocess()

Rewrite of internal transition tables. There were afew bugs (failing recursivity in internal transition
tables of sub-sub machines) and a missing feature (unused internal transition table of the main state
machine).

Bugfixes

« Reverted favor_compile_time policy to Boost 1.46 state
¢ none event now is convertible from any other event

¢ eUML and pseudo exit states

« Fixed not working Flag AND

* Fixed rare bugs causing multiple processing of the same event in a submachine whose transition
table contains this event and a base event of it.

 gcc warnings about unused variables

Breaking change: the new internal transition table feature causes a minor breaking change. In a
submachine, the "Fsm" template parameter for guards / actions of an internal table declared using
i nternal _transition_tabl e now isthe submachine, not the higher-level state machine.
Internal transitionsdeclared usinginterna rowsinthe higher-level state machinekeep their behavior
(the "Fsm" parameter is the higher-level state machine). To sum up, the interna transition "Fsm"
parameter is the closest state machine containing this transition.

V2.20 to V2.21 (Boost 1.47)

Added a stop() method in the back-end.

Added partial support for Boost.Phoenix functorsin eUML
Added the possibility to choose when state switching occurs.
Bugfixes

» Trac 5117, 5253, 5533, 5573

65

Version history

From

 gcc warnings about unused variables

* better implemenation of favor_compile_time back-end policy

¢ bug with eUML and state construction

* incorrect eUML event and state macros

* incorrect event type passed to a direct entry state's on_entry action

¢ more examples

V2.12 to V2.20 (Boost 1.46)

Compile-time state machine analysis using mpl_graph:

« checking of region orthogonality.

 search for unreachable states.

e automatic region index search for pseudo entry or explicit entry states.

Boost.Par ameter interface definition for msm::back::state_ machine<> template arguments.

Possibility to provide a container for the event and deferred event queues. A policy
implementation based on amore efficient Boost.CircularBuffer is provided.

msm::back::state_machine<>::is flag active method made const.
added possihility to enqueue events for delayed processing.
Bugfixes

» Trac 4926

« stack overflow using the Defer functor

« anonymous transition of a submachine not called for the initial state

From V2.10 to V2.12 (Boost 1.45)

Support for serialization
Possibility to use normal functors (from functor front-end) in eUML.

New constructor s where substates / submachines can be taken as arguments. This allows passing
arguments to the constructor of a submachine.

Bugfixes

From V2.0 to V2.12 (Boost 1.44)

New documentation
Internal transitions. Either as part of the transition table or using a state'sinternal transition table
increased dispatch and copy speed

new row types for the basic front-end

66

Version history

new eUML syntax, better attribute support, macros to ease developer's life. Even VC8 seems to
like it better.

New policy for reduced compile-time at the cost of dispatch speed
Support for base events

possibility to choose the initial event

67

Part Il. Reference

Table of Contents

9. External references to MSM

10. eUML operators and basiC hEIPEY'Svuiiiiiii e e

11. Functional programming ..

69

Chapter 9. External references to
MSM

An interesting mapping UML <-> MSM from Takatoshi Kondo can be found at Redboltz [http:/
redboltz.wikidot.com/boost-msm-guide].

70

http://redboltz.wikidot.com/boost-msm-guide
http://redboltz.wikidot.com/boost-msm-guide
http://redboltz.wikidot.com/boost-msm-guide

The following table lists the supported operators:

Table 10.1. Operators and state machine helpers

Chapter 10. eUML operators and
basic helpers

eUML function / operator Description Functor

&& Cdlslazily Action1&& Action2|And_

Il Callslazily Actionl|| Action2 |Or_

! Callslazily !Actionl Not_

I= Callslazily Actionl != Action2 |NotEqualTo_

== Callslazily Actionl == Action2 |EqualTo_

> Callslazily Actionl > Action2 |Greater_

>= Callslazily Actionl >= Action2 |Greater_Equal _

< Callslazily Actionl < Action2 |Less_

<= Callslazily Actionl <= Action2 |Less Equal_

& Callslazily Actionl & Action2 |Bitwise And_

| Callslazily Actionl | Action2 |Bitwise Or_

n Calslazily Action1 ~ Action2 |Bitwise _Xor_

-- Calls lazily --Actionl /|Pre Dec_/Post_Dec
Actionl--

++ Calls lazily ++Actionl /|Pre_Inc_/Post_Inc_
Actionl++

/ Callslazily Actionl/ Action2 |Divides

/= Callslazily Actionl /= Action2 |Divides Assign_

* Callslazily Actionl * Action2 |Multiplies_

*= Callslazily Actionl *= Action2 |Multiplies_Assign_

+ (binary) Callslazily Actionl + Action2 |Plus_

+ (unary) Callslazily +Actionl Unary_Plus

+= Callslazily Actionl += Action2 | Plus_Assign_

- (binary) Callslazily Actionl - Action2 |Minus_

- (unary) Callslazily -Actionl Unary_Minus_

-= Cdlslazily Actionl -= Action2 |Minus_Assign_

% Callslazily Actionl % Action2 |Modulus

%= Callslazily Actionl %= Action2|Modulus_Assign_

>> Callslazily Actionl >> Action2 | ShiftRight

>>= Cdls lazily Actionl >>=|ShiftRight Assign_
Action2

<< Callslazily Actionl << Action2 | ShiftLeft_

<<= Calls lazily Actionl <<=|ShiftLeft Assign_
Action2

[1 (works on vector, map, arrays)

Callslazily Actionl [Action2]

Subscript_

71

eUML operators and basic helpers

eUML function / operator

Description

Functor

if then else (Condition,Actionl

Retiong) either the result of
caling Actionl or the result of
calling Action2

If_Else_

if_then_(Condition,Action)

Returns the result of calling
Action if Condition

If_ Then_

while_(Condition, Body)

While Condition(), calls Body().
Returns nothing

While Do_

do_while (Condition, Body)

Calls Body() while Condition().
Returns nothing

Do _While_

for_(Begin,Stop,EndL oop,Body)

Calls for(Begin;Stop;EndLoop)
{Body;}

For_Loop_

process (Event [,fsml] [,fsm2]
[,fsm3] [,fsm4])

Processes Event on the current
state machine (if no fsm
specified) or on up to 4
state machines returned by an
appropriate functor.

Process

process2 (Event, Data [,fsm1i]
[,fsm2] [,fsm3])

Processes Event on the current
state machine (if no fsm
specified) or on up to 2
state machines returned by an
appropriate functor. The event
is copy-constructed from what
Data() returns.

Process2

is flag (Flag[,fsm])

Calls is flag active() on the
current state machine or the one
returned by calling fsm.

Get Flag_

event_ [(attribute name)]

Returns the current event (as
const reference)

GetEvent_

source _ [(attribute name)]

Returns the source state of the
currently triggered transition (as
reference). If an attribute nameis
provided, returns the attribute by
reference.

GetSource

target_ [(attribute name)]

Returns the target state of the
currently triggered transition (as
reference). If an attribute nameis
provided, returnsthe attribute by
reference.

GetTarget_

state [(attribute name)]

Returns the source state of
the currently active state (as
reference). Valid inside a state
entry/exit action. If an attribute
name is provided, returns the
attribute by reference.

GetState

fsm_ [(attribute name)]

Returns the current state
machine (as reference). Valid
inside a state entry/exit action or
atransition. If an attribute name
is provided, returns the attribute
by reference.

GetFsm_

72

eUML operators and basic helpers

eUML function / operator

Description

Functor

substate (state_name [,fsm])

Returns (as reference) the state
state name referenced in the
current state machine or the one
given as argument.

SubState

To use these functions, you need to include:

#i nclude <msm front/eum /eum . hpp>

73

Chapter 11. Functional programming

To use these functions, you need to include:
#i nclude <msm front/eum /stl. hpp>
or the specified header in the following tables.

The following tables list the supported STL algorithms:

Table 11.1. STL algorithms

STL algorithmsin querying.hpp Functor
find_(first, last, value) Find
find_if_(first, last, value) FindIf_
lower_bound_(first, last, value [,0p#]) LowerBound_
upper_bound_(first, last, value [,0p#]) UpperBound_
equa_range (first, last, value [,0p#]) EqualRange
binary_search_(first, last, value [,0p#]) BinarySearch_
min_element_(first, last[,op#]) MinElement_
max_element_(first, last[,op#]) MaxElement_
adjacent_find_(first, last[,op#]) AdjacentFind_
find_end_(firstd, lastd, first2, last2 [,op #]) FindEnd_
find_first_of (firstl, lastl, first2, last2 [,op#]) |FindFirstOf _
equal_(firstl, lastl, first2 [,op #]) Equal_
search_(firstl, lastl, first2, last2 [,op #]) Search
includes_(firstl, lastl, first2, last2 [,op #]) Includes
lexicographical_compare_ (firstl, lastl, first2,|LexicographicalCompare
last2 [,op #])

count_(first, last, value [,size]) Count_
count_if (first, last, op #[,size]) Countlf
distance (first, last) Distance
mismatch _(firstl, lastl, first2 [,op #]) Mismatch_
Table 11.2. STL algorithms

STL algorithmsin iteration.hpp Functor
for_each_(first,last, unary op#) ForEach_
accumulate first, last, init [,op#]) Accumulate

Table 11.3. STL algorithms

STL algorithmsin transformation.hpp Functor
copy_(first, last, result) Copy _
copy_backward_(first, last, result) CopyBackward
reverse (first, last) Reverse
reverse_copy_(first, last , result) ReverseCopy _
remove (first, last, value) Remove

74

Functional programming

STL algorithmsin transformation.hpp Functor
remove if_(first, last , op#) Removelf_
remove_copy_(first, last , output, value) RemoveCopy _
remove_copy_if_(first, last, output, op#) RemoveCopylf
fill_(first, last, value) Fill_
fill_n_(first, size, value)# FillIN_

generate (first, last, generator#) Generate
generate (first, size, generator#)# GenerateN _
unique_(first, last [,op#]) Unique _
unique_copy_(first, last, output [,0p#]) UniqueCopy_
random_shuffle (first, last [,0p#]) RandomShuffle
rotate_copy_(first, middle, last, output) RotateCopy _
partition_ (first, last [,op#]) Partition

stable partition_ (first, last [,op#]) StablePartition_
stable sort_(first, last [,0p#]) StableSort_
sort_(first, last [,0p#]) Sort_
partial_sort_(first, middle, last [,0p#]) Partial Sort_

partial_sort_copy_ (first, last, res first, res last
[.op#])

Partial SortCopy _

nth_element_(first, nth, last [,op#]) NthElement_
merge_(firstl, lastl, first2, last2, output [,op #]) |Merge
inplace_merge_(first, middle, last [,0p#]) InplaceMerge

set_union_(firstl, lastl, first2, last2, output [,0p
#)

SetUnion_

push_heap_(first, last [,op #]) PushHeap_
pop_heap (first, last [,op #]) PopHeap

make _heap (first, last [,op #]) MakeHeap
sort_heap_(first, last [,op #]) SortHeap
next_permutation_(first, last [,op #]) NextPermutation_

prev_permutation_(first, last [,op #])

PrevPermutation_

inner_product_(firstl, lastl, first2, init [,op1#]|InnerProduct
[,op2#])
partial_sum_(first, last, output [,0p#]) Partial Sum_

adjacent_difference _(first, last, output [,0p#])

AdjacentDifference_

replace_(first, last, old_value, new_value) Replace
replace if_(first, last, op#, new_value) Replacelf
replace_copy_(first, last, result, old_vaue,|ReplaceCopy_
new_value)

replace_copy_if (first, last, result, op#,|ReplaceCopylf_
new_value)

rotate (first, middle, last)# Rotate

75

Functional programming

Table11.4. STL container methods

STL container methods(common) in|Functor
container.hpp

container::reference front_(container) Front_
container::reference back (container) Back
container::iterator begin_(container) Begin
container::iterator end_(container) End_
container::reverse iterator rbegin_(container) RBegin_
container::reverse iterator rend (container) REnd

void push_back _(container, value) Push Back
void pop_back_(container, value) Pop Back
void push_front_(container, value) Push_Front_
void pop_front_(container, value) Pop_Front_
void clear_(container) Clear_

size type capacity (container) Capacity
size type size (container) Size

size type max_size (container) Max_Size
void reserve_(container, value) Reserve
void resize (container, value) Resize
iterator insert_(container, pos, value) Insert_

void insert_(container , pos, first, last) Insert

void insert_(container , pos, number, value) Insert
void swap_(container , other_container) Swap

void erase (container , pos) Erase

void erase (container , first, last) Erase

bool empty_(container) Empty
Table 11.5. STL list methods

std::list methods in container.hpp Functor
void list_remove_(container, value) ListRemove_

void list_remove if (container, op#)

ListRemove If_

void list_merge (container, other_list) ListMerge
void list_merge (container, other_list, op#) ListMerge
void splice (container, iterator, other_list) Splice

void splice (container, iterator, other_list,|Splice
iterator)

void splice (container, iterator, other_list, first,|Splice

last)

void list_reverse (container) ListReverse
void list_unique_(container) ListUnique_
void list_unique_(container, op#) ListUnique_
void list_sort_(container) ListSort
void list_sort_(container, op#) ListSort

76

Fi

unctional programming

Table 11.6. STL associative container methods

Associative container methods in|Functor
container.hpp

iterator insert_(container, pos, value) Insert
void insert_(container , first, last) Insert_
pair<iterator, bool> insert_(container , value) Insert_

void associative_erase (container , pos)

Associative Erase

void associative erase (container, first, last)

Associative Erase

size type associative erase (container , key)

Associative Erase

iterator associative find_(contai

ner , key)

Associative Find_

size type associative_count_(container , key)

AssociativeCount_

iterator associative lower_bound (container ,

Associative Lower Bound

associative_equal_range (container , key)

key)
iterator associative upper_bound (container ,|Associative Upper_Bound_
key)
pair<iterator, iterator>| Associative Equal_Range

Table11.7. STL pair

size)

length)

std::pair in container.hpp Functor

first_typefirst (pair<T1, T2>) First_

second_type second_(pair<T1, T2>) Second

Table11.8. STL string

STL string method std::string method in|Functor
container.hpp

substr (size_type pos, size type|string substr_(container, pos,|Substr_

int compare(string)

int string_compare_(container,
another_string)

StringCompare _

int compare(char*)

int string_compare_(container,
another_string)

StringCompare _

int compare(size_type
size type size, string)

pos,

int string_compare_(container,
pos, size, another_string)

StringCompare _

int compare (size type pos,
size type size, string, size_type
length)

int string_compare_(container,
pos, size, another_string, length)

StringCompare_

Size type size)

another_string, length)

string& append(const string&) | string& append_(container,| Append_
another_string)

string& append (charT*) string& append_(container,| Append_
another_string)

string& append (string ,|string& append_(container,| Append_

size type pos, size typesize) |other_string, pos, size)

string& append (charT*, |string& append_(container,| Append_

string& append (size type size,
charT)

string& append_(container, size,
char)

Append_

77

Functional programming

STL string method std::string method in|Functor
container.hpp
string& append (iterator begin, |string& append_(container,| Append_
iterator end) begin, end)
string& insert (size type pos,|string& Stringlnsert_
charT*) string_insert_(container, pos,
other_string)
string& insert(size_type pos, |string& Stringlnsert_
charT* ,size typen) string_insert_(container, pos,
other_string, n)
string& insert(size_type|string& Stringlnsert_
pos,size typen, charT ¢) string_insert_(container, pos, n,
c)
string& insert (size type pos,|string& Stringlnsert_
const string&) string_insert_(container, pos,
other_string)
string& insert (size type pos,|string& Stringlnsert_
const string&, size type posl, |string_insert_(container, pos,

Size typen)

other_string, posl, n)

string& erase(size type pos=0,
Size_type n=npos)

string& string_erase (container,
pos, n)

StringErase

string& assign(const string&) | string& StringAssign_
string_assign_(container,
another_string)
string& assign(const charT*) | string& StringAssign_
string_assign_(container,
another_string)
string& assign(const string&, | string& StringAssign_
size_type pos, size_typen) string_assign_(container,
another_string, pos, n)
string& assign(const charT*, |string& StringAssign_
size typen) string_assign_(container,
another_string, n)
string& assign(size type n,|string& StringAssign_
charT ¢) string_assign_(container, n, c)
string& assign(iterator first, | string& StringAssign_
iterator last) string_assign_(container, first,
last)
string& replace(size_type pos, |string& StringReplace
size typen, const string&) string_replace (container, pos,
n, another_string)
string& replace(size type pos, |string& StringReplace
size type n, const charT*,|string_replace (container, pos,
size typenl) n, another_string, nl)
string& replace(size type pos,|string& StringReplace
size typen, const charT*) string_replace (container, pos,
n, another_string)
string& replace(size type pos,|string& StringReplace
size typen, size type nl, charT |string_replace (container, pos,

0)

n, nl, ¢

78

Functional programming

STL string method std::string method in|Functor
container.hpp
string& replace(iterator first, | string& StringReplace
iterator last, const string&) string_replace (container, first,
last, another_string)
string& replace(iterator first, | string& StringReplace
iterator last, const charT*, string_replace (container, first,
size typen) last, another_string, n)
string& replace(iterator first, | string& StringReplace
iterator last, const charT*) string_replace (container, first,
last, another_string)
string& replace(iterator first, | string& StringReplace
iterator last, size type n, charT |string_replace (container, first,
c) last, n, c)
string& replace(iterator first, | string& StringReplace
iterator last, iterator f, iterator 1) |string_replace (container, first,

last, T, 1)

const charT* c¢_str() const charT* ¢_str_(container) |[CStr_
const charT* data() const charT* | StringData
string_data_(container)
size type copy(charT* buf,|size type StringCopy _
size typen, size typepos=0) |string_copy_(container, buf, n,
pos); size type
string_copy_(container, buf, n)
size type find(charT* s,|size type StringFind_
size type pos, size_typen) string_find_(container, s, pos, n)
size type find(charT* s, |size_type StringFind_
size type pos=0) string_find_(container, s, pos);
size type
string_find_(container, s)
size type find(const string& s,|size _type StringFind_
size_type pos=0) string_find_(container, s, pos)
size type
string_find_(container, s)
size type find(charT c,|size type StringFind_
size type pos=0) string_find_(container, ¢, pos)
size type
string_find_(container, c)
size type rfind(charT* s,|size type StringRFind_

size type pos, size_typen)

string_rfind_(container, s, pos,

n)

size type rfind(charT* s, |size_type StringRFind_
Size type pos=npos) string_rfind_(container, s, pos);

size type

string_rfind_(container, s)
size type rfind(const string& s, |size_type StringRFind_
Size_type pos=npos) string_rfind_(container, s, pos);

size type

string_rfind_(container, s)
size type rfind(charT c,|size type StringRFind_

size type pos=npos)

string_rfind_(container, c, pos)

79

Functional programming

STL string method

std::string method in

container.hpp

Functor

size type
string_rfind_(container, c)

size typefind first_of(charT* s,
size type pos, size typen)

size type
find_first_of (container, s, pos,

n)

StringFindFirstOf

size type find_first_of (charT*
s, Size _type pos=0)

size type
find_first_of (container, S,
pos); size type

find_first_of (container, s)

StringFindFirstOf

size type find_first_of (const
string& s, size_type pos=0)

size type
find_first_of_(container, S,
pos); size type

find_first_of (container, s)

StringFindFirstOf _

size typefind_first_of (charT c,
size type pos=0)

size type

find_first_of (container, c, pos)
size type

find_first_of (container, c)

StringFindFirstOf

size type
find_first_not_of(charT*
size type pos, size typen)

S

size type
find_first_not_of (container, s,
pos, n)

StringFindFirstNotOf _

size type find_first_not_of
(charT* s, size_type pos=0)

size type
find_first_not_of (container, s,
pos); size type

find_first_not_of (container, s)

StringFindFirstNotOf

size type find_first_not_of |size type StringFindFirstNotOf
(const string& s, size type|find first_not of (container, s,
pos=0) pos); size type

find_first_not_of (container, s)
size type find_first_not_of |size type StringFindFirstNotOf _
(charT c, size_type pos=0) find_first_not_of (container, c,

pos); size type

find_first_not_of (container, c)

size typefind last_of(charT* s,
size type pos, size typen)

size type
find_last_of (container, s, pos,
n)

StringFindLastOf

size typefind last_of (charT* s,
size type pos=npos)

size type

find_last_of (container, s, pos);
size type

find_last_of (container, s)

StringFindLastOf

size type find last of (const
string& s, size_type pos=npos)

size type
find_last_of_(container, s, pos);
size type

find_last_of (container, s)

StringFindLastOf_

size type find_last_of (charT c,
size type pos=npos)

size type

find_last_of (container, c, pos);
size type

find_last_of (container, c)

StringFindLastOf _

size type
find_last_not_of(charT*
size type pos, size typen)

S

size type
find_last_not_of (container, s,
pos, n)

StringFindLastNotOf

80

Functional programming

find_last_not_of (container, c)

STL string method std::string method in|Functor
container.hpp
size type find_last_not_of |size type StringFindL astNotOf
(charT* s, size type pos=npos) |find last not_of (container, s,
pos); size type
find_last_of (container, s)
size type find_last_not_of |size type StringFindL astNotOf
(const string& s, size type|find_last_not_of (container, s,
pos=npos) pos); size type
find_last_not_of_(container, s)
size type find_last_not_of |size type StringFindL astNotOf
(charT c, size_type pos=npos) |find_last_not_of (container, c,
pos); size type

Notes:

 #: agorithmsrequiring a predicate need to make them eUML compatible by wrapping them inside

aPredicate functor. For example, std::less<int> => Predicate_<std::less<int>>()

» #: If using the SGI STL implementation, these functors use the SGI return value

81

Name

Common headers — The common types used by front- and back-ends
msm/common.hpp

This header provides one type, wrap, which is an empty type whose only reason to exist is to be
cheap to construct, so that it can be used with mpl::for_each, as shown in the M etaprogramming book,
chapter 9.

tenpl ate <class Dummy> wrap{}; {
}

msm/row_tags.hpp

Thisheader contains the row type tags which front-ends can support partially or totally. Please see the
I nter nals section for a description of the different types.

82

Name
Back-end — The back-end headers

msm/back/state_machine.hpp

This header provides one type, state_machine, MSM's state machine engine implementation.

tenpl ate <cl ass Derived, cl ass Hi storyPolicy=NoHi story, cl ass
Conpi | ePol i cy=favor_runti ne_speed> state_nachi ne {

}
Template arguments

Derived

The name of the front-end state machine definition. All three front-ends are possible.
HistoryPolicy

The desired history. This can be: AlwaysHistory, NoHistory, ShallowHistory. Default is NoHistory.
CompilePolicy

The trade-off performance / compile-time. There are two predefined policies, favor_runtime_speed
andfavor_compile_time. Defaultisfavor_runtime_speed, best performance, longer compile-time. See
the backend.

methods

start

The start methods must be called before any call to process_event. It activates the entry action of the
initial state(s). This allows you to choose when a state machine can start. See backend.

void start();
process_event

The event processing method implements the double-dispatch. Each call to this function with a new
event type instantiates a new dispatch algorithm and increases compile-time.

tenpl ate <cl ass Event > Handl edEnum
process_event (Event const&);

current_state

Returns the ids of currently active states. You will typically need it only for debugging or logging
purposes.

const int* current_state const();
get_state by id

Returns the state whose id is given. As all states of a concrete state machine share a common base
state, the return value is a base state. If theid corresponds to no state, a null pointer is returned.

const BaseState* get_state by id const(int id);
is_contained

Helper returning true if the state machine is contained as a submachine of another state machine.

83

Back-end

bool is_contained const();

get_state

Returns the required state of the state machine as a pointer. A compile error will occur if the state is
not to be found in the state machine.

tenpl ate <class State> State* get_state();

get_state

Returns the required state of the state machine as a reference. A compile error will occur if the state
is not to be found in the state machine.

tenpl ate <class State> State& get _state();
is_flag_active

Returns true if the given flag is currently active. A flag is active if the active state of one region is
tagged with thisflag (using OR as BinaryOp) or active states of al regions (using AND as BinaryOp)

tenpl ate <cl ass Fl ag, cl ass Bi nharyQp> bool
is flag active();

is_flag_active

Returns true if the given flag is currently active. A flag is active if the active state of one region is
tagged with this flag.

tenpl ate <class Flag> bool is_flag active();
visit_current_states

Visits all active states and their substates. A state is visited using the accept method without
argument. The base class of all states must provide an accept _si g type.

void visit_current_states();

visit_current_states

Visitsall active states and their substates. A stateisvisited usingtheaccept method with arguments.
The base class of all states must provide an accept _si g type defining the signature and thus the
number and type of the parameters.

void visit_current_states(any-type paranil, any-type parang,...);
defer_event

Defers the provided event. This method can be called only if at least one state defers an event
or if the state machine provides the acti vat e_def erred_event s(see example [examples
Orthogonal-deferred2.cpp]) type either directly or using the deferred_events configuration of eUML
(configure_ << deferred_events)

tenpl ate <cl ass Event> voi d defer_event (Event const&);
Types

nr_regions

The number of orthogonal regions contained in the state machine

examples/Orthogonal-deferred2.cpp
examples/Orthogonal-deferred2.cpp
examples/Orthogonal-deferred2.cpp

Back-end

entry_pt

This nested type provides the necessary typedef for entry point pseudostates.
state_nmachine<...>::entry_pt<state nanme> is a transition's valid target inside the
containing state machine's transition table.

entry pt {
}

exit_pt

This nested type provides the necessary typedef for exit point pseudostates.
state_nachi ne<...>::exit_pt<state_name> is a transition's valid source inside the
containing state machine's transition table.

exit_pt {
}
direct
This nested type provides the necessary typedef for an explicit entry inside a submachine.
state_nachi ne<...>::direct<state nane> is a transition's valid target inside the
containing state machine's transition table.
direct {
}
stt

Calling state_machine<frontend>::stt returns a mpl::vector containing the transition table of the state
machine. Thistype can then be used with generate state set or generate_event_set.

args.hpp

This header provides one type, args. which provides the necessary types for avisitor implementation.

msm/back/history_policies.hpp
Thisheader providesthe out-of-the-box history policies supported by MSM. There are 3 such policies.
Every history policy must implement the following methods:

set_initial_states

This method is called by msm::back::state_machine when constructed. It gives the policy a chance to
savetheidsof all initial states (passed as array).

void set_initial _states();
(int* const) ;
history_exit

Thismethod is called by msm::back::state_machine when the submachineisexited. It givesthe policy
a chance to remember the ids of the last active substates of this submachine (passed as array).

void history exit();

(int* const) ;

85

Back-end

history_entry
Thismethod iscalled by msm::back::state_ machinewhen the submachineisentered. It givesthepolicy
a chance to set the active states according to the policy's aim. The policy gets as parameter the event
which activated the submachine and returns an array of active statesids.

tenmpl ate <class Event> int* const history_exit();

(Event const &)
Out-of-the-box policies:
NoHistory

This policy isthe default used by state_machine. No active state of a submachine is remembered and
at every new activation of the submachine, theinitial state(s) are activated.

AlwaysHistory

This policy is a non-UML-standard extension. The active state(s) of a submachine is (are) aways
remembered at every new activation of the submachine.

ShallowHistory

This policy activates the active state(s) of a submachineif the event isfound in the policy's event list.

msm/back/default_compile_policy.hpp

This header contains the definition of favor_runtime_speed. This policy has two settings:

» Submachines dispatch faster because their transitions are added into their containing machine's
transition table instead of simply forwarding events.

* It solves transition conflicts at compile-time

msm/back/favor_compile_time.hpp

This header contains the definition of favor_compile_time. This policy has two settings:

» Submachines dispatch is slower because al events, even those with no dispatch chance, are
forwarded to submachines. In exchange, no row is added into the containing machine's transition
table, which reduces compile-time.

|t solves transition conflicts at run-time.

msm/back/metafunctions.hpp

This header contains metafunctions for use by the library. Three metafunctions can be useful for the
user:

* generate_state_set< stt >:generatesthelist of all states referenced by the transition
table stt. If st is arecursive table (generated by r ecur si ve_get _transi ti on_t abl e), the
metafunction finds recursively all states of the submachines. A non-recursive table can be obtained
with some_backend fsm::stt.

* generate_event _set< stt>: generates the list of all events referenced by the transition
table stt. If stt isarecursive table (generated by r ecur si ve_get _transi ti on_t abl e), the

86

Back-end

metafunction findsrecursively all events of the submachines. A non-recursive table can be obtained
with some_backend_fsm::stt.

e recursive_get _transition_tabl e<fsnp: recursively extends the transition table of the
state machine fsm with tables from the submachines.

msm/back/tools.hpp

This header contains a few metaprogramming tools to get some information out of a state machine.
fill_state_names

attributes
fill_state names hasfor attribute:

e char const** m names: analready allocated array of const char* where the typeid-generated
names of a state machine states will be witten.

constructor

char const** nanmes_to fill(char const** names_to fill);

usage

fill_state names is made for use in a mpl::for_each iterating on a state list and writing inside a pre-
allocated array the state names. Example:

typedef some_fsm:stt Stt;

typedef msm : back::generate_state set<Stt>::type all_states; //states

static char const* state nanes[npl::size<all _states>::value];

/1 array to fill with nanes

/1 fill the names of the states defined in the state nachine

npl ::for_each<al | _states, boost::nsm :w ap<npl ::placehol ders::_1> >
(rmsm : back::fill _state names<Stt>(state_names));

/1 display all active states

for (unsigned int i=0;i<sonme_fsm:nr_regions::value; ++i)

{
std::cout << " ->"
<< state_nanes[ny_fsm.instance.current_state()[i]]
<< std::endl;
}

get_state_name

attributes
get_state name has for attributes:
 std::string& m_name: the return value of the iteration
e int m_state id: the searched state'sid
constructor

The constructor takes as argument areference to the string to fill with the state name and theid which
must be searched.

string& nanme_to fill,int state_ id(string& name_to fill,int state_id);

87

Back-end

usage
Thistype is made for the same search as in the previous example, using ampl::for_each to iterate on
states. After the iteration, the state name reference has been set.
/1 we need a fsns table
typedef player::stt Stt;
typedef msm : back::generate state set<Stt>::type all _states; //all states
std::string nane_of open; // id of Open is 1
/1 fill name_of open for state of id 1
boost::npl::for_each<al |l _states, boost::nsm:w ap<npl::placeholders:: 1> >
(msm : back: : get _state nanme<Stt>(nane_of open,1));
std::cout << "typeid-generated name Qpen is: " << nane_of _open << std::endl;
display_type
attributes
none
usage

Reusing the state list from the previous example, we can output all state names:

npl :: for_each<al | _states, boost::nmsm:w ap<npl::placehol ders:: 1>
>(nmem : back: : di splay_type ());

88

Name
Front-end — The front-end headers

msm/front/common_states.hpp

This header contains the predefined types to serve as base for states or state machines:
* default_base state: non-polymorphic empty type.

» polymorphic_state: type with avirtual destructor, which makes all states polymorphic.

msm/front/completion_event.hpp

This header contains one type, none. Thistype has several meanings inside a transition table;
» asaction or guard: that there is no action or guard
» astarget state: that the transition is an internal transition

 asevent: thetransition is an anonymous (completion) transition

msm/front/functor_row.hpp

This header implements the functor front-end's transitions and hel pers.

Row
definition
tenpl ate <cl ass Source, cl ass Event, cl ass Target, cl ass
Action, cl ass Guard> Row {
}
tags

row_type tag isdefined differently for every specialization:

« al 5 template parameters means a normal transition with action and guard: t ypedef row tag

row type_tag;

» Row<Source,Event, Target,none,none> a normal transition without action or guard: t ypedef

_row_tag row type_tag;

* Row<Source Event, Target,Action,none> a norma transition without guard: typedef

a_row tag row type tag;

» Row<Source Event, Target,none,Guard> a norma transition without action: typedef

g_row tag row type_tag;

» Row<Source Event,noneAction,none> an internal transition without guard: typedef

a_irow tag row type_tag;

» Row<Source,Event,none,none,Guard> an internal transition without action: typedef

g_irow tag row type_ tag;

» Row<Source,Event,none,none,Guard> an internal transition with action and guard: t ypedef

irow tag row_ type_tag;

* Row<Source,Event,none,none,none> an internal transition without action or guard: t ypedef

_irow_tag row_ type_tag;

89

Front-end

methods

Like any other front-end, Row implementsthe two necessary static functionsfor action and guard call.
Each function receives as parameter the (deepest-level) state machine processsing the event, the event
itself, the source and target states and all the states contained in a state machine.

tenplate <class Fsmclass SourceState,class TargetState, class
Al'l States> static void action_call();

(Fsm& fsm Event const& evt, SourceSt at e&, Target State, Al l St at es&) ;

tenplate <class Fsmclass SourceState,class TargetState, class
Al'l States> static bool guard_call();

(Fsm& fsm Event const& evt, SourceSt at e&, Target State, Al l St at es&) ;

Internal
definition
tenpl ate <cl ass Event, class Action,class Guard>
Internal ({
}
tags

row_type tag is defined differently for every specialization:

o dl 3 template parameters means an internal transition with action and guard: t ypedef
smi_row tag row type_tag;

* Internal<Event,nongnone> an internal transition without action or guard: typedef
sm_i_row tag row type_tag;

* Internal<Event,Action,none> aninternal transition without guard: t ypedef sm a_i _row_t ag
row_type_tag;

* Internal<Event,none,Guard> aninternal transition without action: t ypedef sm g_i _row_t ag
row_type_tag;

methods

Like any other front-end, Internal implements the two necessary static functions for action and guard
call. Each function receives as parameter the (deepest-level) state machine processsing the event, the
event itself, the source and target states and all the states contained in a state machine.

tenmplate <class Fsmclass SourceState,class TargetState, class
Al'l States> static void action_call();

(Fsm& fsm Event const& evt, SourceSt ate&, Target State, Al l St at es&) ;

tenplate <class Fsmclass SourceState,class TargetState, class
Al States> static bool guard_call();

(Fsm& fsm Event const& evt, SourceSt at e&, Target State, Al l St at es&) ;

ActionSequence_

This functor calls every element of the template Sequence (which are also callable functors) in turn.
It is also the underlying implementation of the eUML segquence grammar (actionl,action2,...).

90

Front-end

definition

tenpl ate <cl ass Sequence> Acti onSequence_ {

}

methods

Defer

Thishelper functor ismadefor usein atransition table and in astate behavior and thereforeimplements
an operator() with 3 and with 4 arguments:

tenmpl ate <class Evt,class Fsmclass SourceState, class Target State>
operator()();

Evt const& ,Fsm& , SourceState& , Target St ate& ;
tenpl ate <class Evt,class Fsmclass State> operator()();

Evt const &, Fsn®, Stateg&;

definition

Defer {
}

methods

This helper functor is made for use in a transition table and therefore implements an operator() with
4 arguments:

tenpl ate <class Evt,class Fsmclass SourceState, class Target St ate>
operator()();

Evt const& Fsm& , SourceState& TargetStateg;

msm/front/internal _row.hpp

This header implements the internal transition rows for use inside an internal_transition_table. All
these row types have no source or target state, as the backend will recognize internal transitions from
thisinterna_transition_table.

methods

Like any other front-end, the following transition row types implements the two necessary static
functions for action and guard call. Each function receives as parameter the (deepest-level) state
machine processsing the event, the event itself, the source and target states and all the states contained
in a state machine.

tenplate <class Fsmclass SourceState,class TargetState, class
Al States> static void action_call();

(Fsm& fsm Event const& evt, SourceSt at e&, Target State, Al l St ates&) ;

tenmplate <class Fsmclass SourceState,class TargetState, class
Al'l States> static bool guard_call();

(Fsm& fsm Event const& evt, SourceSt at e&, Target State, Al l St at es&) ;

91

Front-end

a_internal
definition
Thisisan internal transition with an action called during the transition.

tenpl ate< cl ass Event, class Call edForAction, void
(Cal | edFor Action::*action)(Event const&) >
a_internal {

}
template parameters
» Event: the event triggering the internal transition.

 CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

« action: apointer to the method which CalledForAction provides.

g_internal

Thisis an internal transition with a guard called before the transition and allowing the transition if
returning true.

definition

tenpl ate< cl ass Event, class Call edFor Guard, bool
(Cal | edFor Guard: : *guard) (Event const &) >
g_internal {

}
template parameters
» Event: the event triggering the internal transition.

 CaledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

 guard: apointer to the method which CalledForGuard provides.

internal

Thisis an internal transition with a guard called before the transition and allowing the transition if
returning true. It also calls an action called during the transition.
definition

tenpl ate< cl ass Event, cl ass Call edForAction, void
(Cal |l edFor Action::*action)(Event const&), c
Cal | edFor Guard, bool (Call edForGuard:: *guar
i nternal {

}
template parameters
» Bvent: the event triggering the internal transition

 CaledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

92

Front-end

* action: a pointer to the method which CalledForAction provides.

 CaledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

 guard: apointer to the method which CalledForGuard provides.

_internal

Thisisaninternal transition without action or guard. Thisis equivalent to an explicit "ignore event".

definition

tenpl ate< class Event > _internal ({

}

template parameters

» Event: the event triggering the internal transition.

msm/front/row2.hpp

This header contains the variants of row2, which are an extension of the standard row transitions for
use in the transition table. They offer the possibility to define action and guard not only in the state
machine, but in any state of the state machine. They can aso be used in internal transition tables
through their irow?2 variants.

methods

_row2

Like any other front-end, the following transition row types implements the two necessary static
functions for action and guard call. Each function receives as parameter the (deepest-level) state
machine processsing the event, the event itself, the source and target states and all the states contained
in a state machine.

tenplate <class Fsmclass SourceState,class TargetState, class
Al States> static void action_call();

(Fsm& fsm Event const & evt, SourceSt ate&, Target State, Al |l St ates&) ;

template <class Fsmclass SourceState,class TargetState, class
Al States> static bool guard_call ();

(Fsm& fsm Event consté& evt, SourceSt at e&, Target State, Al l St at es&) ;

Thisisatransition without action or guard. The state machine only changes active state.

definition

tenpl ate< cl ass Source, class Event, class Target >
_row2 {

}

template parameters

» Event: the event triggering the transition.
» Source: the source state of the transition.

» Target: the target state of the transition.

93

Front-end

a row?2
Thisisatransition with action and without guard.
definition

tenpl at e< cl ass Source, class Event, class Target,

{

cl ass Cal | edFor Action, void
(Cal |l edFor Action::*action)(Event const& >

}

template parameters
» Event: the event triggering the transition.
» Source: the source state of the transition.
e Target: thetarget state of the transition.

 CaledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

* action: a pointer to the method which CalledForAction provides.

g_row2
Thisisatransition with guard and without action.
definition

tenpl ate< cl ass Source, class Event, class Target,

{

class Cal |l edForGuard, bool (Call edForCGuard:: *guard) (Event
const& > row2 {

}

template parameters
» Event: the event triggering the transition.
* Source: the source state of the transition.
» Target: thetarget state of the transition.

 CaledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

 guard: apointer to the method which CalledForGuard provides.
row?2

Thisisatransition with guard and action.
definition

tenpl at e< cl ass Source, class Event, class Target,

94

Front-end

cl ass Cal | edFor Action, void
(Cal | edFor Action::*action)(Event consté&),

class Cal | edFor Guard, bool (Call edForGuard:: *guard) (Event
const& > row2 {

}

template parameters
» BEvent: the event triggering the transition.
* Source: the source state of the transition.
» Target: thetarget state of the transition.

 CdledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

* action: apointer to the method which CalledForAction provides.

 CaledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

 guard: apointer to the method which CalledForGuard provides.

a irow2

Thisisan internal transition for use inside atransition table, with action and without guard.
definition

tenpl ate< cl ass Source, class Event, {

}

cl ass Cal | edFor Action, void
(Cal |l edFor Action::*action)(Event const& >

}

template parameters
» Event: the event triggering the transition.
» Source: the source state of the transition.

 CaledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

* action: apointer to the method which CalledForAction provides.
g_irow2

Thisisaninternal transition for use inside atransition table, with guard and without action.
definition

tenpl at e< cl ass Source, class Event, ({

95

Front-end

class Cal |l edForGuard, bool (Call edForGuard:: *guard) (Event
const& > row2 {
}

template parameters
» Event: the event triggering the transition.
» Source: the source state of the transition.

 CaledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

 guard: apointer to the method which CalledForGuard provides.

irow2
Thisisaninternal transition for use inside atransition table, with guard and action.
definition
tenpl ate< cl ass Source, class Event, {
}
cl ass Cal | edFor Action, void
(Cal | edFor Action::*action)(Event consté&),
}

class Cal |l edFor Guard, bool (Call edForGuard:: *guard) (Event
const& > row2 {
}

template parameters
» BEvent: the event triggering the transition.
» Source: the source state of the transition.

 CaledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

* action: apointer to the method which CalledForAction provides.

 CaledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

 guard: apointer to the method which CalledForGuard provides.

msm/front/state_machine_def.hpp

This header provides the implementation of the basic front-end. It contains one type,
st at e_nachi ne_def

state_machine_def definition

This type is the basic class for abasic (or possibly any other) front-end. It provides the standard row
types (which includes internal transitions) and a default implementation of the required methods and
typedefs.

96

Front-end

tenpl ate <cl ass Derived, cl ass BaseState =
defaul t _base_state> state_machi ne_def {

}

typedefs
« flag_list: by default, no flag is set in the state machine
» deferred_events: by default, no event is deferred.

« configuration: by default, no configuration customization is done.

row methods

Like any other front-end, the following transition row types implements the two necessary static
functions for action and guard call. Each function receives as parameter the (deepest-level) state
machine processsing the event, the event itself, the source and target states and all the states contained
in a state machine (ignored).

tenplate <class Fsmclass SourceState,class TargetState, class
Al'l States> static void action_call();

(Fsm& fsm Event consté& evt, SourceState&, TargetState, All States&) ;

tenplate <class Fsmclass SourceState,class TargetState, class
Al States> static bool guard call();

(Fsm& fsm Event const & evt, SourceSt at e&, Target State, Al l St at es&) ;

a _row

Thisisatransition with action and without guard.

tenplate< class Source, class Event, class Target, voi d

(Derived::*action)(Event const& > a_row

» Event: the event triggering the transition.

* Source: the source state of the transition.

» Target: thetarget state of the transition.

* action: a pointer to the method provided by the concrete front-end (represented by Der i ved).
g_row

Thisisatransition with guard and without action.

templ ate< class Source, class Event, class Target, bool

(Derived::*guard) (Event const& > g _row

» Event: the event triggering the transition.

* Source: the source state of the transition.

» Target: the target state of the transition.

 guard: apointer to the method provided by the concrete front-end (represented by Der i ved).
row

Thisisatransition with guard and action.

97

Front-end

_row

a_irow

g_irow

irow

tenplate< class Source, class Event, class Target, voi d
(Derived::*action)(Event const &), bool (Derived: : *guard) (Event
const&) > row

» BEvent: the event triggering the transition.

* Source: the source state of the transition.

» Target: thetarget state of the transition.

* action: a pointer to the method provided by the concrete front-end (represented by Der i ved).

 guard: apointer to the method provided by the concrete front-end (represented by Der i ved).

Thisisatransition without action or guard. The state machine only changes active state.
tenmpl ate< cl ass Source, class Event, class Target > _row

» Event: the event triggering the transition.

* Source: the source state of the transition.

» Target: the target state of the transition.

Thisisaninternal transition for use inside atransition table, with action and without guard.

tenpl ate< class Source, class Event, void (Derived::*action)(Event
const&) > a_irow

» Event: the event triggering the transition.
» Source: the source state of the transition.

* action: a pointer to the method provided by the concrete front-end (represented by Der i ved).

Thisisan internal transition for use inside atransition table, with guard and without action.

tenpl ate< class Source, class Event, bool (Derived::*guard)(Event
const&) > g irow

» Event: the event triggering the transition.
* Source: the source state of the transition.

 guard: apointer to the method provided by the concrete front-end (represented by Der i ved).

Thisisaninternal transition for use inside atransition table, with guard and action.

tenpl ate< class Source, class Event, void (Derived::*action)(Event
const &), bool (Derived::*guard)(Event const& > irow

» Event: the event triggering the transition.

» Source: the source state of the transition.

98

Front-end

* action: a pointer to the method provided by the concrete front-end (represented by Der i ved).

 guard: apointer to the method provided by the concrete front-end (represented by Der i ved).

_irow
Thisisan internal transition without action or guard. Asit does nothing, it means "ignore event".
tenpl at e< cl ass Source, class Event > _irow
» BEvent: the event triggering the transition.
* Source: the source state of the transition.
methods

st at e_nmachi ne_def provides a default implementation in case of an event which cannot be
processed by a state machine (no transition found). The implementation is using a BOOST _ASSERT
so that the error will only be noticed in debug mode. Overwrite this method in your implementation
to change the behavior.

tenpl ate <class Fsmcl ass Event> static void no_transition();
(Event consté& ,Fsm& int state) ;

st at e_nachi ne_def providesadefault implementation in case an exception isthrown by a state
(entry/exit) or transition (action/guard) behavior. The implementation is using aBOOST _ASSERT so
that the error will only be noticed in debug mode. Overwrite this method in your implementation to
change the behavior. Thismethod will be called only if exception handling is not deactivated (default)
by defining has_no_nessage_queue.

tenpl ate <cl ass Fsmcl ass Event> static void exception_caught();

(Event const& ,Fsm&, std::exception&) ;

msm/front/states.hpp

types

Thisheader providesthe different states (except state machines) for the basic front-end (or mixed with
other front-ends).

This header provides the following types:

no_sm_ptr

sm_ptr

state

deprecated: default policy for states. It meansthat states do not need to save apointer to their containing
state machine.

deprecated: state policy. It means that states need to save a pointer to their containing state machine.
When seeing this flag, the back-end will call set_sm_ptr(fsm*) and give itself as argument.

Basic typefor simple states. Inherit from thistypeto define asimple state. Thefirst argument is needed
if you want your state (and all others used in a concrete state machine) to inherit a basic type for
logging or providing a common behavior.

tenpl at e<cl ass Base = default_base state,cl ass

99

Front-end

SMPtrPolicy = no_smptr> state {
}

terminate_state

Basic type for terminate states. | nherit from this type to define aterminate state. The first argument is
needed if you want your state (and all others used in a concrete state machine) to inherit a basic type
for logging or providing a common behavior.

tenpl at e<cl ass Base = default_base state,cl ass
SMPtrPolicy = no_smptr> termnate state {

}
interrupt_state

Basic type for interrupt states. Interrupt states prevent any further event handling until
EndinterruptEvent is sent. Inherit from this type to define aterminate state. The first argument is the
name of the event ending the interrupt. The second argument is needed if you want your state (and
all others used in a concrete state machine) to inherit a basic type for logging or providing acommon
behavior.

The EndInterruptEvent can also be a sequence of events:
mpl::vector<EndInterruptEvent,EndinterruptEvent2>.

t enpl at e<cl ass Endl nt errupt Event, cl ass Base =
defaul t _base_state, {

class SMPtrPolicy = no_smptr>
interrupt_state {

}
explicit_entry

Inherit from this type in addition to the desired state type to enable this state for direct entering.
The template parameter gives the region id of the state (regions are numbered in the order of the
i nitial_stat e typedef).

tenpl ate <int Zonelndex=-1> explicit_entry {

}
entry_pseudo_state

Basic type for entry pseudo states. Entry pseudo states are an predefined entry into a submachine
and connect two transitions. The first argument is the id of the region entered by this state (regions
are numbered in the order of thei ni ti al _st at e typedef). The second argument is needed if you
want your state (and all others used in a concrete state machine) to inherit a basic type for logging
or providing acommon behavior.

t enpl at e<i nt Regi onl ndex=-1, cl ass Base =
defaul t _base_state, {

class SMPtrPolicy = no_smptr>
entry_pseudo_state {

}
exit_pseudo_state

Basic type for exit pseudo states. Exit pseudo states are an predefined exit from a submachine and
connect two transitions. The first argument is the name of the event which will be "thrown" out of the

100

Front-end

exit point. This event does not need to be the same as the one sent by the inner region but must be
convertible from it. The second argument is needed if you want your state (and all others used in a
concrete state machine) to inherit a basic type for logging or providing a common behavior.

t enpl at e<cl ass Event, cl ass Base
defaul t _base_state, {

class SMPtrPolicy = no_smptr>
exit_pseudo_state {

}
msm/front/euml/euml.hpp

This header includes all of eUML except the STL functors.

msm/front/euml/stl.hpp

This header includes all the functorsfor STL support in eUML. These tables show afull description.

msm/front/euml/algorithm.hpp

This header includes al the functors for STL agorithms support in eUML. These tables show a full
description.

msm/front/euml/iteration.hpp

Thisheader includesiteration functorsfor STL supportineUML. Thistablesshowsafull description.

msm/front/euml/querying.hpp

Thisheader includes querying functorsfor STL supportineUML. Thistablesshowsafull description.

msm/front/euml/transformation.hpp

This header includes transformation functors for STL support in eUML. This tables shows a full
description.

msm/front/euml/container.npp

This header includes container functors for STL support in eUML (functors calling container
methods). This tables shows afull description. It also provides npos for strings.

Npos_<container type>

Functor returning nposfor transition or state behaviors. Likeall constants, only the functor form exists,
so parenthesis are necessary. Example:

string_find_(event_(msong), Char_<'S >(), Size_t_<0>()) !
Npos_<string>() // conpare result of string::find with npos

msm/front/euml/stt_grammar.hpp

This header provides the transition table grammars. Thisincludesinternal transition tables.

101

Front-end

functions

build_stt

Thefunction build_stt evaluates the grammar-conform expression as parameter. It returns atransition
table, which is a mpl::vector of transitions (rows) or, if the expression is ill-formed (does not match
the grammar), thetypei nval i d_t ype, whichwill lead to acompile-time static assertion when this
transition table is passed to a state machine.

t enpl at e<cl ass Expr > [mpl::vector<...> /
nmem:front::eum::invalid type] build stt();

Expr const & expr;
build_internal_stt

The function build_internal_stt evaluates the grammar-conform expression as parameter. It returns a
transition table, which is a mpl::vector of transitions (rows) or, if the expression is ill-formed (does
not match the grammar), thetypei nval i d_t ype, whichwill lead to a compile-time static assertion
when this transition table is passed to a state machine.

t enpl at e<cl ass Expr > [mpl::vector<...> /
mem:front::eum::invalid type] build_internal_stt();

Expr const & expr;
grammars

transition table

The transition table accepts the following grammar:

Stt := Row | (Stt ',' Stt)
Row : = (Target '==" (SourcePlusEvent)) /* first syntax*/
| ((SourcePlusEvent) '==" Target) /* second syntax*/
| (SourcePlusEvent) /* internal transitions */
Sour cePl usEvent := (BuildSource '+ Buil dEvent)/* standard transition*/

| (Buil dSource) /* anonynous transition */
Buil dSource := state tag | (state_tag '/' Action) | (state_tag '[' Guard ']")
| (state_tag '[' Quard ']" '/' Action)
Bui | dEvent := event _tag | (event_tag '/' Action) | (event_tag '[' Guard ']")
| (event_tag '[' Guard ']" '/' Action)

The grammars Action and Guard are defined in state grammar.hpp and guard _grammar.hpp
respectively. state tag and event_tag are inherited from euml_state (or other state variants) and
euml_event respectively. For example, following declarations are possible:

target == source + event [guard] / action

source + event [guard] / action == target,

source + event [guard] / (actionl,action2) == target,
target == source + event [guard] / (actionl, action2),
target == source + event,

source + event == target,

target == source + event [guard],

source + event [guard] == target,

target == source + event / action,

source + event /action == target,

source / action == target, /*anonynmous transition*/
target == source / action, /*anonynmous transition*/

source + event /action, /* internal transition*/

102

Front-end

internal transition table
Theinterna transition table accepts the following grammar:
IStt := BuildEvent | (IStt '," IStt)

BuildEvent being defined for both internal and standard transition tables.

msm/front/euml/guard_grammar.hpp

This header contains the Guar d grammar used in the previous section. This grammar is long but
pretty simple:

Guard := action_tag | (Guard '&& Cuard)
| (Guard '||' Guard) | ... /* operators*/
| (if_then_else_(Guard, Guard, Guard)) | (function (Action,...Action))

Most C++ operators are supported (address-of is not). With f uncti on is meant any eUML
predefined function or any self-made (using MSM_EUM__METHOD or MSM_EUML_FUNCTI ON).
Action isagrammar defined in state_grammar.hpp.

msm/front/euml/state_grammar.hpp

This header provides the grammar for actions and the different grammars and functionsto build states
using eUML.

action grammar

Like the guard grammar, this grammar supports relevant C++ operators and eUML functions:

Action := action_tag | (Action '+ Action)
| (*--" Action) | ... /* operators*/
| if_then_else (Guard, Action,Action) | if_then_(Action)
| while_ (Guard, Acti on)
| do_while (CGuard, Action) | for_(Action,Guard, Action, Acti on)
| (function(Action,...Action))
Acti onSequence := Action | (Action ',' Action)

Relevant operators are: ++ (post/pre), -- (post/pre), dereferencing, + (unary/binary), - (unary/binary),
*. 1, %, & (bitwise), | (bitwise), M(bitwise), +=, -=, *=, =, %=, <<=, >>=, <<, >>, =, [].

attributes

This grammar is used to add attributes to states (or state machines) or events: It evaluates to a
fusion::map. Y ou can use two forms:

e attributes << no_attributes_
e attributes_ << attribute 1 << ... << attribute_n

Attributes can be of any default-constructible type (fusion requirement).

configure

This grammar also has two forms:
e« configure_ << no_configure_

e configure_ << type_1 << ... << type_n

103

Front-end

This grammar is used to create inside one syntax:

o flags: configure_ << sone_flag where some flag inherits from
eum _fl ag<sone_f| ag> or isdefined using BOOST_MSM_EUML_FLAG.

o deferred events: configure_ << sone_event where some event inherits from
eurm _event <some_event > or is defined usng BOOST MSM_EUML_EVENT or
BOOST_MSM_EUML_EVENT WITH_ATTRIBUTES.

» configuration (message queue, manual deferring, exception handling): configure_ <<
some_confi g where some_config inherits from eunl _confi g<some_confi g>. At the
moment, three predefined objects exist (in msm//front/euml/common.hpp):

* no_exception: disable catching exceptions
* no_msg_queue: disable message queue

» deferred_events: manually enable handling of deferred events

initial states
The grammar to define initid states for a sate machine s init_
<< state 1 << << state_ n where dsate 1..state n

inherit from euml_state or is defined using BOOST MSM_EUML_STATE,
BOOST_MSM_EUML_INTERRUPT_STATE, BOOST_MSM_EUML_TERMINATE_STATE,
BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE, BOOST_MSM_EUML_ENTRY_STATE or
BOOST_MSM_EUML_EXIT_STATE.

functions

build_sm

This function has several overloads. The return type is not relevant to you as only decltype (return
type) iswhat one needs.

Defines a state machine without entry or exit:

tenpl ate <cl ass St at eNaneTag, cl ass Stt, class Init>
func_state nmachine<...> build_sm);

Stt ,Init;
Defines a state machine with entry behavior:

tenplate <class StateNaneTag,class Stt,class Init,class Exprl>
func_state nachine<...> build_sm);

Stt ,Init, Exprl constg&;
Defines a state machine with entry and exit behaviors:

tenpl ate <cl ass St at eNaneTag, cl ass Stt,class Init,class Exprl, class
Expr2> func_state_machine<...> build_sm);

Stt ,Init, Exprl const&, Expr2 const&;
Defines a state machine with entry, exit behaviors and attributes:

tenmpl ate <cl ass St at eNaneTag, cl ass Stt,class Init,class Exprl, class
Expr2, class Attributes> func_state _nachine<...> build_sm);

Stt ,Init, Exprl const& Expr2 const& Attributes consté&;

104

Front-end

Definesastate machinewith entry, exit behaviors, attributesand configuration (deferred events, flags):

tenmpl ate <cl ass St at eNaneTag, cl ass Stt,class Init,class Exprl, class
Expr2, class Attributes, class Configure> func_state_nachine<...>
bui l d_sm();

Stt ,lnit, Exprl const& Expr2 const& Attributes const& Configure
const &;

Defines a state machine with entry, exit behaviors, attributes, configuration (deferred events, flags)
and a base state:

tenplate <class StateNaneTag,class Stt,class Init,class Exprl,
class Expr2, «class Attributes, class Configure, class Base>
func_state nachine<...> build_sm);

Stt ,Init,Exprl const& Expr2 const& Attributes const& Configure
const & Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate state
machines having the same parameters but still being different.

build_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) iswhat one needs.

Defines a simple state without entry or exit:
func_state<cl ass StateNaneTag,...> build_state();
Defines a simple state with entry behavior:

tenpl ate <cl ass St at eNaneTag, cl ass Expr 1> func_state<...>
build _state();

Expr1l const &
Defines a simple state with entry and exit behaviors:

tenmpl ate <cl ass St at eNaneTag, cl ass Expr1, cl ass Expr 2>
func_state<...> build_state();

Exprl const &, Expr2 const &
Defines a simple state with entry, exit behaviors and attributes:

tenplate <class StateNaneTag,class Exprl, class Expr2, class
Attributes> func_state<...> build state();

Exprl const& Expr2 const& Attributes const&
Defines asimple state with entry, exit behaviors, attributes and configuration (deferred events, flags):

tenplate <class StateNaneTag,class Exprl, class Expr2, class
Attributes, class Configure> func_state<...> build_state();

Exprl const&, Expr2 const&, Attributes const& Configure constég&;

Defines asimple state with entry, exit behaviors, attributes, configuration (deferred events, flags) and
abase state:

105

Front-end

tenplate <class StateNaneTag,class Exprl, class Expr2, class
Attributes, cl ass Confi gure, cl ass Base> func_state<...>
buil d_state();

Exprl const& Expr2 const& Attributes const& Configure constg&,
Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but till being different.

build_terminate_state
This function has the same overloads as build_state.
build_interrupt_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) iswhat one needs.

Defines an interrupt state without entry or exit:

tenpl ate <cl ass St at eNaneTag, cl ass Endl nt errupt Event >
func_state<...> build_interrupt_state();

Endl nt errupt Event const &
Defines an interrupt state with entry behavior:

tenpl ate <class StateNameTag, cl ass Endl nterruptEvent, cl ass Exprl>
func_state<...> build_interrupt_state();

Endl nt errupt Event const & Expr1l const &
Defines an interrupt state with entry and exit behaviors:

tenpl ate <class StateNameTag, cl ass Endl nterruptEvent, class Exprl,
class Expr2> func_state<...> build_interrupt_state();

Endl nt errupt Event const & Expr1l const & Expr2 const &;
Defines an interrupt state with entry, exit behaviors and attributes:

templ ate <cl ass St at eNaneTag, cl ass Endl nt errupt Event, cl ass
Expr 1, cl ass Expr 2, cl ass Attributes> func_state<...>
buil d_interrupt_state();

Endl nt errupt Event const&, Exprl const& Expr2 const& Attributes
const &

Defines an interrupt state with entry, exit behaviors, attributes and configuration (deferred events,
flags):

tenmpl ate <class StateNaneTag, cl ass Endlnterrupt Event, cl ass Exprl,
class Expr2, class Attributes, class Configure> func_state<...>
buil d_interrupt_state();

Endl nt errupt Event const&, Exprl const& Expr2 const& Attributes
const & Configure const&;

Defines an interrupt state with entry, exit behaviors, attributes, configuration (deferred events, flags)
and a base state:

106

Front-end

tenpl ate <class StateNameTag, cl ass Endl nterruptEvent, class Exprl,
class Expr2, «class Attributes, class Configure, class Base>
func_state<...> build_interrupt_state();

Endl nt errupt Event const&, Exprl const& Expr2 const& Attributes
const & Configure consté& Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_entry_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) iswhat one needs.

Defines an entry pseudo state without entry or exit:

tenmpl ate <cl ass StateNanmeTag, i nt Regi onl ndex> entry_func_state<...>
build _entry state();

Defines an entry pseudo state with entry behavior:

tenpl ate <cl ass St at eNaneTag, i nt Regi onl ndex, cl ass Expr 1>
entry func_state<...> build_entry_state();

Exprl const &;
Defines an entry pseudo state with entry and exit behaviors:

tenplate <class StateNaneTag,int Regionlndex,class Exprl, class
Expr2> entry func_state<...> build_entry _state();

Expr1l const & Expr2 const&;
Defines an entry pseudo state with entry, exit behaviors and attributes:

tenplate <class StateNaneTag,int Regionlndex,class Exprl, class
Expr2, class Attributes> entry func_state<...> build entry state();

Exprl const&, Expr2 const& Attributes const&;

Defines an entry pseudo state with entry, exit behaviors, attributes and configuration (deferred events,
flags):

templ ate <class StateNaneTag,int Regionlndex,class Exprl, class
Expr2, class Attributes, <class Configure> entry func_state<...>
build _entry state();

Exprl const&, Expr2 const&, Attributes const& Configure consté&;

Defines an entry pseudo state with entry, exit behaviors, attributes, configuration (deferred events,
flags) and a base state:

tenplate <class StateNaneTag,int Regionlndex,class Exprl, class
Expr 2, cl ass Attributes, cl ass Confi gure, cl ass Base>
entry func_state<...> build_entry_state();

Exprl const& Expr2 const& Attributes const& Configure constg&,
Base;

107

Front-end

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_exit_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) iswhat one needs.

Defines an exit pseudo state without entry or exit:

tenplate <class StateNaneTag,class Event> exit_func_state<...>
build exit_state();

Event const &;
Defines an exit pseudo state with entry behavior:

tenpl ate <cl ass St at eNaneTag, cl ass Event, cl ass Expr 1>
exit_func_state<...> build exit_state();

Event const &, Exprl const &
Defines an exit pseudo state with entry and exit behaviors:

tenpl ate <class StateNaneTag, cl ass Event, class Exprl, class Expr2>
exit_func_state<...> build_exit_state();

Event const & Exprl const & Expr2 const &;
Defines an exit pseudo state with entry, exit behaviors and attributes:

tenpl ate <cl ass StateNaneTag, cl ass Event, class Exprl, class Expr2,
class Attributes> exit_func_state<...> build_exit_state();

Event const &, Exprl const& Expr2 consté&, Attributes const&

Defines an exit pseudo state with entry, exit behaviors, attributes and configuration (deferred events,
flags):

tenplate <class StateNaneTag, class Event,class Exprl, cl ass
Expr2, <class Attributes, <class Configure> exit_func_state<...>
build_exit_state();

Event const & Exprl const &, Expr2 consté&, Attributes consté& Configure
const &

Definesan exit pseudo statewith entry, exit behaviors, attributes, configuration (deferred events, flags)
and abase state:

tenpl ate <class StateNaneTag, cl ass Event, class Exprl, class Expr2,
class Attributes, class Configure, class Base> exit_func_state<...>
build _exit_state();

Event const &, Expr1l const & Expr2 consté&, Attributes consté& Configure
const & Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_explicit_entry_state

Thisfunction hasthe same overloadsasbuild_entry stateand explicit_entry func_state asreturntype.

108

Front-end

msm/front/euml/common.hpp

types
euml|_event

The basic type for events with eUML.

tenpl ate <cl ass Event Nane> eum _event; {

}
struct play : eum _event<play>{};
euml|_state

The basic type for states with eUML. You will usualy not wuse
this type directly a it is easer to use BOOST_MSM_EUML_STATE,
BOOST_MSM_EUML_INTERRUPT_STATE, BOOST_MSM_EUML_TERMINATE_STATE,
BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE, BOOST_MSM_EUML_ENTRY_STATE or
BOOST_MSM_EUML_EXIT_STATE.

tenpl ate <cl ass StateNane> eum _state; {

}

Y ou can however usethistypedirectly if youwant to provide your state with extrafunctionsor provide
entry or exit behaviors without functors, for example:

struct Enpty : public nmem:front::state<> , public eum _state<Enpty>
void foo() {...}

tenpl ate <cl ass Event, cl ass Fsnp
voi d on_entry(Event consté& evt,Fsnm& fsm{...}

1
euml_flag
The basic type for flags with eUML.

tenpl ate <cl ass Fl agNane> eum flag; {
}

struct Playi ngPaused: eumnl _flag<Pl ayi ngPaused>{};
euml_action
The basic type for state or transition behaviors and guards with eUML.

tenpl ate <cl ass Aci onNanme> eunl _action; {

}
struct close_drawer : eum _action<cl ose_drawer>
{
tenpl ate <class Fsmcl ass Evt,class SourceState, class Target St ate>
void operator()(Evt const& , Fsm& SourceState& ,TargetState&) {...}
b

Or, as state entry or exit behavior:

struct Playing_Entry : eunl_action<Playi ng_Entry>

109

Front-end

tenpl ate <cl ass Event,class Fsmclass State>
voi d operator()(Event const& Fsn& fsm State&){...}

b
euml_config
The basic type for configuration possibilities with eUML.

tenpl ate <cl ass Confi gName> eum _config; ({
}

Y ou normally do not use thistype directly but instead the instances of predefined configuration:
* no_exception: disable catching exceptions

* no_msg_queue: disable message queue. The message queue allows you to send an event for
procesing while in an event processing.

 deferred_events: manually enable handling of deferred events
invalid_type

Type returned by grammar parsers if the grammar is invalid. Seeing this type will result in a static
assertion.

no_action

Placeholder type for usein entry/exit or transition behaviors, which does absolutely nothing.

source_
Generic object or function for the source state of a given transition:

 asobject: returns by reference the source state of atransition, usually to be used by another function
(usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:
sonme_user_function_(source)
« asfunction: returns by reference the attribute passed as parameter.
Example:
source_(m.counter) ++
target_
Generic object or function for the target state of a given transition:

» asobject: returns by reference the target state of atransition, usually to be used by another function
(usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:
some_user _function_(target)
 asfunction: returns by reference the attribute passed as parameter.

Example:

110

Front-end

target _(mcounter) ++

state
Generic object or function for the state of agiven entry / exit behavior. state_ means source_whilein
the context of an exit behavior and target_ in the context of an entry behavior:
 asobject: returns by reference the current state, usually to be used by another function (usually one
created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).
Example:
some_user _function_(state_) // calls some_user_function on the current state
« asfunction: returns by reference the attribute passed as parameter.
Example:
state_(mcounter) ++
event_
Generic object or function for the event triggering a given transition (valid in a transition behavior,
aswell asin state entry/exit behaviors):
» as object: returns by reference the event of a transition, usually to be used by another function
(usualy one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).
Example:
some_user _function_(event)
« asfunction: returns by reference the attribute passed as parameter.
Example:
event _(m counter) ++
fsm_
Generic object or function for the state machine containing a given transition:;
» as object: returns by reference the event of a transition, usually to be used by another function
(usualy one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).
Example:
some_user _function_(fsm)
« asfunction: returns by reference the attribute passed as parameter.
Example:
fsm (mcounter) ++
substate

Generic object or function returning a state of a given state machine:

» with 1 parameter: returns by reference the state passed as parameter, usually to be used by another
function (usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

111

Front-end

Example:
sonme_user _function_(substate (my_state))

* with 2 parameters: returns by reference the state passed as first parameter from the state
machine passed as second parameter, usually to be used by another function (usually one created
by MSM_EUML_METHOD or MSM_EUML_FUNCTION). This makes sense when used in
combination with attribute .

Example (equivalent to the previous example):

some_user _function_(substate (ny_state,fsm))

attribute_

Generic object or function returning the attribute passed (by name) as second parameter of the thing
passed asfirst (a state, event or state machine). Example:

attribute (substate (my_state),cd name_attribute)++

True
Functor returning truefor transition or state behaviors. Like all constants, only the functor form exists,
S0 parenthesis are necessary. Example:
if_then_(True_(),/* some action always called*/)

False

Functor returning falsefor transition or state behaviors. Likeall constants, only the functor form exists,
SO parenthesis are necessary. Example:

if then (False (),/* sone action never called */)

Int_<int value>

Functor returning an integer value for transition or state behaviors. Likeal constants, only the functor
form exists, so parenthesis are necessary. Example:

target _(mringing_cpt) = Int_<RINGNGTIME>() // RING NG TIME is a constant

Char_<char value>

Functor returning a char value for transition or state behaviors. Like all constants, only the functor
form exists, so parenthesis are necessary. Example:

/1 look for 'S in event.m song
[string_find_(event_(msong), Char_<'S >(),Size_t_<0>()) != Npos_<string>()]

Size_t_<size_t value>

Functor returning a size t value for transition or state behaviors. Like all constants, only the functor
form exists, so parenthesis are necessary. Example:

substr_(event_(msong), Size_t_<1>()) // returns a substring of event.m song
String_ < mpl::string >

Functor returning a string for transition or state behaviors. Like all constants, only the functor form
exists, so parenthesis are necessary. Requires boost >= 1.40 for mpl::string.

112

Front-end

Example:

/1l adds "Let it be" to fsmmsrc_container
push_back (fsm (msrc_container), String <npl::string< Let','it ',"be" > >())

Predicate_ < some_stl_compatible_functor >

This functor eUML-enables a STL functor (for use in an algorithm). This is necessary because al
what isin the transition table must be aeUML terminal.

Example:

/1 equi val ent to:
/1std::accunul ate(fsm mvec. begin(),fsmmvec.end(), 1,std::plus<int>())==
accunul ate_(begin_(fsm (muvec)),end (fsm(muvec)),Int_<1>(),

Predi cate <std::plus<int> >()) == Int_<1>())

process_
This function sends an event to up to 4 state machines by calling pr ocess_event onthem:
» process_(some_event) : processesan event in the current (containing) state machine.

* process_(some_event [,fsml...fsml]) : processesthe same event in the 1-4 state
machines passed as argument.

process2_

This function sends an event to up to 3 state machines by calling pr ocess_event on them and
copy-constructing the event from the data passed as second parameter:

* process2_(some_event, sone_data) : processes an event in the current (containing)
state machine.

e process2 (some_event, sone_data [,fsml...fsnB]) :processesthe sameevent
in the 1-3 state machines passed as argument.

Example:

/1 processes Not Found on current state machine,
/1 copy-constructed with event.m song
process2_(Not Found, event _(m song))

With the following definitions:

BOOST_MSM EUML_DECLARE_ATTRI BUTE(std: : string, msong)//declaration of msong
Not Found (const string& data) // copy-constructor of NotFound

is_flag_
Thisfunction tellsif aflagisactiveby callingi s _fl ag_acti ve on the current state machine or
one passed as parameter:
« is_flag_(sonme_flag) :cdlsis_flag_acti ve onthecurrent (containing) state machine.
« is_flag_(some_flag, sone_fsn) :calsis_fl ag_act i ve onthe state machine.passed
as argument.
defer_

Thisobject defersthe current event by calling def er _event onthe current state machine. Example:

113

Front-end

Empty() + play() / defer_
explicit_(submachine-name,state-name)

Used as transition's target, causes an explicit entry into the given state from the given submachine.
Severa explicit_ as targets, separated by commas, means a fork. The state must have been declared
assuch using BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE.

entry_pt_(submachine-name,state-name)

Used as transition's target from a containing state machine, causes submachine-name to be entered
using the given entry pseudo-state. This state must have been declared as pseudo entry using
BOOST_MSM_EUML_ENTRY_STATE.

exit_pt_(submachine-name,state-name)
Used as transition's source from a containing state machine, causes submachine-name to be left

using the given exit pseudo-state. This state must have been declared as pseudo exit using
BOOST_MSM_EUML_EXIT_STATE.

MSM_EUML_FUNCTION

This macro creates aeUML function and afunctor for use with the functor front-end, based on afree
function:

« first parameter: the name of the functor
* second parameter: the underlying function

« third parameter: the eUML function name

fourth parameter: the return type if used in atransition behavior

fifth parameter: the return typeif used in a state behavior (entry/exit)

Note that the function itself can take up to 5 arguments.

Example:

MSM_EUM._FUNCTI ON(Bi narySear ch_, std:: bi nary_search, bi nary_sear ch_, bool , bool)
Can be used like:

bi nary_search_(begin_ (fsm(muvar)),end (fsm(mvar)),Int_<9>())

MSM_EUML_METHOD

This macro creates a eUML function and a functor for use with the functor front-end, based on a
method:

« first parameter: the name of the functor

* second parameter: the underlying function

* third parameter: the eUML function name

« fourth parameter: the return type if used in atransition behavior

« fifth parameter: the return type if used in a state behavior (entry/exit)

Note that the method itself can take up to 4 arguments (5 like for a free function - 1 for the object
on which the method is called).

114

Front-end

Example:

struct Enpty : public mem:front::state<> , public eum _state<Enmpty>

{ void activate_enmpty() {std::cout << "switching to Enpty " << std::endl;}
i

MSM_EUML_METHOD(Act i vat eEnpty_, activate_enpty, activate_enpty_, voi d, voi d)

Can be used like:

Enpty == Open + open_close / (close_drawer , activate_enpty (target_))

BOOST_MSM_EUML_ACTION(action-instance-name)

This macro declares a behavior type and a const instance for use in state or transition behaviors. The
action implementation itself follows the macro declaration, for example:

BOOST_MSM _EUML_ACTI ON(good_di sk_f or mat)
{

tenpl ate <cl ass Fsmcl ass Evt, class SourceState, class Target St at e>
voi d/ bool operator()(Evt const& evt, Fsm& SourceState& , Target State&){. ..

1
BOOST_MSM_EUML_FLAG(flag-instance-name)

This macro declares aflag type and a const instance for use in behaviors.

BOOST_MSM_EUML_FLAG_NAME(flag-instance-name)

This macro returns the name of the flag type generated by BOOST MSM_EUML_FLAG. You need
this where the typeis required (usually with the back-end method is flag_active). For example:

fsmis_flag_acti ve<BOOST_MSM EUML_FLAG NAME(CDLoaded) >()

BOOST _MSM_EUML_DECLARE_ATTRIBUTE(event-type,event-name)

Thismacro declares an attribute called event-name of type event-type. This attribute can then be made
part of an attribute list using BOOST_MSM_EUML_ATTRIBUTES.

BOOST_MSM_EUML_ATTRIBUTES(attributes-expression,attributes-name)

This macro declares an attribute list called attributessname based on the expression
as first argument. These attributes can then be made pat of an event
using BOOST MSM_EUML_EVENT WITH_ATTRIBUTES, of a state as 3rd parameter
of BOOST_MSM _EUML_STATE or of a stae machine as 5th parameter of
BOOST_MSM_EUML_DECLARE_STATE_MACHINE.

Attributes are added using left-shift, for example:
/1 msong is of type std::string
BOOST_MSM EUML_DECLARE_ATTRI BUTE(st d: : string, m song)

/1 contains one attribute, msong
BOOST_MSM EUML_ATTRI BUTES((attri butes_ << msong), FoundDef)

BOOST_MSM_EUML_EVENT(event-instance name)

This macro defines an event type (event-instance-name_helper) and declares a const instance of this
event type called event-instance-name for use in atransition table or state behaviors.

115

Front-end

BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES(event-instance-
name,attributes)

This macro defines an event type (event-instance-name_helper) and declares a const instance of this
event type called event-instance-name for use in a transition table or state behaviors. The event will
have as attributes the ones passed by the second argument:
BOOST_MSM _EUML_EVENT_W TH_ATTRI BUTES(Found, FoundDef)
The created event instance supports operator()(attributes) so that
ny_back_end. process_event (Found(sonme_string))
ispossible.
BOOST_MSM_EUML_EVENT_NAME(event-instance-name)
This macro returns the name of the event type generated by BOOST MSM_EUML_EVENT or
BOOST_MSM_EUML_EVENT WITH_ATTRIBUTES. You need this where the type is required
(usually inside a back-end definition). For example:
typedef msm : back:: state_machi ne<Pl ayi ng_,
nmsm : back: : Shal | owHi st ory<npl : : vect or <BOOST_NMSM EUML_EVENT NAME(end_pause)
> > > Playing_type;
BOOST_MSM_EUML_STATE(build-expression,state-instance-name)

Thismacro defines a state type (state-instance-name_helper) and declares a const instance of this state
type called state-instance-name for use in atransition table or state behaviors.

There are several possibilitites for the expression syntax:

» (): state without entry or exit action.

o (Exprl): state with entry but no exit action.

* (Exprl,Expr2): state with entry and exit action.

» (Exprl,Expr2,Attributes): state with entry and exit action, defining some attributes.

» (Exprl,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes and
flags (standard MSM flags) or deferred events (standard MSM deferred events).

» (Exprl,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes,

flags and deferred events (plain msm deferred events) and a non-default base state (as defined in
standard MSM).

BOOST_MSM_EUML_INTERRUPT_STATE(build-expression,state-instance-
name)

This macro defines an interrupt state type (state-instance-name_helper) and declares a const instance
of this state type called state-instance-name for use in atransition table or state behaviors.

There are severa possibilititesfor the expression syntax. In all of them, the first argument isthe name
of the event (generated by one of the previous macros) ending the interrupt:

 (end_interrupt_event): interrupt state without entry or exit action.

* (end_interrupt_event,Exprl): interrupt state with entry but no exit action.

116

Front-end

(end_interrupt_event,Exprl,Expr2): interrupt state with entry and exit action.

(end_interrupt_event,Exprl,Expr2,Attributes): interrupt state with entry and exit action, defining
some attributes.

(end_interrupt_event,Exprl,Expr2,Attributes,Configure): interrupt state with entry and exit action,
defining some attributes and flags (standard M SM flags) or deferred events (standard M SM deferred
events).

(end_interrupt_event,Exprl,Expr2,Attributes,Configure,Base): interrupt state with entry and exit
action, defining some attributes, flags and deferred events (plain msm deferred events) and a non-
default base state (as defined in standard MSM).

BOOST_MSM_EUML_TERMINATE_STATE(build-expression,state-instance-

name)

This macro defines a terminate pseudo-state type (state-instance-name_helper) and declares a const
instance of this state type called state-instance-name for use in atransition table or state behaviors.

There are severa possibilitites for the expression syntax:

(): terminate pseudo-state without entry or exit action.
(Exprl): terminate pseudo-state with entry but no exit action.
(Expr1,Expr2): terminate pseudo-state with entry and exit action.

(Expr1,Expr2,Attributes): terminate pseudo-state with entry and exit action, defining some
attributes.

(Expri,Expr2,Attributes,Configure): terminate pseudo-state with entry and exit action, defining
some attributes and flags (standard M SM flags) or deferred events (standard MSM deferred events).

(Exprl,Expr2,Attributes,Configure,Base): terminate pseudo-state with entry and exit action,
defining some attributes, flags and deferred events (plain msm deferred events) and a non-default
base state (as defined in standard MSM).

BOOST_MSM_EUML_EXIT_STATE(build-expression,state-instance-name)

This macro defines an exit pseudo-state type (state-instance-name_helper) and declares a const
instance of this state type called state-instance-name for use in atransition table or state behaviors.

There are several possibilitites for the expression syntax:

(forwarded_event):exit pseudo-state without entry or exit action.
(forwarded_event,Exprl): exit pseudo-state with entry but no exit action.
(forwarded_event,Exprl,Expr2): exit pseudo-state with entry and exit action.

(forwarded _event,Exprl,Expr2,Attributes): exit pseudo-state with entry and exit action, defining
some attributes.

(forwarded_event,Exprl,Expr2,Attributes,Configure): exit pseudo-state with entry and exit action,
defining some attributes and flags (standard M SM flags) or deferred events (standard M SM deferred
events).

(forwarded_event,Exprl,Expr2,Attributes,Configure,Base): exit pseudo-state with entry and exit
action, defining some attributes, flags and deferred events (plain msm deferred events) and a non-
default base state (as defined in standard MSM).

117

Front-end

Notethat the forwarded_event must be constructible from the event sent by the submachine containing
the exit point.

BOOST_MSM_EUML_ENTRY_STATE(int region-index,build-expression,state-
instance-name)

This macro defines an entry pseudo-state type (state-instance-name_helper) and declares a const
instance of this state type called state-instance-name for use in atransition table or state behaviors.

There are several possihilitites for the expression syntax:

* (): entry pseudo-state without entry or exit action.

* (Exprl): entry pseudo-state with entry but no exit action.

* (Exprl,Expr2): entry pseudo-state with entry and exit action.

o (Exprl,Expr2,Attributes): entry pseudo-state with entry and exit action, defining some attributes.

» (Exprl,Expr2,Attributes,Configure): entry pseudo-state with entry and exit action, defining some
attributes and flags (standard MSM flags) or deferred events (standard MSM deferred events).

» (Exprl,Expr2,Attributes,Configure,Base): entry pseudo-state with entry and exit action, defining

some attributes, flags and deferred events (plain msm deferred events) and a non-default base state
(as defined in standard MSM).

BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE(int region-index,build-
expression,state-instance-name)

This macro defines asubmachine's substate type (state-instance-name_helper), which can be explicitly
entered and also declares a const instance of this state type called state-instance-name for use in a
transition table or state behaviors.

There are several possihilitites for the expression syntax:

» (): state without entry or exit action.

» (Exprl): state with entry but no exit action.

* (Exprl,Expr2): state with entry and exit action.

» (Exprl,Expr2,Attributes): state with entry and exit action, defining some attributes.

» (Exprl,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes and
flags (standard MSM flags) or deferred events (standard MSM deferred events).

» (Exprl,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes,
flags and deferred events (plain msm deferred events) and a non-default base state (as defined in
standard MSM).

BOOST_MSM_EUML_STATE_NAME(state-instance-name)

This macro returns the name of the state type generated by BOOST _MSM_EUML_STATE or other
statemacros. Y ou need thiswherethetypeisrequired (usually using abackend function). For example:

fsm get st at e<BOOST_MSM EUML_STATE NAME(Stri ngFi nd) & (). sone_state_function();

BOOST_MSM_EUML_DECLARE_STATE(build-expression,state-instance-
name)

Like BOOST_MSM_EUML_STATE but does not provide an instance, simply atype declaration.

118

Front-end

BOOST_MSM_EUML_DECLARE_INTERRUPT_STATE(build-expression,state-
instance-name)

Like BOOST_MSM_EUML_INTERRUPT_STATE but does not provide an instance, simply atype
declaration.

BOOST_MSM_EUML_DECLARE_TERMINATE_STATE(build-expression,state-
instance-name)

LikeBOOST_MSM_EUML_TERMINATE_STATE but does not provide an instance, smply atype
declaration.

BOOST_MSM_EUML_DECLARE_EXIT_STATE(build-expression,state-instance-
name)

Like BOOST MSM_EUML_EXIT_STATE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_DECLARE_ENTRY_STATE(int region-index,build-
expression,state-instance-name)

Like BOOST MSM_EUML_ENTRY_STATE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_DECLARE_EXPLICIT_ENTRY_STATE(int region-
index,build-expression,state-instance-name)

Like BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE but does not provide an instance, simply
atype declaration.

BOOST_MSM_EUML_TRANSITION_TABLE(expression, table-instance-name)

This macro declares a transition table type and also declares a const instance
of the table which can then be wused in a sate machine declaration (see
BOOST_MSM_EUML_DECLARE_STATE MACHINE).The expresson must follow the
transition table grammar.

BOOST_MSM_EUML_DECLARE_TRANSITION_TABLE(iexpression,table-
instance-name)

LikeBOOST _MSM_EUML_TRANSITION_TABLE but does not provide an instance, simply atype
declaration.

BOOST_MSM_EUML_INTERNAL_TRANSITION_TABLE(expression, table-
instance-name)

This macro declares a transition table type and also declares a const instance of the table.The
expression must follow the transition table grammar. For the moment, this macro is not used.

BOOST_MSM_EUML_DECLARE_INTERNAL_TRANSITION_TABLE(iexpression,table-

instance-name)

LikeBOOST MSM_EUML_TRANSITION_TABLE but does not provide an instance, simply atype
declaration. This is currently the only way to declare an internal transition table with eUML. For
example:

BOOST_MSM _EUML_DECLARE_STATE((Open_Entry, Open_Exi t), Open_def)
struct Open_inpl : public Open_def

119

Front-end

{

BOOST_MSM EUML_DECLARE_| NTERNAL _TRANSI TI ON_TABLE((
open_cl ose [internal guardl] / internal _actionl ,
open_cl ose [internal guard2] / internal _action2

))

b

120

	Meta State Machine (MSM)
	Table of Contents
	Preface
	Part I. User' guide
	Chapter 1. Founding idea
	Chapter 2. UML Short Guide
	What are state machines?
	Concepts
	State machine, state, transition, event
	Submachines, orthogonal regions, pseudostates
	History
	Completion transitions / anonymous transitions
	Internal transitions
	Conflicting transitions

	Added concepts
	State machine glossary

	Chapter 3. Tutorial
	Design
	Basic front-end
	A simple example
	Transition table
	Defining states with entry/exit actions
	What do you actually do inside actions / guards?
	Defining a simple state machine
	Defining a submachine
	Orthogonal regions, terminate state, event deferring
	History
	Completion (anonymous) transitions
	Internal transitions
	more row types
	Explicit entry / entry and exit pseudo-state / fork
	Explicit entry
	Fork
	Entry pseudo states
	Exit pseudo states

	Flags
	Event Hierarchy
	Customizing a state machine / Getting more speed
	Choosing the initial event
	Containing state machine (deprecated)

	Functor front-end
	Transition table
	Defining states with entry/exit actions
	What do you actually do inside actions / guards (Part 2)?
	Defining a simple state machine
	Anonymous transitions
	Internal transitions
	Kleene (any) event

	PUML (C++-20), experimental
	PlantUML basics
	Composite State Machines

	eUML
	Transition table
	A simple example: rewriting only our transition table
	Defining events, actions and states with entry/exit actions
	Events
	Actions
	States

	Wrapping up a simple state machine and first complete examples
	Defining a submachine
	Attributes / Function call
	Orthogonal regions, flags, event deferring
	Customizing a state machine / Getting more speed
	Completion / Anonymous transitions
	Internal transitions
	Kleene(any) event)
	Other state types
	Helper functions
	Phoenix-like STL support
	Writing actions with Boost.Phoenix (in development)

	Back-end
	Creation
	Starting and stopping a state machine
	Event dispatching
	Active state(s)
	Upper State Machine
	Serialization
	Base state type
	Visitor
	Flags
	Getting a state
	State machine constructor with arguments
	Trading run-time speed for better compile-time / multi-TU compilation
	Compile-time state machine analysis
	Enqueueing events for later processing
	Customizing the message queues
	Policy definition with Boost.Parameter
	Choosing when to switch active states

	Chapter 4. Performance / Compilers
	Speed
	Executable size
	Supported compilers
	Limitations
	Compilers corner

	Chapter 5. Questions & Answers, tips
	Chapter 6. Internals
	Backend: Run To Completion
	Frontend / Backend interface
	Generated state ids
	Metaprogramming tools

	Chapter 7. Acknowledgements
	MSM v2
	MSM v1

	Chapter 8. Version history
	Boost 1.85
	Boost 1.72
	Boost 1.57
	Boost 1.56
	Boost 1.55
	Boost 1.54
	From V2.23 to V2.24 (Boost 1.51)
	From V2.22 to V2.23 (Boost 1.50)
	From V2.21 to V2.22 (Boost 1.48)
	From V2.20 to V2.21 (Boost 1.47)
	From V2.12 to V2.20 (Boost 1.46)
	From V2.10 to V2.12 (Boost 1.45)
	From V2.0 to V2.12 (Boost 1.44)

	Part II. Reference
	Chapter 9. External references to MSM
	Chapter 10. eUML operators and basic helpers
	Chapter 11. Functional programming
	Common headers
	Back-end
	Front-end

